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1 Introduction

In this thesis, we study hyperbolic-type problems with free boundary. The real case
can be considered as a phenomenon of ”peeling tape attached to a surface”. From
this phenomenon, we can obtain the energy function. This energy function can be
derived into Euler-Lagrange equation. A previous research was conducted solving
this equation using numerical method called fixed domain method and showed the
high accuracy for its results [2]. However, this method only works when there is
only one free boundary point.

On the other hand, this problem has been investigated before by adding smooth-
ing characteristic function. We call this as approximated problem. It can be used
to model droplet motion on a plane or bubble touching the water surface in higher
dimension using numerical methods called discrete Morse flow. In this study, we
want to investigate the accuracy of numerical methods solving the approximated
problem. However, the exact solution is not available in all cases. Despite not hav-
ing exact solution, we use the solution of fixed domain method to get the accuracy.
The numerical methods which we investigate are: two types of finite difference
method, finite element method, and discrete Morse flow. In addition, we also in-
vestigate the treatment in the free boundary to get optimal error and comparing two
smoothing characteristic functions. Since the fixed domain method solutions are
available in 1-D only, we consider 1-D problem in this study.

2 Physical model of peeling tape problem

In this section, we explain the phenomenon of peeling tape on a plane. Suppose
there is a thin film adhered to a plane. We consider this film as our tape. It is
peeled off from the plane and starts to expand along the sticked tape. The region
where the tape is adhered is considered as a domain Ω. We assume that the tape
has the same tension γ at any places. The shape of the tape is represented by a
function u : Ω → R. The shape of u is obtained by measuring the energy of this
phenomenon.

J(u) =

∫ τ

0

∫
Ω

γ2|∇u|2 −
ρ

2
u2

t χu>0 +
Q2

2
χu>0

 dxdt. (1)

We choose γ = ρ = 1. Let u be the stationary point of (1) and u ∈ C0(Ω × (0, τ) ∩
W1,2(Ω, τ)), then u satisfies

∆u − utt = 0 in {u > 0}. (2)
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Moreover, if u ∈ C2(Ω × (0, τ) ∩ {u > 0}) and ∂{u > 0} is in C−1, then u on the
boundary satisfies

|∇u|2 − u2
t = Q2 on ∂{u > 0}. (3)

We solve this Euler-Lagrange equation using fixed domain method.
Now we consider an approximation of (1) where the characteristic function

is approximated using a smoothing characteristic function. Firstly, we define a
smooth function called βε(s). βε(s) ∈ C2(R), βε(s) ≥ 0, and satisfies

βε(s)


= 0 s ≤ 0,

≤ 1/ε 0 < s < ε and |β′ε(s)| ≤
C

ε2,

= 0 ε ≤ s.

It is also that
∫ ε

0 βεds = 1 and we define Bε

Bε(u) =

∫ u

0
βε(s)ds −→

ε→0

1 in {u > 0},
0 in {u = 0},

which is the smoothing characteristic function of χu>0. Then we rewrite the energy
function

Jε(u) =

∫ τ

0

∫
Ω

12|∇u|2 − χu>0
1

2
u2

t +
Q2

2
Bε(u)

 dxdt. (4)

By taking the first variation of (4), our problem becomes
∆u − χu>0utt = −

Q2

2
βε(u) in Ω × (0, τ),

u(x, 0) = u0(≥ 0)
ut = v0

u(x, t)|∂Ω = f (x, t) with f (x, 0) = u0 on ∂Ω.

(5)

We will solve this problem using numerical methods above.
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3 Numerical method

3.1 Explicit method 1 (spatial central difference + time forward dif-
ference)

We represent equation (5) using explicit method with uxx approximated by central
difference. Suppose ut = v then

d

dt
ui(t) = vi(t), i = 1, . . . ,N − 1,

χ{u>0}(xi, t)
d

dt
vi(t) =

ui−1(t) − 2ui(t) + ui+1(t)

(∆x)2 −
Q2

2
(χε)′(ui(t)), i = 1, . . . ,N − 1.

(6)

The initial and boundary conditions are u0(t) = f (t), u(0) = g(x), v0(t) = f ′(t),
and v(0) = h(x). We solve (6) using the 4th order Runge-Kutta.

3.2 Explicit method 2 (spatial and time central difference)

We approximate uxx and utt from equation (5) using central difference. [0, τ] is
divided into M, 0 = t0 < t1 < . . . < tM = τ.

χ{u>0}(xi, tk)
uk+1

i − 2uk
i + uk−1

i

(∆t)2 =
uk

i+1 − 2uk
i + uk

i−1

(∆x)2 −
Q2

2
(χε)′(uk

i ),

i = 1, . . . ,N − 1, and k = 1, . . . ,M − 1,
(7)

where uk
i = u(xi, tk), i = 0, . . . ,N. Then we calculate the solutions with following

χ{u>0}(xi, tk) uk+1
i = 2uk

i − uk−1
i + (∆t)2

uk
i+1 − 2uk

i + uk
i−1

(∆x)2 −
Q2

2
(χε)′(uk

i )

 . (8)

The boundary conditions are u0(t) = f (t) and u(0) = g(x).

4 Finite Element Method

We take the weak form of equation (5) and define a test function ξ ∈ C∞0 (Ω). Then
we obtain ∫

Ω

(χ{u>0}utt − uxx +
Q2

2
(χε)′(u))ξdx = 0, ∀ξ ∈ C∞0 (Ω). (9)

3



We approximate solution as u(x, t) =
∑N

i=0 ai(t)ϕi(x) where ϕi is basis function. The
basis function is defined as

ϕi(x) =



x − xi−1

∆x
xi−1 ≤ x ≤ xi,

xi+1 − x

∆x
xi ≤ x ≤ xi+1,

0, otherwise,

i = 1, 2. . . . ,N − 1.

Then by integration by parts (9) gives∫
Ω

χ{u>0}

 N∑
i=0

(ai)ttϕi

 ξ +

 N∑
i=0

ai(ϕx)i

 ξx +
Q2

2
(χε)′(

N∑
i=0

aiϕi)ξ

 dx = 0,∀ξ ∈ C∞0 (Ω).

(10)
We choose basis function ϕ j; j = 1, . . . ,N − 1 as our test function and rewrite (10)

N∑
i=0

[
(ai)tt

∫
Ω

χ{u>0}ϕiϕ jdx
]
+

N∑
i=0

[
(ai)
∫

Ω

(ϕx)i(ϕx) jdx
]
+

Q2

2

∫
Ω

(χε)′(
N∑

i=0

aiϕi)ϕ jdx = 0

(11)
j = 1, 2, . . . ,N − 1

We change into matrix form

Batt + Aa +
Q2

2
C(a) = 0, (12)

where a = a1, . . . , aN−1, C is a column matrix whose elements are determined by a
and b is determined by boundary values.

We approximate att using central difference with ak = a(x, tk).

B
ak+1 − 2ak + ak−1

(∆t)2 + Aak +
Q2

2
C(ak) = b. (13)

The final form is

Bak+1 = 2Bak − Bak−1 − (∆t)2

Aak +
Q2

2
C(ak) + b

 . (14)

We solve (14) using steepest decent method.
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4.1 Discrete Morse Flow

Minimizing the functional below on function space κ approximates the weak solu-
tion of equation (5) [1]

Jn(u) =

∫
Ω

|u − 2un−1 + un−2|
2

2(∆t)2 χ{u>0}dx +
1

2

∫
Ω

|∇u|2dx +
Q2

2

∫
Ω

χε(u)dx. (15)

κ = {u ∈W1,2(Ω); u = g on ∂Ω}

Function u0 and u1 are the approximate solutions at time level t = 0 and t = ∆t
respectively. We define the approximate solution un for the next time level t = n∆t,
n = 2, 3, . . . ,N by minimizing (15).

5 Numerical Results

The initial conditions of our experiments are

l0 =
1√

Q2 + f ′(0)2

g(x) = max(1 −
1

l0
x, 0),

h(x) =

 f ′(0) 0 < x ≤ l0,
0 l0 < x,

and f (t) are

case 1 Peeling speed is constant f (t) = at + 1. The exact solution of this case is

u(x, t) = max(1 + t −
1

l0
x, 0).

case 2 Peeling speed is increasing f (t) = (at + 1)2.

case 3 Peeling speed is decreasing f (t) =
√

at + 1.

case 4 Peeling speed is stopping at some times f (t) = 1 + at + sin t
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case 5 Peeling direction is downward (pasting the tape).

g(x) = max(10 −
1

l0
x, 0),

f (t) =10 − at,

h(x) =

 f ′(0) 0 < x ≤ l0,
0 l0 < x,

case 6 Peeling directions are upward and downward (oscillating tape) f (t) = 1 +

0.3 sin t.

5.1 The error of peeling tape model using smoothing characteristic
function

The comparisons are shown in figures 1. From the figures, we can see that the
errors of solutions from all cases tend to be small when dx is decreasing in some
ε. They show that small and big ε give big error.

In addition, the choice of ε to get minimum error also depends on the gradient
of the solution near to free boundary point. To see this, we solve cases 1-4 with
different gradients of solutions. We choose only cases 1-4 since they are enough to
represent different kinds of solution. By changing parameter a, the gradient of the
solution can be set. We set the gradient vary from 2-40. We call this gradient as gu.
The result is the appropriate ε approximately 8 − 360 × dx.

(a) Eu case 1 at time level τ=9 (b) Eu case 2 at time level τ=9

Figure 1: errors of numerical solution of cases 1-6
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5.2 Comparisons of smoothing characteristic functions

We compare two smoothing characteristic functions (16) and (17). We apply these
two functions in equation (5) with some parameters Q2 = 1, Ω = [0, 15], a =

1, dx = 0.005, and dt = 0.9dx and solve using explicit method 2.

(χε)′(u) =

1/ε 0 < u < ε,
0 otherwise.

(16)

or

(χε)′(u) =



hu

a
0 < u < a,

h a ≤ u ≤ ε − a,
h(ε − u)

a
ε − a ≤ u ≤ ε,

0 otherwise,

(17)

where a =
ε

b
, b is positive number and h =

1

ε − a
.

(a) dx = 0.0001 (b) dx = 0.000625

Figure 2: |Ẽ17
u − Ẽ16

u | case 1 at τ = 9

The comparisons in figure 2 is done by calculating |Ẽ17
u − Ẽ16

u | where Ẽ17
u is

Ẽu using equation (17) (in figure 2 we call E f 1) and Ẽ17
u is Ẽu using equation (16)

(in figure 2 we call E f 2). From the figure, we can see that the error differences
between two smoothing characteristic function are relatively similar that are in the
order 10−3−10−4, if we consider εwhich are bigger 4−10×dx. Therefore, equation
(16) is sufficient to be our smoothing characteristic function.
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5.3 Comparisons of numerical methods

We compare four numerical methods by solving cases 1-6 and compare the errors
of each methods. We choose the parameters Q2 = 1, Ω = [0, 15], dx = 0.005, ε =

0.04 and dt as in table 1. The errors of the methods are shown in table 2. Time
complexity of each methods can be seen in table 3.

explicit method 1 explicit method 2 FEM DMF
0.9dx 0.9dx 0.5dx 0.1dx

Table 1: dt for numerical methods

case explicit method 1 explicit method 2 FEM DMF
1 0.008 0.011 0.01 0.0097
2 0.02 0.02 0.023 0.012
3 0.0079 0.006 0.0075 0.0074
4 0.013 0.013 0.014 0.0097
5 0.005 0.003 0.005 0.006
6 0.007 0.008 0.007 0.009

Table 2: Eu at time τ = 9 (cases 1-5) and τ = 7 (case 6)

fixed domain method explicit method 1 explicit method 2 FEM DMF
time 2s 3s 3s 10mins > 15mins

Table 3: Time complexity

The error differences of each numerical methods in table 2 are relatively small
(order 10−3 − 10−4). Therefore, we conclude that all methods are good. However,
based on the time complexity in table 3, DMF has big time complexity due to its
algorithm and small dt. On the other hand, DMF has advantage that it can be added
some constraints such as volume constraint to support advanced model like droplet
motion. Hence, this method is promising to be used further. We also try several dt
for DMF and we find that when dt = 1/10dx the errors of DMF solution approach
the errors of other methods. In FEM, we find that dt ≤ 1/2dx gives stable solutions.
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6 Conclusions

We solve 1D hyperbolic-type problem with free boundary and smoothing charac-
teristic function by explicit method and compare with the exact or fixed domain
method solutions. The results tell that the errors of explicit method depend on the
selection of smoothing characteristic function parameter ε and dx. In addition, the
choice of ε depends on the gradient of the solution. We also compare two kinds of
smoothing characteristic functions and find that both have similar errors. Further-
more, we compare four numerical methods solving the peeling tape problem and
find that all methods have similar errors. However, based on time complexity, dis-
crete Morse flow is the slowest. We also solve some cases where the free boundary
points contains more than one points and they appear or vanish during simulation
time. We obtain the solutions using four numerical methods and find that all of
them give similar solutions. For the future research, it is interesting to implement
this problem in higher dimensions.
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