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1. Introduction.

In this thesis, we want to make probabilistic approach to some limit problem in relativistic

quantum mechanics.

Quantum mechanics is a theory to explain the phenomena in space-time Rd×R = Rd+1

which are caused by atoms, molecules and elementary particles. The measured results of

the quantities of the quantum mechanical particle, for example, the total energy in other

words Hamiltonian, the position and the momentum distribute in general probabilisti-

cally. This point is different from classical mechanics, which is deterministic theory. Such

physical quantities are called observables and are expressed by self-adjoint operators in

L2(Rd). Especially, the quantum mechanical Hamiltonian, often written by H, is called

Schrödinger operator. The state of the particle is also expressed by a non-zero element

of L2(Rd). When the state of the particle is ψ ∈ L2(Rd), the probability for the particle

to be found in a region M ⊂ Rd is given by (∥ψ1M∥2/∥ψ∥2)2, where 1M is the indicator

function of the subset M and ∥ · ∥2 is the L2(Rd)-norm. Furthermore, if (·, ·) is the inner

product of L2(Rd), the measured results of the Hamiltonian H is given by (Hψ,ψ). We

note that this value is a real number due to the self-adojointness of H in L2(Rd). The

time evolution of the state of the particle is described by the Schrödinger equation:

iℏ
∂

∂t
ψ(x, t) = Hψ(x, t), x ∈ Rd, t > 0. (1.1)

Here ℏ = h/2π, the Planck’s constant h divided by 2π. The solution ψ(x, t) of (1.1)

is called wave function. In the following, ℏ is taken to be 1 without loss of generality.

Equation (1.1) is obtained through quantization, a mysterious procedure which shifts from

classical mechanical system to quantum mechanical system.

Now, let us consider a spinless particle with mass m under the influence of the magnetic

potential A(x) and the electric potential V (x). In nonrelativistic case, the corresponding

classical Hamiltonian is given by the right-hand side of the equation

E =
1

2m

(
ξ − e

c
A(x)

)2
+ V (x), (ξ, x) ∈ Rd ×Rd. (1.2)

Here E is the total energy, and ξ and x are the momentum and position for the particle.

The constants c and e are the light velocity and the electric charge. Then the quantization

procedure consists of changing the total energy E on the left to the differential operator

i ∂
∂t
, and the variables ξ and x on the right to the differential operator −i∇ and the
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multiplication operator x × ·, respectively, and consequently the kinetic energy 1
2m

(ξ −
e
c
A(x))2 and the electric potential V (x) on the right, respectively, to the two operators

in L2(Rd), the self-adjoint operator 1
2m

(−i∇ − e
c
A(x))2 and the multiplication operator

V (x)× by function V (x). Then, assuming all these operators to apply to a function

ψ(x, t), we obtain the Schrödinger equation (1.1) with

H =
1

2m

(
−i∇− e

c
A(x)

)2
+ V (x). (1.3)

H = − 1
2m

∆ when A ≡ 0 and V ≡ 0, where ∆ is the Laplacian ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
d
on Rd.

One can deal with equation (1.1) from probabilistic viewpoint by going from Minkowski

space-time to Euclidian space-time. Namely, we change time t to imaginary time −it and
put u(x, t) := ψ(−it, x) in (1.1), leading to imaginary time Schrödinger equation

∂

∂t
u(x, t) = −Hu(x, t), x ∈ Rd, t > 0. (1.4)

It is well known that, for H in (1.3), the solution of the Cauchy problem for (1.4) with

initial data g ∈ L2(Rd) is given by the following Feynman-Kac-Itô formula ([21]):

u(x, t) =

∫
C0

e−i
e
c

∫ t
0 A(x+B(s))·dB(s)− i

2
e
c

∫ t
0 divA(x+B(s))ds−

∫ t
0 V (x+B(s))dsg(x+B(t))dµm(B).

(1.5)

Here
∫ t

0
A(x + B(s)) · dB(s) is called Itô’s stochastic integral ([21], [13], [1]), and µm is

a probability measure, called Wiener measure, on the space C0 := C0([0,∞) → Rd) of

continuous paths B : [0,∞) → Rd with B(0) = 0 such that

µm(B ∈ C0;B(t) ∈ dy) =
( m
2πt

)d/2
e−

m
2t
|y|2dy, ξ ∈ Rd, t > 0∫

C0

eiξ·B(t)dµm(B) = e−t
|ξ|2
2m , ξ ∈ Rd, t ≥ 0.

We note that the function ( m
2πt

)d/2e−
m
2t
|y|2 is the fundamental solution of (1.4) with H =

− 1
2m

∆, i.e., the heat equation

∂

∂t
u(x, t) =

1

2m
∆u(x, t), x ∈ Rd, t > 0.

and so this function is also called heat kernel.

In this thesis, we consider a spinless particle with mass m in relativistic quantum

mechanics (for example, pions and electron ignored spin). For this purpose, we treat the
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imaginary-time Schrödinger equation (1.4) with the quantum Hamiltonian H associated

with the classical Hamiltonian symbol on the right-hand side of the equation

E =
√
c2(ξ − eA(x))2 +m2c4 −mc2 + V (x), (ξ, x) ∈ Rd ×Rd. (1.6)

We may also use the expression
√
c2(ξ − eA(x))2 +m2c4+V (x) instead, without subtract-

ing rest energy mc2. However, the use of expression (1.6) will enable us to notice equation

(1.4) with the Weyl quantized relativistic Hamiltonian as H to have a deep connection

with Lévy process (see Definition 6.3 in subsection 6.1) in probability theory.

The aim of this work is to show the convergence of the solutions of the Cauchy problem

for (1.4) as mass-parameter m goes to zero. We call this problem the zero-mass limit

problem. It is in fact by use of the probabilistic framework with Lévy process just briefly

mentioned above that we are going to show it, though it was already shown by using

operator theory [6] and pseudo-differential calculus [18]. It may amount to showing a

kind of the limit theorems, which Kasahara–Watanabe [14] discussed in the framework

of semimartingales (see Definition 6.8 and (6.5) in subsection 6.2), for a sequence of

point processes and their certain functionals represented by stochastic integrals. In this

thesis, we deal with a sequence of slightly more general functionals of special kind of Lévy

processes having no Gaussian part, i.e., pure-jump Lévy processes. More precisely, these

functionals are given by the exponential semimartingales.

Finally, in passing, we note here also that there is another limit problem when the light

velocity c goes to infinity (nonrelativistic limit problem), for which we refer [4], [6], [19],

[17, pp. 257–260].

This thesis is organized as follows: In Section 2, we describe the framework devel-

oped by Ichinose mentioned above ([5], [6], [7]) to treat our relativistic problem. In

particular, we introduce Weyl quantized relativistic Hamiltonian and give a path integral

representation for the solution of the Cauchy problem for the imaginary-time relativistic

Schrödinger equation (1.4), which is the very formula for relativistic case corresponding

to the Feynman–Kac–Itô formula (1.5) for nonrelativistic case. In Section 3, we state

our results concerning the zero-mass limit problem. In Section 4 and Section 5, we prove

our results. In Section 6, Appendix, we collect some basic notations from the probability

theory, such as Lévy process, semimartingale and their relevant formulas.

Acknowledgment. The author is grateful to Professor Takashi Ichinose and Professor
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Hidekazu Ito for their kind guidances, many helpful advices and warm encouragements

during the preparation of this work.

2. Weyl quantized relativistic Hamiltonian and path

integral formula.

In expression (1.6) for the relativistic classical Hamiltonian, we may now assume without

loss of generality that c and e are also equal to 1. Therefore equation (1.6) turns out

E =
√
(ξ − A(x))2 +m2 −m+ V (x), (ξ, x) ∈ Rd ×Rd. (2.1)

For N = 1, d, we denote by C∞
b (Rd;RN) the space of RN -valued C∞-functions on

Rd which are bounded together with all their derivatives. For A ∈ C∞
b (Rd;Rd), let

us define the operator Hm
A in L2(Rd) with domain C∞

0 (Rd), which is corresponding to√
(ξ − A(x))2 +m2 in (2.1) as

(Hm
A f)(x) :=

1

(2π)d
Os-

∫∫
Rd×Rd

ei(x−y)·ξ
√(

ξ − A(x+y
2
)
)2

+m2f(y)dydξ, f ∈ C∞
0 (Rd).

(2.2)

Here “Os”means oscillatory integral (cf. [16, I, pp.45–53]) and the integral on the right-

hand side of (2.2) is defined by the limit

lim
ε↓0

∫∫
Rd×Rd

ei(x−y)·ξ
√(

ξ − A(x+y
2
)
)2

+m2χ(εy, εy)f(y)dydξ,

χ ∈ S(Rd ×Rd) with χ(0, 0) = 1.

We note that this limit exists and is independent of the choice of cutoff function χ ([9,

Proposition 2.1]). Hm
A is called Weyl pseudo-differential operator with mid-point prescrip-

tion. It can be proved that if

A ∈ C∞
b (Rd;Rd), V ∈ C∞

b (Rd;R), (2.3)

then

Hm
A,V := Hm

A + V (2.4)
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is essentially selfadjoint on C∞
0 (Rd) ([11, Theorem 2.1 (i)]). Especially, if A ≡ 0, then

Hm
0 =

√
−∆+m2 so that (Hm

0 )2 = (
√
−∆+m2)2 = −∆+m2.

In the following, we see that this operator Hm
0 is related to Lévy process. First, we

note that the function ξ 7→ e−[
√

ξ2+m2−m] is positive definite (e.g. [1, Proof of Theorem

1.2.26], [11, Lemma 4.1(i)]), namely

k∑
i,j=1

e−[
√

(ξi−ξj)2+m2−m]zizj ≥ 0, ξ1, . . . , ξk ∈ Rd, z1, . . . , zk ∈ C, k ∈ N.

It is seen by Bochner’s theorem ([1, Theorem 1.1.12], [20, Proposition 2.5 (i)]) that ξ 7→
e−[

√
ξ2+m2−m] is the characteristic function of some probability measure on Rd. It is easy

to see that this probability measure is infinitely divisible (see Definition 6.4 in subsection

6.1). Let D0 be the set of the right-continuous paths X : [0,∞) → Rd with left-hand

limits and X(0) = 0 and put F := σ(X(s); s ≤ t). By Theorem 6.1 in subsection 6.1,

there exists a probability measure λm on (D0,F) such that X = {X(t)}t≥0 is a Lévy

process (see Definition 6.3 in subsection 6.1) with respect to λm and

e−t[
√

ξ2+m2−m] = Em[eiξ·X(t)], t ≥ 0, ξ ∈ Rd. (2.5)

Here Em[· · · ] denotes the expectation over D0 with respect to λm. By (2.5) and the Lévy-

Khintchine formula (see Theorem 6.2 and (6.2) in subsection 6.1), there exists a Lévy

measure nm(dy) such that√
ξ2 +m2 −m = −

∫
|y|>0

(
eiξ·y − 1− iξ · y1|y|<1

)
nm(dy), ξ ∈ Rd. (2.6)

Here nm(dy) has density ([5, (2.2), p.268])

nm(y) = nm(|y|) =


2
(m
2π

)(d+1)/2 K(d+1)/2(m|y|)
|y|(d+1)/2

, m > 0,

Γ((d+ 1)/2)

π(d+1)/2

1

|y|d+1
, m = 0.

(2.7)

Furthermore, (2.6) and the Lévy-Itô decomposition (see Theorem 6.3 in subsection 6.1)

imply that

X(t) =

∫ t

0

∫
|y|≥1

yNX(dsdy) +

∫ t

0

∫
0<|y|<1

yÑm
X (dsdy), λm-a.s. X ∈ D0. (2.8)
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Here
∫ t

0
:=
∫
(0,t]

, NX(dsdy) is a counting measure on (0,∞)× (Rd \ {0}) defined by

NX(G) := #{s > 0; (s,X(s)−X(s−)) ∈ G}, G ∈ B(0,∞)× B(Rd \ {0}) (2.9)

and Ñm
X (dsdy) := NX(dsdy)−dsnm(dy). {NX(G)}G is a stationary Poisson random mea-

sure with intensity measure dsnm(dy) with respect to λm (see Definition 6.5 in subsection

6.1).

Next, we consider the probability distribution λm(X;X(t) ∈ dy) on Rd. Let km0 (y, t)

be the fundamental solution of the heat equation of (1.4) with Hm
0 −m, i.e.,

∂

∂t
u(x, t) = −[Hm

0 −m]u(x, t), x ∈ Rd, t > 0.

It can be seen that

k̂m0 (·, t)(ξ) = e−t[
√

ξ2+m2−m], ξ ∈ Rd, t > 0, (2.10)

where for φ ∈ S(Rd), we define the Fourier transform of φ by φ̂(ξ) :=
∫
Rd e

−ix·ξφ(x)dx.

Taking ξ = 0 in (2.10), we have∫
Rd

km0 (y, t)dy = 1, t > 0. (2.11)

The explicit expression of km0 (y, t) is given ([5, (2.4), p.269]) by

km0 (y, t) =


2
(m
2π

)(d+1)/2 temtK(d+1)/2(m(|y|2 + t2)1/2)

(|y|2 + t2)(d+1)/4
, m > 0,

Γ((d+ 1)/2)

π(d+1)/2

t

(|y|2 + t2)(d+1)/2
, m = 0.

(2.12)

Here Kν and Γ stand for the modified Bessel function of the third kind of order ν and

the Gamma function, respectively ([3]). We note that for each t > 0, k00(y, t) is the

probability density of Cauchy distribution ([20, example 2.12]). By (2.5), (2.10) and

km0 (y, t) = km0 (−y, t), we have

λm(X ∈ D0;X(t) ∈ dy) = km0 (y, t)dy. (2.13)

(2.13) implies that

λm(X ∈ D0; (X(t1), . . . , X(tk)) ∈ dy1 · · · dyk) =
k∏

j=1

km0 (yj − yj−1, tj − tj−1)dy1 · · · dyk,

(2.14)
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where 0 = t0 < t1 < · · · < tk <∞, k ≥ 1 and y0 := 0.

Now, let us see that Hm
A,V can be defined for A and V having singularities. As shown

in [5], Hm
A can be written as the singular integral operator given by

(Hm
A f)(x) = mf(x)− lim

r↓0

∫
|y|≥r

[
e−iy·A(x+ 1

2
y)f(x+ y)− f(x)

]
nm(dy), f ∈ C∞

0 (Rd).

(2.15)

The limit on the right of (2.15) exists a.s. x as well as in the L2(Rd)-norm for A ∈
L2+δ
loc (Rd) with δ > 0 ([12, Lemma 4.1]). It can be proved that if

A ∈ L2+δ
loc (Rd;Rd) for some δ > 0, 0 ≤ V ∈ L2

loc(R
d;R), (2.16)

then Hm
A,V is essentially selfadjoint on C∞

0 (Rd), and its closure is bounded from below by

m ([6, Proposition 2.1], [12, Theorem 4.3]). We have by (2.15)

hmA,V [f ] : = (Hm
A,V f, f)

= m∥f∥22 +
1

2

∫∫
|x−y|>0

|e−i(x−y)·A(x+y
2

)f(x)− f(y)|2nm(x− y)dxdy

+

∫
Rd

V (x)|f(x)|2dx, f ∈ C∞
0 (Rd), (2.17)

Assume

A ∈ L1+δ
loc (Rd;Rd) for some δ > 0, 0 ≤ V ∈ L1

loc(R
d;R) (2.18)

and define hmA,V [·] as (2.17) with form domain Q(hmA,V ) := {f ∈ L2(Rd);hmA,V [f ] < ∞}.
C∞

0 (Rd) is a subspace of Q(hmA,V ). The quadratic form hmA,V is closed with respect to

Q(hmA,V )-norm ∥ · ∥hm
A,V

:= (hmA,V [·] + ∥ · ∥22)1/2 and is symmetric, namely,

hmA,V [f, g] :=
1

4

(
hmA,V [f + g]− hmA,V [f − g] + ihmA,V [f + ig]− ihmA,V [f − ig]

)
satisfies hmA,V [f, g] = hmA,V [g, f ] ([12, Lemma 3.1]). Therefore, there exists ([15, VI, Theo-

rem 2.1, Theorem 2.6]) a unique selfadjoint operatorHm
A,V in L2(Rd) with domainD(Hm

A,V )

bounded from below by m such that

(Hm
A,V f, g) = hmA,V [f, g], f ∈ D(Hm

A,V ), g ∈ Q(hmA,V ).
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It can be proved that C∞
0 (Rd) is dense in Q(hmA,V ) with respect to ∥·∥hm

A,V
, namely C∞

0 (Rd)

is a form core (cf. [15, p. 317]) of Hm
A,V ([12, Theorem 3.4]).

The path integral formula for imaginary time Schrödinger equation (1.4) with Weyl

quantized Hamiltonian is as follows:

Theorem 2.1. ([11], [7], [8], [9]) If (2.18) holds, then

um(x, t) := Em[e−Sm(t,x,X)g(x+X(t))] (2.19)

is the solution of (1.4) with H = Hm
A,V −m with initial data um(·, 0) = g ∈ L2(Rd). Here

Sm(t, x,X) := i

(∫ t

0

∫
|y|≥1

A(x+X(s−) + 1
2
y) · yNX(dsdy)

+

∫ t

0

∫
0<|y|<1

A(x+X(s−) + 1
2
y) · yÑm

X (dsdy)

+

∫ t

0

ds p.v.

∫
0<|y|<1

A(x+X(s) + 1
2
y) · ynm(dy)

)
+

∫ t

0

V (x+X(s))ds (2.20)

and p.v. means the principal value, namely p.v.
∫
0<|y|<1

A(x + X(s) + 1
2
y) · ynm(dy) is

L2(D0;λ
m)-limit of ∫

ε<|y|<1

A(x+X(s) + 1
2
y) · ynm(dy).

as ε ↓ 0.

Remark 2.1. (1) If A is locally Hölder-continuous, then the above limit is equal to∫
0<|y|<1

[A(x+X(s) + 1
2
y)− A(x+X(s))] · ynm(dy)

because
∫
0<|y|<1

|y|1+δdy <∞ for δ > 0 by (2.7).

(2) In (2.8) and (2.20) , the integration regions |y| ≥ 1 and 0 < |y| < 1 may be replaced

by |y| ≥ δ and 0 < |y| < δ, respectively, for any δ > 0.

Proof of Theorem 2.1 (sketch). We will prove Theorem 2.1 only under condition (2.3).

For t > 0, let Tm(t) be a bounded operator of L2(Rd) defined by

(Tm(t)g)(x) =

∫
Rd

km0 (x− y, t) exp
[
−iA(x+y

2
) · (y − x)− V (x+y

2
)t
]
g(y)dy, g ∈ L2(Rd).
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It can be proved that Tm( t
n
)ng converges to the solution of (1.4) with H = Hm

A,V − m

with initial data g as n → ∞ with respect to L2(Rd)-norm ([11, p.246], [9, Proposition

4.2]). So, if we show
(
Tm( t

n
)ng
)
(x) converges to the right-hand side of (2.19) with (2.20)

as n→ ∞, then we can see the proof of Theorem 2.1 to be accomplished. First, we note

that for n ≥ 1,(
Tm( t

n
)ng
)
(x) =

∫
Rd

· · ·
∫
Rd

n∏
j=1

km0 (xj − xj−1,
t
n
) e−Sn(x1,...,xn)g(xn)dx1 · · · dxn,

where x0 = x and

Sn(x1, . . . , xn) := i
n∑

j=1

A

(
xj−1 + xj

2

)
· (xj − xj−1) +

n∑
j=1

V

(
xj−1 + xj

2

)
t

n
.

By (2.14), we have (
Tm( t

n
)ng
)
(x) = Em

[
e−Sn(X)g(x+X(t))

]
,

where

Sn(X) := Sn

(
x+X( t

n
), x+X(2t

n
), . . . , x+X(t)

)
= i

n∑
j=1

A

(
x+

X( j−1
n
t) +X( j

n
t)

2

)
·
(
X( j

n
t)−X( j−1

n
t)
)

+
n∑

j=1

V

(
x+

X( j−1
n
t) +X( j

n
t)

2

)
t

n

=: iSn1(X) + Sn2(X).

It is evident that Sn2(X) converges to
∫ t

0
V (x + X(t))ds as n → ∞, which is the forth

term on the right-hand side of (2.20).

As for Sn1(X), we have by (2.8) and Itô’s formula (see Theorem 6.6 in subsection 6.2)

Sn1(X) =

∫ t

0

∫
|y|≥1

Kn(s, y,X)NX(dsdy) +

∫ t

0

∫
0<|y|<1

Kn(s, y,X)Ñm
X (dsdy)

+

∫ t

0

∫
0<|y|<1

Ln(s, y,X)dsnm(dy),

where

Kn(s, y,X) =
n∑

j=1

1( j−1
n

t, j
n
t](s)

[
A

(
x+

X( j−1
n
t) +X(s−) + y

2

)
·
(
X(s−)−X( j−1

n
t) + y

)
11



− A

(
x+

X( j−1
n
t) +X(s−)

2

)
·
(
X(s−)−X( j−1

n
t)
) ]
,

Ln(s, y,X) =
n∑

j=1

1( j−1
n

t, j
n
t](s)

[
A

(
x+

X( j−1
n
t) +X(s) + y

2

)
·
(
X(s)−X( j−1

n
t) + y

)
− A

(
x+

X( j−1
n
t) +X(s)

2

)
·
(
X(s)−X( j−1

n
t)
) ]

− 1

2
((y · ∇)A)

(
x+

X( j−1
n
t) +X(s)

2

)
·
(
X(s)−X( j−1

n
t)
)

− y · A

(
x+

X( j−1
n
t) +X(s)

2

)]
.

Kn(s, y,X), Ln(s, y,X) converges toA(x+X(s−)+1
2
y)·y,

[
A(x+X(s−) + 1

2
y)− A(x+X(s−))

]
·

y, respectively as n→ ∞. Therefore Sn1(X) converges to the sum of the first, the second

and the third term on the right-hand side of (2.20) as n → ∞. Thus
(
Tm( t

n
)ng
)
(x)

converges to the right-hand side of (2.19) with (2.20) as n→ ∞. □

3. Results.

In this section, we state our results concerning the zero-mass limit problem. First, we see

the convergence of the probability measure λm.

Theorem 3.1. (cf. [10]) λm converges weakly to λ0 as m ↓ 0. Namely, for each bounded

continuous function Ψ defined on the metric space D0 with the metric in [2, p.168],

Em[Ψ(X)] → E0[Ψ(X)], as m ↓ 0.

The following theorems are our main results, where 0 < T <∞ can be taken arbitrary.

Theorem 3.2. If A ∈ C1
0(R

d;Rd) and V ∈ C0(R
d;R), then um(·, t) converges to u0(·, t)

in C∞(Rd) as m ↓ 0, uniformly on [0, T ]. Here C∞(Rd) is the Banach space of the

continuous functions g : Rd → C with |g(x)| → 0 as |x| → ∞ with norm ∥g∥∞ :=

supx∈Rd |g(x)|.

12



Theorem 3.3. If (2.18) holds, then um(·, t) converges to u0(·, t) in L2(Rd) as m ↓ 0,

uniformly on [0, T ].

Theorem 3.3 implies the strong resolvent convergence of Hm
A,V −m to H0

A,V as m ↓ 0

([15, IX, Theorem 2.16, p.504]). An immediate consequence is the following result for the

solution ψm(x, t) of the Cauchy problem for the Schrödinger equation (1.1).

Corollary 3.1. If (2.18) holds, then ψm(·, t) converges to ψ0(·, t) on L2(Rd) as m ↓ 0,

uniformly on [0, T ].

These results, Theorem 3.2, Theorem 3.3 and Corollary 3.1, are extensions of those

proved in Ichinose–Murayama [10] under stronger condition that A ∈ C∞
0 (Rd;Rd) and

V ∈ C0(R
d;R). However, the proof of Theorem 3.2 in this thesis employs the same

argument as in [10, Proof of Theorem 3]. The crucial idea of the proofs of Theorem 3.2

and Theorem 3.3 is to do a change of variable “path ”. We will prove these theorems by

probabilistic method in Section 4 and 5.

In a future work, we will also consider the zero-mass limit problem for the other two

different magnetic Schrödinger operators (mentioned in [8], [9]) corresponding to the same

classical relativistic Hamiltonian (2.1).

4. Proof of Theorem 3.1 and Theorem 3.2.

In this section, we show Theorem 3.1 and Theorem 3.2.

4.1 Proof of Theorem 3.1.

To prove Theorem 3.1, first, we have to the check the following three facts ([2, Theorem

13.5]):

(i) The finite dimensional distributions with respect to λm converge weakly to those with

respect to λ0 as m ↓ 0.

(ii) For each t > 0, the probability measure λ0(X;X(t)−X(t− ε) ∈ dy) on Rd converges

weakly to Dirac measure concentrated at the point 0 ∈ Rd as ε ↓ 0. Namely, for each

bounded continuous function φ defined on Rd,

E0 [φ (X(t)−X(t− ε))] → φ(0), as ε ↓ 0.

13



(iii) There exist α > 1
2
and β > 0, and a nondecreasing continuous function F on [0,∞)

such that

Em
[
|X(s)−X(r)|β|X(t)−X(s)|β

]
≤ [F (t)− F (r)]2α, 0 < m < 1, 0 ≤ r < s < t <∞.

First, as for (i), if 0 = t0 < t1 < · · · < tk < ∞, k ∈ N, then by independent and

stationary increments property of Lévy process and (2.5), we have

Em
[
ei(ξ1·X(t1)+···+ξk·X(tk))

]
= Em

[
ei

∑k
j=1(ξj+···+ξk)·(X(tj)−X(tj−1))

]
=

k∏
j=1

Em
[
ei(ξj+···+ξk)·(X(tj)−X(tj−1))

]
=

k∏
j=1

Em
[
ei(ξj+···+ξk)·X(tj−tj−1)

]
=

k∏
j=1

e−(tj−tj−1)[
√

(ξj+···+ξk)2+m2−m]

→
k∏

j=1

e−(tj−tj−1)(ξj+···+ξk)
2

, as m ↓ 0,

= E0
[
ei(ξ1·X(t1)+···+ξk·X(tk))

]
.

Therefore we have (i).

Next, (ii) follows from the stochastic continuity of {X(t)}t≥0 (see Definition 6.3 (iii) in

subsection 6.1).

Finally, we confirm (iii). Since (d/dτ)τ νKν(τ) = −τ νKν−1(τ) (τ > 0, ν > 0) ([3,

(21), p.79]) and ν 7→ Kν(τ) is strictly increasing in (0,∞) ([3, (21), p.82]), we have

(d/dτ)(eττ νKν(τ)) = eττ ν(Kν(τ)−Kν−1(τ)) < 0 if 0 < ν < 1
2
. Therefore τ 7→ eττ νKν(τ)

is strictly decreasing in (0,∞) and so [3, (41), (42), (43), p.10]

eττ νKν(τ) ≤ lim
τ↓0

τ νKν(τ) = 2ν−1Γ(ν). (4.1)

Then we have for 0 ≤ r < s < t <∞, 1
2
< β < 1,

Em
[
|X(s)−X(r)|β|X(t)−X(s)|β

]
=

∫
Rd

|y|βkm0 (y, s− r)dy

∫
Rd

|y|βkm0 (y, t− s)dy

= C(d, β)2((s− r)(t− s))β
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× em(s−r)(m(s− r))
1−β
2 K 1−β

2
(m(s− r))

× em(t−s)(m(t− s))
1−β
2 K 1−β

2
(m(t− s))

≤ C(d, β)22−(1+2β)Γ(1−β
2
)2(t− r)2β,

where in the second equality we use [4, Lemma 3.3 (ii)] with a constant C(d, β) de-

pending on d and β. Therefore (iii) holds for 1
2
< β < 1, α := β and F (p) :=

C(d, β)1/β2−(1+2β)/2βΓ(1−β
2
)1/βp. □

For t > 0, X ∈ D0, let ϕt(X) be X restricted the domain [0,∞) to [0, t]. (i), (ii) and

(iii) imply that λmϕ−1
t converges weakly to λ0ϕ−1

t as m ↓ 0 for each t > 0. Then we have

by [2, Lemma 3, p.173] that λm converges weakly to λ0 as m ↓ 0. □

4.2 Proof of Theorem 3.2.

From (2.19), we have to prove that

um(x, t) = Em[e−Sm(t,x,X)g(x+X(t))]

→ E0[e−S0(t,x,X)g(x+X(t))] = u0(x, t)

as m ↓ 0 in C∞(Rd). But its direct proof seems a little troublesome since both the

integrand e−Sm(t,x,X)g(x + X(t)) and the probability measure λm depend on m. So we

want to move from Em[· · · ] to E0[· · · ] by a change of variable (i.e., change of probability

measure)

λm = λ0Φ−1
m (4.2)

with path space transformation Φm : D0 → D0, which enables us to consider the problem

on the same probability space (D0, λ
0).

If there is such a Φm, then we can see by (2.5) and (2.6) that the characteristic feature of

the pathX(t) and the transformed path Φm(X)(t) is expressed in terms of their associated

Lévy measures n0(dy) and nm(dy). In fact, for ξ ∈ Rd, t ≥ 0, we have

E0[eiξ·X(t)] = exp

{
t

[∫
|y|>0

(
eiξ·y − 1− iξ · y1|y|<1

)
n0(dy)

]}
,

E0[eiξ·Φm(X)(t)] = Em[eiξ·X(t)]

= exp

{
t

[∫
|y|>0

(
eiξ·y − 1− iξ · y1|y|<1

)
nm(dy)

]}
.

(4.3)
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So it is presumed to hold that

nm(dy) = n0ϕ−1
m (dy) (4.4)

for some mapping ϕm : Rd \ {0} → Rd \ {0}.
We will determine ϕm in such a way that (1) nm(dy) = n0ϕ−1

m (dy), (2) ϕm ∈ C1(Rd \
{0};Rd \ {0}), (3) ϕm is one to one and onto, (4) detDϕm(z) ̸= 0 for all z ∈ Rd \ {0},
where Dϕm(z) is the Jacobian matrix of ϕm at the point z.

Let U := {y ∈ Rd \ {0}; |y| ∈ U ′} for U ′ ∈ B(0,∞). Introducing the spherical coordi-

nates by z = rω, r > 0, ω ∈ Sd−1, we have

nm(U) =

∫
U

nm(|y|)dy = C(d)

∫
U ′
nm(r)rd−1dr,

where C(d) is the surface area of the d-dimensional unit ball.

Let us assume that ϕ−1
m (z) = lm(|z|) z

|z| for some non-decreasing C1 function lm :

(0,∞) → (0,∞). Then we have

n0ϕ−1
m (U) =

∫
U

n0(lm(|z|))|z|−(d−1)lm(|z|)d−1l′m(|z|)dz

= C(d)

∫
U ′
n0(lm(r))lm(r)

d−1l′m(r)dr,

where l′m(r) = (d/dr)lm(r). Therefore we have

nm(r)rd−1 = n0(lm(r))lm(r)
d−1l′m(r), a.s. r > 0.

If m > 0, from (2.7), we have

− d

dr
lm(r)

−1 = 2−
d−1
2 Γ(d+1

2
)−1m

d+1
2 r

d−3
2 K d+1

2
(mr).

We solve this differential equation under boundary condition lm(∞) = ∞ to get

lm(r) =
2

d−1
2 Γ(d+1

2
)

m
d+1
2

∫∞
r
u

d−3
2 K d+1

2
(mu)du

. (4.5)

Here we note that 0 <
∫∞
r
u

d−3
2 K d+1

2
(mu)du <∞ by K d+1

2
(τ) > 0 for τ > 0, and ([3, (37),

(38), p.9])

K d+1
2
(τ) =

(π
2

)1/2
τ−1/2e−τ (1+o(1)), τ ↑ ∞.
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Proposition 4.1. (i) lm(r) is a strictly increasing C∞ function of r ∈ (0,∞) and

lm(+0) = 0, lm(∞) = ∞.

(ii) For all r > 0, lm(r) converges to r, strictly decreasingly, as m ↓ 0.

Proof. (4.1) implies lm(+0) = 0. The other claims of (i) follow from (4.5) and the fact

that K(d+1)/2(τ) is a C
∞ function in (0,∞). The claim (ii) can be proved by the fact that

τ νKν(τ) is strictly decreasing in (0,∞) (cf. proof of (iii) in subsection 4.1), (4.1) and the

monotone convergence theorem. □
Now, for m = 0, let l0(r) := r. Let us put ϕ0(z) := z and for m > 0,

ϕm(z) := l−1
m (|z|) z

|z|
, z ∈ Rd \ {0}.

Then we have (4.4) and

ϕ−1
m (z) = lm(|z|)

z

|z|
, z ∈ Rd \ {0}.

We note that

ϕm(z) → z, |ϕm(z)| = l−1
m (|z|) ↑ |z| (4.6)

as m ↓ 0 by Proposition 4.1 (ii).

By (4.4), the right-hand side of the third equality in (4.3) is equal to

exp

{
t

[∫
|z|>0

(
eiξ·ϕm(z) − 1− iξ · ϕm(z)1|ϕm(z)|<1

)
n0(dy)

]}
.

So, let us put Φ0(X) := X and for m > 0 [1, Theorem 2.3.7 (1) and (1.9), p.109],

Φm(X)(t) :=

∫ t

0

∫
|z|≥1

ϕm(z)NX(dsdz) +

∫ t

0

∫
0<|z|<1

ϕm(z)Ñ0
X(dsdz), (4.7)

We note that (4.7) implies (4.3).

Finally, we confirm (4.2). For 0 = t0 < t1 < · · · < tk < ∞, ξ1, . . . , ξk ∈ Rd, k ∈ N, by

independent and stationary increments property of Lévy process and (4.3), we have

Em[ei
∑k

j=1 ξj ·X(tj)] =
k∏

j=1

Em[ei(ξj+···+ξk)·(X(tj)−X(tj−1))]

=
k∏

j=1

Em[ei(ξj+···+ξk)·X(tj−tj−1)]
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=
k∏

j=1

E0[ei(ξj+···+ξk)·Φm(X)(tj−tj−1))]

=
k∏

j=1

E0[ei(ξj+···ξk)·(Φm(X)(tj)−Φm(X)(tj−1))]

= E0[ei
∑k

j=1 ξj ·Φm(X)(tj)].

Therefore, we have (4.2). □

In the following, we also write the completion of (Ω,F , λm) by the same (Ω,F , λm) with
augmented natural filtration with {F(t)}t≥0 (see subsection 6.2).

Proposition 4.2. For every sequence {m} with m ↓ 0, there exists a subsequence {m′}
such that

sup
t≤T

|Φm′(X)(t)−X(t)| → 0 as m′ ↓ 0, λ0-a.s. X ∈ D0.

Proof. From (2.8) and (4.7), we have

sup
t≤T

|Φm(X)(t)−X(t)| ≤
∫ T

0

∫
|z|≥1

|ϕm(z)− z|NX(dsdz)

+ sup
t≤T

∣∣∣ ∫ t

0

∫
0<|z|<1

(ϕm(z)− z)Ñ0
X(dsdz)

∣∣∣
=: I1(m,X) + sup

t≤T
|I2(t,m,X)|.

For I1(m,X), the integrand of I1(m,X) converges to zero as m ↓ 0 by (4.6). Hence

I1(m,X) converges to zero as m ↓ 0 because
∫ T

0

∫
|z|≥1

|z|NX(dsdz) < ∞ (see (6.3) in

subsection 6.1).

For I2(t,m,X), we note that I2(t,m,X) is the L2(D0;λ
0)-limit of the right-continuous

{F(t)}t≥0-martingale {Iε2(t,m,X)}t≥0 with I
ε
2(t,m,X) :=

∫ t

0

∫
ε<|z|<1

(ϕm(z)−z)Ñ0
X(dsdz)

as ε ↓ 0, with convergence being uniform on t ≤ T . By taking a subsequence if necessary,

Iε2(t,m,X) converges to I2(t,m,X) as ε ↓ 0 uniformly on t ≤ T , λ0-a.s., and hence

I2(t,m,X) is right-continuous on t ≤ T , λ0-a.s. (e.g. [13, p.73, Proof of Theorem 5.1],

[20, pp.128–129, Proofs of Lemmas 20.6, 20.7]). Then we use Doob’s martingale inequality

(see Theorem 6.4 in subsection 6.2), we have

E0

[
sup
t≤T

|I2(t,m,X)|2
]
≤ 4E0

[
|I2(T,m,X)|2

]
18



≤ 4T

∫
0<|z|<1

|ϕm(z)− z|2n0(dz),

which is also seen to converge to zero as m ↓ 0, by (4.6) since
∫
0<|z|<1

|z|2n0(dz) <∞. □

By (2.19) and (4.2), we have

um(x, t) = E0[e−Sm(t,x,Φm(X))g(x+ Φm(X)(t))] (4.8)

and then

sup
t≤T

∥um(·, t)− u0(·, t)∥∞ ≤ ∥g∥∞ sup
t≤T, x∈Rd

E0
[∣∣∣e−Sm(t,x,Φm(X)) − e−S0(t,x,X)

∣∣∣]
+ (e−T inf V ∨ 1)E0

[
sup
t≤T

∥g(·+Φm(X)(t))− g(·+X(t))∥∞
]
.

(4.9)

Since g ∈ C∞(Rd) is uniformly continuous and bounded on Rd, the second term on the

right-hand side of (4.9) converges to zero as m ↓ 0.

Next we consider the first term on the right-hand side of (4.9). By NΦm(X)(dsdy) =

NX(dsϕ
−1
m (dy)), we have

Sm(t, x,Φm(X))

= i

(∫ t

0

∫
|z|≥1

A(x+ Φm(X)(s−) + 1
2
ϕm(z)) · ϕm(z)NX(dsdz)

+

∫ t

0

∫
0<|z|<1

A(x+ Φm(X)(s−) + 1
2
ϕm(z)) · ϕm(z)Ñ0

X(dsdz)

+

∫ t

0

ds p.v.

∫
0<|z|<1

A(x+ Φm(X)(s) + 1
2
ϕm(z)) · ϕm(z)n

0(dz)

)
+

∫ t

0

V (x+ Φm(X)(s))ds

=: i
(
Sm
1 (t, x,X) + Sm

2 (t, x,X) + Sm
3 (t, x,X)

)
+ Sm

4 (t, x,X). (4.10)

By the inequality

|e−(ia+b) − e−(ia′+b′)| ≤ |e−ia − e−ia′ |+ |b− b′|

≤ |a− a′|+ |b− b′|, a, a′ ∈ R, b, b′ ≥ 0, (4.11)
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we have

sup
t≤T, x∈Rd

E0
[∣∣∣e−Sm(t,x,Φm(X)) − e−S0(t,x,X)

∣∣∣]
= sup

t≤T, x∈Rd

e−t inf V
{
E0
[
|e−i(Sm

1 (t,x,X)+Sm
2 (t,x,X)+Sm

3 (t,x,X))−(Sm
4 (t,x,X)−t inf V )

− e−i(S0
1(t,x,X)+S0

2(t,x,X)+S0
3(t,x,X))−(S0

4(t,x,X)−t inf V )|
]}

≤ (e−T inf V ∨ 1)
{
E0
[
sup
t≤T

∥e−iSm
1 (t,·,X) − e−iS0

1(t,·,X)∥∞
]

+ sup
x∈Rd

E0
[
sup
t≤T

|Sm
2 (t, x,X)− S0

2(t, x,X)|
]

+ E0
[
sup
t≤T

∥Sm
3 (t, ·, X)− S0

3(t, ·, X)∥∞
]

+ E0
[
sup
t≤T

∥Sm
4 (t, ·, X)− S0

4(t, ·, X)∥∞
]}
. (4.12)

Now, let {m} be a sequence with m ↓ 0 and {m′} any subsequence of {m}. By Proposi-

tion 4.2, there exists a subsequence {m′′} of {m′} such that supt≤T |Φm′′(X)(t)−X(t)| → 0

as m′′ ↓ 0, λ0-a.s. X ∈ D0.

We want to show each of the four terms in the brace {· · · } of the last member of (4.12)

converges to zero as m′′ ↓ 0. First, for the first term, note that

Sm′′

1 (t, x,X)− S0
1(t, x,X) =

∫ t

0

∫
|z|≥1

(
A(x+ Φm′′(X)(s−) + 1

2
ϕm′′(z))

− A(x+X(s−) + 1
2
z)
)
· ϕm′′(z)NX(dsdz)

+

∫ t

0

∫
|z|≥1

A(x+X(s−) + 1
2
z) · (ϕm′′(z)− z)NX(dsdz).

Then we have

sup
t≤T

∥Sm′′

1 (t, ·, X)− S0
1(t, ·, X)∥∞

≤
∫ T

0

∫
|z|≥1

sup
x∈Rd

|A(x+ Φm′′(X)(s−) + 1
2
ϕm′′(z))− A(x+X(s−) + 1

2
z)||z|NX(dsdz)

+ sup
x∈Rd

|A(x)|
∫ T

0

∫
|z|≥1

|ϕm′′(z)− z|NX(dsdz),

which converges to zero as m′′ ↓ 0 since A ∈ C1
0(R

d;Rd) is uniformly continuous on Rd.
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Next, for the second term, since Sm
2 (t, x,X) is seen to be right-continuous, we have by

Schwarz’s inequality and Doob’s martingale inequality,

E0
[
sup
t≤T

|Sm′′

2 (t, x,X)− S0
2(t, x,X)|

]
≤ E0

[
sup
t≤T

|Sm′′

2 (t, x,X)− S0
2(t, x,X)|2

] 1
2

≤ 2E0
[
|Sm′′

2 (T, x,X)− S0
2(T, x,X)|2

] 1
2

≤ 2E0
[ ∫ T

0

ds

∫
0<|z|<1

(
A(x+ Φm′′(X)(s−) + 1

2
ϕm′′(z)) · ϕm′′(z)

− A(x+X(s−) + 1
2
z) · z

)2
n0(dz)

] 1
2

= 2E0
[ ∫ T

0

ds

∫
0<|z|<1

( [
A(x+ Φm′′(X)(s−) + 1

2
ϕm′′(z))− A(x+X(s−) + 1

2
z)
]
· ϕm′′(z)

+ A(x+X(s−) + 1
2
z) · (ϕm′′(z)− z)

)2
n0(dz)

] 1
2

By the inequality (a + b)2 ≤ 2(a2 + b2) for any a, b ∈ R, E0[· · · ] above is less than or

equal to

2

{
E0

[ ∫ T

0

ds

∫
0<|z|<1

sup
x∈Rd

|A(x+ Φm′′(X)(s−) + 1
2
ϕm′′(z))

− A(x+X(s−) + 1
2
z)|2|z|2n0(dz)

]
+ T sup

x∈Rd

|A(x)|2
∫
0<|z|<1

|ϕm′′(z)− z|2n0(dz)

}
,

which converges to zero as m′′ ↓ 0.

As for the third term, we note that

Sm′′

3 (t, x,X) =

∫ t

0

ds

∫
0<|z|<1

[
A(x+ Φm′′(X)(s) + 1

2
z)− A(x+ Φm′′(X)(s))

]
· ϕm′′(z)n0(dz),

because A ∈ C1
0(R

d;R) (cf. Remark 2.1 (1)). Then we have by the mean value theorem,

Sm′′

3 (t, x,X)− S0
3(t, x,X)

=
1

2

∫ t

0

ds

∫
0<|z|<1

n0(dz)

∫ 1

0

[(
Wm′′

x,X(s, θ)ϕm′′(z)
)
· ϕm′′(z)−

(
W 0

x,X(s, θ)z
)
· z
]
dθ.
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Here Wm′′
x,X(s, θ) and W

0
x,X(s, θ) are d× d matrices defined by

Wm′′

x,X(s, θ) = DA(x+ Φm′′(X)(s) + 1
2
ϕm′′(z)θ),

W 0
x,X(s, θ) = DA(x+X(s) + 1

2
zθ),

where DA(·) is the Jacobian matrix of A. By the equality(
Wm′′

x,X(s, θ)ϕm′′(z)
)
· ϕm′′(z)−

(
W 0

x,X(s, θ)z
)
· z

=
(
Wm′′

x,X(s, θ)ϕm′′(z)
)
·
(
ϕm′′(z)− z

)
+
(
(Wm′′

x,X(s, θ)−W 0
x,X(s, θ))ϕm′′(z)

)
· z

+
(
W 0

x,X(s, θ)(ϕm′′(z)− z)
)
· z,

the integrand of the third term in the brace {· · · } of the last member of (4.12) is less than

or equal to

T sup
x∈Rd

∥DA(x)∥
∫
0<|z|<1

|ϕm′′(z)− z||z|n0(dz)

+
1

2

∫ T

0

ds

∫
0<|z|<1

|z|2n0(dz)

∫ 1

0

sup
x∈Rd

∥Wm′′

x,X(s, θ)−W 0
x,X(s, θ)∥dθ,

where ∥ · ∥ is the norm of matrices. This is less than or equal to

3T sup
x∈Rd

∥DA(x)∥
∫
0<|z|<1

|z|2n0(dz) <∞

and converges to zero as m′′ ↓ 0 because each component of DA is uniformly continuous

on Rd.

Finally, the fourth term in the brace {· · · } of the last member of (4.12) is less than or

equal to

E0

[∫ T

0

∥V (·+ Φm′′(X)(s))− V (·+X(s))∥∞ds
]
,

which converges to zero as m′′ ↓ 0 since V ∈ C0(R
d;R) is uniformly continuous on Rd.

Thus we have supt≤T ∥um′′
(·, t)−u0(·, t)∥∞ → 0 as m′′ ↓ 0, and hence supt≤T ∥um(·, t)−

u0(·, t)∥∞ → 0 as m ↓ 0. □

5. Proof of Theorem 3.3.

In this section, we prove Theorem 3.3, first in the case that A(x) and V (x) are smooth

continuous functions of compact support and then in the general case.
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5.1 The case that A ∈ C1
0(R

d;Rd) and V ∈ C0(R
d).

First we consider the case g ∈ C∞
0 (Rd) and then the general case g ∈ L2(Rd).

Step I: Let g ∈ C∞
0 (Rd). For R > 0, we have by Minkowski’s inequality

∥um(·, t)− u0(·, t)∥2 ≤ ∥um(·, t)− u0(·, t)∥L2(|x|<R) + ∥um(·, t)− u0(·, t)∥L2(|x|≥R)

=: I1(t,m,R) + I2(t,m,R).

By Theorem 3.2, we have

sup
t≤T

I1(t,m,R) ≤ sup
t≤T

∥um(·, t)− u0(·, t)∥∞
√

vol(Bd(R)),

which converges to zero as m ↓ 0. Here vol(Bd(R)) is the volume of the d-dimensional

ball with radius R.

Next, we will show supt≤T, 0≤m≤1 I2(t,m,R) converges to zero asR → ∞. By Minkowski’s

inequality and (2.19) with (2.13), we have

I2(t,m,R) ≤ ∥um(·, t)∥L2(|x|≥R) + ∥u0(·, t)∥L2(|x|≥R)

≤ e−t inf V
{
∥Em[|g(·+X(t))|]∥L2(|x|≥R) + ∥E0[|g(·+X(t))|]∥L2(|x|≥R)

}
= e−t inf V

{(∫
|x|≥R

dx

∫
Rd

km0 (y, t)|g(x+ y)|2dy
) 1

2

+

(∫
|x|≥R

dx

∫
Rd

k00(y, t)|g(x+ y)|2dy
) 1

2

}

= e−t inf V

{(∫
|x|≥R

(km0 (·, t) ∗ h)(x)dx
) 1

2

+

(∫
|x|≥R

(k00(·, t) ∗ h)(x)dx
) 1

2

}
=: e−t inf V (J(t,m,R) + J(t, 0, R)). (5.1)

Here h(x) := |g(x)|2 and km0 (·, t) ∗ h is the convolution of km0 (·, t) and h. Let χ be a

nonnegative C∞
0 function with 0 ≤ χ(x) ≤ 1 in Rd such that χ(x) = 1 if |x| ≤ 1

2
and

= 0 if |x| ≥ 1. By the inequality 1|x|<R ≥ χ( x
R
), (2.11), Parseval’s equality and (2.10), we

have for m ≥ 0

J(t,m,R)2 ≤
∫
Rd

(
1− χ( x

R
)
)
(km0 (·, t) ∗ h)(x)dx

=

∫
Rd

h(y)dy −
∫
Rd

(km0 (·, t) ∗ h)(x)χ( x
R
)dx
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= ĥ(0)− 1

(2π)d

∫
Rd

k̂m0 (·, t)(ξ)ĥ(ξ)χ̂( ·
R
)(ξ)dξ

= ĥ(0)− 1

(2π)d

∫
Rd

e−t[
√

ξ2+m2−m]ĥ(ξ)Rdχ̂(Rξ)dξ

= ĥ(0)− 1

(2π)d

∫
Rd

e−t
[√

η2

R2+m2−m
]
ĥ( η

R
)χ̂(η)dη

=
1

(2π)d

{
ĥ(0)

∫
Rd

(
1− e−t

[√
η2

R2+m2−m
])

χ̂(η)dη

+

∫
Rd

(
ĥ(0))− ĥ( η

R
)
)
e−t
[√

η2

R2+m2−m
]
χ̂(η)dη

}
.

It follows that

sup
t≤T, 0≤m≤1

J(t,m,R)2 ≤ 1

(2π)d

{
ĥ(0)

∫
Rd

(
1− e−T η

R

)
χ̂(η)dη

+

∫
Rd

(
ĥ(0))− ĥ( η

R
)
)
χ̂(η)dη

}
→ 0, as R → ∞, (5.2)

because χ ∈ C∞
0 (Rd) and so χ̂ ∈ S(Rd) ⊂ L1(Rd). Therefore we have by (5.1), (5.2)

sup
t≤T,0≤m≤1

I2(t,m,R) ≤ 2(e−T inf V ∨ 1) sup
t≤T, 0≤m≤1

J(t,m,R)

→ 0 as R → ∞.

and conclude this step.

Step II: Let g ∈ L2(Rd). There is a sequence {gn} ⊂ C∞
0 (Rd) such that gn → g in

L2(Rd) as n→ ∞. Put umn (x, t) := Em[e−Sm(t,x,X)gn(x+X(t))]. Then we have

∥um(·, t)− u0(·, t)∥2 ≤ ∥um(·, t)− umn (·, t)∥2 + ∥umn (·, t)− u0n(·, t)∥2
+ ∥u0n(·, t)− u0(·, t)∥2

≤ 2e−t inf V ∥gn − g∥2 + ∥umn (·, t)− u0n(·, t)∥2.

By Step I, we have

lim sup
m↓0

sup
t≤T

∥um(·, t)− u0(·, t)∥2 ≤ 2(e−T inf V ∨ 1)∥gn − g∥2,

which converges to zero as n→ ∞. □
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5.2 The general case that A ∈ L1+δ
loc (R

d;Rd) and 0 ≤ V ∈ L1
loc(R

d;R).

Choose a sequence {Aj} ⊂ C∞
0 (Rd;Rd) with |Aj(x)| ≤ |A(x)| a.s. x and Aj → A in

L1+δ
loc (Rd;Rd), and a sequence {Vj} ⊂ C∞

0 (Rd) with 0 ≤ Vj(x) ≤ V (x) a.s. x, Vj → V in

L1
loc(R

d;R).

Lemma 5.1. Let {m} be a sequence with supt≤T |Φm(X)(t)−X(t)| → 0 as m ↓ 0 λ0-a.s.

X ∈ D0. Then we have for R > 0

lim sup
m↓0

sup
t≤T

∫
|x|<R

E0
[∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))

∣∣2]dx→ 0, as j → ∞,

sup
t≤T

∫
|x|<R

E0
[∣∣e−S0(t,x,X) − e−S0,j(t,x,X)

∣∣2]dx→ 0, as j → ∞,

where Sm,j(t, x,Φm(X)) is Sm(t, x,Φm(X)) in (4.10) with A and V replaced by Aj and Vj.

Proof. We assume 0 < δ < 1 without loss of generality because Lq
loc ⊂ Lp

loc for 0 < p < q.

Fix R > 0. For k ∈ N, X ∈ D0, let

σk(X) :=

inf{s > 0; |X(s−)| > k}, if {· · · } ̸= ∅,

0, if {· · · } = ∅,

be the first hitting time for {y; |y| > k}. Then for each X ∈ D0,

σk(X) ↑ ∞ as k → ∞, and |X(s−)| ≤ k if 0 < s ≤ σk(X).

For any k ∈ N, we have

D(t,m, j) :=

∫
|x|<R

E0
[∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))

∣∣2]dx
=

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))
∣∣2]dx

+

∫
|x|<R

E0
[
1σk(Φm(X))<t

∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))
∣∣2]dx

=: D1(t,m, j, k) +D2(t,m, j, k). (5.3)

We will show that

lim sup
m↓0

sup
t≤T

D1(t,m, j, k) → 0 as j → ∞ for each fixed k ∈ N,
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lim sup
j→∞

lim sup
m↓0

sup
t≤T

D2(t,m, j, k) → 0 as k → ∞.

If we show these convergence, then by (5.3), we can see the proof of Lemma 5.1 to be

accomplished. First, for D2(t,m, j, k), we have

D2(t,m, j, k) ≤ 4 (volBd(R))E
0
[
1σk(Φm(X))<t

]
.

By the inequality

lim sup
m↓0

1σk(Φm(X))<t ≤ 1σk−1(X)<t, λ0-a.s. X ∈ D0, k ≥ 2, t > 0,

we have

lim sup
j→∞

lim sup
m↓0

sup
t≤T

D2(t,m, j, k) ≤ 4 (volBd(R)) lim sup
m↓0

sup
t≤T

E0
[
1σk(Φm(X))<t

]
≤ 4 (volBd(R))E

0
[
lim sup

m↓0
1σk(Φm(X))<T

]
≤ 4 (volBd(R))E

0
[
1σk−1(X)<T

]
,

which converges to zero as k → ∞.

Next, for D1(t,m, j, k), we have by (4.11)

D1(t,m, j, k) ≤ 2

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))
∣∣]dx

≤ 2

{∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣e−iSm
1 (t,x,X) − e−iSm,j

1 (t,x,X)
∣∣]dx

+

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣Sm
2 (t, x,X)− Sm,j

2 (t, x,X)
∣∣]dx

+

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣Sm
3 (t, x,X)− Sm,j

3 (t, x,X)
∣∣]dx

+

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣Sm
4 (t, x,X)− Sm,j

4 (t, x,X)
∣∣]dx}

=: 2
4∑

l=1

Il(t,m, j, k), (5.4)

where Sm,j
l (t, x,X) is Sm

l (t, x,X) in (4.10) with A and V replaced by Aj and Vj.

We have to show that each lim supm↓0 supt≤T Il(t,m, j, k), l = 1, 2, 3, 4, converges to

zero as j → ∞, for any k ∈ N.
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In the following, fix k ∈ N. First, for I1(t,m, j, k),

lim sup
m↓0

sup
t≤T

I1(t,m, j, k)

≤ E0
[
lim sup

m↓0
sup
t≤T

1t≤σk(Φm(X))

∫
|x|<R

∣∣e−iSm
1 (t,x,X) − e−iSm,j

1 (t,x,X)
∣∣dx].

The integrand above is less than or equal to 2. On the other hand, we have by (4.6) we

have ∫
|x|<R

∣∣e−iSm
1 (t,x,X) − e−iSm,j

1 (t,x,X)
∣∣dx

≤
∫
|x|<R

∣∣Sm
1 (t, x,X)− Sm,j

1 (t, x,X)
∣∣dx

≤
∫
|x|<R

∫ t

0

∫
|z|≥1

|A(x+ Φm(X)(s−) + 1
2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))||z|NX(dsdz)

=
∑
s≤t

1|X(s)−X(s−)|≥1|X(s)−X(s−)|

×
∫
|x|<R

|A(x+ Φm(X)(s−) + 1
2
ϕm(X(s)−X(s−)))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(X(s)−X(s−)))|dx

≤
∑
s≤t

1|X(s)−X(s−)|≥1|X(s)−X(s−)|

×
∫
|z|<R+k+ 1

2
sups≤t |X(s)−X(s−)|

|A(z)− Aj(z)|dz

on t ≤ σk(Φm(X)). It follows that

lim sup
m↓0

sup
t≤T

1t≤σk(Φm(X))

∫
|x|<R

∣∣e−iSm
1 (t,x,X) − e−iSm,j

1 (t,x,X)
∣∣dx

≤
∑
s≤T

1|X(s)−X(s−)|≥1|X(s)−X(s−)|

×
∫
|z|<R+k+ 1

2
sups≤T |X(s)−X(s−)|

|A(z)− Aj(z)|dz.

This is the finite sum (see (6.3) in subsection 6.1) and converges to zero as j → ∞ because

Aj → A in L1+δ
loc (Rd;Rd) and so in L1

loc(R
d;Rd). Therefore, we have

lim supm↓0 supt≤T I1(t,m, j, k) converges to zero as j → ∞.
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Next, for I2(t,m, j, k), we have

I2(t,m, j, k)

=

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣∣ ∫ t

0

∫
0<|z|<1

[
A(x+ Φm(X)(s−) + 1

2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)Ñ0

X(dsdz)
∣∣∣]dx

≤
∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣∣ ∫∫
Gm,j(t,x,X)

[
A(x+ Φm(X)(s−) + 1

2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)Ñ0

X(dsdz)
∣∣∣]dx

+

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣∣ ∫∫
Gm,j(t,x,X)∁

[
A(x+ Φm(X)(s−) + 1

2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)Ñ0

X(dsdz)
∣∣∣]dx

=:

∫
|x|<R

J t,m,j,k
1 (x)dx+

∫
|x|<R

J t,m,j,k
2 (x)dx.

Here Gm,j(t, x,X) is a subset of (0, t]× {z; 0 < |z| < 1} defined by

Gm,j(t, x,X) :=
{
(s, z);

∣∣∣[A(x+ Φm(X)(s−) + 1
2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)

∣∣∣ > 1
}
.

By the inequality |Ñm
X (dsdz)| ≤ NX(dsdz) + dsn0(dz) and E0[Ñm

X (dsdz)] = dsn0(dz), we

have∫
|x|<R

J t,m,j,k
1 (x)dx

≤
∫
|x|<R

E0
[
1t≤σk(Φm(X))

∫∫
Gm,j(t,x,X)

∣∣∣[A(x+ Φm(X)(s−) + 1
2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)

∣∣∣(NX(dsdz) + dsn0(dz))
]
dx

≤ 2

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∫∫
Gm,j(t,x,X)

∣∣∣[A(x+ Φm(X)(s−) + 1
2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)

∣∣∣1+δ

dsn0(dz)
]
dx

≤ 2

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∫ t

0

∫
0<|z|<1

∣∣∣A(x+ Φm(X)(s−) + 1
2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

∣∣∣1+δ

|z|1+δdsn0(dz)
]
dx
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= 2

∫ t

0

ds

∫
0<|z|<1

|z|1+δn0(z)dzE0
[
1t≤σk(Φm(X))

×
∫
|x|<R

∣∣∣A(x+ Φm(X)(s−) + 1
2
ϕm(z))− Aj(x+ Φm(X)(s−) + 1

2
ϕm(z))

∣∣∣1+δ

dx
]

≤ T

∫
0<|z|<1

|z|1+δn0(z)dz

∫
|u|<R+k+ 1

2

|A(u)− Aj(u)|1+δdu.

It follows that lim supm↓0 supt≤T

∫
|x|<R

J t,m,j,k
1 (x)dx converges to zero as j → ∞ because∫

0<|z|<1
|z|1+δn0(dz) <∞ by (2.7). Next, we have by Schwarz’s inequality∫

|x|<R

J t,m,j,k
2 (x)dx

≤
√

vol(Bd(R))

×

(∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣∣ ∫∫
Gm,j(t,x,X)∁

[
A(x+ Φm(X)(s−) + 1

2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)Ñ0

X(dsdz)
∣∣∣]2dx)1/2

≤
√

vol(Bd(R))

×

(∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣∣ ∫∫
Gm,j(t,x,X)∁

[
A(x+ Φm(X)(s−) + 1

2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)Ñ0

X(dsdz)
∣∣∣2]dx)1/2

≤
√

vol(Bd(R))

×

(∫
|x|<R

E0
[
1t≤σk(Φm(X))

∫∫
Gm,j(t,x,X)∁

∣∣∣[A(x+ Φm(X)(s−) + 1
2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)

∣∣∣2dsn0(dz)
]
dx

)1/2

≤
√

vol(Bd(R))

×

(∫
|x|<R

E0
[
1t≤σk(Φm(X))

∫∫
Gm,j(t,x,X)∁

∣∣∣[A(x+ Φm(X)(s−) + 1
2
ϕm(z))

− Aj(x+ Φm(X)(s−) + 1
2
ϕm(z))

]
· ϕm(z)

∣∣∣1+δ

dsn0(dz)
]
dx

)1/2
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≤
√

vol(Bd(R))
(
T

∫
0<|z|<1

|z|1+δn0(z)dz

∫
|u|<R+k+ 1

2

|A(u)− Aj(u)|1+δdu
)1/2

.

It follows that lim supm↓0 supt≤T

∫
|x|<R

Jm,j
2 (t, x)dx converges to zero as j → ∞. Therefore

lim supm↓0 supt≤T I2(t,m, j, k) converges to zero as j → ∞.

For I3(t,m, j, k), by Fatou’s lemma, the change of variable ϕm(z) = y and the fact that

nm(y) converges to n0(y), strictly increasing, as m ↓ 0 for any fixed y ([6, Lemma 3.1

(ii)]), we have

I3(t,m, j, k)

=

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∣∣∣ ∫ t

0

ds lim
ε↓0

∫
ε<|z|<1

[
A(x+ Φm(X)(s) + 1

2
ϕm(z))

− Aj(x+ Φm(X)(s) + 1
2
ϕm(z))

]
· ϕm(z)n

0(dz)
∣∣∣]dx

≤ lim inf
ε↓0

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∫ t

0

ds
∣∣∣ ∫

ε<|z|<1

[
A(x+ Φm(X)(s) + 1

2
ϕm(z))

− Aj(x+ Φm(X)(s) + 1
2
ϕm(z))

]
· ϕm(z)n

0(dz)
∣∣∣]dx

= lim inf
ε↓0

∫ t

0

dsE0
[
1t≤σk(Φm(X))

∫
|x|<R

∣∣∣ ∫
l−1
m (ε)<|y|<l−1

m (1)

[
A(x+ Φm(X)(s) + 1

2
y)

− Aj(x+ Φm(X)(s) + 1
2
y)
]
· ynm(dy)

∣∣∣dx]
≤ T lim inf

ε↓0

∫
|w|<R+k

∣∣∣ ∫
l−1
m (ε)<|y|<l−1

m (1)

[
A(w + 1

2
y)− Aj(w + 1

2
y)
]
· ynm(y)dy

∣∣∣dw
= T lim inf

ε↓0

∫
|w|<R+k

∣∣∣ ∫
l−1
m (ε)<|y|<l−1

m (1)

[
A(w + 1

2
y)− Aj(w + 1

2
y)
]
· y

×
(
(nm(y)− n0(y)) + n0(y)

)
dy
∣∣∣dw

≤ T lim inf
ε↓0

{∫
l−1
m (ε)<|y|<l−1

m (1)

|y|(n0(y)− nm(y))dy

∫
|w|<R+k

∣∣A(w + 1
2
y)− Aj(w + 1

2
y)
∣∣dw

+

∫
|w|<R+k

∣∣∣ ∫
l−1
m (ε)<|y|<l−1

m (1)

[
A(w + 1

2
y)− Aj(w + 1

2
y)
]
· yn0(y)dy

∣∣∣dw}
=: T lim inf

ε↓0
(Km,j,k,ε

1 +Km,j,k,ε
2 ).

By (4.6) and the equality
∫
|y|>0

(n0(y)− nm(y))dy = m ([6, Lemma 3.1 (iii)]), we have

Km,j,k,ε
1 ≤ m

∫
|u|<R+k+ 1

2

|A(u)− Aj(u)|du.
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Next, since yin
0(y) (y = (y1, . . . , yd)) is the Calderon–Zygmund kernel ([5, p.275]), by

Hölder’s inequality and the Calderon–Zygmund theorem ([22, Theorem 2, p35]) with a

constant Cδ depending only on δ, we have

Km,j,k,ε
2 ≤ (vol(Bd(R + k)))

δ
1+δ

×
(∫

|w|<R+k

∣∣∣ ∫
l−1
m (ε)<|y|<l−1

m (1)

[
A(w + 1

2
y)− Aj(w + 1

2
y)
]
· yn0(y)dy

∣∣∣1+δ

dw

) 1
1+δ

≤ (vol(Bd(R + k)))
δ

1+δCδ

(∫
|w|<R+k

∣∣∣A(w)− Aj(w)
∣∣∣1+δ

dw

) 1
1+δ

.

Therefore lim supm↓0 supt≤T I3(t, n,m, j) converges to zero as j → ∞.

Finally, for I4(t,m, j, k), we have

I4(t,m, j, k) =

∫
|x|<R

E0
[
1t≤σk(Φm(X))

∫ t

0

(V (x+ Φm(s))− Vj(x+ Φm(s))ds
]
dx

≤ T

∫
|u|<R+k

(V (u)− Vj(u))du.

It follows that lim supm↓0 supt≤T I4(t,m, j, k) converges to zero as j → ∞ because Vj → V

in L1
loc(R

d;R).

This shows lim supm↓0 supt≤T D1(t,m, j, k) converges to zero as j → ∞ for all k and

completes the proof of the first convergence in Lemma 5.1. The proof of the second

convergence in Lemma 5.1 is the same argument as above for m = 0. □

We are now in a position to prove Theorem 3.3. We will follow the arguments used in

subsection 5.1 under condition (2.16) when g is a C∞
0 function.

Let us put

um,j(x, t) := E0[e−Sm,j(t,x,Φm(X))g(x+ Φm(X)(t))].

Then we have

sup
t≤T

∥um(·, t)− u0(·, t)∥2 ≤ sup
t≤T

∥um(·, t)− um,j(·, t)∥2 + sup
t≤T

∥um,j(·, t)− u0,j(·, t)∥2

+ sup
t≤T

∥u0,j(·, t)− u0(·, t)∥2.
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Now, as the proof of Theorem 3.2, let {m} be a sequence with m ↓ 0 and {m′} any

subsequence of {m}. By Proposition 4.2, there exists a subsequence {m′′} of {m′} such

that supt≤T |Φm′′(X)(t)−X(t)| → 0 as m′′ ↓ 0, λ0-a.s. X ∈ D0.

Since Aj ∈ C∞
0 (Rd;Rd) and Vj ∈ C∞

0 (Rd;R), we have by Theorem 3.3 in subsection

5.1

lim sup
m′′↓0

sup
t≤T

∥um′′
(·, t)− u0(·, t)∥2 ≤ lim sup

m′′↓0
sup
t≤T

∥um′′
(·, t)− um

′′,j(·, t)∥2

+ sup
t≤T

∥u0,j(·, t)− u0(·, t)∥2. (5.5)

For m ≥ 0 and R > 0, we have by Schwarz’s inequality and (2.13)

∥um(·, t)− um,j(·, t)∥2

=
(∫

Rd

∣∣∣E0
[(
e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))

)
g(x+ Φm(X)(t))

]∣∣∣2dx)1/2
≤
(∫

Rd

E0
[∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))

∣∣2|g(x+ Φm(X)(t))|2
]
dx
)1/2

=
(∫

|x|≥R

+

∫
|x|<R

)1/2
≤
(
4

∫
|x|≥R

E0
[
|g(x+ Φm(X)(t))|2

]
dx

+ ∥g∥2∞
∫
|x|<R

E0
[∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))

∣∣2]dx)1/2
=
(
4

∫
|x|≥R

dx

∫
Rd

km0 (y, t)|g(x+ y)|2dy

+ ∥g∥2∞
∫
|x|<R

E0
[∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))

∣∣2]dx)1/2
=
(
4J(t,m,R)2 + ∥g∥2∞

∫
|x|<R

E0
[∣∣e−Sm(t,x,Φm(X)) − e−Sm,j(t,x,Φm(X))

∣∣2]dx)1/2.
Hence we have by Lemma 5.1 and (5.2)

lim sup
m′′↓0

sup
t≤T

∥um′′
(·, t)− um

′′,j(·, t)∥2 ∨ sup
t≤T

∥u0(·, t)− u0,j(·, t)∥2

≤

[
4 sup
t≤T, 0≤m≤1

J(t,m,R)2

+ ∥g∥2∞
{
lim sup
m′′↓0

sup
t≤T

∫
|x|<R

E0
[∣∣e−Sm′′

(t,x,Φm′′ (X)) − e−Sm′′,j(t,x,Φm′′ (X))
∣∣2dx
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∨ sup
t≤T

∫
|x|<R

E0
[∣∣e−S0(t,x,X) − e−S0,j(t,x,X)

∣∣2]dx}]1/2
→ 2 sup

t≤T, 0≤m≤1
J(t,m,R) as j → ∞,

→ 0 as R → ∞. (5.6)

By (5.5) and (5.6), we have supt≤T ∥um′′
(·, t) − u0(·, t)∥2 → 0 as m′′ ↓ 0 and hence we

conclude the proof of Theorem 3.3. □

6. Appendix.

Let (Ω,F ,P) be a probability space.

6.1 Lévy process.

Definition 6.1. Let ν be a probability measure on Rd. The Rd-valued stochastic process

B = {B(t)}t≥0 is called d-dimensional Brownian motion (or Wiener process) with the

initial distribution ν if the following conditions are satisfied:

(i) P(B(0) ∈ dy) = ν(dy).

(ii) For 0 ≤ s < t, B(t) − B(s) is independent of σ(B(r); r ≤ s) and its distribution

is d-dimensional Gaussian distribution with mean vector 0, covariance matrix (t − s)Ed,

where Ed is the d-dimensional unit matrix;

EP[eiξ·(B(t)−B(s))] = e−
t−s
2

|ξ|2 , ξ ∈ Rd.

Here EP denotes the expectation over Ω with respect to P.

(iii) The sample path t 7→ B(t) is continuous a.s.

Especially, when ν(dy) = δa(dy) (Dirac measure concentrated at a point a ∈ Rd), i.e.,

B(0) = a a.s., B is called d-dimensional Brownian motion (or Wiener process) starting

at a.

Brownian motion is the model for the irregular motion of pollen suspended in the water.

Definition 6.2. The real stochastic process N = {N(t)}t≥0 is called Poisson process with

parameter c > 0 if N(t) has Poisson distribution with mean ct for any t ≥ 0, i.e.,

P(N(t) = k) = e−ct (ct)
k

k!
, k = 0, 1, 2, . . . .
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N(t) is the number of times which some event causes from time 0 to time t. For example,

the number of the traffic accident in a day, the number of the radiant rays radiated from

a radioactive substance and the number of the visitors to the window, etc. We note that

the characteristic function of N(t) is

EP[eiξN(t)] = exp
{
ct(eiξ − 1)

}
, ξ ∈ R.

Brownian motion and Poisson process belong to a class called Lévy process, which is

one of the basic classes in the stochastic process theory.

Definition 6.3. The Rd-valued stochastic process X = {X(t)}t≥0 is called Lévy process

if the following conditions are satisfied:

(i) (independent increments) For 0 ≤ t0 < t1 < · · · < tk < ∞, k ∈ N, X(t1) −
X(t0), . . . , X(tk)−X(tk−1) are independent.

(ii) (stationary increments) For s, t ≥ 0, the probability distribution of X(t + s) −X(s)

does not depend on s, i.e., P(X(t+ s)−X(s) ∈ dy) = P(X(t) ∈ dy).

(iii) (stochastically continuous) For t ≥ 0 and ε > 0,

lim
s→t

P(|X(t)−X(s)| > ε) = 0.

(iv) The sample path t 7→ X(t) is right-continuous, has left-hand limits and X(0) = 0 a.s.

If X is a Lévy process, then we have by Definition 6.3 (i), (ii)

EP[eiξ·X(t)] = EP[ei
∑k

l=1 ξ·(X( l
k
t)−X( l−1

k
t))]

=
k∏

l=1

EP[eiξ·(X( l
k
t)−X( l−1

k
t))]

=
(
EP[eiξ·X( t

k
)]
)k
, ξ ∈ Rd, k ∈ N.

Therefore, the distribution of X(t) is infinitely divisible for any t ≥ 0. Here the definition

of an infinitely divisible distribution is given as follows:

Definition 6.4. A probability measure P on Rd is called a infinitely divisible distribution

if, for each k ∈ N, there exists a probability measure Pk on Rd such that P is equal to

k-fold convolution of Pk, i.e.,

EP [eiξ·y] =
(
EPk [eiξ·y]

)k
, ξ ∈ Rd.

Here EP (resp. EPk) denotes the expectation over Rd with respect to P (resp. Pk).
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The following theorem states that Lévy process corresponds to infinitely divisible dis-

tribution:

Theorem 6.1. ([20, Theorem 7.10]) (i) If {X(t)}t≥0 is a Lévy process, then for any t ≥ 0,

P(X(t) ∈ dx) is infinitely divisible and it holds that

EP[eiξ·X(t)] =
(
EP[eiξ·X(1)]

)t
, ξ ∈ Rd.

(ii) Conversely, if P is an infinitely divisible distribution, then there exists a Lévy process

{X(t)}t≥0 such that P(X(1) ∈ dx) = P (dx).

The following theorem gives a representation of the characteristic function of the in-

finitely divisible distribution:

Theorem 6.2. (Lévy-Khintchine formula) ([20, Theorem 8.1], [1, Theorem 1.2.14]) (i) If

P is infinitely divisible, then there exist a vector γ ∈ Rd, a nonnegative definite symmetric

d× d matrix A and Lévy meausre n(dy), that is a σ-finite measure on Rd \ {0} satisfying∫
|y|>0

(1 ∧ |y|2)n(dy) <∞, such that

EP [eiξ·y] = exp

{
iγ · ξ − 1

2
ξ · Aξ +

∫
|y|>0

(
eiξ·y − 1− iξ · y1|y|<1

)
n(dy)

}
,

ξ ∈ Rd. (6.1)

γ, A and n(dy) are uniquely determined by P .

(ii) Conversely, if γ ∈ Rd, A is a nonnegative definite symmetric d×d matrix and n(dy)

is a Lévy measure, then there exists an infinitely divisible distribution whose characteristic

function is given by the right-hand side of (6.1).

We note by Theorem 6.1 and Theorem 6.2 that Lévy process corresponds to triplet

(γ,A, n(dy)). Namely, if X is a Lévy process, then

EP[eiξX(t)] = exp

[
t

{
iγ · ξ − 1

2
ξ · Aξ +

∫
|y|>0

(
eiξ·y − 1− iξ · y1|y|<1

)
n(dy)

}]
,

ξ ∈ Rd, t ≥ 0, (6.2)

for some γ,A and n(dy). Conversely, if γ,A and n(dy) are given, then there exists a Lévy

process X such that (6.2) holds. We call (γ,A, n(dy)) the generating triplet (or gener-

ator) of the Lévy process X ([20, p.65]). For example, d-dimensional Brownian motion
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and Poisson process with parameter c > 0 correspond to (0, Ed, 0) and (0, 0, cδ1(dy)),

respectively.

Next, we discuss the sample path t 7→ X(t) of Lévy process X with the generating

triplet (γ,A, n(dy)).

Definition 6.5. For G ∈ B(0,∞)× B(Rd \ {0}), let us define

N(G) := #{s > 0; (s,X(s)−X(s−)) ∈ G}.

We note that for t > 0, ε > 0 ([2, p122]),

N
(
(0, t]× {y; |y| ≥ ε}

)
= #{0 < s ≤ t; |X(s)−X(s−)| ≥ ε} <∞. (6.3)

N(dsdy) is a counting measure on (0,∞) × (Rd \ {0}). More precisely, {N(G)}G is a

Possion random measure on (0,∞)× (Rd \ {0}) with intensity measure dsn(dy). Namely

(i) for each G, N(G) has Poisson distribution with mean dsn(dy)(G),

(ii) if G1, . . . , Gk are disjoint, then N(G1), . . . , N(Gk) are independent.

In (i), we interpret that N(G) = ∞ a.s. if dsn(dy)(G) = ∞. (ii) states that the different

times or the different size jumps are independent.

Put

Ñ(G) :=

N(G)− dsn(dy)(G), if dsn(dy)(G) <∞,

0, if dsn(dy)(G) = ∞.

{Ñ(G)}G is called compensated Possion random measure. It is trivial that EP[Ñ(G)] = 0.

Theorem 6.3. (Lévy-Itô decomposition) ([20, Theorem 19.2], [1, Theorem 2.4.16]) (i)

For each t ≥ 0,

X(t) = tγ + σB(t) +

∫ t

0

∫
|y|≥1

yN(dsdy) +

∫ t

0

∫
0<|y|<1

yÑ(dsdy), (6.4)

where B is d′-dimensional Brownian motion starting at 0, σ is a d×d′ (d′ ≤ d) real valued

matrix such that tσσ = A and
∫ t

0
:=
∫
(0,t]

.

(ii) Three stochastic processes {tγ + σB(t)}t≥0,
{∫ t

0

∫
|y|≥1

yN(dsdy)
}

t≥0
and{∫ t

0

∫
0<|y|<1

yÑ(dsdy)
}

t≥0
are independent.
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Remark 6.1. (1) By Definition 6.5,
∫ t

0

∫
|y|≥1

yN(dsdy) is equal to the finite sum (cf.

(6.3)) ∑
s≤t

1|X(s)−X(s−)|≥1(X(s)−X(s−)).

(2)
∫ t

0

∫
0<|y|<1

yÑ(dsdy) is the L2(Ω;P)-limit of∫ t

0

∫
ε<|y|<1

yÑ(dsdy) =

∫ t

0

∫
ε<|y|<1

yN(dsdy)− t

∫
ε<|y|<1

yn(dy)

as ε ↓ 0.

(3) The characteristic functions of tγ+σB(t),
∫ t

0

∫
|y|≥1

yN(dsdy) and
∫ t

0

∫
0<|y|<1

yÑ(dsdy)

are

exp
{
t(iγ · ξ − 1

2
ξ · Aξ)

}
,

exp

{
t

∫
|y|≥1

(
eiξ·y − 1

)
n(dy)

}
and

exp

{
t

∫
0<|y|<1

(
eiξ·y − 1− iξ · y

)
n(dy)

}
,

respectively (cf. Theorem 6.2).

6.2 Martingale and semimartingale.

In this subsection, let (Ω,F ,P) be a complete probability space and {F(t)}t≥0 is a filtra-

tion of F , i.e., F(t) is a sub σ-algebra of F and F(s) ⊂ F(t) for 0 ≤ s ≤ t. Furthermore,

we make the usual hypothesis ([1], [13]):

(i) (completeness) N := {A ∈ F ;P(A) = 0} ⊂ F(0)

(ii) (right continuity)
∩

ε>0 F(t+ ε) = F(t) (t ≥ 0).

The completeness of the probability space (Ω,F ,P) and condition (i) are made from the

mathematical convenience. Condition (ii) is needed to consider the stopping time defined

after.

Let X = {X(t)}t≥0 = {X(t, ω)}t≥0, ω∈Ω be a real stochastic process.

Definition 6.6. X is called a {F(t)}t≥0-martingale (supermartingale, submartingale) if

the following conditions are satisfied:

(i) EP[|X(t)|] <∞ for each t ≥ 0.

37



(ii) X is {F(t)}t≥0-adapted, i.e., X(t) is F(t)-measurable for each t ≥ 0.

(iii) For 0 ≤ s ≤ t, EP[X(t)|F(s)] = X(s) (resp. ≤, ≥) a.s., i.e., for A ∈ F(s),

EP[X(t)1A] = EP[X(s)1A] (resp. ≤, ≥).

Here EP[X(t)|F(s)] is the conditional expectation of X(t) with respect to F(s).

The martingale (supermartingale, submartingale) is a mathematical model for the fair

(resp. disadvantage, profitable) gambling. If 1-dimensional Brownian motion B and

Poisson process N with parameter c > 0 are {F(t)}t≥0-adapted, then B and {N(t)−ct}t≥0

are {F(t)}t≥0-martingales.

The following theorem is useful when we estimate a martingale:

Theorem 6.4. (Doob’s martingale inequaity) ([13, I, Theorem 6.10], [1, Theorem 2.1.5])

If X = {X(t)}t≥0 is a martingale such that EP[|X(t)|p] < ∞ for some p > 1 and any

t ≥ 0, then for T > 0, the following inequalities hold:

P

(
sup
t≤T

|X(t)| ≥ ε

)
≤ 1

εp
EP[|X(T )|p], ε > 0,

EP

[
sup
t≤T

|X(t)|p
]
≤
(

p

p− 1

)p

EP[|X(T )|p].

Next, we define some concepts to introduce semimartingale.

Definition 6.7. (1) A mapping f : [0,∞) → Rd is called càdlàg if f is right-continuous

and has left-hand limit. Càdlàg is short for continue à droite et limité à goche in Frecnch.

(2) A mapping σ : Ω → [0,∞] is called a {F(t)}t≥0-stopping time (or Markov time) if

{ω ∈ Ω;σ(ω) ≤ t} ∈ F(t) for each t ≥ 0.

(3) X is called a local {F(t)}t≥0-martingale if it is {F(t)}t≥0-adapted and there is a

sequence of {F(t)}t≥0-stopping time σk such that σk < ∞ (k ∈ N), σk ↑ ∞ a.s. and

{X(t ∧ σk)}t≥0 is a {F(t)}t≥0-martingale for any k ∈ N.

(4) X is called a increasing process if the following conditions are satisfied:

(i) X is {F(t)}t≥0-adapted.

(ii) X(0) = 0, the sample path t 7→ X(t) is right-continuous and increasing a.s. (hence

X(t) ≥ 0 a.s. for any t ≥ 0.)

(5) X is called predictable if the mapping (t, ω) 7→ X(t, ω) is measurable with respect to

the smallest σ-algebra on (0,∞)× Ω generated by all {F(t)}t≥0-adapted left-continuous

real stochastic processes defined on [0,∞)× Ω.
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Theorem 6.5. (Doob-Meyer decomposition) ([1, Theorem 2.2.6]) Any càdlàg submartin-

gale X has a unique decomposition X(t) = X(0)+M(t)+C(t), whereM is local martingale

with M(0) = 0 a.s. and C is an increasing, predictable process.

Definition 6.8. X is called a {F(t)}t≥0-semimartingale if it is {F(t)}t≥0-adapted and

for any t ≥ 0,

X(t) = X(0) +M(t) + C(t) a.s. t ≥ 0,

whereM is a local {F(t)}t≥0-martingale withM(0) = 0 a.s. and C is a {F(t)}t≥0-adapted

process such that t 7→ C(t) is of bounded variation on any finite interval a.s..

Clearly, any martingale is a semimartingale. Any 1-dimensional Lévy process is a

semimartingale ([1, Proposition 2.7.1]) with augmented natural filtration {F(t)}t≥0 (cf. [1,

Theorem 2.1.10]), where F(t) is the smallest σ-algebra which contains
∩

ε>0 σ(X(s); s ≤
t + ε) and N . In fact, If the Lévy process X has a decomposition in Theorem 6.3, then

we may put M(t) := σB(t) +
∫ t

0

∫
0<|y|<1

yÑ(dsdy), C(t) := tγ +
∫ t

0

∫
|y|≥1

yN(dsdy).

Stochastic calculus, namely, the infinitesimal calculus for sample functions of stochastic

processes, was established to assign meaning to ordinary differential equations involving

continuous stochastic processes. Stochastic calculus is developed for semimartingales, in

particular, Itô process:

Y (t) = Y (0) +

∫ t

0

f1(s)ds+

∫ t

0

f2(s)dB(s)

+

∫ t

0

∫
|y|>0

g1(s, y)N(dsdy) +

∫ t

0

∫
|y|>0

g2(s, y)Ñ(dsdy). (6.5)

As for the condition of f1, f2, g1, g2, we refer to [1], [13]

Finally, we introduce Itô’s formula for Lévy process. This formula is corresponding to

the chain rule in the infinitesimal calculus:

Theorem 6.6. (Itô’s formula) ([13, II, Theorem 5.1], [1, Theorem 4.4.7]) If X = {X(t)}t≥0

is a d-dimensional Lévy process represented by (6.4), then for each F ∈ C2(Rd), {F (X(t))}t≥0

is a Itô process given by

F (X(t)) = F (0) +
d∑

i=1

d′∑
j=1

σij

∫ t

0

∂F

∂xi
(X(s))dBj(s) +

∫ t

0

(γ · ∇F ) (X(s))ds
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+
1

2

d∑
i,j=1

d′∑
k=1

σikσjk

∫ t

0

∂F

∂xi∂xj
(X(s))ds

+

∫ t

0

∫
|y|≥1

{F (X(s−) + y)− F (X(s−))}N(dsdy)

+

∫ t

0

∫
0<|y|<1

{F (X(s−) + y)− F (X(s−))} Ñ(dsdy)

+

∫ t

0

∫
0<|y|<1

{F (X(s) + y)− F (X(s))− (y · ∇F ) (X(s))} dsn(dy). (6.6)

Here we put σ := (σij)1≤i≤d,1≤j≤d′ and B(s) := (B1(s), . . . , Bd′(s)).
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