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Abstract

In this thesis, we study hyperbolic problem with volume preservation, where a free
boundary appears. This problem can be obtained by examining the motion of a
droplet on plane. In this phenomenon, the drop is divided into two interacting
parts: a film representing the surface of the drop, and the fluid inside. The motion
of the liquid is described by equation of fluid dynamics (Euler equations). The film,
which determines a (moving) boundary for the liquid inside, is considered to be the
graph of a scalar function. Free boundary, volume constraint and contact angle are
three main features of the model of the film. The underlying surface, on which
the droplet rests, plays the role of an obstacle to the motion and gives rise to free
boundary. Moreover, the volume preservation constraint is obtained from assump-
tion that the volume of the drop does not change. Finally, there is a positive contact
angle on the boundary of the region where the drop touches the surface. The hy-
perbolic free boundary problem with volume conservation constraint is solved by
discrete Morse flow method. Moreover, a model taking into account both the sur-
face and the liquid body is solved by combining discrete Morse flow and smoothed
particle hydrodynamics method.
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1 Introduction

In this work, the content follows: in Section 2, we derive governing equation of
motion of film representing the surface of the droplet. In the next section, we
use discrete Morse flow to construct an approximation solution to the governing
equation (hyperbolic free boundary problem with volume conservation constraint).
Then, we introduce the couple model which combines the above governing equa-
tion with Euler equations for the fluid inside film as shown in Section 4. Section
5 presents some numerical results for the moving of a droplet on the plane and
inclined plane.

2 The model of film

In this work, θ ≤ 900 is our consistent consideration. Then we can describe the
surface as a scalar function u : (0,T ) × Ω → R, where (0,T ) is the time interval
and Ω is the domain where the motion is considered. The surface, on which the
drop rests, plays the role of an obstacle. The boundary of the set {u > 0} is the free
boundary.
The film model equation is derived based on Hamilton’s principle. Adopting a
basic form of surface energy, the action of the film is written as

J(u) =

∫ T

0

∫
Ω

(σ
2

u2
t χu>0 −

γg

2
|∇u|2 − R2χε(u) −

1
2
ρgu2χu>0

)
dxdt,

Here σ is area density of the surface, γg and R2 describe the surface tension prop-
erties of the material, ρ is the fluid density, χu>0 is the characteristic function of the
set {u > 0}, and χε(u) ∈ C2(R) is a smoothing of χu>0.

Searching for its stationary points, first variation gives

χu>0σutt = γg∆u − ρguχu>0 − R2χ′ε(u) + λ. (1)

where
λ =

1
V

∫
Ω

(
γg|∇u|2 + ρgu2χu>0 + R2uχ′ε(u) + σuttuχu>0

)
dx.

In the case of a droplet on inclined plane with angle α, above equation becomes

χu>0σutt = γg∆u − fχu>0 − R2χ′ε(u) + λ, (2)

where f = ρg(u cos θ − x1 sin θ), here x1 is the horizontal axis, and

λ =
1
V

∫
Ω

(
γg|∇u|2 + ρg(u2 cosα − ux1 sinα)χu>0 + R2uχ′ε(u) + σuttuχu>0

)
dx.
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3 Numerical method

In this content, we use discrete Morse flow method to construct an approximation
solution to equation of film motion.
First, we fix a large number N > 0, determine the time step h = T/N and consider
the approximate shapes of the film un at time levels tn = nh, n = 0, 1, 2, ..,N. The
shape u0 is given as the initial condition u(0, x) and u1 can be approximated using
u0 and initial velocity as u1 = u0 + v0h, here v0 = ut(0, x). The approximate
solution un on further time levels t = nh for n = 2, 3, ..,N, to be the minimizer of
the following functional

Jn(u) =

∫
Ω

(
σ
|u − 2un−1 + un−2|

2

2h2 χu>0 +
γg

2
|∇u|2 + R2χε(u) + ρgu2χu>0

)
dx. (3)

in the admissible set

K :=
{
u ∈ H1

0(Ω);
∫

Ω

uχu>0 = V
}

Calculating the first variation of Jn under volume conservation condition, we find
that minimizers of the functional Jn construct an approximation solution to (1).
In order to obtain a minimizer un, n = 2, 3, ..,N of functional Jn(u) we use mini-
mizing algorithm following:

1. Set up initial condition u0, v0, and we have u1 = u0 + hv0,

2. For n = 1, 2, ..,N, determine un+1 using the following procedure:

(a) a1 = un

(b) For k = 1, 2, ..,Kn

i. compute the gradient pk = 5uJn(ak),
ii. search for minimizer (using the steepest descent method and bi-

section method) ãk+1 of Jn in the direction −pk,

iii. ãk+1 = max(̃ak+1, 0)
iv. project ak+1 on the volume-constraint hyperplane: ak+1 = P(̃ak+1),
v. if |Jn(ak) − Jn(ak+1)| < ξ then Kn = k + 1 else k = k + 1

(c) un+1 = aKn

In this algorithm, the Jn(ak) is calculated by using finite element method for space
discretization. Furthermore, minimizers are determined by the steepest descent
method combined with bisection method (step ii).

3



Taking as an example, we consider the behaviour of the film of a droplet pinned by
the solid surface (Figure.1). We use equation (1) with the parameter as

σ = 1, γg = 1, ρ = 1,R2 = 1.2, ε = 0.03, h = 7.5 × 10−4

and this example is calculated under Dirichlet boundary condition.

t=0.0 t=0.105

t=0.27 t=∞

Figure 1: A droplet hanging on the plane.

4 Couple model

In this part, we consider a couple model which combines the motion of film with
fluid motion inside film.
From the assumption, the domain of fluid flow is given as:

Ω f (t) = {(x1, x2, z) ∈ R3; z ∈ (0, u(x1, x2))} (4)

In this domain, we propose the motion of fluid following the equations:
Conservation of mass

Dρ
Dt

+ ρ∇.v = 0, in ∪t∈(0,T ) Ω f (t) × {t}, (5)

Conservation of momentum

Dv
Dt

= −
1
ρ
∇P + g, in ∪t∈(0,T ) Ω f (t) × {t}, (6)

where v is the velocity, P is the pressure and g is the gravitation force.
The pressure is determined by

P = c2(ρ − ρ0)
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where c is the artificial sound speed and ρ0 is the reference density.

In order to achieve the model of the droplet motion, we consider one more
outer force against the surface - the pressure force pushing the film from the inside.
The pressure force per unit area is written as Pn, where

n =
1√

1 + |∇u|2
(−ux1 ,−ux2 , 1)

is the unit outer normal vector of the surface. Therefore, P(x, u, t) is the net force
which is applied to the film. Thus, the equation (2) becomes

χu>0σutt = γg∆u − fχu>0 − R2χ′ε(u) + λ, (7)

where f = ρg(u cos θ − x1 sin θ) − P|z=u, and

λ =
1
V

∫
Ω

(
γg|∇u|2+ρg(u2 cosα−ux1 sinα)χu>0−uP|z=u+R2uχ′ε(u)+σuttuχu>0

)
dx.

For the fluid flow, we impose v = 0 on the plane z = 0, v(x, u, t) = (0, 0, ut) on the
film z = u(x1, x2).
In summary, a model of the droplet motion is given as

χu>0σutt = γg∆u − fχu>0 − R2χ′ε(u) + λ, in Ω × (0,T ), (8)
Dρ
Dt

= −ρ∇.v, in ∪t∈(0,T ) Ω f (t) × {t}, (9)

Dv
Dt

= −
1
ρ
∇P + g, in ∪t∈(0,T ) Ω f (t) × {t}, (10)

P = c2(ρ − ρ0), in ∪t∈(0,T ) Ω f (t) × {t}, (11)

v|z=0 = 0, v|z=u(x, u, t) = (0, 0, ut). (12)

The whole system is solved by combining discrete Morse flow with smooth
particle hydrodynamic method. At each time level t = nh, we have un, xn, and vn,
from which we can find the new shape un+1 of the film and the new position xn+1
of the fluid as follows:

1. Predict the shape of film u∗ using the discrete Morse flow method without
pressure force.

2. Determine position xn+1 and pressure Pn+1 under region below u∗, using
smoothed particle hydrodynamics method.

3. Determine the new shape un+1 of the film, using the discrete Morse flow
method with pressure force.
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5 Numerical result

Figure 2: A droplet lying under inclined plane (experiment).

We use above procedure to simulate the motion of a droplet under inclined
plane with angle α = 200 (Figure. 2). The fluid inside the drop is represented by
1451 particles. The parameters of the equation (8) are given as

σ = 1, γg = 1., ρ = 3,R2 = 1.65, ε = 0.04, h = 4 × 10−4.

By observing the numerical results (Figure 3), it can be seen that the shape of
droplet oscillates and the volume of the droplet is precisely preserved while the
droplet moves. In addition, all of particles representing the fluid are controlled
well by the film of the droplet during the motion. This results show qualitative
agrees with observations from the real experiments.

6 Conclusions

We have derived the hyperbolic free boundary problem with volume conservation
constraint based on examining the motion of the surface of a droplet on plane or
inclined plane. An approximation solution of this problem has been designed using
the discrete Morse flow method. This method induced good numerical results, the
droplet oscillates and its volume is precisely preserved. We have also presented a
couple model for the moving droplet by combining the above hyperbolic problem
for the film with the Euler equations for fluid filling film. In this case, the film plays
as the moving boundary of the fluid and it always fills on role. Numerical result
shows qualitative agreement with observed fact. Our future goal is quantitative
comparison for this model.
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t = 0. t = 0.28

t = 0.56 t = 1.12

Figure 3: A droplet lying under inclined plane (simulation), blue dots represent the
film, green points represent the fluid inside the film and black dots represent the
inclined plane.
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