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1 INTRODUCTION

Most actuators have nonlinearities that deteriorate control system performance. One
of such typical nonlinearities is an input dead-zone property. The system with input
dead-zone is insensitive for small input signals. Dead-zone nonlinearities in actuators
causes not only instability since the feedback signal in closed-loop is ruined but also
large overshoot, large setting time and vibration. For example, it can be seen in a self-
balancing robot as an inverted pendulum which is desired to be stabilized motion and
impedes balancing in both standing and moving then vibration motion occurs.

Many works have been done for dead-zone compensation. The most generally
methods are adaptive scheme e.g. adaptive control [1], the adaptive fuzzy scheme [2],
sliding mode control with adaptive fuzzy [3], neural network and fuzzy logic [4] and
other method FRIT method [5].

In practical use, real time canceling the dead-zone is important. Therefore, we
extend a method to eliminate dead-zone to optimize control performance in real time
by using extremum seeking. The motivation of this work is to make automatically
tuning dead-zone compensation to cancel dead-zone in real time.

Extremum seeking control (ESC) is an adaptive control method which automati-
cally optimizes an unknown objective function of a performance measure in real time.
When we apply extremum seeking control, we do not need to know the detailed relation
between the plant dynamics and the objective, but we only observe the performance
measure of the plant [6]. Extremum seeking control commonly uses a perturbation sig-
nal, a low-pass filter, a high-pass filter and an integrator [7], [8], [9] (for the discrete-
time case, see [10], [11] and multi-variables [12]). So recently, extremum seeking
control is developed to treat periodic steady-state, which uses a moving average fil-
ter to estimate a gradient of the cost function, (see [6], [13], [14]) but this extremum
seeking control is limited in continuous-time control.

In this dissertation, we propose extremum seeking control by moving average filter
in discrete-time for periodic steady-state to tune dead-zone compensation that optimize
control performance in real time. Our extremum seeking control is based on the result
by Haring et al. The method is applied to two models of self-balancing robot. One is
derived from physical equations of two-wheeled robot commercial product called e-
nuvo WHEEL. The other is obtained by multi-variables Output-Error type State-space
Closed-loop subspace model identification (CL-MOESP) from experimental data. This
work is the first developing to reject dead-zone by discrete-time extremum seeking for
periodic steady-state. We choose extremum seeking control to cancel dead-zone be-
cause extremum seeking control is simple in theoretical mathematics, by Taylor ex-
pansion and extremum seeking control does not need complicated system, just pertur-
bation signal, filter and optimizer are used.

2 Problem Formulation

We consider a single-input and multi-output system which consists of a linear time-
invariant part P and an input dead-zone Dδ as shown in Fig. 1. We assume that the
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Figure 1: A system with an input dead-zone

Figure 2: Dead-zone compensation

input-output relation of the dead-zone Dδ can be described as

Dδ (u) =


u−δ if u > δ

0 if |u| ≤ δ
u+δ if u <−δ

(1)

with a dead-zone interval [−δ ,δ ] (δ > 0). As in [5], when we know the exact value of
δ , we can eliminate the dead-zone nonlinearity Dδ by using its right inverse as

D̂δ (û) =


û+δ if û > 0

0 if û = 0
û−δ if û < 0

(2)

That is, Dδ ◦ D̂δ = 1, in other words, Dδ (D̂δ (u)) = u. Hence, when we replace D̂δ in
front of Dδ as in Fig. 2, we can cancel the dead-zone.

In this paper, we consider a feedback control system to use D̂δ as depicted in Fig. 3.
In the control system, a feedback controller C is designed to stabilize P. In Fig. 3, r
is the reference input, u is the control input, y is the measured output, respectively.
Unlike the ideal case where the exact value of δ is available, it is difficult to cancel
Dδ by D̂δ completely in practical application. The cancelation error causes the steady-
state vibration in the control system when P is unstable. Then, we need to determine
an appropriate value δ in D̂δ to suppress the steady-state periodic motion in the control
system.
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Figure 3: Configuration of a feedback control system with dead-zone compensation

3 Discrete-time Extremum Seeking Control For Peri-
odic Steady-states

Extremum seeking control is known as a powerful adaptive method to optimize the
control performance in real time. It is mainly used to optimize the control system with
a constant steady-state output. In [6], an extremum seeking scheme for periodic steady-
state outputs was proposed in the non-equilibrium case. In this thesis, we consider a
discrete-time version of [6] which is summarized in Fig. 4. The configuration a feed-
back control system with a tuning parameter δ connected with discrete-time extremum
seeking control as in Fig. 4. We consider a stabilized plant as

x(k+1) = f (x(k),δ (k)) (3)
y(k) = h(x(k)) (4)

The extremum seeking control aims to tune the parameter δ to minimize the cost func-
tion of performance output [6] by given as

J(δ (k)) =

[
1
N

k

∑
i=k−N

y(i)2

] 1
2

(5)

where N is the period of the steady-state output y. The extremum seeking scheme uses
a perturbation (dither) signal

d1(k) = acos
2π
L

k (6)

with the period L ∈ Z and an estimate δ̂ of an optimal value δ ∗ by applying

δ (k) = δ̂ (k)+d1(k) (7)

to the system. We denote the estimation error by

δ̃ (k) = δ ∗− δ̂ (k) (8)

To use (7) and (8), we have

δ (k) = δ ∗− δ̃ (k)+d1(k). (9)
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Figure 4: Discrete-time ESC scheme

This perturbed signal affects (5). By applying the Taylor series expansion to (5), we
have

J(δ (k)) = J(δ ∗− δ̃ (k)+d1(k))

= J(δ ∗)+
∂J
∂δ

(δ ∗)[(δ ∗− δ̃ (k)+d1(k))−δ ∗]+
1
2

∂ 2J
∂δ 2 [(δ

∗− δ̃ (k)+d1(k))−δ ∗]2

∼= J(δ ∗)+
∂J
∂δ

(δ ∗)(d2(k)− δ̃ (k)+
1
2

∂ 2J
∂δ 2 (δ

∗)(d2(k)− δ̃ (k))2, (10)

where d2(k) denotes the time delayed signal of d1(k) due to the dynamics in the closed-
loop system as

d2(k) = acos
2π
L
(k−φ), φ ∈ Z. (11)

Since J(δ ) is optimal at δ ∗, ∂J
∂δ (δ

∗) = 0. Hence,

J(δ (k))∼= J(δ ∗)+
1
2

∂ 2J
∂δ 2 (δ

∗)(d2(k)− δ̃ (k))2. (12)

This cost function is multiplied by the demodulation signal d2(k), and applied into a
moving-average filter, also called a mean-over-perturbation-period (MOPP) filter, over
the period of d2(k). Then, the output is

ξ (k) =
1
L

k

∑
j=k−L

d2( j)
(

J(δ ∗)+
1
2

∂ 2J
∂δ 2 (δ

∗)(d2(k)− δ̃ (k))2
)
. (13)

By simple calculation, we have

k

∑
j=k−L

d2( j) = 0,
k

∑
j=k−L

d2
2( j) =

a2L
2

,
k

∑
j=k−L

d3
2( j) = 0. (14)

4



Hence, when we can assume that δ̃ ( j) is constant over the period L, we have

ξ (k) =−a2

2
∂ 2J
∂δ 2 (δ

∗)δ̃ (k). (15)

The signal ξ (k) is used to generate the estimate δ̂ by using the optimizer (the discrete-
time integrator) as

δ̂ (k) =−K
1

z−1
ξ (k). (16)

Here z is the time-shift operator, that is zδ̂ (k) = δ̂ (k+1). Hence, (16) is equivalently

δ̂ (k+1) = δ̂ (k)−Kξ (k). (17)

To use (7) and (13), we can rewrite (17) as

δ̃ (k+1) = δ̃ (k)+Kξ (k)

=

(
1−K

a2

2
∂ 2J
∂δ 2 (δ

∗)

)
δ̃ (k). (18)

Hence, we have next theorem.
Theorem 1.
If ∣∣∣∣1−K

a2

2
∂ 2J
∂δ 2 (δ

∗)

∣∣∣∣ < 1, (19)

then an estimate δ̂ converges to the optimal value δ ∗ by extremum seeking. The con-
vergence rate to the optimal value depends on the amplitude a of the perturbation signal

d1 and d2, and the gain K of the optimizer. Since the Hessian
∂ 2J
∂δ 2 (δ

∗) of J is unknown,
we should start with small values for a and K to find appropriate values. Moreover, the
following underlying assumptions are also required [6], [14].

Assumption 1. For all fixed parameter δ over the range for tuning, the stabilized
closed-loop system has a unique globally asymptotically stable steady-state solution
with a constant period.

Assumption 2. The cost function J(δ ) has a unique global minimum at δ ∗ for steady-
state performance.

4 Extremum Seeking Parameters Influence on Perfor-
mance

The summarized of algorithm tuning dead-zone compensation by discrete-time ex-
tremum seeking which consist of
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1. Design of a stabilizing controller for the closed-loop system,
2. Design of the cost function of the output measurement of the system,
3. Design parameters of extremum seeking such as frequency or period of perturbation
or dither signal, MOPP filter, gain optimizer which check :

• Period of output y measured signal

• Output of the cost function signal with static or constant steady-state

• Assumption 1 and 2 are satisfied

• Convergence by Theorem 1

Futhermore, we can design and analyse how to choose properly parameters extremum
seeking to tune dead-zone compensation for good performance and fast rejection dead-
zone. The extent of the influence of parameters can be good performance if the param-
eters of extremum seeking are enlarged and reduced that will be further describe below.

• Gain of the optimizer K
Gain optimizer K consider the convergence speed and stability system.

• Phase of the perturbation signal φ
In [6], phase of perturbation signal selects the constant φ ∈ R≥0 which is an
estimate of the sum of the time-varying delay of the plant dynamics and the
performance measure of cost function for a good chosen.

• Period of perturbation L
Period of perturbation signal L should choose larger than period of cost func-
tion N. So, we check output signal of cost function before designing period of
perturbation signal.

• Period of MOPP Filter L
Period of MOPP filter is same with the period of the perturbation signal.

• Amplitude of the perturbation signal a
For designing the amplitude of the perturbation signal, we select small value
which is smaller than cost function value in initial parameter without extremum
seeking.

5 Self-Balancing Robot
In this section, we use the discrete-time extremum seeking control discussed in the pre-
vious section to optimize a dead-zone compensation for self-balancing robot which is
a commercial product called e-nuvo WHEEL shown in Fig. 5. The feedback controller
C for the self-balancing robot is initially designed to use the model based on dynamic
equations and the catalog parameters, and secondly done to use the model obtained by
closed loop identification.
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Figure 5: Modeling of the Self-balancing robot

6 Models of Self-Balancing Robot

6.1 Physical equation based model

As in [15], the state space continuous-time model of the self-balancing robot P in Fig. 5
can be derived from physical equations as

ẋ = Acx+Bcu (20)
y = Ccx (21)

where x = [θ φ θ̇ φ̇]T consists of the angle of the body θ , the relative angle of the
wheel to the body φ , the angular velocity of the body θ̇ and the relative angular velocity
of the wheel to the body φ̇ . The control input u is electrical current. Together with
Table 1 [15], [16], we have Ac, Bc as

Ac =

[
02×2 I2×2

−E−1G −E−1F

]
=


0 0 1 0
0 0 0 1

104.05 0 0 0.06
−341.64 0 0 −0.37

 ,

Bc =

[
02×2

−E−1ζ

]
=


0
0

37.8
−232.7

 ,

(22)

where

E =

[
e11 e12
e21 e22

]
+
(
(M+m)r2

t + Jt
)

I2,

F =

[
0 c
0 0

]
, G =

[
0 0

−mgl 0

]
, ζ =

[
η iKt

0

]
(23)
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Table 1: Parameters of self-balancing robot

Mass of the cart (tire, draft shaft ,gear) [Kg] M 0.071
Mass of the body [Kg] m 0.5392

Moment of inertia of the body [Kg m2] Jp 2.160×10−3

Moment of inertia of the cart [Kg m2] Jt 8.632×10−5

Moment of inertia of motor rotor [Kg m2] Jm 1.30×10−7

Length between the wheel axle and gravity center of the body[m] l 0.1073
Radius of the wheel [m] rt 0.02485

Friction of the wheel axle [Kg m2 / s] c 1×10−4

Torque constant of the motor [N m /A] Kt 2.79×10−3

Reduction ratio of the gear i 30
Efficiency drive system η 0.75

e11 =e22 = mlrt + iJm

e12 =i2Jm

e21 =2mlrt +ml2 + Jp + Jm

(24)

Since we measure φ and θ̇ ,

Cc =

[
0 1 0 0
0 0 1 0

]
.

6.2 Closed-loop Identification Model
We obtain data measurement of the self-balancing robot commercial product e-nuvo
WHEEL and identify data measurement. Identification experiment model is identifica-
tion MOESP-type closed-loop subspace model identification (CL-MOESP) [17], [18].
The CL-MOESP identification model is dynamic model that is given by

A =


1.0033 −0.0298 0.0157 −0.0061 −0.0324
0.0079 0.9102 −0.2941 −0.0299 0.0013
−0.0030 0.1140 0.2547 −0.0970 0.0403
−0.0027 0.0123 −0.1012 1.0675 0.0177
0.0003 −0.0023 0.2437 0.0403 0.9341

 ,

B =


−1.2453
0.3671
−0.1786
0.0710
−0.0063

 , D =

[
−0.0108
0.0401

]
,

C =

[
−0.0796 −0.2888 −0.0025 0.0075 −0.2407
0.0148 −0.2744 −0.8751 −0.1124 0.2605

]
8



Figure 6: Experiment e-nuvo WHEEL scheme

Dynamic model of self-balancing robot by identification is from data experiment e-
nuvo WHEEL in Fig. 6 and used CL-MOESP identification in this research.

7 Design of a Stabilizing Controller
To discretize the continuous-time model (20) and (21) by zero-order hold, we obtain
the discrete-time model

x(k+1) = Ax(k) + Bu(k) (25)
y(k) = C x(k) (26)

When we use the sampling period Ts = 0.01 sec, we have

A =


1 0 0.01 0

−0.02 1 −0.0001 0.01
1.04 0 1 0
−3.42 0 −0.02 1

 , B =


0.002
−0.01
0.38
−2.32

 ,

C = Cc

The discrete-time model is used to design the discrete-time LQG controller [19], [20]
in Fig. 7 which minimizes

E

[
lim
τ→∞

1
τ

τ

∑
k=0

xT (k)Qx(k)+uT (k)Ru(k)

]
(27)

where Q and R are given constant weight matrices for which Q =QT ≥ 0 , R = RT > 0,
under the existence of the process noise and the measurement noise. We assumed
weight matrices Q = I4, R = 1 and covariance of the process noise W = 1 and the
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Figure 7: Discrete-time Linear Quadratic Gaussian scheme

measurement noise V = 0.012 I2 which means rms noise 1% on each sensor channel.
K is derived as

K = (BT SB+R)−1BT SA, (28)

and the solution S = ST ≥ 0 of the associated Riccati equation

AT SA−S− (AT SB+N)(BT SB+R)−1(BT SA+NT )+Q = 0 (29)

The optimal L minimizing E[x(k)− x̂(k)]T [x(k)− x̂(k)] is given by L(k)=APCT (CPCT +
V )−1 where P = PT ≥ 0 is the unique positive-semidefinite solution of discrete al-
gebraic Riccati equation. The discrete-time linear quadratic Gaussian (LQG) con-
troller is given by connecting the discrete-time linear quadratic regulator (LQR) and
the discrete-time Kalman filter according to block diagram in Fig. 7.

8 Physical-equation based Model

8.1 Dead-Zone Compensation
In the following, we set the actual dead-zone parameter δ = 2 as for the numerical
simulations. When we do not use the dead-zone compensator (this corresponds to
δ̂ = 0 in D̂, the angle of the body θ shows periodic steady periodic steady-state motion
with amplitude 0.1 rad (5.7 degree) as shown in Fig. 8 (a). On the other hand, when we
use the dead-zone compensator D̂δ with δ̂ = 1, the amplitude of the periodic steady-
state motion of the angle of the body θ is 0.05 rad (2.8 degree) as shown in Fig. 8
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Figure 8: The angle of the body θ of the closed-loop system with dead-zone Dδ (δ = 2)
(a) with no dead-zone compensator, (b) with dead-zone compensator D̂δ (δ̂ = 1)

(b). Although the periodic steady-state motion is much reduced by the dead-zone
compensator, it still remains due to the gap between the actual δ and δ̂ in the dead-
zone compensator. Hence, it is important to tune δ̂ to suppress the periodic steady-state
motion completely.

8.2 Extremum Seeking for Tuning of Dead-Zone Parameter

For simplicity, we use y = θ for the output for extremum seeking control and the cost
function

J(k) =

[
1
N

k

∑
i=k−N

θ(i)2

] 1
2

whereas the output for feedback control is y = [φ θ̇ ]T . The parameters for extremum
seeking control are as follows; the amplitude and the period of the perturbation signal
are a = 1/16 and L = 1800, the gain of the optimizer is K = 3, the time delay of
the perturbation signal in d2 is φ = 100, the period of cost function is N = 180. The
mean-over-perturbation-period can be implemented by a FIR filter. A simulation result
where tuning dead-zone compensation by the discrete-time ESC starts at t = 200 sec
is shown in Fig. 9 where x[0] = [0.01 0 0 0]T as the initial variable. The dead-zone
compensation parameter δ̂ converges to δ = 2.06 as shown in Fig. 9 (a). Although this
final value is not the actual value δ = 2, the periodic steady-state motion in the body θ
is sufficiently suppressed as shown in Fig. 9 (b). Indeed, the cost function J decreases
to sufficiently small value as shown in Fig. 9 (c). This result shows that the small gap
between the dead-zone parameter compensation and the actual one is acceptable.
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Figure 9: A simulation result when extremum seeking is applied for tuning of dead-
zone compensator. (a) the tuned value of dead-zone compensator, (b) the angle of the
body, (c) the cost function

9 Simulation Results by CL-MOESP Identification Model

9.1 Dead-Zone Compensation

We applied the discrete-time LQG regulator to make stabilized unstabled plant from
the CL-MOESP identification model of the Self-balancing robot because tuning by the
discrete-time ESC was need stabilized plant. We utilized the discrete-time Kalman
filter to estimation state and the discrete-time LQR to search state feedback gain. We
used weight matrices Q = I4,R = 1 and covariance of process noise W = 1 and mea-
surement noise V = 0.012I2 which means rms noise 1% on each sensor channel. Then
we set dead-zone parameter δ = 2 and the initial state as by x0 = [0.01 0 0 0]T . So, we
achieved simulation result of the CL-MOESP model of the closed-loop system without
extremum seeking with dead-zone, dead-zone compensator and the discrete-time LQG
regulator controller. When we utilize dead-zone Dδ = 2 and do not use the dead-zone
compensator D̂δ = 0, the angle of the body θ shows periodic steady-state motion with
amplitude 0.2 (11.46 degree) rad as shown in Fig. 10 (a). When, we use the dead-zone
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Figure 10: The angle of the body θ of CL-MOESP model of the closed-loop system
with dead-zone Dδ (δ = 2) (a) with no dead-zone compensator, (b) with dead-zone
compensator D̂δ (δ̂ = 1)

compensator D̂δ with δ̂ = 1, the amplitude of the periodic steady-state motion of the
angle of the body θ reduces to 0.05 rad (2.8 degree) as shown in Fig. 10 (b) for the
CL-MOESP identification model.

9.2 Extremum Seeking for Tuning of Dead-Zone Parameter
We take the discrete-time ESC to tuning dead-zone compensation for rejecting vibra-
tion which is cost function from output θ by given

J(δ ) =

[
1
N

k

∑
i=k−N

θ(i)2

] 1
2

Afterward, we set extremum seeking parameters that are same with the previous
setting of Self-balancing robot derived physical equations model. Simulation results
of CL-MOESP model for tuning dead-zone compensation by the discrete-time ESC are
shown in Fig. 11 with K = 3 which are represented cost function of CL-MOESP model
J in Fig. 11 (a) is decrease to minimum, the angle of the body of CL-MOESP model
depict for rejection dead-zone and stabilized moving self-balancing robot in Fig. 11
(b), estimation dead-zone compensation δ̂ that is achieved 2 as fit as setting dead-zone
it is shown in Fig. 11 (c) the tuned value of dead-zone compensator, but it needs time
starting 200 second and achieved optimal value after 500 second for K = 3. Afterthat,
estimation ξ Fig. 11 (d) is zero that indicate optimal performance.

10 Stability analysis
The stability of extremum seeking was first analyzed by Wang and Krstic̀ [8]. They
proposed averaging and singular perturbation to derive stability conditions of an ex-
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Figure 11: Extremum seeking result when K = 3 for CL-MOESP model. Time re-
sponse of (a) cost function (b) the angle of the body (c) tuned parameter (d) estimated
gradient of the cost function

tremum seeking feedback scheme [8] in which the averaging theorem adopted theo-
rem 8.3 in Khalil as detail see [21] and Appendix C. To guarantee practical asymptotic
stability, Teel et al. [22] proposed a generalized Lyapunov theorem.

Stability analysis of extremum seeking for periodic steady-state suggested by Har-
ing et.al [6]. To apply extremum seeking, we used a stabilized controller which sta-
bilize the plant of system which is a Discrete-Time Linear Quadratic Gaussian (LQG)
controller to stabilize the closed-loop system. Stability of the closed loop system is
ensured by appropriate state feedback gain and state estimation gain in LQG.

11 Conclusions
We are concluded the dissertation as follows:

• The dissertation proposed discrete-time extremum seeking control by moving
average filter to tune input dead-zone compensation in real time and applied it to
the stabilized self-balancing robot model with the dead-zone compensation.

• The effectiveness is illustrated by numerical simulations. In the simulations,
the compensation parameter converges to the optimal value minimizing the cost
function of the performance output.

• Stability analysis for non-linear system and discrete-time system, we used a sta-
bilized controller which stabilize the plant of system.

14



12 Future Works
We will apply discrete-time extremum seeking control to eliminate dead-zone by ex-
periment to e-nuvo WHEEL. However, it is not easy to apply in real time by experiment
because the running of experiment e-nuvo WHEEL is quickly while the process of tun-
ing dead-zone parameters by computer needs time also transfer data from computer to
e-nuvo WHEEL has time-delay. Therefore, we will develop how to rapidly the process
of tuning dead-zone parameters by extremum seeking. We will design programming
of tuning by extremum seeking through micro-controller in e-nuvo WHEEL to control
directly.
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linear systems with periodic steady-state outputs,” Automatica, vol. 49, no. 6, pp.
1883–1891, June 2013.
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[11] P. Frihauf, M. Krstić, and T. Bas, “Finite-Horizon LQ Control for Unknown
Discrete-Time Linear Systems via Extremum Seeking,” in Proceedings of The
51st IEEE Conference on Decision and Control, Maui, Hawaii (USA), Decem-
ber 10-13, 2012, pp. 5717–5722.
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