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ABSTRACT 

 

Ultraviolet B (UVB) component of sunlight causes many adverse biological effects, 

including apoptosis, and eventually can lead to skin cancer. Growing evidence 

indicates that the UVB-induced signaling network is complex and involves diverse 

cellular processes. In this study the role of c-Jun NH2-terminal kinase-associated 

leucine zipper protein (JLP), a scaffold protein for mitogen-activated protein kinase 

(MAPK) signaling cascades, was investigated in UVB-induced apoptosis. I found that 

UVB-induced skin epidermal apoptosis was reduced in Jlp knockout (KO) as well as 

in keratinocyte-specific Jlp KO mice compared to those of the controls. While 

exploring molecular mechanisms of the diminished apoptosis in Jlp-deficient mice, it 

was revealed that UVB-induced DNA repair system shows no evidence for the 

involvement of JLP in this process; however, UVB-stimulated p38 MAPK activation 

was impaired in both Jlp KO and keratinocyte-specific Jlp KO mice. Moreover, 

topical treatment of UVB-irradiated mouse skin with a p38 inhibitor significantly 

suppressed the epidermal apoptosis in wild-type mice, but not in Jlp KO mice. These 

findings suggest that JLP in skin basal keratinocytes plays an important role in UVB-

induced apoptosis by modulating p38 MAPK signaling pathways. This is the first 

study to demonstrate a critical role for JLP in an in vivo response to environmental 

stimulation.     
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ABBREVIATIONS 

 

6-4PP  (6-4) photoproducts 

BCA  bicinchoninic acid  

BPE  bovine pituitary extract 

BSA  bovine serum albumin 

cKO  conditional KO  

CPD  cyclobutane pyrimidine dimers 

CPDs  cyclobutane pyrimidine dimers  

DAPI  4', 6-diamidino-2-phenylindole 

dNTPs deoxyribonucleotides  

EDTA  ethylenediaminetetraacetic acid  

ERK  extracellular signal-regulated kinase 

EtOH  ethanol  

HRP  horseradish peroxidase  

JIP  JNK-interacting protein 

JLP  c-Jun NH2-terminal kinase-associated leucine zipper protein  

JNK  c-Jun NH2-terminal kinase 

JSAP1 JNK/stress-activated protein kinase-associated protein 1 

K5-Cre Keratin5-Cre 

KO  knockout  

MAPK  mitogen-activated protein kinase 

MeOH  methanol  

NP-40  nonidet p-40 

OTC  optimal cutting temperature  

http://www.ruf.rice.edu/~bioslabs/methods/protein/bca.html
http://acronyms.thefreedictionary.com/Cyclobutane+Pyrimidine+Dimers
http://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
http://acronyms.thefreedictionary.com/horseradish+peroxidase
http://chemicalreagent21.wordpress.com/2012/06/04/what-is-nonidet-p-40/


6 

 

PAGE  polyacrylamide gel electrophoresis 

PB  phosphate buffer 

PCR  polymerase chain reaction 

PFA  paraformaldehyde  

PVDF  polyvinylidene fluoride 

R26R  rosa26-lacz reporter 

RIPA  radioimmunoprecipitation assay 

ROS  reactive oxygen species  

rpm  rotations per minute 

SDS  sodium dodecyl sulfate 

SEM  standard error of the mean 

SPAG9 sperm associated antigen 9 

SPF  specific pathogen free 

TBS  tris-buffered saline 

TBST  tris-buffered saline tween  

TEMED tetramethylethylenediamine  

UVB  ultraviolet B  

UVR  ultraviolet radiation 

X-gal  5-Bromo-4-Chloro-3-Indolyl-β-D-Galactoside 

http://www.allacronyms.com/cat/7/TBST/tris-buffered_saline_tween/1379077
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INTRODUCTION 

We are constantly exposed to environmental hazards, and our first protective barrier 

is the skin. It protects us against water loss and external physical, chemical, and 

biological insults, such as wounds, ultraviolet radiation (UVR), and microorganisms 

(Lippens et al., 2009). Among them UVR elicits many adverse effects in the skin 

including erythema, aging, cell death (apoptosis), and skin cancer (Tobin et al., 

1998). UVB (280-320 nm) of UVR is mostly absorbed in the epidermis of the skin, 

and induces DNA photolesions, such as cyclobutane pyrimidine dimers (CPD) and 

(6-4) photoproducts (6-4PP), which, if inefficiently repaired result in deleterious 

mutations. When DNA damage is too extensive to be repaired, apoptosis is induced. 

This is a protective mechanism that eliminates any altered cells from the skin. UVB 

irradiation also induces alterations in gene expression that are mediated by signaling 

molecules, including mitogen-activated protein kinases (MAPKs) (Bode & Dong, 

2003; Bowden, 2004). Growing evidence indicates that the UVB-induced signaling 

network is complex and involves diverse cellular processes, such as apoptosis and 

survival. To date, the mechanisms involved in regulating UVB-induced apoptosis 

pathways remain unclear. Mammalian MAPK signaling cascades, consisting of 

MAPK kinase kinase, MAPK kinase, and MAPK, play crucial roles in multiple cellular 

processes, including cell proliferation, differentiation, and apoptosis. Three MAPK 

subfamilies have been extensively studied: extracellular signal-regulated kinase 

(ERK), c-Jun NH2-terminal kinase (JNK), and p38 MAPKs. ERK MAPKs primarily 

respond to mitogenic and differentiation stimuli, while JNK and p38 MAPKs are 

strongly activated by inflammatory signals and stress, including UVR. The 

mammalian MAPK signaling system employs scaffold proteins, in part, to organize 

the MAPK signaling components into functional modules, thereby enabling the 

efficient activation of specific MAPK cascades. To date, nearly 20 proteins have  

been  identified  as  scaffold  factors  for  mammalian  MAPK  signaling pathways. 

(Enkhtuya et al., in press). JLP was originally identified as a binding protein for the 

transcription factor Max, and further biochemical study indicated that JLP functions 

as a scaffold protein for the JNK and p38 MAPK signalling modules (Lee et al., 2002). 
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JLP, one of the three known splice variants of Jip4 gene (other 2 splice variants are 

JIP4 and SPAG9) (Kelkar et al., 2005), is expressed in most tissues from murine, 

with highest expression level in the testis, moderate or low expression level in the 

brain, lung, spleen, and ovary, and very low expression level in the heart, liver, 

kidney epididymis, and uterus according to Iwanaga et al. by western blot analysis 

(Iwanaga et al., 2008). Studies of JLP have mainly focused on identifying its 

interacting proteins, which include kinesin light chain 1 and Ga13, the α-subunit of 

the heteromeric G13 protein (Nguyen et al., 2005; Kashef et al., 2005). JLP has also 

been reported to play an important role in myogenesis by interacting with the cell-

surface protein Cdo (Takaesu et al., 2006). In 2008, Iwanaga et al. reported that 

JLP-null mice are viable and grow normally, but exhibit reduced male fertility 

(Iwanaga et al., 2008). However, the in vivo functions of scaffolding protein JLP 

remain largely unknown.  

To better understand the complex UVB response, in this study I investigated the 

function of JLP in UVB-induced apoptosis in the skin by analyzing Jlp-deficient mice. 

The results suggest that JLP plays an important role in this apoptosis by modulating 

p38 MAPK signaling cascades.  
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MATERIALS AND METHODS 

Mice 

All the experiments involving animals were conducted according to Institutional 

Animal Care and Use Committee of Kanazawa University. Mice used in this study 

were housed under SPF (Specific Pathogen Free) conditions at the Institute for 

Experimental Animals, Advanced Science Research Center, Cancer Research 

Institute, Kanazawa University. Light regime was 12 hours of light per day. 4 weeks 

old offspring were ear-marked and tail tips were cut for genotype analysis. In this 

study, previously generated Jlp-/- mice, by Iwanaga et al, were used (Iwanaga et al., 

2008). For generation of keratinocyte specific conditional Jlp knockout mice, two 

loxP sites were inserted to flank exon 5 of the Jlp gene. These mutant mice were 

backcrossed to C57BL/6 for more than ten generations, and the resulting mice were 

crossed with Keratin5-Cre (K5-Cre) transgenic mice. C57BL/6 mice were obtained 

from Japan SLC (Hamamatsu, Japan), K5-Cre transgenic mice (Tarutani et al., 

1997) from the Center for Animal Resources and Development of Kumamoto 

University, and R26R mice from the Jackson Laboratory (Bar Harbor, ME, USA).   

Isolation of genomic DNA & Mice genotyping 

Genomic DNA for mice genotyping was extracted from clipped tails. Tissue 

fragments were placed in 1.5 ml tubes and incubated in 100 µl lysis solution for 30 

minutes at 95˚C. Lysates were placed on ice for 3 minutes and centrifuged for 1 

minute at 13’000 rpm. Upon centrifuge, 100 µl neutralization solution was added to 

the lysates and mixed well. The lysates were centrifuged for 5 minutes at 13’000 rpm 

and the supernatant was transferred to a new 1.5 ml tube with equal volume of 

chloroform and mixed vigorously. After centrifuging for 15 minutes at 13’000 rpm, 

upper phase containing genomic DNA transferred to a new 1.5 ml tube. Lysates 

were stored at – 20˚C or directly processed.  

Lysis solution (pH 12.0)    Neutralization solution (pH 5.0) 

25 mM NaOH     40 mM Tris-HCI    
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0.2 mM EDTA         

Genotyping of mice was routinely performed by PCR analysis. Genomic DNA was 

amplified in following PCR conditions with following specific primers.   

PCR program for jlp gene: 

 Denature DNA  94˚C for 20 seconds  

 Primer annealing  58.5˚C for 30 seconds 

 Extension   72˚C for 60 seconds  

These steps are repeated 30 times.   

PCR program for Cre recombinase gene:  

Denature DNA  94˚C for 20 seconds 

Primer annealing  62˚C for 30 seconds  

Extension   72˚C for 30 seconds  

These steps are repeated 30 times.  

 

Primers for disruption of jlp gene:  

Primer 1 (Jlp-G53): 5’-TGTCAGTTCCGCTGGCTTCGGTA-3’ (for wild-type allele) 

Primer 2 (neoH): 5’-CTCAGCCTGCAGGCTAAAATCCTG-3’ (for knockout allele) 

Primer 3 (Jlp-G52): 5’-TAAAGCGCATGCTCCAGACTGCCTT-3’ (for wild-type  

and knockout allele) 

Primers for conditionally disrupted jlp gene: 

Primer 1 (GCK36): 5’-GTTTCCGTGTTCATTAGGGTGTGTTCAC-3’ 

Primer 2 (GCK37): 5’-CCCATGTAAGAGCAACACAGTTCTTACC-3’ 

Primers for Cre recombinase gene: 

Primer 1 (Cre-s-F): 5’-ACCTGATGGACATGTTCAGGGATCG-3’ 

Primer 2 (Cre-s-R): 5’-TCCGGTTATTCAACTTGCACCATGC-3’ 
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After the reaction was finished, the samples were analyzed by 1.5% agarose gel 

electrophoresis for 30 minutes or 60 minutes at 100 Voltages.  

Genotyping PCR-reaction mix: 

DNA template  2.0 µl  

Primer F (10 μmol)  1.0 µl  

Primer R (10 μmol)  1.0 µl 

PCR buffer (10 x)  4.0 µl  

2 mM dNTP   2.0 µl  

Go Taq DNA Poly (5 U/µl) 0.1 µl  

ddH2O    10.0 µl 

Total    20 µl  

UVB Irradiation and Treatment with a Pharmacological p38 Inhibitor 

The hair of back skin was shaved by a hair clipper (Panasonic ER 503 PP) and 

remaining hair was removed by a shaver (Panasonic ES 3832 P) 24 hours before 

the experiments. On the next day, the deeply anesthetized mice (intraperitoneal 

injection of pentobarbital sodium, 60 mg/kg) were irradiated by 2.8 kJ/m2 dose of 

UVB with the use of CL-1000 ultraviolet crosslinker (UVP, Inc. Upland, CA, USA). 

For the topical inhibition of p38 MAPK, SB203580 (#13067; Cayman Chemical, Ann 

Arbor, MI, USA)  was  dissolved  in  acetone  and  used  at  a  dose  of 0.5  µmol.  

The inhibitor was reconstituted immediately before use and applied in a volume of 40 

µL to the dorsal skin for 1 hour before irradiation and immediately following 

irradiation.  

Histological Analysis, Immunofluorescence, and β-Galactosidase Staining 

Sample preparation 

Adult mice were anesthetized and fixed by transcardial perfusion with 4% 

paraformaldehyde (PFA)/ 0.1 M PB. Back skin was taken and placed in a fresh 4% 

PFA/ 0.1M PB for post fixation at 4˚C, overnight. Fixed skin sections were treated 
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with 10% sucrose/ 0.1M PB for 2 hours, 20% sucrose/0.1 M PB for 6 hours and 30% 

sucrose/ 0.1M PB at 4˚C for overnight for cryoprotection. Following day, skin 

samples were embedded in OTC compound (Sakura Finetek, Tokyo, Japan). Frozen 

blocks were stored at – 80˚C for further usage. 

Hematoxylin and Eosin staining 

Frozen blocks were warmed up at – 20˚C before the experiments. 7-µm sections 

were cut with a cryotome (Sakura Tissue Tek Cryo 3, cryostat), collected on micro 

slide glasses (Matsunami, S 9441), air-dried for 40 minutes at room temperature. 

Sections were washed by 1 x TBST 2 times for 5 minutes, rinsed in tap water for 1 

minute. After staining in hematoxylin for 5 minutes, sections were rinsed in tap water 

for 5 minutes. Then sections were stained in eosin for 5 minutes, rinsed in tap water 

5 minutes and dehydrated in 50% EtOH, 70% EtOH, 90% EtOH and 95% EtOH 

serially for 1 minute for each. After clearing in xylen for 1 minute, sections were 

mounted by mount-quick (Daido Sangyo, Tokyo, Japan).  

Immunohistochemical staining   

20-µm frozen sections were air-dried as described above and washed by 1 x TBST 2 

times for 5 minutes. Sections were surrounded by pap pen (liquid blocker, Daido 

Sangyo, Tokyo, Japan), incubated at first with blocking buffer for 1 hour at room 

temperature and next with the primary anti-active caspase-3 antibody for overnight at 

4˚C. Following day, sections were washed by 1 x TBST 3 times for 5 minutes and 

incubated with Alexa-labeled secondary antibodies for 3 hours at room temperature, 

followed by nuclear staining with 4,6-diamidino-2-phenylindole (DAPI;  Sigma,  St 

Louis,  MO,  USA) for 10 minutes. Sections were washed by 1 x TBST 3 times for 5 

minutes and mounted with 80 % glycerol.   

For phosphorylated and activated  p38  (p-p38)  immunostaining,  back skin was 

removed from deeply  anesthetized  mice,  embedded  in  OCT  compound, and  

frozen  in  liquid  nitrogen. 20-µm frozen sections were fixed in 4% PFA/ 0.1M PB for  

10 minutes and subjected to immunohistochemical analysis as described above.   
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0.2 M phosphate buffer (PB) (pH 7.4) 

NaH2PO4 * 2 H2O 2.96 g 

Na2HPO4 * 12 H2O 29 g  

dH2O   up to 500 ml   

TBS (10 x) (pH 7.4)     TBST (1 x) 

Tris base 30.0 g     10 x TBS 100 ml 

NaCI  80.0 g     Tween 20 1 ml 

KCI  2.0 g     dH2O  up to 1000 ml 

dH2O  up to 1000 ml 

Blocking buffer 

2 % BSA (bovine serum albumin) 

2 % goat serum 

0.4 % triton – x 100 in 1 x TBST 

β-galactosidase staining  

R26R mice were mated with K5-Cre mice and offspring at postnatal day (P) 5 were 

deeply anesthetized, and the back skin was removed, fixed in 4% PFA/ 0.1M PB, 

cryoprotected as described above, and embedded in OCT compound. 20-µm frozen 

sections were stained in PBS containing 1 mg/mL X-gal (5-Bromo-4-Chloro-3-

Indolyl-β-D-Galactoside; Takara Bio, Otsu, Japan), 2 mM  MgCl2,  5  mM  potassium  

ferrocyanide  and  5  mM  potassium  ferricyanide for 24 hours at 37˚C. Samples 

were dehydrated in 50% EtOH, 70% EtOH, 90% EtOH and 95% EtOH serially for 1 

minute for each. After clearing in xylen for 1 minute, sections were mounted by 

mount-quick.  

The following primary  antibodies  were  used:  anti-active caspase-3  antibody  

(1:600;  #9661; Cell  Signaling,  Boston,  MA,  USA)  and  anti-p-p38  antibody  

(1:1600;  #4511;  Cell Signaling). Secondary antibodies were Alexa fluor 488- 

(#A11008) and 568-conjugated (#A11011) antibodies (both diluted at 1:1000; 

Invitrogen, Rockville, MD, USA). Fluorescence images were  captured  with  a  

confocal  laser-scanning microscope  (LSM510  META,  Carl  Zeiss,  Oberkochen,  
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Germany). Other images were captured with a fluorescence microscope (BX50, 

Olympus, Tokyo, Japan).  

Western Blotting 

Sample preparation 

Back skin was removed from deeply anesthetized mice, snap frozen in liquid 

nitrogen. Frozen skin was pulverized with a mortar and pestle. The pulverized skin 

was collected into 1.5 ml tube and added lysis buffer. After sonification, lysates were 

centrifuged at 13,000 rpm for 20 minutes. Supernatants were collected into new 

1.5ml tube and protein concentration was determined using the BCA protein assay 

kit (#23225, Thermo Scientific, MA, USA). SDS-sample buffer was added into cell 

lysates and stored at – 20˚C for further usage. Primary keratinocytes were also lysed 

by same procedure.  

RIPA buffer 

50mM Tris-HCI (pH 8.0) 

150mM NaCI 

1% NP-40 

0.5% Sodium deoxycholate 

0.1% SDS 

Lysis buffer was prepared by adding protease and phosphatase inhibitors into RIPA 

buffer just before use.  

SDS-Sample buffer       

250 mM Tris-HCI (pH 6.8)      

10 % SDS         

30 % Glycerol        

5 % β – mercaptoethanol       

0.02 % Bromophenol blue 

SDS-PAGE running 

Proteins were separated elecrophoretically according to their molecular weight in 

SDS-polyacrylamide gels. Gels consisted of stacking (5% acrylamide) and 
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separating parts (8 % or 12 % acrylamide). 20 μg or 50 μg protein lysates, incubated 

at 95°C for 5 minutes, were loaded into the wells. Electrophoresis was carried out 

until bromophenol blue reached the bottom of the separating gel, which was about 

65 minutes (300 V, 30 mA).  

Separating gel (8 % / 12 %)   Stacking gel (5 %) 

Solution components 10.0 ml  Solution components 3.0 ml 

H2O    4.6 ml / 3.3 ml H2O    2.1 ml  

30 % acrylamide mix 2.7 ml / 4.0 ml 30 % acrylamide mix 0.5 ml 

1.5 M Tris (pH 8.8)  2.5 ml   1.0 M Tris (pH 6.8)  0.38 ml 

10 % SDS   0.1 ml   10 % SDS   0.03 ml 

10 % ammonium persulfate0.1 ml   10 % ammonium persulfate0.03 ml 

TEMED   0.006 ml/0.004 ml TEMED   0.003 ml  

for 1 gel 5.2 ml of mixture was used.  for 1 gel 1.2 ml of mixture was used.   

Running buffer (1 x) 

Tris base 30.2 g  

Glycine 144.0 g  

SDS  10.0 g  

dH2O  up to 10 l 

Transfer of proteins to the membrane 

Separated proteins were transferred to a PVDF membrane (# IPVH00010, Merck 

Milipore, MA, USA) using Trans-Blot electrophoretic transfer cell (BE – 351, Bio Craft, 

Michigan, USA). The membrane was activated with MeOH (20 seconds), rinsed with 

water for 2 minutes. Transfer sandwich was assembled and the cassette was placed 

in an electrode module. The blotting was conducted for 95 minutes (300 V, 100 mA). 

After finishing, the sandwich was disassembled and the membrane was washed by 1 

x TBST for 10 minutes.  

Transfer buffer (1 x)  

Tris base 30.29 g 

Glycine 144.13 g 

Methanol  2.0 l 

Protein detection on the membrane 
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The membrane was blocked with 5 % non-fat milk (Skim Milk Powder) (#190-12865, 

Wako Pure Chemical Industries, VA, USA) for 60 minutes at room temperature. 

Primary antibodies were generally diluted in a respective blocking buffer (only for 

phosphorylated protein detection, 5% BSA was used) and incubated at 4˚C for 

overnight. The following day, the membrane was washed 2 times for 10 minutes and 

incubated for 2 hours at room temperature with the appropriate HRP-conjugated 

secondary antibody diluted in 5 % non-fat milk. The membrane washed 3 times for 

10 minutes and proteins were visualized with the Immobilon Western 

Chemiluminescence HRP Substrate (Millipore, Billerica, MA, USA). The signal was 

captured by Image QuantTM Las 4000 (GE Healthcare, Life Sciences, 

Buckinghamshire, UK).  

Following antibodies were used: anti-JLP (Iwanaga  et  al.,  2008;  Gantulga et al., 

2008) (2 µg ml-1), anti-p-JNK (#9251), anti-pan-JNK  (#9258),  anti-p-p38  (#4631),  

anti-pan-p38  (#9212),  anti-p-ERK  (#4377), anti-pan-ERK (#9102) (all diluted at 

1:1000; Cell Signaling), and anti-α-tubulin (1:5000; #T5168;  Sigma)  antibodies.   

Primary keratinocytes 

P0 or P1 newborn pups were killed by decapitation, and the back skin was removed 

and incubated with CnT-57 medium (CELLnTEC, Berne, Switzerland) containing 5 

mg/ml dispase (Invitrogen, Rockville, MD, USA) and 2 x antibiotics/ antimycotics 

(CnT-ABM) (CELLnTEC) at 4˚C for overnight. The epidermis was separated from the 

dermis and incubated with TrypLE Select (Invitrogen) for 30 minutes at room 

temperature. Separated keratinocytes were then collected by centrifugation and 

seeded at a density of 3 x 104 cells/ cm2 in CnT-57 medium containing supplements 

(CnT-57.A, CnT-57.B, CnT-57.C and Bovine Pituitary Extract (BPE)) in 35 mm 

culture dishes. Cells were cultivated at the condition of 37˚C, 5% CO2 and fresh 

medium were replaced every other day. Subconfluent passage 1 cells were used for 

experiments.  

http://en.wikipedia.org/wiki/Buckinghamshire
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Measurement of 6-4PP repair 

In collaboration with Drs. Wakasugi and Matsunaga, an assay for DNA repair system 

was performed. Appropriate numbers of keratinocytes from Jlp+/- or Jlp-/- mice were 

plated in 35-mm glass-bottom dishes, and then UVB-induced 6-4PP lesions were  

measured as previously described (Wakasugi et al., 2009), using the  6-4PP-specific 

antibody, 64M-5 (Mori et al., 1991). Immunofluorescence images of labeled 6-4PP 

lesions were obtained using the All-in-One fluorescence microscope BZ-9000 

(Keyence, Osaka, Japan), and 6-4PP levels were calculated from the fluorescence 

intensities measured using ImageJ software (National Institutes of Health, Bethesda, 

MD, USA).  

Statistical analysis 

Significance was determined using the two-tailed unpaired Student’s t-test. Values of 

P< 0.05 were considered to be statistically significant.  
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RESULTS 

Phenotypic and histological analysis of Jlp-/- mice  

Jlp-/- mice were previously generated by targeted gene disruption using 129-derived 

ES cell lines (Iwanaga et al., 2008).  Even after extensive backcrossing (more than 

10 times) onto the C57BL/6 background, Jlp-/- mice exhibited a lightened coat color 

and pale skin (Fig. 1A), as reported for homozygous dazzle mice (Krebs and Beutler, 

2010). The dazzle mouse was  generated  by  N-ethyl-N-nitrosourea  mutagenesis  

on  the  C57BL/6  background  and contains a missense mutation in the Jlp gene  

(Krebs  and  Beutler,  2010).  Taken together, these results indicate that the 

pigmentation defects can be attributed to the loss of normal JLP function.  However, 

there  were  no  obvious  histological  differences  observed  in  the skin between 

control  (Jlp+/-),  and  Jlp-/- mice  (Fig.  1B).  

Figure 1. Phenotypic and histological analysis of 

Jlp
-/-

 mice. (A) Macroscopic appearance of 

control (Jlp
+/-

) and Jlp
-/-

 adult mice. (B) 

Hematoxylin and eosin staining of 7-µm-thick 

frozen  sections  from  the  shaved  back  skin  

of  control  and  Jlp
-/-

 adult  mice.  The images 

were captured by an Olympus BX50 microscope 

with a 20x objective. E, epidermis; D, dermis; HF, 

hair follicle. Scale bar, 100 µm.  

 

Jlp-deficient mice exhibit decreased apoptosis in response to UVB irradiation 

Next the effect of Jlp deficiency on UVB-induced apoptosis in mouse skin was 

examined. To this end, immunohistochemical analysis using an antibody against 

active caspase-3, a well-known apoptotic marker, was performed.  Upon UVB 

exposure, the number of active caspase-3-positive cells, which were detected mostly 

in the epidermis (Fig.  2A) was significantly decreased in Jlp-/- compared with control 
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mice (Fig. 2B). These results suggested that JLP is a positive regulator of UVB-

induced apoptotic pathways.   

 

 

Figure 2. JLP ablation reduces UVB-induced apoptosis in mice. (A) Immunohistochemical staining for 

active caspase-3 in control (Jlp
+/-

) and Jlp
-/-

 mice. The backs of control and Jlp
-/-

 adult mice were 

shaved and irradiated with 2.8 kJ/m
2
 of UVB. After  24  hours,  skin  samples  were  obtained  and 

fixed,  and  20-µm-thick  frozen  sections were stained with an anti-active caspase-3 antibody and 

DAPI. The images were captured by a Zeiss LSM510 META confocal microscope with a 20x objective. 

Scale bar, 100 µm. (B) Quantification of the results in A. The number of active caspase-3-positive 

cells in the epidermis was counted over a linear distance of 20-30 mm, and averaged for each 1-mm 

interval. Values are the mean + SEM from three independent experiments. ***P < 0.001.  

Effect of Jlp deficiency on the repair of UVB-induced DNA damage 

To gain insight into the mechanisms underlying the attenuated UVB-induced 

apoptosis in Jlp-deficient mice, the DNA repair capability of keratinocytes lacking 

JLP was investigated. The repair of 6-4PPs, which a useful indicator for evaluating 

DNA repair compared to CPDs because of their quicker and effective excisions from 

UV-irradiated cellular DNA, was investigated (Mitchell et al., 1985; Mizuno et al., 

1991). The 6-4PP repair in epidermal keratinocytes prepared from the control and 

Jlp-/- mice was examined over time. After UVB exposure, the 6-4PP lesions were 

removed with similar kinetics in the control and Jlp-/- keratinocytes (Fig. 3), 

suggesting that JLP is not involved in the DNA excision repair of UVB-induced 
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damage,  and  furthermore  that  the  inhibition  of  apoptosis  observed  in Jlp-/- mice 

is not due to a decreased accumulation of DNA damage.   

 

Figure 3. Kinetics of 6-4PP repair in Jlp-/- keratinocytes.  

Primary keratinocytes derived from control (Jlp
+/-

) and Jlp
-/-

 P0 

mice were irradiated with 160 J/m
2
 of UVB. The cells were 

incubated for the indicated periods and processed for the 

detection of 6-4PP. Each point represents the mean + SEM 

from three independent experiments.  

 

Impaired UVB irradiation-induced MAPK activation in Jlp-/- mice 

Next question was whether JLP ablation perturbs the normal MAPK activation 

response to UVB irradiation. The UVB-induced  levels of  phosphorylated  and  

activated JNK  (p-JNK),  p38  (p-p38),  and  ERK  (p-ERK)  in  the  skin  of  control  

and  Jlp-/- mice was analyzed by Western blotting (Fig. 4A). While the p-ERK levels 

were similar between the control and Jlp-/- mice, modest and substantial decreases 

in the levels of p-JNK and p-p38, respectively, were observed in the skin samples of 

Jlp-/- mice (Fig.  4A, compare lanes 3 and 4). The UVB-induced p38 activation was 

further analyzed by immunohistochemistry. As shown in Figure 4B and C, the p-p38 

immunopositive signals in the epidermis were significantly lower in Jlp-/- mice 

compared to control mice.  
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Figure 4. Impaired MAPK activation in the skin of Jlp
-/-

 mice following UVB irradiation. (A) Western 

blotting analysis of MAPK activation in the skin of control (Jlp
+/-

) and Jlp
-/-

mice following UVB exposure. 

The backs of control and Jlp
-/-

 adult mice were shaved and treated with (UVB (+)) or without (UVB (-)) 

2.8 kJ/m
2
 of UVB, as indicated. Thirty minutes after irradiation, cell lysates were prepared from the 

skin samples, and analyzed by Western blotting (50 µg lysate/lane) with the indicated antibodies. α-

tubulin was used as a loading control. (B) Immunohistochemical staining for p-p38 in control (Jlp
+/-

) 

and Jlp
-/-

 mice. Control and Jlp
-/-

 adult mice were shaved and treated with or without UVB as in A. 

Thirty minutes after irradiation, skin samples were obtained and fixed, and 20-µm-thick frozen 

sections were stained with anti-p-p38 antibody and DAPI. The images were captured by a Zeiss 

LSM510 META confocal microscope with a 40x objective. Scale bar, 50 µm.  (C) Quantification of the 

results in B. The immunofluorescence signal intensity of p-p38 in the epidermal compartment 

approximately 0.2 mm
2
) was quantified using ImageJ. The mean intensity per area of the untreated 
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Jlp
-/-

, the irradiated control (Jlp
+/-

), and the irradiated Jlp
-/- 

mice was normalized to the mean intensity 

per area of the untreated control (Jlp
+/-

) mice, respectively.  Values are the mean + SEM from three 

independent experiments. n.s., not significant; **P < 0.01.  

Generation and analysis of mice with a keratinocyte-specific deletion of JLP 

To examine whether JLP expressed in skin basal keratinocytes is responsible for 

UVB-induced apoptosis, keratinocyte-specific Jlp conditional KO (cKO) mice were 

generated by crossing mice carrying Jlp loxP-flanked (floxed) alleles with Keratin5-

Cre (K5-Cre) transgenic mice. The region-specific expression of Cre recombinase in 

the K5-Cre mice was confirmed using the Rosa26-lacZ reporter (R26R) (Fig. 5 B). 

The  loss  of  JLP  expression in keratinocytes was assessed by Western blotting of 

cell  lysates  prepared  from  primary  keratinocytes isolated from control (Jlpflox/+;K5-

Cre) and Jlp cKO  (Jlpflox/flox;K5-Cre)  mice  (Fig.  5A). Results indicated that the Jlp 

gene was successfully disrupted in keratinocytes by K5-Cre-mediated recombination. 

The UVB-induced apoptosis and p38 MAPK activation in the control and Jlp cKO 

mice were then analyzed. Consistent with the findings in Jlp-/- mice (Fig. 2A, B), the 

Jlp cKO mice exhibited significantly decreased apoptosis in the epidermis in 

response to UVB irradiation, compared with control mice (Fig. 5C, D). Moreover, 

reduced levels of p-p38 were observed in the skin samples of Jlp cKO mice by 

Western blotting (Fig. 5E). The UVB-induced p38 activation was also analyzed by 

immunohistochemistry, and as a result the p38 immunosignals in the epidermis were 

found significantly lower in the Jlp cKO mice compared with control mice (Fig. 5F, G).   



23 

 

 

 



24 

 

Figure 5. Reduced apoptosis and impaired p38 activation in the skin of keratin-specific Jlp cKO mice 

treated with UVB irradiation. (A) Western blotting analysis of JLP in primary keratinocytes derived 

from control (Jlp
flox/+

;K5-cre) and Jlp cKO (Jlp
flox/flox

;K5-cre) mice. α-tubulin was used as a loading 

control. (B) X-gal  staining  of  skin  sections  from  R26R and  R26R;K5-Cre  mice.  Frozen sections  

(20-µm-thick)  from  the  back  skin  of  R26R and  R26R;K5-Cre  P5  mice  were stained in X-gal 

solution for 24 hours at 37˚C. Dotted lines indicate the border between epidermis and dermis, and 

arrowheads point to hair follicles. Scale bar, 30 µm. (C) Immunohistochemical staining for active 

caspase-3 in control and Jlp cKO mice. Control and Jlp cKO adult mice were shaved and irradiated 

with UVB, and skin specimens were subjected to immunohistochemistry as in Fig. 2A. Scale bar, 100 

µm. (D) Quantification of the results in C was performed as in Fig. 2B. Values are the mean + SEM 

from three independent experiments. *P < 0.05. (E) Western blotting analysis of p38 activation in the 

skin  of  control  and  Jlp cKO  mice  in  response  to  UVB  exposure. Control and Jlp cKO adult mice 

were shaved and treated with or without UVB as indicated, and cell lysates prepared from the skin 

samples were subjected to Western blotting as in Fig. 4A. α-tubulin was used as a loading control. (F) 

Immunohistochemical staining for p-p38 in control and Jlp cKO mice. Control and Jlp cKO adult mice 

were shaved and treated with or without UVB, and skin specimens were subjected to 

immunohistochemistry as in Fig. 4B. Scale bar, 50 µm. (G) Quantification of the results in F was 

performed as in Fig. 4C. Values are the mean + SEM from three independent experiments. n.s., not 

significant; *P < 0.05.  

Involvement of p38 signaling in UVB-induced apoptosis 

Final investigation was done to find out whether p38 signaling is required for UVB-

induced apoptosis in mouse skin by using SB203580, a small molecule inhibitor of 

p38.  As shown in Figure 6, topical treatment  of  UVB-irradiated  mouse  skin  with  

the p38  inhibitor  significantly reduced the number of active caspase-3-positive cells 

in the epidermis of wild-type mice, but not Jlp KO mice, indicating that p38 signaling 

plays a pro-apoptotic role in response to UVB exposure.  
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Figure 6. Involvement of p38 signaling in UVB-induced apoptosis. Immunohistochemical staining for 

active caspase-3 in wild-type mice (A) and Jlp KO mice (C). The backs of adult mice were shaved and 

topically treated with 40 µL of either vehicle or SB203580 (0.5 µmol) 1 hour before and just after UVB 

irradiation at a dose of 2.8 kJ/m
2
. After 24 hours, skin specimens were subjected to 

immunohistochemistry as in Fig. 2A. Scale bar, 100 µm. The results in A and C were quantified in B 

and D, respectively. The number of active caspase-3-positive cells in the epidermis was counted over 

a linear distance of 10 mm, and averaged for each 1-mm interval.  Values are the mean + SEM from 

three independent experiments. n.s., not significant;***P < 0.001.  
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DISCUSSION 

In this study, the role of JLP in UVB-induced apoptosis in skin epidermal tissues was 

examined, and found that Jlp-deficient mice exhibit a substantially reduced apoptotic 

response. This is the first demonstration of a critical role for JLP in an in vivo 

response to environmental stimulation. It is also observed that conventional Jlp KO 

mice and keratinocyte-specific Jlp cKO mice, in which Jlp is disrupted in K5-

expressing basal  cells, exhibit almost identical effects on UVB-induced  apoptosis 

(Figs 2, 4, 5). Thus, the lack of JLP expression in basal keratinocytes is most likely 

responsible for the decreased susceptibility of the Jlp mutant mice to UVB-induced 

stress. The UVB-induced activation of p38 MAPK was significantly attenuated in the 

epidermis of Jlp KO and Jlp cKO mice (Figs. 4C, 5G). In addition, topical application 

of a p38 inhibitor to the skin significantly suppressed the UVB-induced apoptosis in 

wild-type mice, but not in Jlp KO mice (Fig. 6). It is therefore likely that JLP functions 

as a scaffolding factor for pro-apoptotic p38 pathways following UVB stimulation in 

basal keratinocytes. However, it is possible that JLP and/or p38 expressed in cells or 

tissues other than keratinocytes also affect the regulation of the UVB-induced 

apoptosis independently or cooperatively. At present, the detailed mechanisms 

underlying UVB-induced JLP-p38 signaling remain unclear. However, considering 

evidence that UVB exposure stimulates the generation of reactive oxygen species 

(ROS) (Van Laethem et al., 2009), and that ROS regulate p38 activation (Dolado et 

al., 2007), UVB-induced ROS may activate JLP-mediated p38 signaling pathways.  

JNK/stress-activated protein kinase-associated protein 1 (JSAP1, also known as 

JIP3 or Sunday Driver), which is highly homologous with JLP in its sequence  and  

domain structure, has been identified as a scaffold protein for JNK signaling 

pathways (Ito et al., 1999; Kelkar et al., 2000). Recently, Ongusaha et al. (2008) 

analyzed JSAP1/JIP3 knockdown cultured cells, and reported that Rho-associated 

kinase 1 plays an essential role in UVB-induced apoptosis by regulating 

JSAP1/JIP3-JNK pathways. Thus, upon UVB stimulation, the scaffold proteins 

JSAP1 and JLP may be responsible for the efficient activation of JNK and p38 

signaling pathways, respectively, leading to apoptosis. In addition, it  is  also  
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possible  that  JSAP1  and  JLP  scaffolds  are  partially  redundant  in  the regulation 

of JNK and/or p38 signaling pathways in response to UVB irradiation, although to  

date,  no  functional  redundancy  between  JSAP1  and JLP  has  been  reported.  

Future studies, including the analysis of keratinocyte-specific Jsap1 cKO and Jsap1 

and Jlp double cKO mice, will be required to clarify this issue. The current study 

identified the scaffold protein JLP as a novel positive regulator of UVB-induced 

apoptosis. It will be interesting to determine whether Jlp-deficient mice exhibit an 

increased susceptibility to skin cancers, especially basal cell carcinoma, in response 

to UVB irradiation. 
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