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Chapter 1

INTRODUCTION

This thesis scopes a inult,i-layer neural network (MLN' N' ), and anal.yze its mechanism

of the pattern classification, In this chapter, first,, the history of study of the A4LNN

is introduced, then the back ground of this study is explained, and finally, the

organization of this thesis is shown.

1.1 History of Study of Multilayer Neural Net-

       works

In 1969, A•I. L. I4insky and S. A. Paper [1] deinonstrated soine liniitation of a single-

lax'ered neural network whose activation function is a linear function by appl.ying

inany classification probleins. This is ('al}ed the linear neural network in this paper.

The single-layer neural netNvork consists of the input la.ver and the output layer.

                                 7



Thpt' sl}oxved that tl)e neural net,work performs the linear mapping from t,he input

into tlie output, hoxvever, nonlinear n}apping cannot be solx'ed b.y this t.vpe of neural

n(itxvork. Tl}e exclusix'e OR problein was one of the fainous exaniples that, could

iiot solx'e by the linear neural networks. After that, the neural network no longer

used as t,he all-purpose classifier, and the studies of the neural netxx'ork were declined.

   In 1986, D. E. Rumelhart, J. L. McClelland and tl}e PDP research group wrote

a book nained Parallel Distributed Proc:essing[2]. Its subtitle is explorations in the

microstructure of cognit,ion. The aiin of t,his 1)ook xvas building a theory of cognition

in the n)icrost,ructure, however, sonie oftheni can be applied to the inachine lea,rning

for t,he patt,ern classification, optiinization and so on. The 1)ack-propagation (BP)

algorit,hin and the Boltzinann ACachine are introduced in this book. Especially, BP

algorithin applied to the ly4LNTNT using the sign)oid activation function, is useful

for the pattern classification, The BP algorithin is characterized by followings:

(1) BP algorithin is based on Least lilean Square (LLNIS) algorit,hin developed }).v

XX'idroxv and Hoff [3]. The LAIS algorithni is an iinportant n)einber of the fainily

of stochastic gradian-based algorithnis[4]. (2) Sign)oid function is a nionotonically

in('1'easing nonlineal' ful)ctioll, so 11olllilleal' 1}lapl)il)g ofthe input alld output pa,ttel'11

can 1)e realized. (3) A/Ioreover, t,he hidden layer, which locates between the input

layer and the outptit layer, is added. Sinee using a nonlinear activation function,

1)y increasing the nuinber of the hidden layers, the classification perforinance can be

increase[5]. In [2], the algorithin is given and inany exainples are shown, however,

 theoretical analysis and designing inethods are not sufficiently discussed.
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    After PDP is published, inany researchers and engjneers applied t,he BP algo-

rithin to inan.y al)plicat,ions, and they sho"'ed usefulness of the .NILNN using BP

algorit,hm. Hoxvever, there are many rule of thumb to train the netxvork 1)ut it is

still difficult to use the ptILNN using BP alg-oritlnn for real problen}s.

   Theoretica,11y, Funahashi[6] proved that, the hvo-layered NN can approxin)ate any

eontinous function "ri'th any accuracy if a large n{unber of hidden units are used.

Ainari gax'e soine inatheniatical foundations of ncruocoinputing 1).y using jnfoi'inatioi'i

theory[7], and NvNiidroNv and Lehr [8] reviexved sex'eral neural network inodels an(1 gi"'e

son)e insight to the inodels, Levin, Tishby and Solla proposed a st,atistical approach

for the AILN'N [9]. T.Poggio[10] proposed a model especially for the al)proximat,ion

of func:tions based on t,he regularization theory. This n)odel can 1)e realized b,y using'

network called the radial basis function network. This net"'ork is different from the

! 'ILNN' discussed in this thesis.

   On the design point of xriew, XMada and Kaxva,to introduced an inforniation cri-

terion using corss validation and applied it to decide the nuniber of hidden units for

approximtel.v correct (P.AC) learning [11]. Vapnik-Cherx'onenkis (VC) dimension[12]

is also used to reducing the nuinber of the hidden units. There are niany papers re-

lated t,o reducing the nuniber of hidden units and fast convergence[13, 14, 15, 16, 17].

   As n}entioned above, there are inany papers related to specjfic probleni: , ho"'ex'er,

theoretical analysis of superiority of the .X•ILNN against convensional methods

and its mechanizm that realize the superiorit.v is not Kvell discussed.
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1.2 Background

Recentl.y, neural netxvorks (NNs) have been applied to the signal processing fields,

including signal detection [18, 19, 20, 21, 22], digital demodula,tion [23, 24, 25, 26],

digital signal classification [27, 28, 29]. In these applications, t,he NN niethods can

prox'ide good perforinances. Furtherinore, there are inany papers coinparing inulti-

la.yer NNs (.N'ILN.N's) and st,atistical niethods in the application point of x'iew. For

ei ainple, pat/tern classification perforinance, coinplexity of structure for inipleinen-

tation and coinputations have been taken into acco"nt in coinparison in Tsoi and

.4tsLtlas[30, 31] , Gish[32], and Lippmann [5], respect/ively. Fi'om these result,s, the

.NILN.NT method has recognized to be superior to linear Signal Processing (LSP)

n}ethods under soine conditions. However, these conditions have not been "'ell dis-

cussed froin theoretical point of view.

   In this thesis, coinparison between t,he AILNI' and t,he LSP inethods used in

signal classification is discussed. Usually, the r ILNN n)ethod is useful for arbitrary

pattern classification. On the other hand, the LSP inethod is good for detecting

tl}e signals specified by frequency coinponents. The purpose of this thesis is t,o

inx'estigate usefulness of the A4LNN method in the signal processing field, therefore,

the signals specified by frequency are considere(1. Thus, the signals are ctlassified

l)ased on their frequency coinponents.

   Furtherinore, the observation period is ver.v short. This nieans that the nuniber

ofthe signal s, ainples is set to be very sniall. Since, in this case, frequenc }r inforn)ation

                                     10

inay be lost to sonie extent, the signal classific•ation 1)e(•on)es inore diffic'ult. This

kind of limitations appears in the digital communication, the signal process, ing, and

the real time image processing [32] fields. From practical x'iexv point, computationai

complexity is also limit•ed. Namely, the comparison xyill be discussed based on length

of the signal sequence and coinplexity of iniplen)entation.

   Since the A4LNN is a non-paran)etric inodel, the generalization for untrained

data is an iinporta,nt criterion. Furthern)ore, rol)ustness for noisy signal c'lassifi--

cat,ion is also compa,red. Through theoretic'al and e: perimental result,s, xve derix'e

the conditions, under which we can estimate xvhich method is usefu} in frequency

selective signal classification.

1.3 Organization ofthe Thesis

In chapter 2, the pattern classification niechanisin of the A4LNN is analyzed. Tl}e

classification realized by the MLNTN can 1)e seen as dividing the input patt,ern space

and forin the class region by hyper-plane forined 1).y the connection weights. Then,

the degree of freedom to form the class region is anal.vsed[33].

   In chapter 3, txvo training clata selection n)ethods are proposed t,o guarantee

generalization[34] . For the !4LNN, to select the training data to guarantee the

generalization is iinportant. I pointed out that the iniport,ant data for the purpose

is t/o be near the class boundary or the connection Nveig}}ts, and to select the data

near t,he class boundary, t"'o algorithms of the pairing method a,nd the pairing and
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trainjng inethod are proposed. Coinputer siniulation is carried out to investigate

usefulnc}ss of the txx• 'o n)ethods.

   In chapter 4, an application for frequency selective c'lassification is invest,igated

through conil)uter siinulations. The con)puter siinulation is carried out under txvo

conditions that are uniforni activation function[33] and several activation functions[35.

36], In the case of uniforn) activation function,the siginoid function is used. In the

case of several activation functions, the siginoid function, the sinusoidal funct,ion and

the gaussian function are used. For the classification task, inulti-frequen('y signal is

used.

   In chapter 5, an applica,tion for frequency selectix'e classification by using the

linear signal processing (LSP) inet,hods are (liscussed[33, 37]. The analysis is carried

out, based on the pattern classification rather than the frequency analysis. Given

a:ignal of Ar sainples, it, can be viewed as Ar diinensional vect,or. Then, dividing

t,he Ar-diniensional spa,ce to assign the saine class signals to the saine class region.

Therefore, the classification perforinance is analyzed by the degree of freedoin to

forin the c,lass region in the Ar-diinensional space.

   In chapter 6, by con)puter sin)ulation, the classification perforinance of the

.X•ILN'Ns and the LSP methods are compared based on classification accuracy, the

nuinber of san}ples of t,he signal and the coinputation. Iloreover, the dial-tone sig-

nal, "'hich is the concrete signal of the mult,i-frequency signal, is used. The dial-tone

:ignal is used for push button phone. Froni the results, the )4LNris]T can achieve high

('lassification perforinance wit,h sn)all coniputations con)pared "'ith the LSP inet,hods
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for complex problems[33, 37, 38].

   Chapter 7 sunimarizes a,nd concludes some result,s. The reason of superiority of

the .N{LNN inethods against the LSP n)et,1}ods is due to high degree of freedon) to

forni the class region of the ACLNN. ', and the superiority is clear when the coinputa-

tions of the algorithin or the nun)ber of t,he sainples of t,he signals a,re lin)ited. NVhen

the con)putations or the nuinber ofthe saniples ofthe signal is not liinited, the clas-

sification perforniance of the pt(LNN inethods and the LPs niethods are aln)ost the

sa,me.

13



Chapter 2

PATTERN CLASSIFICATION

BY MULT-AYER NEURAL

14

2.1 Introduction'

In this chapter, a inechanisin of the classification by the inultilayer neural network

(MLNN) is analyzed. For this purpose, the classification by the MLNN is treated

as division of the input pattern space to inat,ch the pattern classes.

 First, the structure of the A4LNN is introduced, Ne.Kt, the function of the hidden

la>rer and the output layer is shown, Then the perforn)ance of the clagsificatJion of

the ! •ILNN is analyzed based on the degree of freedom to form a class region. From

            15



tliis anal.ysis, the NILNN has a high degree of freedoin to choose the conibination of

tlie c'onnection weights froni the hidden layer to the output layer. Realization of to

tlie correc't. classification is shoxvn. The ability of training is also discussed.

2.2 Pattern Classification by Neural Networks

2.2.1 Structure ofMultilayer Neural Network

The n}ultilayer neural network used in this paper is a txvo-layered neural netxvork

consists of the input layer, one hidden layer and t,he output layer. The discussion in

this chapter is based on this t:rpe of the riNILNriNl• T, However, the results can be applied

to the A4LNN niore than one hidden layer, then the generalizat,ion of the discussion

"'ill not be lost,. Fig.2.1 shows an exainple of the txvo--layer A4LN! with three input

                                                                     'units, three hidden units and three output units.

   .4tssuining that, the net,work consists of 21Nr input unit,s, J hidden units and I,L'

out,put, units. The length of Ar and IY is set to be as the sanie as the nun)ber of

san)ples of the signal and the nuniber of the signal classes. Accordingly, AT saniples

signal is represented as an AT-diinensional vector. The target signal is set for one class

that one output unit is ac,tivated and the others are inhibit,ed. In this c.hapter, there

are p = 1 Av P signal classes, and there are m = 1 rv AI of AT-dimensional signals.

The mth signal ofpt,h class is cienoted xp. = {a:p.(7?), 7? = no tv no+ Ai -1}. Here,

2?o is t,he st,arting point of the observation. Each saniple of the AT-saniples signal

is applied to the input, unit, in parallel, so ATth unit, received a;p.(7io+ .INr -- 1- 7?).

                                     16

 The input, pot/ential of the ]'th hidden unit is denoted by 7?et,J. This is calculated as

 a xveight,ed sum of the input/-hidden unit conne('tion xveight tv.j multiplied by the

 input, signal as folloNv.

                          Ar-1
                    netj = 2 ui. j• a:p. (7?o+ :7Ni -1- 7?)+ (9J (:)L .1)
                          n==O

 Here, 0j• is the bias of the 2'th hidden unit, The output of this unit is calculated b.y

using the hidden unit's activation function fH.

                               y?j --- f"(netj) (2.2)

   In the output layer, the input and the output, of the unit, is calculated by the

saine n)anner. The input potential of the k'th output unit is denoted 7],etk and the

output ofthis unit is yk, Then ifthe connection "'eight froni the 1'th hidden to the

kth output unit is zL7j•k and the activation function of t,he output unit is fo(•),

                                J-1
                          7? etk ---- 21t,J•kJ? ,•+ek (2.3)
                                j=o

                                gyk=fo(77etk) (2.4)

   The training algorithm of the connection weights is the supervised training. In

this paper, Back•-propagation algorithni is used. Therefore, the activation function

used as fH(•) and fo(•) should be a differentiable function.
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2.2.2 PatternClassification

In tlie MLNN, the input signal applied to the input la.yer is semi-classified in the

hidden layer, and is classified to suit,able class in output layer. In this section, I

shoxv xvhat kind of classification is done b.y al)ove process. N. 'Ioreover, the degree of

freedoin of the pattern classificat,ion is discussed in Sec.2.3.

   The r ILNN perforn)s a kind of inapping xvhich niap the input pa,tterns t,o discrete

classes. This mapping is (achieved by linear combination described by Eq.(2.1) and

Eq.(2.3), and t,he nonlinear mapping of Eq.(2.2). So, first,, the pattern classification

propert.y of single neuron[39] is shown.

   Tlie input, patt,ern is xp. = {aTp.(7]),7? = O tv 2V - 1}, the connection xveights

are denoted w = {u,.,n = O N N- 1}, and the 1)ias is 0. To classify the input

patterns int•o two classes of Xi, X2, w and e which sat,isfy the following Eq.(2.5)

n)ust be exist.

                  x,. E Xi, 2 #t.-oi zt'ii:?'i)m(7?)+0 > O
                                                                   (2.5)
                  xp. E X2, Z) i)T.-. oi w. .rr p. (7? ) + e < O

Here, a n}onot,oi}ically inci'easiiig function iiicludes iioii-(•oiitiiiuos fuiictioii is as--

sun)ed as the non-linear function correspond to Eq.(2.2) and (2.4). O threshold

linear activation function sho"'n in Eq.(2.6) is an exaniple. zL/ is the output unit

OUt 1)Ut .
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                           1, Åí;l)l.;I-oi iu.:rp.(7?)+0>O

                     Y== (2.6)                           O, Åí,",t:oi 'ttrn.ri"n(7))+0<O

The right side inequalit/y of Eq,(2.5) shoxvs that the N-dimensional space is divided

into t"'o regions by one h.vper-plane of next equation.

                           N-1
                           ÅíZL'n •Tpm(7?)+0= O. (2.7)
                           71 =O

In other words, if there are the connection xyeight w and the bias 0 sat,isfy Eq.(2.6),

then the regjon includes the patterns belong to Xi and X2 dix'ided into txyo regions

by the hyper-plane. This sort of the signal set is said to be linear separal)le.

   The activation function of the A4LNN,' des.cribed in Sec.2.2.1 is a differential)le

function. The signioid function vv'ritten as Eq.(2.8) is a,n exainple of t,he funct,ion,

                                        1                            f(7i,et) =                                                                    (2.8)
                                    1 + e'-net

f(7?et) is a inonotonically inereasing function and the out,put is an analog value in

the range of [O,1], however, as Eq.(2.9), using an output threshold of O.5, Eq.(2.5)

Nvork as the division condition of the c,lasses,

                    y( :glg] :I,io,l :,`Illl•:,;lll:ilj ".z:g (2.g)

   The signal classification by single hidden unit is as the san}e as one by single

neuron. Then, all the patterns are divided into tsvo classes at the outJput of the
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hidd(vn unit. In general, the pattern classification is not alxvays linearly separable.

so accuracv of the classification at the hidden layer is not guaranteed. XNrhen there

tne .J hidden units, all the patterns are classified into 2J subclasses at the hidden

}ax'er. These sul)classes are forined by the connection xx•'eights fron) the input layer

and the hidden layer.

   On the ot,her hand, t•o inatc,h the input of Eq.(2.5) to t,he output of the hidden

uiiits, and t/o inatc'h the output of the equat,ion to the single unit of the output la.yer,

it can 1)e foun(1 that all patterns are classified into txvo classes by the single output

unit,. In other words, the subclasses formed by the hidden layer is combined into

t,xvo regions by single output unit. If the snl)(•lasses are linearly separable at, the

hidden la.yer, it is possible to classify the signals correctly. The degree of freedon) of

the classification by the A4LNTNT is discussed in Sec. 2,3.

2.3 Analysis of Degree of Freedom for Pattern

        Classification

Analysis of the degree of freedoin of patt,ern classification is done based on the degree

of freedon} t,o forni the class region at tl}e outpiit layer.

    In this section, to analyze the degree of freedon) of the pattern classific,ation,

 tlie nuniber of coinbinations of the sul)dasses to be linearly separable is c,ount,ed

 out. The subclasses are forined at the hidden layer. If the subclasses are linearly

 separal)le, they are classified correctly by the hyper-planes forined b.v the connection
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xveights from the hidden layer to the output layer. Therefore, to c'ount the numl)er

of the coinbinations of subclasses linearly separal)le at the hidden la.yer is equal to

estiniate the degree of freedoni to forni the regions in the A'-diniensional space to

achieve the classification.

   T. Cover counted the nuniber of dichotoinies of the randoin patterns by single

neuron in the statistical sense[39, 40]. A. Koxvalezyk extended Cover's result, to the

fist hidden layer[41]. J. ]N(akhoul showed partitioning c(apabilities of txvo-la.yer neural

networks[42], Hoxvever, in this paper, the anal.ysis is curried out in the detern)inistic

sense.

   For analysis, assuining that the act,ivat,ion function of the hidden unit is a t,hresh-

old function. This assuinption is as the sanie as in Sec.2.2.1. By using t,he thresh-

old function substituting for the sigmoid function, the class regi'on Nvill be slightl.y

changed, ho"Tever, the nun)1)er of the hyper-plane is kept as the sanie as the one usi])g

the siginoid function, The region can be adjusted through the training process, and

if the nuinber of t,he hyper-plane is the sanie, the degree of freedoin to forin tl'ie class

region will be the saine. To ease the discussion here, tl}e linear threshold function is

used in the folloxvings. TNvo classes classifi(•ation of two diniensional input patterns

b.v the A"ILNN that consists of two input units and one output unit is considered.

   In the folloxvings, analysis is curried out for txyo cases: tsvo hidden units, three

hidden units.

(1) Case of using two hidden unit,s.

   Froin Eq.(2.5), all the patterns X are divi'ded into tNv•o sub-regions by single
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hidden unit. In the case of two hidden units, the input space is divided into four

subregions as depict,ed in 2.2(a) by t,he connection xveights from the input layer to

tlie hidden layer. In this figure, two solid lines are the hyper-pltTtnes formed by the

connection xveights.

   Tlie four subregjons are con)bined into t,wo class regions by single output unit,

then two class regjons forined by the coinbination of these four subregions should be

linearly separable. In general, the nun)ber of the hidden units is J, the A4LN.NT has a

degree of freedoin to forin the class regions formed b.y linearly separable con)1)ination

of t,he subregions out of 2J coinbinations. In Fig.2.2(a), linearl.v non-separable coin-

1)inations of the subregions are I and III forin a region for one class, and II and IV

f'orin a region for the other and its opposite combinat,ion[43], The ('on)bination ex-

cept abox'e can coinbine the subregions into txvo class regions. To ease the following

anal.ysis, the hidden unit output space is used.

   Since the activation function of the hidden unit is the threshold function the
                                                                      '

out,put of the hidden unit, will be 1 or O. So, coinbinations of the oiLitput of the

hidden unit, are (Hi,H2) = {(O,O),(O,1),(1,O),(1,1)}. Here, the first hidden unit

is denoted by Hi and the second hidden unit is denoted by H2, respectively. As

depict,ed in Fig.2.2(b), t,hese four patterns can be considered as vertices of unit a

square in R2. Lengt,h of the side is unity. The class boundary is the tilted line in the

figure. Then, counting t/he nun)ber of conibinations of the subregions to be linearly

separable b.v the output unit coines doxvn t,o solving the nuinber of the h.vper-plane

linearl.y separating t/he vertices of the square.
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    Since the bias is included into the conne('tion xveiglits, the hyper-plane can l)e

shifted froin the cent,er of the square, So, at the 1)egi'nning, t,he case of using the bias

is analyzed. Txvo, t,hree and four xrertices' separations are considered, because, soine

input patterns xvill be classified by using a partial p(attern. Total of the vertices

are txvo, the nuniber of coinbination t,o select txvo vert,ices fron) four, and to select

one vertex for one class froni two vert,ices, then 4C2 Å~2 Ci == 12 is the possil)le

coinbinations of linearly separable. Here, ., C. denot,e the nun)ber of eon)binations

of n objects that can be inade froin a set of 7)? object,s. .,C. is ca,lculated as .C. =

7??!/(n! Å~(m-7?)!). In t,he case of tot,al of the vertices is three, 4C3 Å~ {3Ci+3C2} = 24

is a possible nuniber of linearly separable conibinations, All the vertices are used.

4C4 Å~ {4Ci +(4C2 '2) +4 C3} = 12 is the number of the combinations. In the case of

each t,wo vertices is separated, as described in Fig.2.2(a), the relation of txvo vertices

is in exclusive OR,, these t"ro vertices are linearly non--separable. Then these t"'o

coinbinations are excluded fron} the nuinber of the coinl)inations.

   The counting of 12 + 24 + 12 = 48 is the number of combinations of linearl.y

separable. The ratio of all the coinbinations (48+2( the nun)ber of tlie coinbinations

of linearl.}r non-separable)) to the nuinber of con)binations of linea,rly separable are

48/50 = O.96, so it can be conc:luded that a degree of freedom of forming a class

region of the MLNN is high,

(2) Three hidden unit,s case

   In the case of three hidden units, the hidden iinit outputs are represented as cul)e.

That is (Hi,H2,H3)={(O,O,O),(O,O,1),(O,1,O),(0,1,1),(1,OP),(1,O,1),(1,1,O),(1,1,1)}. Fig-
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ure 2.3 shoxvs the hidden unit output space and states as x'ertices.

In t,his case, linear separability is considered based on vertices on the Three-dimensional

plane and on the two-diinensional planes. Three-din)ensional plane is consisted "'ith

four vert,ic'es of(1,O,O),(1,O,1),(O,1,O) and (O,1,1), as an example. (1,1,O),(1,1,1),(O,1,1)

and (O,1,O) trtre x'ertices on t"'o-diiztiiension(a,1 plane.

   There are san)e nun)ber of linearly separable and linearly non-separable coinbi-

iiations on a t,wo-diinensional plane as tNvo hidden units case. There are six two-

diinensional planes in the cube, so froin the res{ilt of t"ro hidden unitJ case, the

conibination of vertices on two-diinensional planes are obtained.

   For xrertices on the three-din)ensional planes, there are four conibinat,ions of

x'ertices in exclusive OR,. If two c.oinbinations of the vertices are in exclusive OR,

t,hey are linearly non-separable. The vertices {(O,O,O), (1,1,1)}, {(O,O,1), (1,1,O)},

{(O,1,O), (1,O,1)} and {(O,1,1), (1,O,O)} are in ex(•lusive OR. Figure 2.3 sl}ows one of

tl}e exclusive coml)inat,ion. XVhite circles and black circles are linearly non-separable.

To count the nun)ber of linearly non-separable coinl)inat/ions, trhere are three xya.ys

to select linearly non-separable conibinations of the x'ertices, two, three and four.

In t,he case of two coml)inations of vertices in exclusive OR, there are 4C2 Å~ Åíi•6'4

i•2Ci. For three combinations of vert,ices in exclusive OR, there are 4C3 Å~Åíl•:Zs6

                                                                    '
ioC•i. For all combinations of vertices in exclusive OR, there are 4C4 Å~Åíl•2s8 sCi.

Suinination of above is 288. In this case, t,he nuinber of all the conibinations of the

vertices is Åíl-92 i6Ci (Åí;.git iC,) = 5060. Se, ratio of linearly separable combination

is (5060-480)/5060 =O.905.
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    To generalize above discussion, t,he nuinber of conibinations of the vertices in ex-

 c•lusixre OR on the N-dimensional h.yper-plane included in the N--dimensional 1iyper-

 cube n}ust be obtaained. Here, the N--dimensional h.yper--plane in the N-dimensional

 hyper•-cube includes the vertices that are in exclusix'e OR. The coordinate of one ver-

 tex in exclusive OR on the N-dimensional h.yper-plane in the Ar--dimensional l}yper-

cube is given b.v inverting each eleinent of the coordinate of the other xrert,ices. And

the hannning distance of the vert,ices in exciusive OR on the Ar-diinensiona,I hyper-

plane in the Ar--diinensional hyper-cube is AL Then the nuinl)er of coinbinations of

t,he vertices in exclusive OR on the h>'per-plane in ,'Ni-dimensional h.yper-cube is half

of all the c'ombinations of the vertices or 2A' /2 = 2N-i. Tlie number of all combina-

tions of the vertices in an N-dimensional h.yper-cube is calculated by the folloxving

equatlon,

                             2N 1' -l
                             22A'C,'(2 ,C.) (2.10)
                             J' =2 m=1
   So, b.v subtracting the nuinber of the coinbinations that is linearly non-separal)le

froin Eq.(2.10), the nuniber of the conibinations of linearly separable in t,he AT-

diniensional hyper-cube can be solved.

   The nuinber of the con}binations that in('lude the vertices in exc,lusive OR on

N-climensional hyper-plane in t,he N-dimensional hyper-cube is given by

                    2N-1-1 i-1 2A'-2i
                     2 2`Nr-i Ct (2 ,Ck( 2 2A' -2, C, ))• (2.11)
                     i=2 k=1 ]' =O
   Noxv, the nuinber of the coinbinations of linearly non-separable is counted. In
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4-dimpunsioi}al 1}.yper-cube, the number of the vertices is IL the number of the sides

is E, the nuniber of the faces is F, and the nun}1)er of cclls is C have soine relations

as follows[44].

                            V-E+ .F -C=O (2.12)
   This is called as Euler-Poincare's inulti-cell 1)ody t,heorein. For hyper--cube, each

x'tT{liLie is tris follows.

                       V = 16,E= 32,F= 24,C=8

   Assuniing' t,his theoren) is true inore than 5-diinensional h.yper-cul)e, we can get

the next, table.

Table 2.1: Relation of vertices and cell of hyper-cube over 3-diinensional hyper-cell

diniension vertex cell(facefor3-dimension)

34571 816322n 681027?(n>3)

   For Ar-diniensional hyper-cube, the nuniber of linearly non--separable coinbina-

tion of the vertices on the Ar--diniensional hyper-plane is gjx'en by Eq.(2,11). The

nuniber of the linearly non-separable coinl)ination of the vertices on single Ar --- 1-

dimensional h.yper-plane is also given by Eq.(2.11), and is multiplied by the number

                                                                    '
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of cells. So, the nuniber of the linearly non-: eparable coinbinations of the x'ertices is

suin up froin the nuniber of the con)bination of the vertices on the A'-din}ensional

h.yper-plane to the nuniber of t,he con}bination of the vertices on the 2-din}ensional

plane. The number of cells in('luded in the N-dimensional h.vper-cube is induced

from Table2.1.

   For exainple, in the case of 3-diinensional cube, the nuinber of linearl.y non-

separable coinbination of the vertices on 3-diinensional h.yper-plane is gixren 1).y ne.xt

calculation.

                   23-1-1 i-1 23-2i
                     2 ,3-i C,(2 ,Ck( 2 23 -2, C, ))

                     i=2 k==1 J' =O
                           3 i-1 8-2i
                        = 2 ,C,(2 ,Ck(2 s-2,C,))
                          i=2 k=1 ]' =O
                                               =288 (2.13)

   The nun)ber of linearly non-separable con)1)ination of the vertices on single 2-

diniensional plane is given by Eq.(2.11) and the nuniber of faces is given by Table2.1

as 6, then,

                                4
                   2C2 Å~ 2Ci Å~2 4C,• Å~6= 32 Å~6= 192 (2.14)
                               7'---O
   is the nuinber of linearly non-separal)le coinbinations of the xrertices on the plane.

Then, the solution is gjven by sum up these results as 288 + 192 = 480.

   The nuinber of coinbinations of all the vertic'es of the c:ube is given by Eq.(2.10)

and is 5060, then the ratio of the nuinber of coinl)ination of vertic'es of linearl.y
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sel)arable is (;: 060-480)/5060 = O.905. This restilt is sho"'ing the degree of freedom

c)f the classification by three hidden units, then the ratio is decreased compare to the

('ase of txvo hidden units, ho"'ex'er, the nuinl)er of the conibinations of the vertices

that are linearl.v separable is drastically increased.

   On t•he other hand, if the biases for the output unit,s are not used, the h.yper-plane

cannot be shift,ed. Then the vertices loeated at diagonal Cannot be classified into the

stune dass. Therefore, the nuinber of coinbination of the vertices that are linearly

sepa,rable xvill be decreased. For t"ro vertices separation "'ith txyo hidden units, the

nuniber of the con}binat,ion of vertices that, are linearly separable is 4C2 Å~2 Ci = 12,

three vertices ca,ge is 4C3 Å~ {(3Ci - 1) + (3C2 - 1)} = 16, all the vertices case is

4C4 Å~ {4C2 - 2} = 4. Then totally, the number of the combinations is 32. The ratio

of all nuinber of t,he coinbination of the vertices to the nuinber of the coinbination

of the vert,ices that are linearly separable is 32/50 = O.64 so, the degree of freedom

to the classification is decreased. In general, the : 'ILNr.Xl' uses the bias for the output,

units, t,hen forn}er results of 48/50 = O,96 can be expected, and hig"her degree of

freedoni t,o the ('lassification can be held.

                                                                     '   XX'hen the siginoid func,tion is used as the activation function, above results can

1)e changed. In this case, t,he hidden layer outputs are dist,ributed near the x'ertices

as shoxvn as gray area in Fig.2.4.

   If the distril)ution of the hidden unit, outputs can be divided by the line hence,

the results of the linear threshold function can 1)e applied. r denot,es sonie liniit of

distribution that the above results can be applied. Assume that the distribution of

                                    28

the hidden unit output,s is the same, r is given by the circle xvhose radiut is 7' and

its tangential line, rii O.42, This value is approximatel,v equal to the limit of the

distribution from each vertex of O.5. .ALnd after train tl}e netxvork, the liidden unit

outpi-it tends to be 1 or O [45], so the distribution "'ill be smt/ill. Or assuming that

the distribution is sinall, the patt,ern classification perforn}ance of the r 'ILNN xvill

not be decreased. Therefore, the degree of freedoni to forin a class region using the

sigmoid function is the same as t,hat of using the linear threshold function.

   Froin above anal.vsis, the degree of freedoin of the l4LNN to forin a class regi'on

or tlie number of the hyper-plane (kind of the eonnection weight from the hidden

la.x,'er to the output, la>:er) is high, so in the case of the input, patterns are di: tributed

xvidely and coniplicatedly, the A'ILN'N can forni the class regions. Tlie reasons of

this c,apability of forining a class region coine fron} non-linearit/y of the activation

funct,ion and the architecture of using hidden layer.

   Hoxvex'er, the A!ILrXTN is a non-paran)et,ric inethod and at the sanie tiine, it is

t/rained b.y using relation of training patterns and its class [2], then convergence of

training the netNvork is not guaranteed. And the class region is decided by training

pattems, so if the distribution of the training patterns is biased, the classific'ation

perforinance xvill be decreased. Therefore, the perforn)ance of the A(LNN is depend-

mg on selection of the training pattern and the training method.
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2.4 Learning Ability and Convergence Property

Superyised learning a,lgorit,hins, like the back-propagation (BP) algorit,hin, were 1)ro-

posed to train the ACLNN[2]. The supervised learning is used to train the A/ILNN.

Thus, discussions on learning ability and convergence property are iinportaiit.

   .4Ls described in Sec,. 2.2.2, for the ]N4LN'IT, the classification problem is equivalent

to dividing the N-diinensional space into several ,gub--spaces.

   As n}entioned before, the nuinber of the signal saniples is assuined to be sn)all.

This is further divided into the following two cases, (1) a very sniall nun)ber, and

(2) a relativel.y sinall i)uniber. Furtherinore, the circuit con)plexity, which is inainly

deterinined by the nuniber of the hidden units, is practically iinportant. Two cases,

(a) a small number of the hidden units, and (b) a large number of thein, are taken

into account,.

   In the case (1), the frequency coniponents becoine vague. In other words, the

regiolls, in xvhic,h the signals of each class are distributed, are changed froin their

origina,1 dist,ribution. Sonietinies, the class regions are n)ixed and overlapped. Hoxv-

ever, if they are not overlapped, it is possible t/o separate the areas into the different

classes.

   In the case (2), the signals include accurat,e frequency coinponents, and they are

distributed in son}e specific regions. The regions of the different classes are sepa-

rat,ed. Ho"'ex'er, the boundary between them may be complicated and narrow. In

the linear filter inethods, the filter design is equivalent to approxiinate this boundary
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by using several sets of t,he filter coeflicients or the in)pulse respon: e sainple,s.

   In the MLNN method, in order to ac'hiex'e c'omplete separation, xvhich is to form

the coinplicated boundary, inany hidden units are required. For this reason, tl)e

learning converges slowly, and it is easily to be trapped into the local minimum.

Therefore, the initial connection weight,s should be carefully selected.

   On the other hand, if a sn)all nuniber of the hidden units are used, t,he coniplete

separa,t,ion is inipossible. Hoxvever, relatively high classification rate can be obtained

due to high degree of freedom of forming the boundar,y as mentioned in Sec.2, In

this case, stable and fast convergence can be ol)tained.

2.5 Summary

In this chapter, the classification using the A4LNN is treated as division of the input

pat/tern space to inatc:h the pattern classes. The degree of freedom of the X. ILNN

to forni the class region is analyzed and the nuniber of the con}bination of N'ertices

t/hat are linearlity separable is counted for two and three hidden units, respect,ively.

AIoreoxrer, the suggestion for expansion of the results for any nun)ber of the hidden

units is gjven. Froin the results, the lILNIT has high degree of freedoin to forin

the class region. The reason of this result coines froin non-linearly of the activation

funct,ion and the architecture of having hidden la>'er,

   The A4LN! T needs the training process, then the ability of training is discussed. If

the nuinber of the network paraineters is n)ore than one required to solxre a prol)lein,
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so adjustmeiit of man.y parameters to obtain a ,solution xx'ill be difficult, then con-

x'ergence speed becoines sloxv. On the other hand, if the nuinber of the paran)eters

is sn)aller, then, adjustn)ent of sn)all nun)ber of the paraineter to obtain a solution

is easy, hoxvex'er, t,heir reinains soine residual error.

                               Un1t

i i Output layer
d- --- -- - -" - ---"                                 Connection weights

r-- -- -- -e --- "- M- -- --e - 1
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--- --- -- --t -- e-- ----

 -- ---e ----------e- --- ----- e-le -

       Figure 2.1: Exainp}e of architecture of inultilayer neural net,work
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Figure 2.2: Signal detection region of AILNN "'ith txvo hidden units. (a)

regions in input space. (b) Class boundar.v in hidden unit output space.
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Figure 2.4: Dist,ribution of hidden unit outputs with Siginoid function.
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Chapter 3

MINIMUM TRAINING DATA
SELECTION FOR

MULTILAYER NEURAL

3.1 Introduction

 In the classification probleins, a niultila.ver neural network (.N4LN'IT) trained 1)y

supervised learning algorithins are capal)le of extracting coinnion features or rules

Of training data through a training process. This is a 1)enefit of using the MLNN

fOi' the classification. However, the suitable architecture of the .N4LNN and a sinall
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nuinber of t,raining dat,a are required. The error back-propagation(BP)[2] algoritlnn

is a 1)opular algorithm for solving the classific•ation problems.

   One of the n)ain interest,s of the supervised learning algorithins is ho"' to select

the trainiiig data. A huge nuinber of the training data niay guarant,ee generality of

the NILNN. On the other hand, it will require a very long training tinie. Therefore,

it, is desira})le to reduce the nuinber of the training data while niaintaining general-

ization. Cachin [46] proposed t,he error-dependent repet,ition(EDR). Presentation

probability of the training dat,a is proportional to the A4LNN output error. How-

ever, the ent/ire dat,a are used in the training process. AI. I<utsuxvada proposed iterate

learning inethod to fix the generalization area[47]. This is one of the approac,hes to

glltll'a,nt,ee tlle gellel'a,lization pel'forlllance.

   In this chapt,er, we propose a inethod to select the efficient training data, xx'ith

xvhich generalization is guaranteed[34]. The selected dat,a can loca,te around the

l)oundar.y betNveen classes. This niet,hod can 1)e applied to reduce in data ineniory

and computations of off-line training, where a sufficient number of training data

can be ol)tained in advance. Furtherniore, it Nvill be useful for an on-line training,

xvhere all training data cannot obtain at the beginning, ra,ther they are gradually

increased.

   Efficiency of the proposed inethod is investigated through coniputer siinulat,ions.

The BP algorithm is used to train the AILNN. TNvo kinds of prol)lems are employed

as exaniples.
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3.2 Activation Functions

In this chapter, a two--la.yer ! ILNN is used to classif.y the data. A' sainples of a piece

of data x = {.7r(/:),i = 1 N A]} is applied to the input la,yer. The ith input unit

receix'es `r(i). The c'onnection weight from t,he ith input to the ?'th hidden tmit is

denot,ed zvi]•. The input potential net]t and the output se• of tl}e 2'th hidden unit are

gi'x'en by

                                  N
                           net,- =22t,.• .T(i)+0, (3.1)
                                 i=1
                        se --- fH(netj),2' '--- 1 e- ,J (3.2)
                                      1 -- e-netJ'
                           fH(72,etj) =                                                                      (3.3)
                                      1 + e-7)etJ

xvhere, fH(•) is an activation function in the hidden Iayer and 0ji ig a bias. The input

potential netk and the out,put {yk of the A:th output unit are given by

                                   J
                            netk=]ÅíU7J-k?lj+0k (3,4)
                                  1'=1

                        yk=fo(netk), k" =1NP (3.;J-)
                                         1
                           fO(7Z etk) =1+ e-net, (3'6)

xvhere fo(•) is an activation function in the output layer.

   The number of output units is equal to that of the classes. The MLNN i's trained

so that a single output unit responds to one ofthe classes.
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3.3 Geometrical Property of lnput and Output

Input of the 1'th hidden unit is expressed b.y Eq.(3.1). The input space c,an be

separated int,o t"'o regjons by a line forined 1).v 7?et,• = O at the input of the hidden

unit. A distance betxveen this line and t,he input data is given b.v

                        Åí,N,=i wij ar(i) + 0j lnetjl
                   `lj -'-': Ll'wj" ="zu,•ll' (3'7)

                             'wj={'u'i,•,i=1 ev N}. (3.8)

   ll'wjll is an L2 norin of the weight, vector wj•, Then the input potential 7?etj• js

proportional to t,he distance d]•. The activation funct,ion Eq.(3.3) is a continuous

inonotonica,11y increasing function, then the hidden unit, output iyj is also continuous

n)onotonically increasing with respect to the distance dj•. HoNvever, zJj• is not a linear

function of t,he distanc,e.

   The output of t,he out,put unit yk is separated by the regions of :tyk > O,5 and

:yk < O.5. The input, potential netk = O provides a decision boundary. This is called

a netxvork boundar.y in this paper. The class 1)oundary ineans t,he boundary of the

input, data classes. If the training converges, the network boundary will agree wit,h

the class boundar>r. Then a distance froin the class boundary to a data is related to

lyk - O.51. In this case, the input potential ofthe output unit 7?etk. is also related to

the (list,ance.
                                     '
   In conclusion, lyi k - O.51 and inetkl are continuous functions Nvith respect to the

distance betxx'een the data boundary and the input data.
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3.4 Pairing Method for Training Data Selection

The proposed data selection inet,hod conil)ines a training proc•ess and a pairing

method. In this section, a pairing method is first descril)ed.

   In this thesis, two classes Xi and X2 are t•aken into account foi' conx'enience.

However, the proposed inethod can be applied t,o inore tha,n txvo classes.

   In t,he pairing process, the nearest data of different classes evaluat,ed using the

Euclidean distance is selected. Let Xi and X2 1)e set of two data classes, and xi

and x2 be elen)ent of thein. xi and x2 are paired "'it,h each other through the

following steps.

Step 1: Select, xi (or x2) from Xi (or X2) randomly.

Step 2: Select xg (or xe) from X2 (or Xi), which has the shortest distance to t,he

     xi (or x2), selected in Step 1.

Step 3: Select xe (or xli) from Xi (or 'X2), which has the shortest distance t,o x12'

     (or xe), selected in Step 2.

"ihen all data are selected froin Xi (or X2) in Step 1, t,he pairing process is com-

pleted. Otherwise, return to Step 1, and repeat the above process. In this process,

the same data will not be selected. Finally, the data .Te and a:g, selected based on

trhe distanc,e, are included in the reduced data set.

   If the class boundaries in the data space are based on the distanc:e, the data

located close to the boundary can be detected by this method.
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3.5 Tl?aining and Pairing Method for Thraining

       Data Selection

3.5.1 Algorithm

This inethod coinbines the training and the pairing as follows:

Step 1: Soine number of the training data are randomly selected from Xi and X2

     . Let the set,s of the selected data be XT and Xr2 .

Step 2: Train the MLNN' using the dat,a in XT and X5 .

Step 3: Select the data, with which the netNvork output errors have relatively large

     error. Let these data be xf and xS.

Step 4: Seleet the data xii' and xg froin XT and X,r2, which have the shortest

     dist,ance to xS and xf, respectively, ,

Step 5: Select the data xii'e and xi2'e from Xii' and X5', which have the short,est

     distance to xi2' and xii', respectively.

.4t set of gce, xi2' and xYe, xlie will be used in the next training process. Replace the

data in Xl and X2" by the new training data, and return to Step 2.

   XX'1}en new data are provided, they are ineluded in Xl and X5 . The ren)aining

data of Xi and X2 can be also used for this purpose. If t,he nuinber of the new data

is large, soine nuinber of the data inay be selected, and are included in XI and X5

. Aft,er t,hat, ret,urn to Step 2.
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The data selected in Step 3 satisfv

                      Xf= {xilzl(xi)<a+,t=1} (3.9)

                      XS={x21Ji (`c2)>a-,t=O} (3.lo)

xvhere y(•) express the output, t is the target, and a+ and a- express son}e lex'els,

for instance O.7 and O,3, respectively.

3.5.2 DataDistribution

Purpose of the training in Step 2 is to find the data, xvhich locat,e close to the class

boundary, Kvith less coinputations. Therefore, the training ig stopped at the niiddle

stage in the training proc'ess using sonie criterion. In subsection 3,7.2, this criterion

of an off-line training is described. Even t,hough the training is not coinplet,ely

converged, the data, which locate close to the class boundary can be detected using

the output error. The details are described in the folloNving.

   For c,onvenience, a two-dimensiona,1 pattern classification given by Fig.3.1 (a) is

einplo.yed. It is assuined that the triangle network boundary shown in Fig.3.1(b) is

foriped in Step 2. The data inside the triangle corresponds to Class 1, and the

data outside corresponds to Class 2, In this case, the regions are further dix"ided

into A, B, C and D as shown in Fig.3.1 (b). This means t,hat the data locate in B

and D are exac'tl.v classified into Class 1 and Class 2, respectix'ely, Furtherinore, the

data in A and C are miss-classified into Class 2 and Class 1, respectively.
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Figure 3.1: (a)

net"Torl<.

   Following the

olltput elTol' by,

1-)()tmdary, in B

is higl}1.y related

proportional to the dist,ance

xvitlnvhich the

xvhich is the t,riangle,

   HoNvever, the

large output error.

dat,a, xvhich locate

exainple, xvhere

    ,, "j •:X' /C.ir"'"'',

Class distribution, (b) Classification result by not, well achieved

 process in Step 3, the data in A and C xvill reinain due t,o large

iniss-classification. Further, the data locate close to the networl<

and D are also det,ect,ed due to relativel.y large errors. The error

 to the distance froin the boundar.v. Hoxvever, it is not always

          . This will be discussed in Sec.3.7.2. Therefore, the data,

output error is relatively large, locate near the network boundary,

     a t, le ast.

 data, which locat,e close to the net"rork boundar.v, do not cause

   Therefore if t,he data xf and xS are only selected, the efficient

   close to the boundar>', xvill be niissed. Figure 3.2 shoxvs an

the data locate in the shaded parts are onl.v satisf.v the conditions
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Eq.(3.9) and Eq.(3.10), and are det,ected.

   For this reason, the pairing niethod is coinbined xvitl} the training process. The

data in the different classes locate close to xf and xS can be found. The,y are denoted

by xl-,' and xii' tris sho'vvn in St,ep 4, respectively.

                             #2

                                   #1<ixlSlltsN,

                           'lll$ll!II•ii•il/4.., ss <><l , "

                                         "x

                Figure 3.2: Exan)ple of tNvo-('lass d(assification.

3.6 T)raining Data Selection in Off-line and On-

       line Trainings

The proposed data selection inethod can be applied to both off-line training and

on-line training [40]. In the off-line training, all data are given at the beginning of

the training. If a large nuinber of training data is available, the data selection is

needed to reduce the training tinie. In the on--line training, the training data are

iiot given all together, 1)ut are given suecessix'ely. Furtherinore, they n}ay change

C'Ontinuousl.y. If the data successively received are all accuinulat,ed, then the nun)1)e.r
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of the data "'ill be ext,remely large. Therefore, in thif application, t,he training data

sele('tion is impoi'taiit.

3.7 ComputerSimulation

3.7.1 Classification Problem and Simulation Conditions

Classification Problem

Txvo-din)ensional txvo-class classification is einployed for coinputer siinulations. Tlie

nunil)er of input unit AT is 2, and the nuinber of output unit, IY is 2. Then, The data

is X = {Xi,X2} and t,he input data is x = {,r(i), i, == 1,2} .

   Figure 3.3 shows a concept of the problenis. One of the classes is shown as shaded

region, and the other is dotted region. XX'1iite region betxveen the classes shows a

gap, so there is no overlap.

In prol)len) 1, t,wo classes are defined as folloxvs:

                 Xi ={x .fr(1)2+a'(2)2 s{{ (7'-•'>t)2} (3.11)

                 X2= {x a:(1)2+.T(2)2>(r+or)2} (3.12)

here, 7' is the radius of t,he circle and is O.39. ty is the xvidt,h of t,he gap, and is O.02.

   In problen} 2, tNvo classes are defined as follows:

                Xi = {x lA sin(2T • ar(1)) :E{ .?'(2) - ty'} (3.13)
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           (a) Circle in Square (b) Sinusoidal in Square

 Figure 3.3: Concept of problenis. (a) Circle in square, (b) Sinusoidal in ,square.

                X2 --- {x lA sin(27r • .ar'(1)) > a'(2)+'>•} (3.14)

xvhere, the A is the ainplitude and its value is O.22.

Simulation Conditions

The nuinber of data for each c.lass is 1000. Six hidden units are used. Txvo hun-

dreds of data for each class are selec.ted randomly from 1000 data. These are used

in folloxving siniulations. For the training, learning-rate paranieter 7] is O.1, and

momentuin constant a• is O.8. These are decided by experience. Circle in square

is called problein 1, and Sinusoidal in square is called probleni 2 in the folloxving

sectlons.
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3.7.2 Off-line Tiraining

Pairing Method

F()r offLline training, pairing and training niethods are used. Figure 3.4 sho"'s ran-

donily selected data, and Fig.3.5 sho"'s the data found by pairing niethod. Froni

Fig.3.5, the class boundary is formed by data properly. Sixty-five data are selec'ted

for each class.

                         0.6

                                          Qee pa.

                        -O.6
                          -O.6 -O.4 -02 O O.2 O.4 O.6

                       Figure 3.4: Randomly selected data.

   The !ILNI is trained xv•ith selected data. Tl}e stopping criterion is O.OOI in

the n)ean square error (AISE) at the output la.yer. Iteration of 23763 is needed for

convergence.
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                                           +

                        -O.6
                          -O.6 -O.4 -O.2 O O.2 O.4 O.6

                   Figure 3.5: Selected data by pairing- inethod.

]]raining and Pairing Method

The initial t,raining is stopped at the A4SE of e <O.05. The thresholds, a,+ and a-,

are 1.0, and are equal to E of O.073. In problem 1, 207 of data are selected from

Class 1, and 164 from Class 2. From Class 1 and Class 2, 116 and 150 of da,ta are

selected in problein 2.

   Figure 3.6 shows the results. Froin these figures, the 1)oundary is detected prop-

erly.

   For stopping the training, four hundreds of validation data are used to hax'e a

coiisistent stopping criterion for conventional n)ethod and proposed one. The valida-

tion data are subset,s of the entire data set. The netxvork output error is calculated
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                                              (b)Sinusoi(lal in square,
           (a)Circle in sqnare.

                            Figure 3.6: Selected data

for xralidat,ion data every iteration. The stopping criterion e of the validation data

is O.OOI. Table 3.1 shows the results. In the table, coinputation of the conventional

inetl)od is 1.0, and the coinputation of the proposed niethod is represent,ed as a

ratio of proposed inethod of conventional one. Froin this table, the coniput,ational

conip}exity is reduced by this process.

   Figure 3.7 shoxvs relation ainong the distance and t,he output unit output. The

.NILNN ii} step 2 of Prol)lein 1 is used. The input data of (a) is a;(2) = O and (b) is

a' (1) = a'(2). In the figures, the horizontal a: is is the dist,ance froin the origi'n of t,he

data space to a data. The vertical axis is the output, of the output unit to the input

(lata, of the horizontal axis. Froin the figures, (b) has a slope niuch steeper than

(a) near the class boundary, Nvhich is at Å} 4.0 in the horizontal axis. Then data
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3•7.3 On-line Training

The on-line training i's simulated

used in this sin)ulation. Entire

O.4 O.6

dat,a space

 using partial data of the

data X is separated into
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thrce sets

Prol)lem 1 is

a,s des(•i'ib(sd



1)eloxv.

                     X,, = {xl.?'(2) }il O.167} (3.15)

                    X.,d = {xl-O.167<.7•(2)<O.167} (3,16)

                   Xd... = {xlar(2) s{ -O.167} (3,17)

Each subset data includes 333 data,

   X,p is used as the training data of Step 1, X.,id and Xdown are used nexv

training data in training of Step 2 of Sec.3.5. The stopping criterion e jn St/ep 1 is

O.05, and O.Ol for training convergence, respect,ively. The thresholds for all steps

are 1.0.

   Figure 3.8 shows t,he result of on-line training using selected data. The training

is converged and their percentage of correctly classified are 100 9)(o for entire data

,set. The boundar.v is also detected properly.

3.8 Summary

The training dat,a selection niethods used in the .NILNN have been proposed. The

Pairing n}ethod uses the Euclidean distance to find sets of the nearest data to the

init,iall.y randoinly, selected data. The t,raining inethod selects the data based on

the netxvork boundar.y of t,he AILNN. These inethods are con)bined in this inethod.

X'alidity of the training methods has been gi'ven, and it was confirmed that the

training method never lost the data near the class boundary by using pairing method.

                                    JrO

proposed niethods have been applied to tNvo applications. One of then) is reducing

the tra,ining ofthe off-line training, and the other is the on-line training. The training

has been converged by using a coinbination of paring inethod and trainiiig inethod.

The coinputations to converge the training has been reduced. Training niethod is

also applied to on-line training. In this case, data are selected froni the partial data.

The training has been converged. Therefore, proposed inethodt are supported 1).N'

the siinulation results.
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Tab1e

posed

3.1: Coinpai'ison of coinputational

trall)111g.

complexity 1)etxveen conx'entional and pro-

Prob.1 Prob.2

Conv. Propofed Conv. Proposed

Init,. o 134 o 18

Epoch 2444 4394 89 390

Nofdata 2000 114 2000 62

Comp, 1.0 O.10 1.0 O.14

Init.: Epoch of initial training.

N of data: Number of data.

ConNr.: Conventional inethod. Coinp.
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Chapter 4

FREQUENCY SELECTIVE
CLASSIFICATION BY

MULTILAYER NEURAL

Jr4

4.1 Introduction

Advantage of niultilayer neural networks (NNs) trained by the back-propagation

(BP) algorithni is to extract coininon properties, features or rules, which can be

used to c'lassify data included in several groups [2]. Especially, xvhen it is difficult to

analyze the coininon features using conventional niethods, the supervised Iearning,
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using conibinations of the knoNvn input and output, data, 1)econ)es useful.

   In this chapter, frequenc.v selective classification b.v multilas,'er neural netxvorks

(.NILNNs) is studied. The signals are classified ac•cording to the frequenc'.v coin-

poiients included in the signals. Since the frequencies are assigned alternatel.v to

sex'eral groups, it is difficult t,o distinguish the waveforms vLTit,hin a short period,

and using limited number of samples. The following adx'antages of the A4LNN ox'er

conx'entional inethods "rere confirined. The neur(al net"'ork can c,lassify the signals

using a sinall nuinber of san)ples and a short ol)servation period xvith which the

Fourier transforn) cannot classify. The nuniber of calculations is sufl3ciently snialler

than the convolution calculation, required in digital filters,

   ,4L signioid funct,ion is the one of the ino,st popular (activation funct,ions used in

the I4LNNT. However, it is not always optimum. Therefore, properties of activation

functions are investigated in this chapter. For this purpose, soine t.v•pical functions

are taken into a,ccount. They include a signioid function, a radial basis function and

a periodic function. They will be compared with each other in classifying multi-

frequency signals. Effec,ts of noisy signals will be also discussed in the training and

dasg, ificat,ion processes.

   As a result, a rule of thuinb for selecting the suitable functions and the coinl)i-

nation of several kinds of functions will be provided.

   Since the .N'ILNN inet,hod is useful for general pat,tern classification. Therefore, in

order to fairl.y coinpare the ! /ILN! ' n)ethods and the linear signal processing inethods,

the folloxying niulti•-frequency signals are taken into account. The frequencies are
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locat,ed alternately between the signal c'lasses, and the amplitude and the phase of

each frequency coinponent are generated randomly. Therefore, the signal xvax'eforn)s

of the different classes are siniilar and siniilaritv betxveen c'lasses is sn)all. This kind
                                          tt
of classification niay be a diMcult probleni.

4.2 Multi-frequencySignal

The 2)th signal class, denoted Xp, includes AI ,signals.

                  Xp = {xp.(7? ),m=1 tv M,n= O t'v N- 1} (4.1)

The multi-frequency signal is defined as follows:

                               R
                     Xpm(n) == 2Amr Sill(LVI)r7?T+Åëmr) (4.2)
                              r =1

xvhere, Lup. = 2Tfp,, fp. is the rth frequency component of the pth class. T is a

sampling period. Amplitude A.. and phase ip.. of each frequency component, are

randomly generated in (O,1] and [O,27r), respectively. Two classes are used. The

number of the signal samples is N=10 or N---20. The frequencies in one (:lass (class

1) are 1, 2 and 3 Hz, and in the other class (class 2), 1.5, 2.5 and 3.5 Hz, respectively.

A sampling frequency is 10 Hz, These frequencies can be scaled.

   2000 input signals are prepared for each class. For the MLNN, 200 signals are

used for training, and 1800 signals for testing. After the training converges, the

training signals Nvere perfectly classified. Thus, the AILNN is equivalently evaluated
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xvith 2000 signals.

   For noisy signals, the additive noise, uniformly distribute(l in [-O.5,O.5], is used.

The SNR is about 6.5 dB.

4.3 Multi-frequency Signal Classification by Us-

       ing Sigmoid Function

4.3.1 MultilayerNeuralNetworkDesign

The l ILNN with a single hidden layer is taken into account. A(iniinizations of the

nuinber of hidden units have been "rell discussed [17, 48]. In this paper, hoNvex'er,

it is detern)ined b.y experience. Alinost the highest classification perforinance xvas

obtained wit,h three hidden units. The number of output units is equal to t,hat of

tl}e signal classes. A single output unit is assigned to one class. This ineans the

.N•ILNN is trained so that a single output unit responds to one of the signal classes.

   Back-propagation (BP) algorithin is used for training the networks. Both noise-

free and noisy signals' sets are used in a training phase and a testing phase. The

learning rate 7] and the inoinentuni terni coeMcient a• are O.1 and O.8, respectively,

Nvhich are decided also by experience. The training is stopped when the n}ean

squared error is less than O.Ol or the nun}ber of iterationt exceeds 3000.

   A ratio of the nun)ber of the correctly classified signals and the nuinber of the

entire testing signals, defined as "classification rate", is evaluated under several
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conditions. A signal is

ina,xiinuin x'alue.

classified into the pth class if the 7)th OIItl)Ut U11it takes the

4.3.2 Thraining and Classification

The classification rates are listed in Tab}e 4.1 in percentage. The .N4LN'N can provide

high classific'a,tion r(ates, The c,lassification rates of using the signals wit,h 20 san)ples

are better than those of the signals with 10 sainples. Therefore, non-linearity is

notable for 10 san)ples' signals and is not not,able for 20 sainples'.

        Table 4.1: Probability of exact signal classification in percentage

Methods N=1O N=20

NFS NS NFS NS

MLNTN 97.8 86.9 97.7 91.5

N : Number of samples

NTFS : Noise Free Signal, NS

                 Jr9

:Noisy Signal



4.4 MultilayerNeuralNetworkbyUsingSeveral

       Kinds of Activation Functions

4.4.1 Network Structure and Equations

.4L single-lcf{:F,rer neural netxvork is taken into account. N saniples of the signal .rp.(7? )

are applied to the input layer in parallel. The nth input, unit receives ft'p.(n).

Connection xveight from the nth input to the 2'th hidden unit is denoted 'tv.j. The

inputd and output, of the 1'th hidden unit are given by

                              N-1
                        7?•etj "-- 2'ui.jft:,.,(7i)+0j (4.3)
                              n=O

                             y,•=fH (net,•) (4.4)

   Letting the connection w•eight from tl}e 1'th hidden unit to the IL'th output unit

1)e '((,J•k, the input, a,nd output of the kth output unit are gi'ven by

                                J-1 •                          netk=2u,jkyj+ek (4.5)
                                j'=o

                             iJk=fo(7? etk) (4.6)

The actix'ation function of the output layer is the siginoid function. In the hidden

la.yer, son)e act,ivation functions include the siginoid function are used,
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   The nuinber of output units is equal to that of the signal groups denot/e(l 1),y P.

The neural netxx•'ork is trained so that a sing'le output unit responds to one of tl}e

signal groups.

4.4.2 Thraining and Classification

Signals are categorized into training and un-training sets, denot,ed by .] ' Tp and .\(tp,

respectivel.v. Their element,s are expressed by ,?'Ti..(7?) and ,r(ri.,(7?), respectivel.y.

   The neural network is trained by using .7'Ti,.(n), n} = 1 tv 7tdrT, for tlie 1)th group.

Here, AIT is the nuinber of the training data. After the training is con)pleted, the

untrained signals ,Tup.(n) are applied to the NN, and the output is calculated. For

the input signal :rui,.(n), if the pth output ?yp has the niaxiniuin value, then the

signal is exactly classified. Otherwise, the netNvork fails in classification.

4.4.3 Selection ofActivation Functions

XNJhat kinds of activation functions should be selected is x'ery iniportant. At the san)e

time, it is a very difficult• problem. In this chapter, the following t.vpical fuiictions

are selected for the hidden layer.

   XN'hen binary target can be considered, then the sigmoid func,tion can be used in

the output layer.

Siginoid function:
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                                           1                       2JJ == fs ig( 7? etj)= 1+ e-( .,t,) (4'7)

Siiiusoidal function:

                        y,• -- f,i.(7?etj)=sin(T7?etj) (4.8)

Gaussia,11 fullctioll:

                                             o                          7h• --- fg..(7?etj•)=e"ie'J (4.g)

   The input vectors are distributed in an N-diniensional space. Three functions

dix'ide the space as follows:

                     fsig(7?•etj)( >< a.11] I?,e,lll >< T/.ill (4•io)

                           > a+, lnetj - (27m + l)1 < T,i.
                                                                   (4.11)               fsin(7?•et]')
                          < at-, lnetj - (27m + ;T)l < Tsin

                    fgau(7?etj)( >< a.111 II?,e,ll.l <> TT9,a.". (4'12)

Here, n is integer.

                                                                   '
   These space divisions are fundaniental, and independent to each other. This is

an idea behind selecting the above three functions.
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   Next step of selecting activation functions is hoxv to coinbine theni. It is also

highly dependent on the distribution of the input signals, and is very hard to de-

terinine before hand. For this reason, both the honiogeneous function and tlie

c•oinposite functions are investigated.

4.4.4 Thraining and Classification

Siinulation results are shoxvn in Table 4.2. The training converged using t,hree hidden

unit,s for all activation functions. In the case of the Gaussian and t,he sinusoidal

funct,ion, the training alinost converged xvith one hidden unit. In this case, noise

free signals are used. Froin this tal)le, the AILNN using the Gaussian act,iva,tion

function ac.hieved the best classification rates. It can classify the un-t,raining signals

xvjth only one hidden unit. The A4LN•N using the sinusoidal activation function

achieved xvorse classification rates than that of the Gaussian activation func:tions.

These t,wo ac,tivation functions have sin)ilar shape ho"'ever, differential is non-zero

for the sinusoidal function while differential of son)e part of t,he Gaussian activation

function is zero. This difference vLrill be effect to achieve the classifi('ation.

4.4.5 Simulation Using Three Activation Functions

Additive Noise

XV'hite noise, denoted noise(n?, is generated as randdin nuinber, and is added to the

signal arp.(n). ,N'oisy signal .z'1.(n) is given by
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Table 4.2: Classific,ation rates by three functions[9o]

Ti'ainiiig {Llntraining,ALctixration

Function

Hidden

Unit #1 #2 #1 #2

Sigmoid 1 44.5 100 47.9 1OO

3 1OO 1OO 97.4 1OO

Sinusoidal 1 86.0 99.0 79.8 99,O

3 1OO 1OO 92.6 1OO

Gaussian 1 99.5 1OO 98.1 100

3 1OO 1OO 99.1 99.9

                       XS.(71)= Xpni(7?)+ 7? Oise( 7?) (4.13)

Ti'aining and Classification

                                                                  '
The noisy, inulti-frequency signals are used for training. N is 10 and I4 is 200 for

each group. Aft,er training, un-training signals "'ith Nvhite noise are applied, and

clas: ification rates are eva,luat,ed. NVhite noise is uniforinly distributed in t,he range

Å}O.5. The results are shoxvn in Table 4.3. Columns Nvith (A) and (B) list the recog-

nition rates using the training signals xyithout and Nvith Nvhite noise, respec,tively.

The I •ILN.N' trained without noise is also used for comparison. From these results,

it can be confirn)ed that training using noisy signals is useful to achieve robustness.
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Table 4.3:

xvhite noise

Classification

[9o]

rates using tl'amll)g signals. (A) xx'ithout

(A) (B)Activation

Func.tion

Hidden

U'nit #1 #2 #1 #2

Sign)oid 1 47.0 52.9 92.8 28.Jr

3 97.3 8.4 82.6 78.0

Sinusoidal 1 80.2 20.9 61.7 87.7

3 65.9 36.2 79.9 82.7

Gaussian 1 98.2 4.8 71.7 65.9

3 85,3 46.3 79.8 70.2

and (B) xvit 1i

Convergence Rates

Figure 4.1 shoxvs learning curves obtained using the three hidden units. The l 4LNN

xvith the Gaussian function can converge faster than the other. However, the error

does not xvell dec,reased. The A4LIrN vkTith the sinusoidal function can also converge

fastJer'. .At the saine tiine, the error can be well decreased. .A convergence rate using

the sign}oid function is slow. However, the error e(an reach to the sanie lexrel tiLs in

using the sinusoidal function.

   Learning curve of the siginoid function is stable after decreasing the network out-

put errors. However, the learning curves of the sinusoidal function and the Gaussian

function are unstable. Folloxvings are son)e analysis of unstable of learning curve
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of the Gaussian function and the sinusoidal function, Stable and unstable ofthe

learniRg curx'e con)es froin difference of the shape of abox'e functions. The signioid

function has txvo saturated regions, so in these regions, sniall change of the input

that produced b>r modifying the connection xveight did not change netxvork output.

Hoxvever, t,1}e Gaussian function and the sinusoidal function do not have saturated

regions, then sinall change of the input changes the netxvork output drasticall>r.

4.4.6 Convergence Property Using Single Hidden Unit

Noise Free Multi-frequency Signals

The A•ILriXl'Ns trained without noise are further investigated by hidden unit input and

output distribution. Figure 4.2(a) illustrates t,his di,stribution, using the sigmoid (a),

the sinusoidal (b) and the Ga,ussian functions (c). One and two follow a, b and c in

the figure show the number of hidden units.

   In the case of the sigmoid function, the data class 1(#1) and the data class 2(#2)

haxre to be located at t,he right or the left side. This is a fundainental space division

property of the sigmoid function. Thus, the network has to adjust the xveights, with

xvhich the hidden unit input dat,a are completely separated into the right or the left

side. The data #2 i's concentrated at t,he edge of the a+ as shown in Eq.(4.10), but

the data #1 is distributed Nvidely, From this result, the distribution of the hidden

unit• inputs generated by the inulti-frequency signals cannot satisfy the requirenients

given by Eq.(4.10).
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    In the case of the sinusoidal function, the hidden unit, inputs of the data #2

 locate near one of the peaks and the data #1 distributed xvidely. The sinusoidal

func'tion has large differential coeflicient except for the peak. Then t,he data #2 can

be shifted around one of the peaks fast,. On the other hand, the data #1 can locate

in the regi'on of f,i.(netj) < a-. Therefore, the requireinent of the fundainental

division property given by Eq.(4.10) is satisfied by the multi-frequenc.y signals.

   In the case of the Gaussian function, the data #2 locate around the peak. Dif-

ferential coefficients around the peak are large, then, the data #2 can be shifted

t,oward this area very fast. Alost of the data #1 are dist,ril)uted both sides.

   Froin these results, the hidden unit inputs of t,he inulti-frequency signals can be

concent,rat,ed on a narrow range for one group, and t,he ot,her is distril)ut,ed xvidely

for the other group.

   Thus, the space division propert.y of the Gaussian function is the best match

xvith the distribution of the multi-frequenc.y signals. This function can prox'ide tl}e

1)est accuracy as shown in Table 4.2.

Noisy Multi-frequency Signals

In Figure 4.2 (b), (a), (b) and (c) correspond to the hidden unit inputs and output

distributions, in which random noise is added. The network is trained b.y using

the pure multi-frequency signals. After the t,raining, the untrained noisy signals are

applied to the MLNIT. The distribution ofthe hidden unit inputs is easily spread b.y

adding t,he noise.
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   In the case of the siginoid, the data #2 distributed xvidely. HoNvever, the n)ost

of the data #:)L still reniains in its own region. Because it has "'ide stable regjons.

This is a reason "'hy it, can prox'ide better accurac.y than the others.

   In the c'ase of t,he Gaussian, the data #2 distributed over the other region,

because, a single peak is very narrow. Then these data easily niove over the other

group's region. Thus, the accuracy is decreased by adding the noise.

   The sinusoidal case, the data #2 also xvidel.v distributed. Hoxvever, the sinusoidal

function is a periodic function, having several narroxv stable regions. Thus, it can

proN'ide higher accuracy thaii that of t,he Gau: sian function.

4.4.7 Convergence Property Using Several Hidden Units

Homogeneous Activation Functions

                                                                  'Figures 4.3, 4.5 and 4.7 show distribut,ions of the hidden unit inputs and outputs.

The AILNNs are trained by using the signals Nvithout noise. The sigmoid, the sinu-

soida,1 and the Gaussian functions are separat•ely used. For eacl} figure, (a), (b) and

(c) correspond to one of the hidden unit. (al), (bl) and (cl) are the response for

the data #1, and (a2), (b2) and (c2) are for the data #2.

   From t,hese figures, there are two types of distributions, these are concentrated

and dispersed distributions. One of two groups is located at near the peak of the

functions and the other is widely spread. The overlap of the distributions between

the t"'o groups causes iniss-classification.

                                   70

:

   In Fig.4.3, it is ver.v interest,ing that the data #2 is located at the middle of the

slope. Since this region is not a stable regjon. it can be cxpected that accuracy is

easily degraded b.y adding the noise. As shoxvn in Table 2, it is true. The classifica-

tion rates are 97.391o for the data #1 and 8.49(o for the data #2, Accurac.y for tlie

data #2 is greatly reduced.

   Figures 4.4, 4.6 and 4.8 show distribution of the inputs of the two output units.

In these figures, (a) and (b) correspond to the data #1 and the data #2, respec'tively.

The region of overlap of the solid and the doted lines xvill cause niiss-classification.

'SvTS,' e can investigate fron) these figures, ho"r the hidden units separate the signals into

t,xvo groups. In the case of #2 data are applied, there is no overlap. So, the hidden

unit input space is well separated, In the case of #1 data are applied, there is son}e

ox'erlap. These overlaps cause iniss-classification. These results are consistent with

the accuracies shown in Table 4.2.

   Froin the figures, the input space of the output, units is well separated by tl}e

signioid and sinusoidal function. So, it ('an be concluded that t,hree hidden units

cooperat•e to inake the distribution of the inputs to the output, unit to be linearly

separal)le.

Composite Activation 1functions

Three functions can be conibined in the saine hidden layer. This conibination is

called 'Coinposite Activation Function' in this thesis.

   Table 4.4 shows classification rates using t,he niulti-frequency signals without
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iioise. In this table, the synibols D through J correspond to the coinbination of the

fU1iCtiO1)S.

   The combination C, having three Gaussian functions, achieves the best accurac.v.

The convergence rate is also the fastest among three ftmctions. The combination D,

hax'ing all activation functions, achieves 1)etter accuracy than the others except• for

C. However, I and J, which include two Gaussian functions, are worse than D.

   K through A4 are compared vvrith E through J. E and F are bet,ter than K,

Then adding both the sinusoidal and the Gaussian to t,he sign)oid can iinprove the

performance. H is bett,er than L, but G is worse than L, Then adding the Gaussian

t,o the sinusoidal can do better than the siginoid function.

   In the inost of t,he conibinations, the Gaussian achieves better accuracy. Then,

propert,y of each function does not appear straight,ly in the coinbinations.

   Table 4.5 shoxvs classification rates of the network trained using the noisy signals.

Training itself did not converge in all cases. This ineans t•hat the accuracy is not

100(7o for all coi)il)inat,ions of the functions.

   The network using the hoinogeneous activation function A and B have higher

acclira,cy than t,he ot,hers. However, C does not achieve better accura(:.v than the

others. Then the hoinogeneous activation function cannot always achieve better

accuracy t,han the coinposite activation functions.

   The netxvork using the coinposite activation function J hag higher ac,curacy, "rhile

C and I hax'e worse accuracy t,han the others. G and H also provide good accurac.v.

E and F achieve xvorse accuracy while A provides good one.
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    K through A•I are con)pared wit,h E through J. G and H are better than L. Then

 adding the sigmoid or the Gaussian to the sinusoidal xvorks "'ell. K is better t,han E

 and F. Then adding both t,he sinusoidal and the Gaussian to the siginoid does not

xvork Nv•ell.

   The sinusoidal and signioid functions achieN'e good accuracy in the inost of the

coinbinations. However, the sinusoidal coinbination does not alwa.vs achieve better

accura(' .y. Thus, property of each function is not straight in t,he conibination, as

previously discussed in the no additive noise case.

4.5 Reducing Training Data for Learning Con-

        vergence

There are niany papers related to data selection niethod[46, 47, 49], however, in

this section, the data selection niethod to guarantee the generalization perforinance

is investigated through coinputer siinulation. This n)ethod is different froin the

training data selection inet,hod that introduced in chapter 3. The data selection

inetJhod is applied to a inulti-frequency signal classification.

4.5.1 SelectionofTMrainingData

In general, by increasing the nuinber of data used for training the A4LNN•,the

generalization perforniance will be increaged. However, difliculty of the network

convergenc,e and the coinputation for the training Nvill be increased. Therefore, in
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this section, tlie training data selection method for reducing the training data is

proposed and is invest,igated through coniputer siinulation.

   There are two types of the da,ta due to the place in the data space. One is

near the class boundary and t,he other is placed in the class region. Fi'oni Eq.(2.7),

the class bounda,ry is reNvritt,en as netk ---- O, Here 7?etk is kth output unit,. Then

in all the training data, soine dat,a that produce large plus or ininus value at the

input of the output unit places in the class region. Therefore, at the early st,age of

the training, these dat,a are iinportant to forn) the class region, however, after the

region is roughly forined, the data near the boundary is iinportant to inodify t,he

class boundary. Then in this tiine, the data that produce large plus or ininus values

xvill not be used to inodify the class boundary.

   The data selection inethod reduces training data in the training process. Until

the niean squared error (Ni •ISE) is reached at soine threshold Eth, all the training data

are used for the t,raining. After that, the input,s of the output, units are calcula,t,ed,

and the data exceeding the threshold of the absolute value of the input ofthe output

unit Th are ren)oved and the training is done with reinained data until A4SE of the

output unit,s reaches soine st,opping criterion. Therefore, the network is trained 1)y

using the dat,a that, are placed near the class boundary. Fig.4.9 shovgrs the training

curves. The solid line shows the training using all the training data, and the dotted

 line and dag, hed line correspond to the proposed inethods. Eth is O.032. Froni the

 figure, the training is converged alniost t,he sanie iteration. However, the nuinber of

 the dat,a used for t,raining is reduced in proposed inethods, then t,he coinputat,ion
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for the training xvill be reduc'e(1. The threshold of Th=3 is equal to output O.95

of the output unit. Figure 4,10(a) and (b) shoxv the classification rate of class 1

and LT),(c) shoxvs the nun)ber of the data that are reduced. Fron) the fig'ure, xvhen

threshold Th ==3.0, then 653 of the data are reduced, and the cla: sification rate after

t,he training js aln)ost the saine as t,he one trained "'ithout/ reduceing the nun)1)er

of the data. Fron) above restilts, it can 1)e concluded that, the reduced data in the

training process are not useful to niodify the class boundary, . Therefore, usefulness

of this niethod is prox'ed.

4.6 Summary

Properties of the activation functions for inulti-frequency signal c,lassification have

been discussed using niult,ilayer neural network superxrised by BP algorithni. The

Gaussian function can provide the highest perforinance for the signals without noise,

Hoxvever, it is sensitive tdo the additive noise. The siginoid function is not useful for

a single hidden unit. If several hidden units are used, then the signioid funct,ion

becoines useful, and is insensitive to the additix'e noise. The sinusoidal function is

useful for noisy signal.

   ACoreover, the training data selection niethod is proposed. By using this niethod,

the classification rates are the saine ag the one trained b.y using all the data. The

nuinber of training con)putations is reduced. Therefore, the proposed niethod guar-

antees the generalization perforinance and at the saine tiine, reducing the nuinber
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of tra,illillg ('O1))P11tat1O11S.
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Table 4.4 : Classification rates using signals "'ithout nolse

Coinbination Training ILT'ntraining

Sig Si11 Gauss #1 #2 #1 #2 ,ALve,

.4L 3 o o 1OO 100 97,4 100 98.7

B o 3 o 1OO 1OO 92.6 1OO 96.3

C o o 3 1OO 1OO 99.1 99.9 99.5

D 1 1 1 100 1OO 1OO 98.3 99.1

E 2 1 o 99.5 1OO 96.6 98.4 97.5

F 2 o 1 1OO 100 97.4 1OO 98.7

G 1 2 o 93.5 98.Jr 83.8 97.3 90.6

H o 2 1 1OO 1OO 99.9 97.8 98.9

I 1 o 2 100 100 96.2 99.6 97.9

J o 1 2 100 1OO 97.3 98.9 98.1

K 2 o o 99.0 1OO 94.0 1OO 97.2

L o 2 o 86.0 95.5 86.8 97.3 92.1

M o o 2 99.5 98.5 99.4 98e8 99.1
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Table 4.5: Classification rates using signals with noise

Conibination Training ILTntraining

Sig Sin Gauss #1 #2 #1 #2 Ax•re.

A 3 o 0 83.5 86.0 82.6 78.9 80.8

B o 3 o 84.5 89.0 79.9 82.7 81.3

C o o 3 87.0 81.Jr 79.8 70.2 75.0

D 1 1 1 77.0 92.Jr 69.1 84.3 77.6

E 2 1 o 88.5 77.0 80.9 67.8 74.4

F 2 o 1 78.5 98.Jr 63.8 85.9 74.9

G 1 2 o 74.0 92.Jr 69.4 87.0 78.2

H o 2 1 79.0 92.5 72.3 84.3 78.3

I 1 o 2 84.0 87.Jr 73.Jr 7or.g 74.7

J o 1 2 84.Jr 82.0 81.0 78.5 79.8

K 2 o o 91.5 70.5 81.3 69.3 75.3

L o 2 o 80.3 83.0 79.1 73.6 76.4

,N4 o o 2 75.5 sJr.o 74.6 76.1 75.4
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Chapter 5

PATTERN CLASSIFICATION

BY LINEAR SIGNAL

PROCESSING METHODS

5.1 Introduction

The classification by the linear signal processing (LSP) inethods are introduced in

the pattern classification point of view. The elassificat,ion inechanisn} and its classifi-

c'ation performanc,e are disc,ussed. The LSP met,hods are not a pattern (:lassification

inet,hod, however, they are used in the process that can be seen as a pattern

classification. In the analysis in this chapter, the signal consists of N sainples is

seen as the Ar-diinensional vector. As the sanie as the pattern classification b.y the
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)ILNN, the pattern classification is regarded in the saine light as dividing the A'-

dimensional space into the class regions t,o suit the distribution of the signals. Then.

the classification is perforn)ed based on the distance betvLreen the filter coeMcients

aiid the patterns.

5.2 Linear Signal Processing Methods

5.2.1 PatternMatchingMethods

A classification b.y using patt,ern inat,ching n)ethod is ca,rried out to nieasure a dis-

t,ance fron) a ten}plate pattern to an input, pattern, and the input pattern is classified

into the class tha,t the nearest template is included. This method is called the near-

est neighbor n)ethod[50]. The Euclidean distance and the A4aharanobis generalized

distance(ACGD)[51] can be used as the nieasureinent/ of a distance. In this thesis,

the nearest neighbor inet/hod using the Euclidean distance is called by Euclidean

metliod, and the nea,rest neighbor niethod using the A4GD is called by the .N'IGD

inetho(l. In both of using the Euc,lidean distance and the ACGD, each class' tein-

plat,e forins a subcla,ss. In the case of sinall nuinber of teniplates are used, teniplates

roughly cox'er the class region and forn) the class 1)o"ndary, Then, niis-classification

will be occurred.

   The classification performance by the Euclidean method xvill be dropped xvhen

the distribution of the ten)plates is biased. On the other hand, the A4GD n)easures

tl}e distance froin the central vector of the 2)th class teinplates Ltp to the input signal
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 x by

                         d",2 =(p- Lt,,)'C,', i( gtr-LL,) (5•1)

 Here, Cp is the covarianc'e inat,rix of p class signals. The central vector is a inean

vector of the signals t,hat, correspond to the trailling signals of the AILNN. x' is

the transpose of a vect,or x. Froni t,he equation above, the .XIGD normalizes the

dist,ance (x - LLp)2 by the covariance matrix of the templates, so the classification

perforniance is robust against, the placenient, of the ten}plates.

   The k"-inean clustering [52, 53] and the Gaussian Classifier [50] are fan)ous pattern

classification inethods. The k-niean clustering perfornis as the san)e as the Euclidean

inethod using nian.y teinplates. The Gaussian cla: sifier can be considered as a single

layer linear perceptron. It nieasures the distance 1)y the A!IGD, and estiinates the

joint-probability densit,y of the input data as the Gaussian distribution, Then, this

niethod has the sanie ciassification perforinance as the ACGD inethod using inany

templates. Due to the reasons above, the Euclidean method and the .N4GD method

are einployed as the pattern c.lassification niethods.

5.2.2 Frequency Analysis Methods

The Fourier transforni and the filters[54] are useful as the signal classification metliod

using frequenc.v analysis. By using the Fourier transforni, if the frequenc.v con}po-

nent of the pth class is the inaxiinuin ainong classes, then the signal is classified into

the pth class. The classification by the filters, a filter bank that consists of the filters

                                    85



for each c.as. s, is used to identify the input signa. c.ass. If the pth c.ass fi.ter output

in poxver is tlie inaxiinuin ainong the fi.ters, the input signa. is c.a,ssified into the 7)th

cass. In both cases, the Fourier kerne. or the fi.ter coefficient is designed to extract

specified frequency coinponent. Therefore, pre-proc•essing is needed to estin)ate the

ke.y frequenc>,r i'nforination to achieve the c.assification.

   The Fourier kerne. and the fi.t,er coefficient are correspond to the teinp.at,e pat-

tern of the pattern c.assification. HoNvever, the Fourier kerne. and the fi.ter coeffi-

cients are designed, so degree of freedom to se.ect these coeflicients are .ower than

se.ection of tenip.ate of the pattern c.assification. A'Iore detaLed discussion is given

in Sec. 5.3.

Fourier Thransform

For the Fourier tra,nsforin, t,he frequency con)ponent of the input signa. {2'(7?), 7? =

0 N Ar - 1} or x is ext,ract,ed by ca.cu.ating the inner product of the input signa x

and the Fourier kerne. {e-jW'iT, n, = 1 tv Ar }.

                                N-1
                        X( Lu)=2 x( 7? )e']' ""M T. (Jr .2)
                                n==O

Here, T is the samp.ing period and cx.7 == 2Tf. Then, the Fourier kerne. is corre-

sponding to the ten)p.ate pat,tern of the pattern c.assification inethod,
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Finite Impulse Response Filter

Finite Impulse Response (FIR) filter zz'ith a direct form[54], the output signal of the

FIR filter is calculated by Eq. (5.3) in the steady state.

                 N-1
         yi ,(n) = 2 .7:(k+ 7?o)h,,(n -- k), 1?,( 7? - k) = O, 7?, -k<O (5.3)

                 k=O

Here, hp(n, -- k) are the filt,er coefficients, by "'hich the pth class signal can be

extrac'ted. This type of the FIR filter is called as FIRI in this thesis.

   The signals can be also detected by suppressing the class frequencies. This t.ype

of the FIR filter is called FIR2 in this thesis. The transfer function of the pth class,

(lenoted H,.p,(z) , has zeros on the unit, circle at the corresponding frequencies.

                                                                     '

                                Is'
                  Hsup, (z) = ho n(1 -- 2cos cv,kTz-i +z-2) (5.4)
                               k.--1

xvhere ho is a constant and wpk is the frequency coinponents included in pth class.

The output is calculated by using Eq.(5.3). The order of the transfer function of

t,he FIR2 is as the same as the nuinber of the samples of the signal.

Infinite Impulse Response Filter

An infinite inipulse response (IIR) filter [54] requires a loxv-order transfer function,

xvhich are a sn)all nuinber of coefficients. Hoxvever, the rec'urrent structure requires

higher coinputation than the FIR filter.

   One of the IIR filter realization is a caseade form of the second-order circuits,
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xvliose transfer funct,ion is xvritt,en as

                               ao+aiiki+a2.-.v-2
                        H(:) = 1 + b1 2-1 + b'2 •"-' -2 '

The output yi (n) is calculated as

                  iv(7?) = .T(n) - bi i('(7? -- 1) - b2iv(n - 2)

                IY(7?) = aolV(7?,) + allt,(7? - 1) + a21V(7?. - 2).

                   x(n) )w(n) aoy(n)

-b1
w(

T--1)

a1

-b2 T a2

(5.5)

(5.6)

(5.7)

                     Figure 5.1: Second order IIR filter.

tt'(n) is an internal variable as shoNvn in Fig.5.1. A high-Q filter can be realized

u: ing a, lo"'-order transfer function. HoNvex'er, the linear phase response cannot be

guaranteed.

5.2.3 SpectrumEstimationMethods

.NIa.xiinun} Entropy l•Iethod(llEAI)[54], Nvhich is a spectruin estiination niethod,

estiinates an auto-regressive (AR) inodel of the signals. The niain benefit of using
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t,his inethod is that it can estiniat,e an interest spectruin using the lin)ited nuinber

of signal sainples.

   Froin the NNii'enner-Khinchin's law, the spectruni is equal t,o the Foui'ier ti'ansforin

of the auto-c,orrelation of t,he signal. The poxver spectruni P(Lv) is given by

                                     A•f
                            P(w)=2 oJ,:'. (5.8)
                                   i=-A•I
XXrhere, ">'i js the a,uto-correlation sequence of the signal `r(n) xvith i lag. .Af is the

order of the filter. The posver spectrum P(LL]) is modeled by

                                      ao                                             2, (5.9)                         P(cu) fu
                                 1 + ÅíÅí1., ak .N."

   (to and {a,k•} are unknown coefficients of the prediction-error filter. These co-

efficients are obtained by Eqs.(5.8) and (5.9), Akaike showed limit of A4 as AI <

(2 t-v 3)v/(Ii<75 [ss], If A4 is less than above, false peaks will not be appeared. The

classification is as t,he same as the FIR filters.

   Another method in this category is a super-resolution algorithm (r4ultiple Sig--

nal Classific:ation: A4USIC)[56]. The AIUSIC is used to estimate frequencies and

directions of waxres a,rrive at the uniformly spaced linear sensor array. The number

of sensors is limited. Usually, the MUSIC alloxvs around 30dB of SNR(Signal Noise

Ratio) [4]. This SNR is snialler than that used in the siinulation in c:hapter 4 and

6, since, inaxiniuin entropy niethod is eniplo.ved.

   Froni above discussions, the following niethods are employed as the LSP inethods:

The pattern inatching inethod using the Euclidean distance and the l4aharanobis
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genc)ralized niethod; the frequency anal.ys, is

and tlie filters; and the spectrum est,imation

mcit1iod.

5.3 Analysis of Degree of

        tection Regions

inethod using the Fourier transforn)

niet,hod using the n)axiinuin entropy

Freedom to form De-

:1•r'

=1•:e'
:iilliil'?l.Ii,'r""

i:i:Ir

t:.p,

::•i:i2

,,111t

..

::I.)

lr

tl:

t:I]II

,tr

't't'

t.::1:I

(a) FIR fi}tcr coefficients and output samples (b) FIR filter coefficients and output sample

distributions. (Small number of samples are used) distributions. (Many samples are used)

                 (a)N is large and kt is small. O)) N is small and kh is large,

                Figure 5.2: Signal detection region of FIR filter.

   Classification performance of the LF methods is investigated based on the spec-

trum distribution of the signals regarding the number of the signal samples.

   XX'hen niany sainples a,re used to represent the input signals, the frequency coin-

ponent,s are alniost the saine as the original signal's. Then highly accurat,e signal

classification is possil)le by the LF niethods. To analyze a frequency coinponent by

                                                                       '
a high-Q bandpass filter (BPF), difference of the output poxver bet"reen the input
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signals that include or not include the frequency con)ponents are obt,ained. .NIore-

over, t,he output of the high-Q BPF nearl.y regarded as a sinusoidal "'ax'eform. Then

it, is possible to identify that the frequency component is included in an input signal

or not, "rith sinall nuinber of filter output saniples.

   If t,he input signal is in the pth class, the outputs of the pth class filt•er yt p(7?) and

the others yp,(n) satisfy the following equation.

                       ni+Ki-1 ni+A'i-1
                         E) Ig/,(n)1>>77?a.7'2 kL/,t(7?)I (5,10)
                        n=nl n= Tll
XVhere, IYi is the nuniber ofthe filter outputs, and is assuined to be sniall. Supposing

an appropriate t,hreshold a•, this condition can be replaced by,

              ni+Ki-1 ni+Kt-I N-1
                2) IJi p( n)l =2 12 .T (k + 7?o)h,( 7? - Kn )l > a•. (s,11)

                n=nl n=nl k=O
In this equation, the right hand inequality forins sonie regions in an N-din)ensional

space, where the pth class signals are included. This region is called a signal det,ection

regi'on of the pth c,lags. Figure 2 (a) shovLrs a conceptual image of the signal det,ec'tion

regions given by Eq.(5.11) for two-dimensional signals, The shaded parts are the

signal detection regions and the solid line shoxvs a boundary of the regions that,

forined by yp(n) == O in Eq.(5.11). The signals of the pth class are concentrated in

the shaded parts and the other class signals are distributed around the boundary, .

   XN'hen the nuniber of the signal saniples is sinall, the frequency ('oinponents or

the spec'truin distribution is distorted froin those of the original signal's. Because,

using a sinall nuinber of the signal sainples is equal to using a short interval xvindoxv,
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and this affects the ainplitude response of the signal. The signal detection region is

formed bxr

                           ni+A'h-1
                             2 1?h,(7?•)l>at. (s.12)
                             Tl =7? 1

"'here A' h > A' t. The region specified by this inequality is wider than that, gixren

by Eq.(5.11). Equation (5.12) can be satisfied "'hen soine outputs take large value:

than a. Then the condit,ion of the classification is relaxed b.y using many output

sainples. A conceptual iinage of this extended regions is illustrated as soine shaded

part,s in Fig.2(b).

5.3.1 Signal Classification by Output Power

The san)e nun)ber of the filters as that, of the signal classes is used in the signal

classification. The pth class filter is designed t,o extract the frequency con)ponents

of this class, and to siippress those of all the other classes. The poxver of the 2)th

filter output Sp is calculated by

                                 711+K-1
                            S,=2 y3',(7]). (5.13)
                                  n =n1

XX'here, yep(n) is the filt,er output and IV is the nuniber of the output san)ples. 7?i

is the beginning of the st,eady state response. Classification is done b.v using the

follo"'ing criterion.
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                     If S,=n?g,.7'{S,,} then xEX, (5.14)
                              p

that is the signal is classified into the pth class.

   Next, coniputation c,oinplexit,y required in calculating the out,put, poxver is dis-

cussed. The FIR filter with a direct forin alxva,vs needs Ar ('oinputations in c'alculating

one output as shown in Eq.(5.3). One con)putation includes one inultiplication and

one addition. It is independent ofthe filter order denoted ArFJR. In other xvords, a

very high-Q, whic,h is high-order FIR filter can be used to achieve higher resolution

Nvit,hout increasing in the ineinory capacity and the ntnnl)er of coniputations-. The

output sainples in the steady state are used in caleulating the output poxver.

   On the ot,her hand, the IIR filter has a recursive structure (as shown in Fig.5.1. In

calculating the A•ilth output iLl(?N•1), the filter should operates froin n = O t,o n = Al.

Letting filter order be ATiiR, iJt(Acl) requires (5/2)ArllRAI coinputations. It, is inainl.y

det,erinined by ArllR and A•1, not N. Here, "'e assun)e the 2nd-order sec:tion needs

five con)putations as shown in Fig.5,1. Furt,herinore, iL/(AI) in the steady state should

be used in estimating the output povvrer. Thus, even tho"gh ATuR << AiFiR, the IIR

filter niay require inore coinput,ations than the FIR filter in estiinating the output

power.

5.3.2 Degree of Freedom of Space Division

The degree of freedoni of forming the class region is discussed in the following. The

filt,er coeflicients used to calculate y(n) are h,(7? - N + 1) N 1?,,(n). Thus, a set/ of
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suc•cessive N c-oefficients is used to calculate ?y(7?). Let this set be hp(7?,N). There

is stroiig correlation aniong hp(7?,A'). In other xvords, the.v cannot be deterinined

indepet}dently. They are designed to ext,ract the necessary frequenci'es. hp('n,A')

corre: ponds to a set, of t,he connection xveights froin the input to the hidden la.vers.

These coiinection "'eights do not have an.y constraints. They can be adjust,ed us-

ing the training data. Therefore, the lILNN can realize inore flex. ible subregions,

and is superior to the LF inethod in pattern classification, However, the A4LNN

is dependent on the training data. The training should be done to achieve good

ge11e1'a1iZa,tiO11 l)e1'fO1'111a11Ce.

   Discussions based on coinputer siinulation xvill be gi'ven in Sec.6.5 and Sec.6.6.

5.3.3 Correlation ofPartial Coefficients ofFilter

Tl)e input of the FIR filter is denoted by a'(7?), its coefficients are denoted h(7?).

Then, the output of the filter yi (n) is given by the next equation.

                                N-1
                         y(n) == 2ar(kr)1?(7? --- k) (5.15)
                                k=O

Here, x(7?) consists Nvith AT samples of 7? = O N Ar - 1. To get iy(7?o), the coeflicients

of 1?(7?o) N h(no •- N+1) are used, and for g (7?o+77?), h(7?o+m) tv 1?,(7?o+7n -N+1)

are u: ed. Denote above as ho(7?,) and h.(7?), and b.v using tiine doinain xvindoxv 'u,(7?),

thev can be rexvrit,ten as folloxvs.
   v
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                    ho(7?)=h(n)zt,(7?o ---- 7i), 7? =O tN• N-1 (5.16)

               1? 7n(7?•) :h(7?•)IV(7?to+77? - 7?), 7? =O tN/ N-1 (5.17)

                              1 o;Is 7? ;:sl Ar-1
                               ,                     w(7?)= (5.18)
                              o, 7? <o, .INr ;s n

   First, n(arrow bandwidth lowpass filter (LPF) is discussed[57]. The passing-band

denotes f,, the sanipling frequency is f,, the ainplitude response at passing-band

is unity, and stopping-band is zero. Then the inipulse response of t•he LSP h(7?) is

gjven by the next equation,

                  h(n) = "t f-W.C.TTejW"TdLvT, Lu,=2rrf,

                                                                   (5.19)

                        = 2ficSib'.W,,cT"T,w,7iT=2T(f/)n (s.2o)

"'hen the order of the filter is Arf - 1, then the coefficient h(n) shifted (Arf - 1)/2

t,o the right is used for the interval of ON Arf - 1.

   Next, the siinilarit•y of ho(n) and h.(7?) is discussed. Froin Eq.(5.20), to coinpare

w,noT and w,(7?o + 77z)T, the difference of these txyo is w.7nT = 2T(f,/f,)n?,. In

general, for narroxv bandxvidth LPF, f,/f, >> 1 then, for son)e sinall 7n that satisfy

f,/fc >> m 27r(f./f,)m << 27r is true and ho(7?) and h.(7?) beconie sin)ilar.
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   NIoreox'er, the filt/er coefficients of the FIR filter or the inipulse response nar-

roxv 1)andpass filter (BPF) (denotes hp(7?)) is discussed. In approximat,ely, hp(7?) is

given by the inipulse response of the narroNv Ban(kvidth LPF inultiply the sinusoidal

"'ax'eforin xvhose center frequency is at, the passband, Here, several band is consid-

cred, and t,he center frequencies are fi, f2, f3, respectively. Then hp(7?,) is xvritten

as follow.

       h,,(7?) = h(7i){cos(2zfi nT) + ('os(2Tf2, 7?T) + cos(2Tf37?T)} (5.21)

   As the saine as the foriner discussion, the filter outputs of yt (no) and :yt (7?o + 77?)

are calc'ulated by using the partial (:oeMcients of the filter.

                           h,o(7z)= 1?i,(7?)zv(7?o -- n) (5.22)

                      hl)m(71) = h•p( 7? )2V(7?o+ 77? - 7?) (5.23)

   In this ca,ge, fi, f2, f3 << f, is not alxvays true, then the similarity of the filter

coefficients is not, guar(anteed, Therefore, as the Kvaveforni itself, h,po(7?•) and h•p.(7?)

are not similar. Hoxvever, the sinusoidahvaveform to genera,te the 1?p(n) has a high

correlation an)ong the part,ial waveforins, so the correlation of hpo(72) and hp.(7?)

xvill l)e high. In other word, in the range of f,/f, >> m or h,o(n) ii h.(n) is true, the

correlation of hin(7?) and hp.(n) is the saine as the correlation betNveen the sainples

ofthe sinusoidal xvave.

                                            t
   "'hen m is relatively large and the correlation of "'ave form of ho(7?) and h.(7?)
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1)ecoine lo"'er, the correlation of hpo(n) and 1?i..(i?) 1)econ)es Ioxver. hoxvever, the.v

hax'e son)e correlation.

   As discussed aboxre, the correlation of the partial coefficient,s of the narroxv BPF

filter is high, t,herefore, the degree of freedoin to forni a class region in the A'-

din)ensional space by partial coefficients of the filter is loxv.

5.4 Summary
In this chapt,er, the classificat,ion perforinances of the LSP inethods are analyzed

based on their capability of forming the class regi'ons related t,o the signa,l distril)ution

in the AT-diinensional space.

   Froin the analytical results, the pat,tern classification perforn)ance is related to

the nuniber of the sainples of the signal. NX'hen the signal consists of inany san)ples,

the orthogonality of the frequency coinponents of the signal is guarant,eed, then

the output poxver of the filter for the signal that does not include the extra,ct,ing

frequency components is always relatively small. Then the classification is possible

b.y using the sinall nun)ber of the output, saniple of the filter. On the other hand, the

nuinl)er of the sainples is sinall and the orthogonality of the frequency coinponents

is not• guaranteed, the output power of the filter for the signal does not include the

extracting frequenc,y coinponents is not alxvays sinall and n}any output sainples of

t,he filter need to do exact coniparison.
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Chapter 6

COMPARISON BETWEEN
MULTILAYER NEURAL
NETWORKS AND LINEAR
SIGNAL PROCESSING

6.1 Introduction

In chapter 2, the pattern classification ability of the .NIL.N'N is analyti(all.v

Inve,stigated and it has been pointed out that the lILNN has a laige degree of
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freedon} to forin the class region in an N-dinien: ional space.

   In c•hapter 5, the pattern classification perforinances of the LSP niethods are

inx'estigated theoretically. From the anal.ytical results, the filter methods design its

coefficietits to extra,ct specific frequency coinponents. So, the degree of freedoni of

selecting filter coeMcients is sn)all.

   These analytical results claimed that, the MLNN has a superiority to form the

class regi'on in an N-diinensional space, hoxvever, the classification perforn)ances of

the .NILNNs and the LSP methods are not investigated. To make clear the supe-

riority of these txvo, in this chapter, the signal selective classification perforinances

of the I ilLNNs and the LSP niethods a,re con)pared through coinputber siinulations.

The con}parison is curried out froin sexreral points of view; classification rates, nuin--

ber of t,he signal saniples and the con}putational coinplexity of the inethods. The

classifica,tion probleins used here are the inulti-frequency signal classificat,ion (refer

to section 4.2) and t,he dial-tone recognition.

6.2 Multilayer Neural Networks

rl"lie netNvork struct,ure is as the sanie as used in the chapter 4. ]Nlinin)ization of the

number of the hidden units has been Nvell discussed [17, 48]. In this chapter, hoxvever,

it, is detern)ined by e: perience. Aln)ost the highest classification perforinanc,e xvas

ol)tained xvit,h three hidden unit,s. The number of output, units is equal to thatr of

the signal classes. A single output unit is as: igned to one c}ass. This nieans the
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NILNN js trained so that, a single output unit, responds to one of the signal cla,sses.

   Ba,c,k-propagation (BP) algorithni is used for training the netxvorks. Both noise-

free and noisy signals' sets are used in a training phase and a t,esting phase. Noise

used in 'this chapter is as the sanie as the one used in Sec. 4.2. The learning rate

77 and the inoinentuin terin coefficient a are O.1 and O.8, respect,ively, Nvhich are

decided also by experience. The training is st,opped when t,he niean squared error is

less than O.Ol or the number of itera,tions exceeds 3000.

   A ratio of the number of the correctly classified signals and the number of the

entire testing signals, denoted "classification rate", is evaluated under several con-

ditions. A signal is classified into the pth elass if the pth output unit takes the

maximum value.

6.3 Design and Classification of Linear Signal

        Processing Methods

6.3.1 Design ofLinear Signal Processing Methods

XVhen the frequency components of the signals are knoxvn in advance, the filter spec-

ification can be determined, and the filters can be designed to extract the necessar.y

frequencies and suppress the unnecessary ones. Usually, high-Q amplitude and lin-

ear phase are desirable. On the other hand, when the frequenc.ies are not knoxvn,

the filters cannot be designed following some specificat,ions, rather they should be
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designed through some training algorithms like "adaptive filters". In this paper,

hoxvex'er, it is assuined that the frequency con)ponents of the signals are known, aiid

the forn)er case is taken into account.

   (1) FIR Filter 1 (FIRI)

   Figure 6.1 shows an example of the amplitude response of a 1000th-order FIR

filter for the class 1, It has the peaks at frequencies 1, 2 and 3 Hz, and the band-

xvidth is O.02 Hz. For class 2, the ainplitude response that, has the peaks at class 2

frequencies is used.

   The FIR filt,er with a direct form [54] is used, the output signal of the FIR

filter is calculated by Eq. (5.3) in the steady state. As discussed in section 5.3.1, a

very high-Q, which is high-order FIR filtcr can 1)e used to achieve higher resolution

xvithout increasing in the nieniory capacity and the nuniber of coinputations. The

out,put samples in the steady state are used in calculating the output power. A

linear phase is easil.y realized.

                       :I:

                       ::
                      lo
                       gl:

                       g.2

                                   FtwwHt]

 Figure 6.1: Amplitude response of FIRI filter designed t,o extract class 1 signals.

(2) FIR Filt,er 2 (FIR2)
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   The order of the tra,nsfer function of the FIR2 is as the saine as the nun}ber of

the san)ples of the signals. The order is nine and nineteen for .TN' = 10 and .N' = 20.

respectivel.v. The zero frequencies are located on the unit circle.

(3) IIR filter

   The transfer function of the ith second order circuit is gjven as folloxvs:

                               1-2cos 0,i:-i + :-2
                      Hi(:) =                                                                      (6.1)
                              1 - 2ri cos 0i,i ."./-i + rl?Åí -2 '

Here, ri js the inagnitude ofthe 7ith poles. ri is less than one. 0p and e, are the pole

and the zero frequencies, respectively. They are given as next equa,tions,

                              fi)i
                                , i= 1, 2,... (6.2)                      0pi = 2T
                              fs

                      0:i=2T /--,i' i= 1' 2"''' (6'3)

                                                                      (6.4)

where, f, is tl}e sa,inpling frequency.

   The t,otal transfer function is

                                     i
                             H(z) =n H,(:). (6.5)
                                    i=1
   In order to realize a high-Q filter, fifteen zeros and three poles are used for each

class. ri in Eq.(6.1) for the class 1 are O.9945, O.995 and O.9985, for t,he class 2,

O.994, O.995 and O.9985, respectively. The pole frequencies are 1.0, 2.0 and 3.0 Hz

for the class 1, and 1.5,2.5 and 3.5 Hz for t,he class 2, respectively. All zeros locate
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on the unit cvcle,
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Anip1it,ude response of IIR filter to extract, class 1 signals.

{
g

 -1
 -2
 xl
                 Output "mpie/ n

                 Figure 6.3: Iinpulse response of class 1 filter.

   By using this filtier for classification of the multi-frequency signals, the c:lassifica-

tion rate for the signals with 10 sainples and noise free signals is 86.9%. To achieve

this accura(•.y, 2000 output sainples are required. This rate is not good coinpared

xvith that of the FIR filter will be shown in Sec.5.5. The reason is the phase distor-

tion caused by the high-Q aniplitude response. By using a lower-( filter than the

above, the classificatioii rate xvas increased from 86.99J(o to 95.491o. In this case, 'ri

in Eq.(6.1) are changed to O.94, O.94 and O.98 for the class 1, and O.92, O.935 and
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O.98 for the class 2. In the loxver-Q IIR filter, 200 output san)ples are required. On

the other hand, since the FIR filter alxva,ys can guarantee the linear phase, a yery

high-Q filter can be effectivel.y used as shoNvn in Fig. 6.1.

(4) I laharanobis Generalized Distance (MGD)

   As shown in Eq.(5.1), the A4GD uses the covariance matrix of the signals that

correspond t,o the training signals for the A(LNN. The signals are generated by

using Eq.(4,2), then the signals are correlated to each other, so the covariance matrix

becoines a singular niatrix. To inake the covariance inatrix 1)e a non-singular inatrix,

sinall white noise in t,he range of Å}O.OOI are added to the signals.

   The covariance n)atrix is calculated by using the signals that correspond to tlie

training signals of the MLNN. According t,o increasing of the number of the signal

to calculate the covariance inatrix, the accurac.y of the cox,arian('e of the class region

is increased, and the generalization is n)ore effective. In this chapter, 200 signals are

used to calculate a covariance matrix for each class. Ineffectiveness of using more

than 200 signals is confirined by further experiinent.

(5) .N4axiinum Entropy ACethod (ptIEM)

   Aut,o-correlation sequence of the pth class signals are used to get the ao and

{ak} of the prediction-error filter of the 2)th class. Froin [55], the liinit of AI is

A/I < (2 N 3)vlr (N). From above equation, AI is decided as Ail = 7 for 10 sample

signals, AI == 10 for 20 sample signals. They are decided by trials.
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6.3.2 Classification Rules

The classifications by LSP inethods are carried out as described in Sec.5.2. Ho"'ever,

the Fourier transforn) and the .N(EA4 n)ethods use relaxed criterion as follows,

Criterion Define an amplitude response of the input, signal at fp.,p= 1 N P,r =

     1 t-v R as Ap,. The input, signal is classified int,o the class that includes the

     inaxin)uin nuinber of Ap. is inaxiinuin in Apt. at fp.,r = 1 N R, "'here, p'

     indicates all classes without pth class.

6.4 ComputationalComplexity

Norn)alized coniputational con)plexity (NCC) is defined to con)pare classifica,tion

perforinance based on the saine nuinber of coniputations. The paraineter for each

n)ethod and the calculation of NTCC is descril)ed in the folloxvings. The nuinber of

san}ples is Ar, and the nuinber of c,lass is P. In the NCC, the inner product of txvo

Ai-diinensional vector is nornialized as unity.

(1) Multilayer N'eural Netx; rork (MLITN/ )

   The NCC for the A4LNIINI' is calculat,ed for the network architecture that performs

the highest, classification for the training and the testing signals. The paraineter of

the NCC for the A4LNNT is the nuniber of the hidden units. After the training

conx'erges, the hidden unit out,puts approach to 1 or O [45]. So, the signioid function

can be replaced by a, t,hreshold funct,ion in the test phase. Therefore, the c:alc.ulation

of the sigmoid function is omitted from NCC. In this case, .INfCC = Atl + (AIP/.IN').
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Here, A•I is the number of t,he hidden units, and P is the number if the output units.

(2) FIR filter 1 (FIRI)

   Fron) Eq.(5.3), one output saniple of the FIRI is calculated by the inner product

of the input signal and the filter coeflicients. Then NCC for one output saniple is

unit.v. N7Yihen the nuniber of output sainples is IV, the nuinber of classes is P, then

NCC = KP. Here, the parameter of NCC for FIRI is the number of t,he output

saniple IY.

(3) FIR filter 2 (FIR2)

   FIR2 calculates its one output sample as an inner product, of the input signal

and the filter coefllcients. Due to the architecture of the FIR2, only one sample is

used. Then, NCC = 1 and there is no parameter of NCC.

   (4) IIR filter (IIR)

   In the case of Np pole frequencies and N, zero frequencies are used and N, > Aip,

then AT, of the 2nd-order circuits are used. Each circuit includes five inner products

of the signal and the filter coeMcients, then coinputation for one filter output is

AT, Å~5+(N, --- Ai,) Å~3=2Å~ N,+3Å~ N,. Then A'CC = (2 Å~ N, +3Å~ N,)/N.

Arp is as the saine as the nuniber of frequencies included in one class. The nuinber

of the output samples is the parameter.

(5) Fourier t,ra,nsforin (Fourier)

   The Fourier transforin of the signal is given by Eq.(5.2). In this equation, the

inner products of the signal and the coinplex nunil)er of the Fourier kernels are

required. The inner product ofthe coinplex nuniber is counted as t,wice ofthe real
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miml)er's. If a signal includes R frequenc.y components, then NCC = 2PR. The

1)aran)eter of NCC is the nuinber of observation frequcncy con}ponent,s R.

(6) Euclidean Distance (Euclid)

   If the teniplate cand the signal are Ar-din)ensional vect,ors, and the coinput,ation

of t,he Euclidean distance is as the sanie as the inner product's, then .INTCC == P.INrAI.

Here, A4 is the number of the templates and is the parameter of NCC.

(7) l /Iaharanobis generalized dist,ance (.N'IGD)

   To calculat,e the c,ovarianc,e n)atrix of the signals that correspond to the training

:ignals of the A4LN/N', if the nuniber of the signals is Al, .ZktLI inner products are

required. Hoxvever, this covariance niatrix can be used t,o ineasure the distanc'e, and

no re-c.alculation is required, Then this coinputation is oniitt,ed froin NCC, Froni

Eq.(5.1), if the signal is .INLdimensional vector, A'CC = (N2+N)P/AX Ei NP. There

is no parameter of NCC.

(8) .X•Iaximum ent,rop.y method (MEM)

   The coinputation of solving the prediction-error filter is oinitted froni NCC.

Because, tl}is process is as the saine as the design of t,he filter and the training

phase of t,he MLNIT. From Eq.(5,9), NCC = 2PAIO/AT. A4 is the number of the

ol)serx'ation frequencies, and O is the order of t,he filter. The parameter is Ail.

   The nun)1)er of paraineters for each inethod is listed in Tal)le 6.1 and 6.2. Table

6.1 is for liinited coinputation. In the case of the liniited coniputation, the conipu-

tations ofthe inethods are the sanie as the coinputation of the Ni 4LNN. The nuinber

of parameters is iiitegers, so N'CC for all methods is not exactly the same. Table
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6.2 is for not liinited coinputation. In

achiex'e the highest accuracy.

Table 6.1: Normalized computational

ters(Computation is limited).

this case, the number

coniplexities and

of paran)eter is set to

the

A•Iet,hods N=10 N=20

NCC NP NCC NP

MLNN 3,6 3 3.3 3

FIRI 4.0 2 4.0 2

FIR2 2,O ff 2.0 .

IIR 5.1 1 5.1 2

Fourier 4.0 1 4.0 1

Euclid 4.0 2 4.0 2

MGD - ' - -

A(EM 2.8 1 4.0 2

nuniber of ptlralne-

N: Number of samples

NP: NTumber of parameter

   As described above, NCC of the FIR2 is the number of the classes P and for the

AIGD is inultiple of the number of the signal samples Ar and P. These parameters

are decided b.v the classification problein, then NCC is fixed value for these n}ethods.

From Tables 6.1 and 6.2, for 10 samples signal and txvo class classification, NCC is
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Table 6.2: Norinalized

tel's(Computatioll is 11ot

coniputational

limited).

coinplexities and the

Methods N=10 N=20

NCC NP NCC NP

MLNN 48 40 44 40

FIRI 20 10 20 10

FIR2 - - - -

IIR 1020 200 510 200

Fourier 12 3 12 3

Euclid 400 200 400 200

MGD 20 ' 40 '

MEM 84 3 12•O 3

nuniber of pal'allle-

N: Number of samples

NP: Nuinber of p(aranieter

2 for the FIR2, and for t•he MGD, NCC is 20, ILTnder the same condition

the .NILNN js 3.6. Therefore, FIR2 is used xvhen computat,ion is limited,

is used Nvhen coinputation is not liniit,ed.
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 NCC for
'

the MGD

6.5 Multi-frequency Signal Classification

6.5.1 Classification ofMulti-frequency Signals

The following t"'o conditions are investigated: the nuinber ofcoinput,ations is liinitcd

or not liniited. In the foriner case, coinputations ofthe LSP inethods are decided

as aln)ost the sa,n)e as in tl}e A4L]NTNT n]ethod.

   The classific'ation rates with }iniited coinputations are listed in Table 6.3 in per-

centa,ge.

   In the case of t,he coinputation is liinited, for the Fourier tra,nsforin n)ethod and

for the!IE! •I inethod, only one observed frequency is used for each class. Then there

a•re 3Ci Å~3 Ci = 9 combinations of the observed frequencies of txvo classes. So, tl}e

classification rates are calculated for nine conil)inations, and the average of tlien) are

listed on this Table. In the Table, the multilayer neural netxvork is denoted as tlie

.X/ILN.NT, the FIR filter of extract,ing the specified frequency is denoted as FIRI, FIR

filter of suppressing the specified frequency is denoted as FIR2, IIR fi}ter is denoted

as IIR, the Fourier transform denoted as Fourier, the patt,ern matching method using

Euclidean distance is denoted as Euclidean, the pattern inatching n)ethod using tl)e

A4aharanobis generalized distance is denoted as .NiGD, and the Maximum entrop.y

method is denoted as A4EA(, respectively.

   Froni this table, the A/ILNN inethod can provide higher perforinance than the

LSP inethods. The classific,ation rates of using the signals "'ith 20 sainples are better

than those of the signals with 10 sainples. In the LSP inethods, the classification
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rates are higher for 20 saniples" signals than that of 10 sainples'. Therefore, non-

linearity is notable for 10 sainples' signals and is not notal)le for 20 sainples'.

   Classification rate of IIR filter for 20 saniple signals is "'orse than that of FIR

filter. Tlie n)ain reason of this difference coines froin a recurrent structure of IIR

filter. If the coinput,at,ion is liniited, the output : an}ples in the transient state becoine

don}inant, in the output, power, and accuracy js decreased.

Table 6.3: Probability of exact signal classification in percent,age when coinputation

is limited.

A4ethods rsiT==1o NT==2O

NFS NS NFS NS

A4LNN 97.6 85.4 97.4 90.6

FIR1 4.7 3.7 1OO 87.Jr

FIR2 1OO 50.3 100 Jr1.3

IIR o.o o,o 49.0 49.0

Fourier 56.1 Jr3.6 77.9 76.7

Euclid 49.6 52.1 59.4 62.0

AlGD - - ' -

A!IEM 60.8 56.8 87.7 87.3

N : N'umber of samples

NFS : Noise Free Signal, NS :Noisy Signal
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   For noise free signals, the FIR2 inethod provides higher classification rate than

the NILNN' , ho"'ever, it is not, a case for nois.y signal. Because, the FIR2 designed to

suppress specified frequency coinponents, hoxvever, additive noise is the randoin}y

generated, then the noise spectruin becoines very broad. So, this noise cannot be

suppi'essed.

   In the case of the coinputation being not liinited, the classificat,ion rat,es are

shovg'n in Table 6.4. The nuinber of the paraineters is increased; the nun)ber of the

hidden units is increased for the ! ILNN, the nuinber of output sainples is increased

for FIRI and IIR, the observation frequency is increased for Fourier and t,helIENI,

and the nuniber of the teinplates is increased for the Euclidean and the A'IGD,

respectively.

   The classification rates of the LSP inethods can 1)e iinprox'ed. They are almost,

the same in all methods.

   For the A4LNIT n)ethod uses the valley shape activation function [25] instead of

tdhe siginoid function in the hidden layer.

6.5.2 Relation Between Computational Complexity and

        Classification Rates

The relation betxveen the classification rate and the coniputat,ional coinplexity is

investigated based on .N'CC. About NCC, refer to Sec.6.4.

   Figure 6.4 shows the c,lassification rat•es of each method with respect to the NCC.

This figure obtained by increasing the nuinl)er of paran)eters of each inethod, and
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Tab1e

iS 110t

6.4: Probabilitv of exact

1imit,ed.

signal classification in percentage xx'hen ('omputation

Methods N=10 N=20

NFS NS NFS NS

MLNNT 1OO 90.6 1OO 99e3

FIRI 1OO 90.5 1OO 99.8

FIR2 - - - -

IIR 95.4 86.Jr 1OO 99.8

Fourier 70.6 65.7 1OO 94.8

Euclid 86.0 79.5 1OO 99.Jr

MGD 100 90.2 100 99.7

MEM 62.9 63.7 97.3 95.4

NT : Number of samples

NFS : Noise Free Signal, NS : Noisy Signal

then exaniined the classification rate. The paranieter of each n}et,hod is explained in

Sec,6.4. The noisy signals are used in this investigation. Froin the figure, for higher

NCC, the perforinances of all the niethods are alinost the saine. However, as the

NCC decreases, the LSP niethods drastically decrease the classification rates Nvhile

the .NILNN inetihod can still keep relatively high classification rates. Therefore, for

all NCC, the .NrlLNN can provide good classification performance.
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   Froin above inx'estigations, the inulti-frequency signal xvith 10 t,o 20 saniples in-

cludes enough inforination for the classification b.y LSP n)ethods if the.y use enough

coniputations. Because, their classification rates are sufliciently high xvhen the coin-

putation is not liniited. Hovgrever, this inforn}ation is not enough when LSP's coin-

putations are liinited, then the classification rates are drast,ically decreased. The

A4LNN keeps a high degree of freedom to form a class region in an Ar-dimensional

spac:e Nvhen the circuit scale is sinall, a,nd this realizes a robustness to the coinputa-

t,iO1)S.

6.5.3 Learning Ability ofMultilayer Neural Network

As discussed in Sec.2.4, when a large number of hidden units are used, it is difficult

t,o converge to the best solution. The initial connection weights should be care-

fully selected. XVhen random nuinbers are used as the initial c,onnection weights,

the A4LNN could not achieve good classification rates as the filters. However, the

coefficients of the FIR filter are used as the initial connection xveights, the A4LNN

achieved the saine classification rates as the filt,ers'. In this case, the valley shape

function is used in the hidden unit. The valley shape function rectifies unit input

and it can detect the signal amplitude. Although, this function can be realized by

using t"'o signioid functions, the foriner can niake fast convergence possible.
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Figure 6.4: Classification rates of signal classification by the A4LN'N method and the

linear signal processing inethods for (a)10 san)ples and (b)20 sainples noisy signal.
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6.5.4 SignalDetectionRegionsFormedbyMultilayerNeu-

        ral Networks

The signal detection regions forined b.v the A'ILNN are invest,igatJed 1)ased on the

hidden layer outputs and the connection "Teig'hts froin the input layer and the hidden

layer. Froin the coinputer siinulation results, the difference of the classification

rates between the Ni4LNNs and the LSP niethods is ('lear for ten san)ples signals'

classification. Then training signals of ten saniples noisy signals are used in this

analysis. The number of the signals is 400 for tNvo cl(asses.

   The connection weights values are listed in Table 6.5. In this ta,ble, the lst, and

the 2nd output units respond to the signal class one and two, respeetixrely. The

connection vgTeights froin lst, 2nd and 3rd hidden units and the biag unit to the lst

out,put unit are -18.95, 18.27, 11.63 and -2.0, respectivel.y. The connection weights to

the 2nd output unit are the opposite polarity to those of the lst one, This s.vniinetr.y

of the connection xveights polarity induc•ed by the synin)etry of the target signals

(1,O) and (O,1).

   Froni these connection weights, the folloxying four patterns are possible to acti-

vate the lst output unit. (Hidden units: lst, 2nd, 3rd)=(L,H,H), (L,H,L),(H,H,H)

and (L,L,H). "•'here H and L mean high and low level output, respectively.

   On the other hand, the following three patterns are available to activate the

2nd output unit, (Hidden unit: lst, 2nd, 3rd)=(H,L,L), (H,H,L) and (H,L,H), This

anal.ysis is farther coinpared to the ac.tual output patterns.
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Table 6.5: Connection weights of hidden layer and output layer

Hidden

1st

2nd

3rd

Bias

 Output

lst 2nd
-18.95

18.27

11.63

 -2.0

18.95

-18.27

-11.63

 2.0

   Table 6.6 shows the actual hidden la.ver outputs distribution for the input signals.

From this table, for the class one signals, two patterns are obtained out of four

pat,terns given by the analysis above. For class two, all the patterns are obtained.

From this results, it is confirmed that the A(LNN has higher degree of freedoin of

forn}ing t,he signal detection regions, and effectively classifies the inulti-frequency

signals,

6.5.5 Robustness of MLNN to Noise Level Changes

Rol)ustness for noise level changes is guaranteed by the filters. However, this kind

of robustness is not always guaranteed by the ;NILNN. Then, the robustness of the

.MLN:.XQT for noise level changes is further investigated.
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Table 6.6: Hidden U11it Olltl)Ut distribution.

Class1 Class2

Hiddenunit NS Hid(lenunit NS

1st 2nd 3rd lst 2nd 31•d

H H H 112 H H H 0

H H L o H H L Jr2

H L H o H L H 109

H L L o H L L 39

L H H o L H H o

L H L o L H L o

L L H 88 L L H o

L L L o L L L o

                 NS: number of signals

Analysis of connection weight

B.y coniparing the Eqs.(2.1) and (2.3), the connection weights betvsreen a hidden unit

and input la.yer correspond to the filter coeflficients hp(n -- k). Then t,he connection

xveights betxveen the input layer and hidden la.ver are analyzed by using Fourier

transforin. Figures 6.5 and 6.6 are the ainplitude responses ofthe connection weights

trained noisy and noise free signals. The numl)ers of the input units and tlie hidden

units are ten and three, respectively.
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Figure 6.5: Fourier transforin of sets of conneetion weights trained with noise free

t ignals.

   Forn) abox'e two figures, the ainplitude response of the connection weights sup-

1)ressing other class frequencies. NVhen the A4LNN is trained using noise free signals,

there are two types of an}plitude response; one is suppressing class 1 frequencies and

the other is suppressing class 2 frequencies. Hoxvever, when noise signals are used

t,o t,rain the ! ILNN, only one type of the ainplitude response is obtained. Froin this

r(},s.ult,, the training by noisy signals is harder than that case noise free signals.

   The next, figure shows the amplitude responses of Figs.6.5 and 6.6 in the same

graph. The connection weights of t,he input layer and the 3rd hidden unit are

used. Fron) this figure, when the A4LNN trained by noisy signals, the ainplitude

response slightly changed int,o flatter than that of trained using noise free signals.

So, the .X•ILN).<T adapt,ed to the noisy signals by changing its connect,ion weight to

have insensitive ainplitude response. The FIR filter has a sharp ainplitude response

and can sufliciently suppresses non-interest frequencies. The T.N•ILNN, it does not
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Figure 6.7: Fourier transform of two sets of connection weights trained with noise

free and noisy signals.

   NVhen the number of hidden units is increased from three to 100, the amplitude

response of the connection weights is changed as shoxvn in Fig.6,8. In this case, the

ainplit,ude response is sin)ilar to that of the FIR filter.

   Froin above analysis, the AILNIT achieved ainplitude response that can classify

the signals. Hoxvever, the ainplitude response of the connection weights is changed
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Figure 6.8: Fourier transforn} of a set of connection Nveights trained xvith noise free

: igi}als. Number of hidden units is 100.

due to nuinber of hidden units. So, t,he !rlLN'Ir can n}ake a suitable an)plitude

responf e due to given nuniber of hidden units.

Robustness to white noise

For filter niethods, robust,ness to the noise level change is guaranteed. So, when the

noise level is reduced, classification rate Nvill be better. The MLNN is trained xvith

L)O saniples incl"ding Å}O.5 additive randoin noise. NVhen the noise level is decrease

to O, the classification rate is reduced froin 90.691o to 89.791o. In this case, 200 data

for each class is used for training. So, generalization for sinaller noise signals is not

achiex'ed, Hoxvex'er, by increasing the nun)ber of t,he training signals froin 200 to 400

, tlie netxvork provides the classification rates of 91.791o for Å}O.2 additive noise, and

91.3C/o for the noise free signals, respeetively. Thus, the robustness for noise lex'el

cliange can be guaranteed by training the network Nvith a larger nuinber of the noisy
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signals.

6.6 Dial-ToneRecognition

Dial-tone recognition is used t,o specify a depres: ed button of the telephone by jts

t/one signal, Dial-tone signal[58] is used in the push button telephone to genc)rate the

signals t,hat correspond to the nun)erical and function buttons. Dial-t,one recognition

is an application of the inulti-frequency signal classification. Two sets of high and

low frequencies are used. The low frequenc.v set includes O.697, O.770, O.852 and

O.941 Hz. The high frequency set includes 1.209, 1.366, 1.477 and 1.633Hz. The

sanipling frequency is 4 Hz. These frequencies are norinalized b.v the sanipling

frequency as the saine as the inulti-freqiiency signal classification.

   Sixt,een kinds of signal clagses are generated by conil)ining the low and high

frequencies. One signal class corresponds to one dial-tone of one of the buttons.

Table 6.7 shows the combination of the frequencies. From this table, a frequency

is included in four dial-tones. Thus, the same frequency is included in the different

signal classes. This causes difficulty of signal classification considered the previous

subsection. The signal is generated by Eq. (4.2), and tl}e an)plitude and phase ofthe

sinusoidal signal are distributed in the saine range as the inulti-frequenc'y signals.

The number of signal samples is 10 or 20.
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Table 6.7:

#1 r- #16

Table 6.8:

method.

Relation betxveen conibinations of frequencies in Hz and dial tone classes

. Frequencies are norinalized.

1.209 1.366 1.477 1.633

O.697

O.770

O.852

O.941

#1

#5

#9

#13

#2

#6

#10

#14

#3

#7

#11

#15

#4

#8

#12

#16

Classification rates in percentage of dial tone recognition using MLNN

Signal Sa,mple

10

20

Class. Rate

90.6

95.7

6.6.1 Classification by Mulitlayer Neural Network

Tal)le 6.8 sho"'s classification rates. Fifty hidden units, whose activation function is

the siginoid function, are used. The classification rates using 20 sainples are bett,er

than that using 10 sainples. In both cases, tl}e classification rates are high. Froin

the results, this coinplex problein can be solved successively by the .TxlLN.NT inethod

xvith a sinall nun)ber of coinputations.
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6e6•2 Classification by FIR Filter

As a useful LSP met•hod, the FIRI is used to classify the dial-tone signal,g. Eight

kinds of 1000th-orcler FIRI filters are designed to extract each frequency coinponent

of Table 6.7. A signal FIRI filter extracts onl.y one frequenc.y component. The FIRI

output, powers are calculated, and two of thein are added to extract one of the 16

con)binations. NNii'th con)putation is liinited, the classifi('at,ion rates are coinpared

with those the AILN.NT method under the same computat,ional complexit,y. For this

purpose, 14 and 10 of the output sainples are used to calculate tlie output poxver to

classif.v the 10 and 20 sainples' signals, respectively. For the case of c'on)putat,ion is

not liinited, tsvo hundreds of the output san)ples are used to calculate the out,put

sainples for the 10 and 20 saniples' signals, respectively.

   Table 6.9 shows classification rates of the dial-tone recognition. Froni the table,

the classification rates are lower than that of the .A•ILN'N' method of all the c;ases.

In the case of con)putation is not liniited and using the 20 sainples' signals, the

perforinance of the LSP inethods is still loxver than that of the AILN.NT n}ethod.

This result shows that even if using the 20 saniples' signals, the frequency resolution

is not high enough t,o achieve the dial-tone classification, Froin the result of that

the l ILNN niethod achieved good clagsification rates, it can be estiinated that non-

linearit.v of this problem is high.
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Table 6.9: Classification rates in percentage of dial tone recognition using FIRI

method.

Signal Samples Output, Samples Class. Rate

10 LT

NLT

14

200

23.3

41.2

20 LT

ITLT

10

200

79.4

83.6

               LT: Computation is limited

               NTLT: Computation is not limited

6.7 Summary
In this chapter, the classification perforinance of the l 'ILNNs and the LSP inethods

have coinl)ared based on their c.lassification rates, t,he nuinber of sainples of the

t igi}al and coinputations. Fron} coinput,er sin)ulation results for the inulti-frequency

: ignal classification, in the case of the coniputation is not liinited, the X.4LN'Ns and

t,he LSP n}ethods are the saine classification perforinance. The short observation

period affect,s the classification perforinance of the LSP niethods. This effect is

reinarkable xvhen the coinputation is liinited.

   Therefore, the analytical results of t,he chapter 2 and 5 are supported by the

results of this chapter. The A•IL]N'N has a superior to the LSP methods on the clas-

sification perforinance. Especially, the superiority of the classification perforinance
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Chapter 7

CONCLUSIONS
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In this thesis, the multila.ver neural netNvorks (MLNN) applied to frequency ,select,ive

classification probleni has been studied.

   First, the classification inechanisn) of the .NILN.N js introduced, and it,s dassifi--

cation perforinance is discussed theoretically, 1)ased on a degree of freedon) to divjde

the pattern space due to the signal class distril)ution. To verify the degree of free-

doin, the nuinber of the connection weights which achiex'e linear separable regions

at the input of the output unit is counted out. Fron) the result, the A/ILNN has had

high degree of freedom to forin the class region. On the other hand, the NILNN

has required training using a set of input and desired outputs. XAv7hen the degree of

freedoin of the netxvork paraineter is sinaller than that required by the probleni, the

accuracy for trained patterns is low, hoxvever, the convergence is fast. In the c'ase

of tlie degree of freedoin of the network paraineter is large, the accuracy for trained

patterns is high, however, the convergence is sloxv.
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   Second, miiiimum numl)er of training data selection methods for generalization

and on-line training has been proposed. It has l)een pointed out that the general-

ization perforinance is iinportant subje('t when the I ILNN is applied to the signal

proc•essing field, 1)ecause, t,he generalization perforn)ance of the linear fi}ter niethods

is alxva.vs guaranteed, hoxvex'er, it is not guaranteed for the .TxlLN.N'. One is pairing

inethod and is used Euclidean distance to select, t/he nearest data froiii other c•lass.

The other is pairing and training niethod, and is select data near the class boundar.y

by using seini-optiinal netNvork's connection "'eight,s. Txvo classification problen)s of

txvo-dimensional are used t,o verify two inethods. Froni the coniputer siinulation re-

sult,s, the pairing and training niethod can provide 1)etter accuracy than the pairing

n}ethods. These can be applied to on-line training.

   Third, the classification perforinance of t,he linear signal processing (LSP) ineth-

ods are investigated as a pattern classification. The classification by the LSP met,h-

ods is analyzed based on the distance froin the LSP coefficient,s to the input signal

x'ect,ors. In this case, the nuinber of sainples of the signal and the coniputational coin-

plexit.y of t,he LSP inethods has been considered xvhen classification perforniances of

the LSP are investigated. NVhen inany sainples are used, the signals can be classi-

fied xyith sn)all nun}ber of sainples of the filter outputs. In this case, signals inc}ude

frequency compoiient to be extracted by LSP methods are located in narrovKr space

far froin t,he coeflicients. However, sn}all nuniber of san}ples are used, the frequency

resolution bec'omes loxver, and inore accurate anal.ysis is needed for the classification.

Therefore, inany output sainples are required. The signals locate "ride area in the
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 signal space and soine of thein are near froni the coefficients. In both cases, tlie

 dassifica,tion accuracy can be iinproved b.y increasing the nuinber of sainples, This

 is corresponded to increasing the nuinber of hidden units in the A•ILNN. Hoxvever,

the degree of freedoin to select coefficients of the LSP has ver.v sinall, bec'ause, the

coeMcient,s are designed to ext,ract specified frequenc.v coinponents.

   Finall.y, the classificat,ion performance of the .MLNN and the LSP methods are

('on)pared in the light, of coniputer siniulations results. The frequenc.y selectix'e clas-

sification is used for this purpose. The signals are classified based on it,s frequenc.y

con)ponents. The con)parison is curried out based on clagsification accuracy, nun)-

ber of signal sainples and con)putational eon)plexity. Froin coinpiiter siniulation

results for the niulti-frequency signal classification, in the case of the con)putation

is not liniited, the l(LNN's and the LSP inethods are the san)e classification perfor--

inance. The short observation period affects the classification perforn)ance of t,he

LSP n)ethods. This effect is reinarkable vsThen the con)putation is liinited. There-

fore, the analytical results of above two are supported by the coniputer siinulation

results. The !4LiN'NT has a superior to the LSP methods on the classification perfor-

niance. Especially, the superiority of the classification perforniance of the A4LNN

is ren)arkable in the dial-tone recognition. For this kind of coinplex prol)leni, the

ACLNN can ac:hieve good classification perforinance xvith sniall eoniputation.

131



132

B

[i]

[2]

[3]

[4]

[5]

[6]

ib1iography

M.L.Minsk.v and S..4L.Papert, Perceptrons, E.Tl)ande(l Edz't71on, the MIT press,

1988.

D.E.Rumelhart and J.L.McCelland et al., Parallel Dz'strib`tLted Processz'ny, the

MIT Press, 1993.

B.Widrow and M.E.Hoff, "Adaptive sxvitcliing circuits," IIRE VVESCON Con'v.

Rec., pt. 4, pp. 96-104, 1960.

S.Haykin, Adaptive filter theory (2nd edition), Perntz'ce-Hall Inc., 1991.

K.Ng and R.P.Lippinann, "A coinparative stud.v of the practical characteris-

tics of neural net"rork and conventional pattern cl(assifiers," 7VeiLral infor7natz'on

processing systems 3, pp. 970-976, 1990.

K. Funahashi, "Approximate realization of identity mappings by three-layer

neural netNvorks (in Japanese)," IEICE Trans., vol. J73-A, no. 1, January, pp.

139-145, 1990.

                              133



 [7] S.An)ari, `'.NIat,heinatical foundation: of neuroconiputing," Proceed/;nycs of

   IEEE vol, 78, No. 9, pp. 1443-1463, Sept. 1990.

 [8] B."'idrow and lI.Lehr, "30 years of adaptive neural networks: perceptron,

   madaline, and backpropagation," Proceedi,ngs of JEEE, vol. 78, No. 9, pp. 1415-

   1442, Sept. 1990.

 [9] E.Levin, N.Tishby and S.Solla, ".AL statistical approach to learning and gener-

   alization in layered neural networks," P7'oceedz'ngs of IEEE, vol. 78, No. 9, pp.

   1568-1Jr 74, Sept. 1990.

                                                              '
[10] T.Poggio and F.Girosi, "Networks for approx. imation and learning," Proeeedt;ngs

    of IEEE vol. 78, No, 9, pp. 1481-1497, Sept, 1990.

[11] lti.XVada and Al.Kawato, "Estimation of generalization capability by combina-

   t,ion of nexv inforinat,ion crit,erion and cross validation(in Japanese)," IEICE

    7}rans, vol. J74-D--II, No. 7, pp, 955-965, Jul.y, 1991,

[12] V.N.Nrapnik and A.Y.Chervonenkis, "On the uniforin convergence of relative

    frequencies of events to their probabilit,ies," Theorett;cal Probabz'lz't{y and Its A2)-

    ptt;cabions, N'o. 17, pp.264-280, 1971.

[13] Al.Hagixvara, "Back-propagat,ion xvith artificial select,ion -Reduction of the

    nuniber oflearning t/iines and that ofhidden units-(in Japanese)," IEICE 7M7'ans.

    vol. J'`'4-D-II, No.6, pp.812-818, June, 1991.

                                134

[i4]

[i5]

[i6]

[i7]

[i8]

[19]

[20]

 T.Oshino, J.Ojima, and S.Yamamoto, `'.NIethod for graduall.y reducing a num-

 ber of hidden unit,s on back propagation learning algorithin," IEICE Trans. x'ol.

 J76--D-II, N•o. 7, pp.1414-1424, July, 1993.

 I(.Nakayaina and X/.Kiinura, "Optiinaization of activation functions in inulti-

 layer neural network," Proceeaz'ngs of InteTnati,onal conferenee on netL7'al net-

 'works, vol. 1, pp.431-436, June, 1994.

J.Sietsma and R.J.F.Dow, "Neural net pruning - XVh.y and How." Proceedz'nJ(s

 of IEEE lnternational Conference of Ne?Lral Network, vol. 1, pp.325-333, 1988.

J.Sietsina and R.J.F.Dow, "Creating artifieial neural netxvoi'ks that generalize,'"

IVe'ural ?Vet'works, vol. 4, pp.67-79, 1991.

J.Zhan and F.Li, "A self-organization neural netNvork and detecting signals,'"

Proceedings of INNS rvorld congress on nenra,l net'worl,;s, Portland, Oregon, x'ol.

IV, pp. 748-751, 1993,

R.Vanderbeek and A.Garper, "A baek-propagation network for analog signal

separation in high enxrironments," P7'occe(lz'ngs of Jnte7'natz'onal 2'oint confe7'ence

on.nesw'al nettwork, vol. I, pp. 664-669, Boltimore MD, 1992.

K.A.AI-lIashouq and I.S.Reed, "The use of neural nets to combine equaliza-

tion "'ith decoding for severe intersyml)ol interference channels," IEEE 7}rans.

7Ve`ural NetworL', vol. 5, N•o. 6, pp. 982-988, 1994,

                            135



[21] D.N.(.Hunin'iels, XV..ALhined, and !(.T..NIusavi, ".4Ldaptive detection of sniall si-

    nusoidal signals in non-gaussian noise using an RBF neural netxvork," IEEE

    [ZPb'ans. 7VezLral NetworA;, vol. 6, No. 1, pp. 214-219, 1995.

[L)2] Z.H.Michalopoulou, L.XV,.Nolte, and D..4!lexandrou, `tPerformance evaluation

    of multilayer perceptrons in signal detection and classific,ation," IEEE 7Hlr'ans.

    IVetural IVetzuork, vol. 6, NTo. 2, pp. 381-386, 1995.

[23] G.Veciana and .4L.Zakhor, "Neural net-based continuous phase inodulation re-

   ceivers," IEEE 7b'ans. communz'cations, vol.40, No.8, 1992.

[24] D,P.Bouras and D.rlakrakis, "N'eural- net based receiver structures for single-

   and n)ulti-ainplitude signals in int,erference channels," ProceedinJ(s of IEEE

    VVorA;shop on neiLral networks for si,gnal processing IV, pp.535-544, 1994.

[25] K,r'akaya,ina and K.Iinai, "A neural den}odulator for an)plitude shift keying

   signal," Proceedz'ny(s of ENNS Internatt;onal conference on artz'fict;al neural net-

    work, Sorrent,, Italy, vol. 2, pp. 1017-1020, 1994.

[26] K.Ohnishi and K.Nakayaina, ".4L neural deinodulat,or for quadrature an)plitude

    modulation signals", Proceedz'ngs of IEEE Internattonal conference on neural

    net'(vorL:s, NALiashingt,on, DC, pp. 1933-1938, June 1996.

[L)7] K.Hara and K.I'aka.yaina, "High resolution of inulti-frequencies using niultilayer

    net"'orks t,rained by, back-propagation algorithm," I'roceedings of I7V7VS Wo7'l(l

    cong7'ess on ne`tLral net'worK:s, Port,land Oregon, xrol. IV, pp. 675-678, 1993.

                                 136

 [28] K.Hara and K.Naliayania, `'Classification of n}ulti-frequenc.y ,signals xvith ran-

     doin noise using inultila.yer neural netxx'orks,"' P7'ocee(l7i77,gs of JEEE Inte7'7?,at•io7?,a,l

     lot;nt Conference on NeiLral 7Vetwork, N'ago.ya Japan, vol.I, pp.601-604. 1993.

 [29] S.Haykin, ".N'eural netxvorks expand SP's horizons," .IEEE Sz'gnal P7'oce.sszl7?.q

     Magazt;ne, pp. 24-49, A•larch, 1996.

 [30] A.C.Tsoi and R.A.Pearson, "Comparison of three classific'ation t,echniques.

    C.4LRT, C4.5 and n)ulti-la.yer perceptrons," Ne`tLral lnfor7nat/;on P7'ocessz7?,o S'ys-

    tem ,9, pp. 963-969, 1991,

[31] L..Atlas, R.Cole et al., "Performance con}parison betxveen backpropagation iict-

    xvorks and classification trees on three real-Nvorld applications," Ne`tLral I7?,fo7'-

    mation Processing Syt stem 2, pp. 622-629, 1990.

[:32] S.L.Gish and ,XV.E.Blanz, "Con)paring the perforinance of connectionist and

    statistic'al classifiers on a iinage seginentation problein," Ne`ural Infor77?,atZon

    Processz'ng S`ystem 2, pp. 614-621, 1990.

[33] K.Hara and K.Nalvayania, "Coniparison of signal classification performance

    betNveen inult,ila.ver neural netxvorks and linear signal processing inethods (in

    Japanese)," Informatz'on Processz'ng Soez'et?y of Japan 7b'ans., vol. 38, No. 2, pp.

    245-259 1997.
           ,

[34] K.Hara and K.Nakayania, "Selection of ininin)uin training data for generaliza-

    tion and on-line training by multilayer neural netNvorks," Proceediny(s of IEEE

                                 137



[3;:]

[36]

[37]

[38]

[39]

[4O]

Interna,t/Jona,l conference on 7?,e'tLra,l 7?,etworL;s, vol. , pp.436-441, Nl 'ashington.

DC, June, 1996.

K.Hara and K.Naliayaina, "Coinparison of activation functions in inult,ilayer

neural network for pattern classification," Proceedzlngs of IEEE Internatz'onal

eonference on ne'tLral netuJorks,Orland, Florida, vol. V, pp. 2997-3002, 1994.

K.Hara and K.Nal"ayaina, "Effects of activation functions in inultila.yer neural

network for noisy pattern c'1assification," Proceedi7?es of JNIVS Wo7'ld Congress

on Ne•(Lral 7Vet'worK', vol. 3, pp.767-772, San Dego, California, June 1994.

K.Hara and K.N'akayaina, "]N4ulti-Frequenc.v Signal Classification by ]iNlultilayer

Neural Netxvorks and Linear Filter Methods," IEICE trans. I7itLndamental, (to

be printed)

K.Hara and K.Nalvayaina, "Signal classific'ation based on frequenc.y analysis

using n)ultilayer neural network lin)ited data and coinputation," Proceedz'nss of

IEEE Inte7'nati,onal Conference on Ne?Lral 7VetworL;s, x'ol. 1, pp.600-605, Parth,

Aut t/ralia Noxr. 1995.
        '

T..NI.Cover, "Geomet,rical a,nd st,atistica,1 properties of syst,ems of linear inequali-

ties Nvith applications in pattern recognition," IEEE 7"lr'ans. Electrz'c Computers,

vol. EC-14, pp. 326-334, 1965.

S.Ha.ykin. NeiLral Net'tvorks - A compreh,cnsi,ve foimdatt;on, pp. 57-59, ! ilacmil-

lan College Publishing Compan.y, 1994.

                              138

[4i]

[:12]

[43]

[44]

[45]

[46]

[47]

[48]

 .4L.Islo"'alcz.yk, "Counting function theoren) for n}ulti-la>'er netxvorks," Ne'tt,ra,l

 Informatz'on processz'ng system 6, pp. 375-382 1995.

 J.!Iakhoul, .4t.El-Jaroudi, and R.Schxvarts, "Partitioning Capabilities of Txvo-

 La,rer Neural Networks," IEEE 7-7'ans. Sz'gnal processz'ng, vol. 39, N'o. 6, pp.

 1435-1440, 1991.

G.J.Gibson and C,F.N.Cowan, "On the decision regions of multilayer percep-

trons," Proeeedings of IEEE, vol. 78, pp. 1590-1594, 1990.

G.Nakamura, "Four dimensional geometry (In Japanese)," A se7}arate 't7ol'tLme

of Mathematical scz'ences - DinLen,sio7?, -, Saiensu-sya, pp. 38-43, April 1996.

K.Nakayaina, S.Inoinata, and Y.Takeuchi: "Reductions in nunil)er of bits for

digital realization of multilayer neural netxvork (in Japanese)," IEICE 71r"ans. ,

vol. J73-D-II, no. 8, pp. 1336-1345, 1990.

C. Cachin, "Pedagogical pattern seleetion strat,egies," Neural Net'works, vol.7

N'o.1, pp.175-181, 1994.

A4. Kutsuxvada, A. Taguchi and Y. ACurata, "Fixing the generalization areas of

neural netxvorks by iterative learning (In Japanese)," IEICE Teeh,nz'cal Report,

I'C93-11, pp.81-87, May 1993.

T. Ueda, K. Takahashi, and S. A4ori, `14L structural learning for multi-la.yered

neural netxvorks by using fuzzy set - A pruning weights and units - (in

Japanese)," IEICE 7blans., Vol. J78-D-II, 10, pp. 1479-1490, 1995.

                             139



[49]

[50]

[51]

[r: L)]

[53]

[5-4]

[55]

[56]

[57]

K, Fukuinizu and S. XVatanabe, "Error Estiination and learning data arrange-

n)ent for neural netxvorks," Proeee(l'i,ngs of IEEE Internatt;onat confe7'ence o7?,

nettLr(Ll net'tuorks, Orland, Florida, vol. I, pp. 777-780, 1994.

R. O. Duda and P. E. Hart,, Pattern Classification and Scene Analysis, John

"'ile.y & Sons, Inc., 1973.

T. Okuno and H. Kume, AIulti-value analysis, N'iL;A;a--giren, pp. 259-272, 1981.

J, B. .NIacQueen, "ACethods for classification and anal>rsis of n)ult,ivariate ob-

servations," Proceedinss of Sz/77Lp. Math. Statz'st. and Prob., 5th, Berkeley, vol.

1, pp.281-297, 1967.

M. R. .4Lnderson, Cluster Analysis for .Applications, Academz'c Press, pp.162-

163 1973.
   '

,J. S. Liin and A. V. Oppenhein}, Adx'ance Topics in Signal Processing, Prentt;ce-

Hall Inc. 1992.
        ,

H. .tALkaike, "Power spectrun) estiination through auto-regressive inodel fitting,"

Ann. Inst. Statist. Math., Vol. 21, pp. 407-419, 1969.

R. Schuinit, and R. Franks, !4ultiple DF signal processing: an experiinental

s>,'stem, IEEE 7b'ans. Antennas an(l Propa,gatzlon, vol.AP-34, pp. 281-290, 1986.

                                  .
L. R. Rabiner and B. Gold, Theory and Application of Digi'tal Signal Processing,

Prentice--Hall, Inc., (1975).

                               140

[,5 8] il",)'Iatsuinoto et al., Signal forni for push button

Electr/;cal Co7n7n'tLnt;catz'on Laborator/;es Te,chn/;ca,l ,

2411-2445 1968.
         '

141

 dial phone (

Jo'tL7'7?,al, Xbl.

ill

17,

Japane,se)."

n o. 1 1. p p.




