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Abstract

The dissertation focuses on two main points. First, we develop a signed distance vector approach
for approximating volume-preserving mean curvature motions of interfaces separating multiple phase
regions – a variant of the MBO (Merriman-Bence-Osher) threshold dynamics. We construct a vector-
valued analogue of the signed distance function, which provides the needed subgrid accuracy on uniform
grids without adaptive refinement; thereby, alleviating the well-known MBO time and grid restrictions.
We adopt a variational method employing the idea of a vector-type discrete Morse flow, which allows
us to easily treat volume constraint via penalization, and even, extend our method to include space-
dependent bulk energies and anisotropic energies. We present several numerical tests and computational
examples of curvature-driven interface evolutions.

Second, we analyze a penalization method related to the above volume-constrained variational prob-
lem – an approximation method that penalizes only the increase in volume. We present existence and
regularity results of the sequence of minimizers of the corresponding penalized functional. Without
relying on the smoothness of the free boundary, we investigate the behavior of these minimizers for suf-
ficiently large penalty values. Lastly, we prove the existence of a minimizing movement corresponding
to our penalized functional and some of its properties.

Consider a collection Γ :=
⋃
{γij : i, j = 1, 2, . . . , k} of hypersurfaces in RN , which partitions RN =

P1 ∪ P2 ∪ · · · ∪ Pk into k phase regions Pi ⊂ RN . Here, γij = γji denotes the interface between Pi
and Pj . The objective is to find a family {Γ(t) :=

⋃
γij(t)} depending on time t such that every point

x ∈ γij(t) moves with a velocity equal to a function of its mean curvature κ. To approximate such motions,
we introduce a signed distance vector (SDV) approach based on a vector formulation of BMO (Bence-
Merriman-Osher) threshold dynamics. We construct a vector analogue of the signed distance function,
denoted by δε : RN → Rk−1 and defined as follows: for ε > 0,

δε(x) :=

k∑
i=1

[
1−min

(
1,
dist (x, Pi)

ε

)]
pi,

where pi is unit (k−1)-vector pointing from the centroid of a standard k-simplex to its vertex. With δε as
an initial condition, we solve the vector-valued heat equation until time ∆t. Then, for each x, identify the
reference vector pi closest to the solution u(∆t, x), that is,

pi · u(∆t, x) = max
j=1,2,...,k

pj · u(∆t, x).

This redistribution of reference vectors determines the approximate new phase regions after time ∆t, which
defines Γ(∆t). We formally show that SDV method evolves interface Γ with a normal velocity

v(x) = −κ+O(∆t), as ∆t→ 0.

Under this pure mean curvature motion, interfaces contract smoothly to enclose zero phase volume in finite
time. We also establish the stability of triple junction as follows. Let (θ̂1, θ̂2) be the junction angles after
time ∆t, then we can find a 2× 2 matrix M whose largest singular value σ < 1 such that[

θ̂1 − π
3

θ̂2 − π
3

]
= M

[
θ1 − π

3
θ2 − π

3

]
+O(δ2 +

√
∆t), as ∆t→ 0,

where (θ1, θ2) denotes the initial junction angles and δ = max(θ1 − π
3 , θ2 − π

3 ). This guarantees that at
every time step of SDV algorithm, junction angles that are initially close to the symmetric configuration will
always tend to get closer to 120◦ with an error of order

√
∆t; thus, stably imposing the symmetric Herring
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condition at the triple junction. Moreover, the classic shrinking circle test for mean curvature flow (MCF)
reveals that SDV method alleviates the well-known BMO time and grid restrictions without mesh refinement
– a clear advantage over its predecessors. Even with ε = ∆x, our method does not stagnate, hence, saving
computational costs.

Volume-constrained motions can also be realized using our method. We adopt a variational approach to
solve the vector-valued heat equation based on the idea of discrete Morse flow and treat volume constraints
via penalization as follows. Discretize ∆t = h×K. For a small positive number %, successively minimize
(n = 1, 2, . . . ,K):

Fhn (u) =

∫
Ω

(
|u− un−1|2

2h
+
|∇u|2

2

)
dx+

1

%

k∑
i=1

∣∣ωi − LN (Pi(u))
∣∣2 ,

where Vi denotes the prescribed volume of phase Pi, LN denotes the N -dimensional Lebesgue measure,
and

Pi(u) := {x ∈ Ω : pi · u(x) ≥ pj · u(x), ∀j = 1, 2, ..., k} ,
the set corresponding to phase Pi with respect to solution u. Figure 1 depicts the volume-preserving mean
curvature evolution of an initial 10-phase configuration with circular arcs. We see that our method naturally
handles topological changes, evident from the junction-junction collision at time t = 133∆t. Observe also
that the symmetric junction angle conditions are satisfied and phase volumes are well-preserved.

Figure 1: Initial 10-phase configuration; its SDV evolution after one time step ∆t = 2.5 × 10−4; at time
t = 133∆t when a quadruple junction appears; and its stationary solution under penalty % = 10−6.

Our method can also be extended to a more general case where each phase region Pi has prescribed
space-dependent bulk energy density ei. We apply the SDV process to the vector-valued nonhomogenous
heat equation ut(t, x) = ∆u(t, x) + w(x). If w · (pi − pj) is bounded in RN and

w(x) · (pi−pj) =
k

ε(k − 1)
(ei − ej),

then the normal velocity of γij at x is given by

v(x) = −κ− ei + ej +O(∆t), as ∆t→ 0.

We applied this method to simulate multiple rising gas bubbles in a liquid-filled container. In this setup,
gas bubbles have zero bulk energies, while the liquid bulk energy density is given by f = βy where β is a
constant expressing buoyancy and y is coordinate direction of gravity. Here, we incorporate the influence of
pressure force in the parabolic framework, where the bulk energy can be interpreted as an energy potential.
Figure 2 shows that the volume-constrained evolution of interfaces using our method. The resulting motion
of the two phase regions initially attached to the boundary floor is a contest between the buoyant force
pushing the bubbles upwards and the surface tension force holding the bubbles down. Meanwhile, the
volume difference in the right double bubble is greater than that of the left double bubble, causing it to turn
and rotate faster than its counterpart and resulting in the merging of the two double bubbles.

2



Figure 2: Evolution of interfaces initially attached to the boundary floor (left) and merging of two double bubbles
(right) under parameters ∆t = 10−3, % = 10−5, and f = 25y.

To approximate two-phase anisotropic mean curvature evolution, we successively minimize the func-
tional for n = 1, 2, . . . ,K

J h,φn (u) =

∫
Ω

(
|u− un−1|2

2h
+
|φ(∇u)|2

2

)
dx,

where u0 = δε, time step size ∆t = h × K, and φ is the prescribed anisotropy function. Compared
to its BMO counterpart, our method proceeds the evolution without stagnation. In the multiphase case,
however, the evolution of the interface network near the junction is not correctly realized since our scheme
only imposes the symmetric angle conditions. Hence, some form of nonsymmetric reference vectors in
conjunction with our signed distance vector may be adopted to get a closer approximation of the junction
evolution. We end with some computational examples of a two-phase mean curvature motion driven by
different anisotropic energies using our method.

Figure 3: Examples of anisotropic mean curvature evolution of a circle with and without volume constraint
generated via SDV method.

Next, we shift our attention to a penalization method for an evolutionary free boundary problem with
volume constraint. Let Ω ⊂ RN be an open bounded connected domain with smooth convex Lipschitz
boundary. Consider a nonnegative Lipschitz continuous function u0 ∈ H1(Ω)∩L∞(Ω) whose set of positive
values has Lebesgue measure α ∈ (0, |Ω|). Given time step h = T/M for some fixed time T ∈ (0,∞) and
M ∈ N, we search for a sequence of functions un ∈ H1(Ω) by successively solving the following problem
for n = 1, 2, . . . ,M ,  un = arg min

A

∫
Ω

(
|u− un−1|2

h
+ |∇u|2

)
dx

A :=
{
u ∈ H1(Ω) : |{u > 0}| = α

}
.

To solve this problem, we use an approximation method that penalizes only the increase in measure of the
set {u > 0}. For a penalty parameter λ > 0, define functional

F(h, u, un−1) = Fhn (u) :=

∫
Ω

|u− un−1|2

h
+ |∇u|2 + λf(|{u > 0}|),

3



where the penalization function f(x) = (x− α)+. Consider the problem of successively minimizing the
above functional for n = 1, 2, . . . ,M ,

min
u∈H1(Ω)

F(h, u, un−1).

We first show the existence of a sequence of minimizers un of functional Fhn . Note that un is bounded by
the L∞-norm of the initial condition u0. To wit, 0 ≤ un ≤ ‖u0‖L∞(Ω). In addition, un is locally Hölder
continuous in Ω and satisfies (in the weak sense)

∆un =
un − un−1

h
in {un > 0}.

This allowed us to establish that the measure of {un > 0} is never less than the prescribed measure. In
particular,

α ≤ |{un > 0}| ≤ α+ λ−1‖∇u0‖2L2(Ω),

which implies that |{un > 0}| = α, as penalty value λ increases without bound. Invoking the Hölder
continuity of the minimizers un (under the assumption that also u0 ∈ C0,γ

loc (Ω)), we can show that un is
locally Lipschitz continuous – a stronger regularity. Further, we establish the regularity of minimizer un
up to the fixed Neumann boundary. Without relying on the smoothness of the free boundary, we study the
behavior of minimizer un of Fhn for sufficiently large penalty parameter λ. In particular, we see that we
can take λ large enough that the measure of the set {un > 0} adjusts to the prescribed value α. As a
consequence, the solution to the original problem is attained without having to take λ to infinity. Finally, we
construct a minimizing movement u associated to functional F in L2(Ω) and initial datum u0 and some of
its properties, which includes Hölder continuity, more precisely, u ∈ C0,1/2([0,+∞], L2(Ω)).

4




