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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
1- CONTEXT AND MOTIVATION 
 
Human beings have been trying to make their lives easier in all areas and by all means. 

Despite all their efforts natural disasters still threaten to all their goods and even their lives. 

Between 1900 and 2005, floods, landslides, earthquakes and other natural disasters caused 

death to more than 36 million people and injury to more than 5.8 million people in more 

than 85 countries around the world. With the purpose of reducing these numbers we should 

first classify the disasters into two categories; a) disaster with material impact and b) 

disaster without material impact. The first type includes flooding, landslides, earthquakes 

etc; besides affecting human life this type of disaster causes damage to material goods 

mainly infrastructure, structures and lifelines. The second type, which does not affect 

material goods, includes famine, disease etc. To reduce the impact of the first category we 

need medical teams, engineers in all fields, architects, and other categories of professionals 

whose expertise can be of constructive help. While for the second category we need in the 

first instance medical teams, humanitarian assistance. As engineers, we, authors, are more 

concerned about the first category.  
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Several researchers are seeking ways to reduce the impact of natural disasters on human 

life. Their proposed solutions can be classified into several categories, here we mention 3: 

1) Structural solutions, 2) Lifeline solutions, 3) Medical solutions and others. Solutions 

may vary from one disaster to another, e.g. solutions proposed for landslides are not those 

proposed for extreme temperature. As a consequence of a) their existence in various 

regions of the world, b) large members of people can be affected in a very short time, and c) 

the economic damage that they may cause to the entire country. Earthquakes were the 

disasters considered in this study.  

 

When an earthquake hits in any location it kills, injures, makes people homeless, collapses 

structures, damages infrastructures etc. Obviously the severity of damage depends on many 

factors; strength of structures and infrastructure, material of constructions (reinforced 

concrete, wood, steel etc), strategies used in the face earthquakes (emergency plans, 

shelters etc). Some countries have prepared for earthquakes after a difficult history and 

some others are still facing problems. For example, Japan has learned from its previous 

experience and has prepared to face them. For example, in 1923 Kanto Earthquake, M=7.9, 

the death toll reached 142,000 people, while the number was reduced to 6,000 in 1995 

Hyogo-ken Nambu Earthquake (known as Kobe Earthquake), M=7.2, and in recent years 

the death toll has become very low, about 40 people in the 2004 Niigata-ken Chuetsu 

Earthquake, M=6.8. The 2003 Tokachi-Oki Earthquake, M=8.0, which excessively was 

described as being the strongest of the century. Other countries are still suffering from 

these disasters such as Pakistan which lost more than 82,000 people when the Kashmir 

area was hit by an earthquake in October 2005, M=7.6, see Figure 1.1. Iran also lost more 

than 26,000 people when an earthquake occurred in the historical city of Bam in 2003, 

M=6.6, see Figure 1.2. 

 
The reduction of an earthquake’s impact on human life can be done in two stages pre-event 

and post-event. The pre-event preparedness can be done through strengthening structures 

and infrastructures and lifeline response as well as planning for the emergency before it 

happens. The pre-event preparedness can also be as methodologies to follow such as 

proposed by Porter et al. (1993) and Johnson et al. (1999) who proposed a methodology to 

assess critical facilities for seismic activities. Kim et al. (2006), Ghobarah et al. (2006), 

Kuwamura (1998), Kiyono et al. (2004), Hoshiya et al. (2004), Hjelmstad et al. (1998) and 

others worked on strengthening structures and their stability in case of earthquakes. Some 
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of them were based on real cases such as Ghobarah et al. (2006) and Kuwamura (1998). 

Some others worked on strengthening the response of lifelines such as in Hoshiya et al. 

(2004), Torres-Vera et al. (2003), Menoni et al. (2002). The post-event issue considers 

mainly rescuing the victims in an effort to reduce mortality. This has to be done by medical 

individuals and also engineers. Shih et al. (2002), Iskit et al. (2001) and Naghi et al. (2005) 

considered the problems faced during the earthquake-related emergency from medical 

point of view, while Kuwata (2004) took it from an engineering point of view by studying 

the search, rescue and life-saving of earthquake related causalities. Some other researchers 

were limited to the case of preparing healthcare facilities for earthquakes such as 

Nagasawa (1996) and Myrtle (2005). 

 

    
     Figure 1.1- Pakistan Earthquake, 2005     Figure 1.2- Bam Earthquake, 2003 
      (Source: www.pakquake2005.com)       (Source: www.farsinet.com/bam) 
 

Much research has been done on strengthening the response of structures, response of 

lifelines, rescue and search. Kuwata (2004) discussed search and rescue activities but did 

not mention the damage to healthcare facility systems which may affect the rescue 

activities as well. A victim with severe injury should be treated in the shortest time to save 

his life and if a hospital is unable to treat him because of being full or damaged the risk to 

his life will be higher. This happened in Iran after the 2003 Bam earthquake, where many 

people died in hospitals waiting for treatment. Therefore dispatching injured people 

depends not only on the flow of traffic but also on the level of damage to healthcare 

facilities. Following the 1995 Hyogo-ken Nambu Earthquake hospitals in the affected areas 

were all unable to receive patients, while those around the city were empty. Hospitals in 

affected areas might survive if their fragilities were analysed. Nagasawa (1996) showed 

some cases of damage which affected the functionality of healthcare facilities. He 

discussed the damage to medical equipment after the 1995 Hyogo-ken Nambu Earthquake 

http://www.farsinet.com/bam/
http://www.pakquake2005.com/
http://www.farsinet.com/bam
http://www.farsinet.com/bam/
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without specifying the system that affects the hospital the most. Myrtle et al. (2005) have 

classified the importance of hospitals’ systems although they did not show how much a 

damaged system can affect the functioning at the facility. The methodology presented by 

Porter et al. (1993) and Johnson et al. (1999) is a good tool. The methodology consists of 

evaluating a coefficient to each system to judge whether the system is safe or not. The 

main problem of the methodology is that it does not have any reference so that the 

coefficient may be compared. This makes the judgment very difficult, and therefore the 

final result is not precise. 

 

As we mentioned, preparation for earthquakes can be done by many methods, but in this 

study we focus more on lifelines rather than the structural or medical categories. The 

lifeline category is very wide and many factors can be considered in it. It includes not just 

water, electricity, and gas but as their name indicates they are “Life Lines” in other words 

all services that have direct relation to life saving including medical equipment. 

 
2- OBJECTIVE 
 
The purpose of this study is to save the maximum number of earthquake-related-causalities 

and reduce the toll of death. This can be done by different disciplines; engineers, medicine, 

politicians, economist etc. However, we being of the engineering discipline will focus on 

engineering concerns. The focus will be to find a new methodology that estimates the 

damage to healthcare facilities in case of an earthquake. The proposed methodology should 

fulfil the following requirements   

 

• Detailed estimation of malfunction of each system, 

• Estimation of malfunction of the entire facility, and 

• Universal applicability 

 

In order to reach the final purpose, we need to set some targets and fix the work frame; 

Figure 1.3 summarizes all targets. To understand the condition of hospitals after an 

earthquake it is necessary to study real cases. Moreover, to establish universal 

methodology we should consider not only one particular case but many cases taken from 

different locations in the world. This step will be to study the vulnerabilities of healthcare 

facilities. This is very difficult to establish given that the condition of healthcare facilities 

are very difficult between countries. For example, it is impossible to compare a Japanese 
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healthcare facility to an Iranian one simply because the Japanese ones have very strong 

structures which make them resist to strong earthquakes, while the Iranian hospitals were 

built using adobe. This step will concentrate mainly on finding the common weakness 

shared between all facilities around the world. The second step is studying the response of 

internal systems; mainly the lifelines and equipment.  As it is impossible to study each 

installation of systems we will be limited to the most important lifelines and the most 

important equipment or commonly used equipment. This includes some experimental 

studies and computer simulations. The third step is finding the degree of damage to each of 

the systems, lifelines and equipment, and evaluating its appropriate fragility. The last step 

is the final goal: finding the fragility of the entire system. It should be noted that studying 

the fragility of a system helps the prediction of damage of that system and strengthens if 

that is possible or finds better solution if strengthening is not possible. We believe that this 

will be the best to consider in responding to all the above requirements. 

 
To summarize, the methodology consists on finding the fragility curves of the systems 

existing within a healthcare facility and combining all of them into one curve which will be 

the fragility of the entire facility. 

 
The question now is “what benefits would this methodology bring?” The answer can be 

encapsulated into the following points and in Figure 1.5, in which Hi represents a hospital 

of the healthcare system, composed of n hospitals named H1 through Hn. If the 

methodology is applied to Hi hospital the results will be the fragility of each service 

existing in it, this helps greatly to strengthen each of them if they are vulnerable. Also the 

results will be useful for dispatching the injured in case of earthquake by estimating 

systems that are not in function. Moreover, the fragility of the entire facility will be 

obtained too and it will mainly help the decision makers to classify the facilities according 

their most urgent needs to be strengthened. The next three points summarize what has been 

mentioned so far: 

• Very useful information about the situation of facilities can be of use to the rescuers. 

A rescuer on-site will be able to send the injured to receive the necessary treatment 

where it is available without the possibility of transferring him to other facilities 

unnecessary. 

 
• To strengthen a facility, the decision makers need a clear plan of what is vulnerable 

within the facility so that it may be fortified. 
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• Comparison of damage level between facilities helps in fortifying the healthcare 

system within the area, city and country. 

 

 
 

Figure 1.4- Steps of the study 
 
3- OUTLINE OF THESIS 
 
The present thesis is composed of 5 chapters organized into the following order: 

 
Chapter 2: This chapter is an introduction to healthcare facilities. It details their 

importance and the different systems they contain. The chapter also presents the factors 

that affect the transfer of the injured from the affected area to hospital. 

 

Chapter 3: This chapter presents two main sections; the first is a study of old events which 

can be taken from literature or original results found after investigations and the second 

section is analysis and discussion of the investigations that we carried out. The purpose of 

the chapter is to find out the common problems that affect any hospital around the world 

and to investigate in detail the source of problems that were faced through studying 

particular cases. 

 
Chapter 4: This chapter is divided into three main sections. The first section discusses the 

most important lifeline for the functioning of a healthcare facility. Investigations of its 

vulnerabilities were carried out and a solution was provided. The second section discusses 

Study damage 
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each system 

Estimate the malfunction 
of the healthcare facility 
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international cases 

Lifelines (most 
important lifeline) 

Equipment (most 
important or most used)

Finding the degree of 
damage of each 
system 
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the determination of finding the most important services that are able to treat the maximum 

number of injuries resulting from an earthquake. The third section is a study of the 

response of some equipment; free standing, mounted on locked and unlocked wheels and 

attached to their support. The purpose of this section is ensuring the functionality of a 

facility through assuring the availability of lifelines and then the operation of its most 

important services by studying the equipments that are used for treatment; several factors 

were considered such as the acceleration and the frequency. The focus is on finding the 

response of the equipment which will be shown in the next chapter. 

 
Chapter 5: This chapter is the final stage of the entire study. The purpose is finding the 

fragility of hospitals. To reach the final goal the fragility of hospital systems were found 

and that includes: lifelines and equipment. Among the lifelines two systems were 

considered given that they are vital for the functioning of a healthcare facility. Several 

types of equipment were considered based on several possibilities: wheeled tables, freely 

standing tables and shelves. The total fragility is a combination of all system fragilities.     

 

Chapter 6: Conclusion and future work.  
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Figure 1.5- Contribution of the study
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CHAPTER 2 
 

OVERVIEW ON HEALTHCARE FACILITY SYSTEM 
 
 
 
 
 
 
 
 
 
 
1. HOSPITAL SYSTEM 
 
1.1 Overview 
 
Hospitals are very complicated systems given that they hold large numbers of people, large 

amount of equipment, systems and installations. The Pan American Heath Organization 

(PAHO, 2000) has described hospitals as multi-facilities in one facility. They can be 

compared to hotels or residential areas with regards to the number of people and as industries 

with regards to the equipment, systems and installations that they include. Figure 2.1 shows a 

simplified model of a healthcare facility. The contents can be categorized into two areas: the 

Human category and the Physical category. The latter category is a group of systems that are 

inter-related in a very intricate way. Figure 2.2 illustrates a diagram in which all the systems 

that constitute a healthcare facility are shown.  

 

1.2 Human category 
 
The human category is composed of different parts; medical staff, i.e. doctors, nurses and 

technicians, administrative and technical support staff. This category is extremely important 
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for the functioning of the facility. Experience shows that when this category is affected the 

treatment of patients becomes difficult if not impossible. Moreover, these personnel need a lot 

of information as knowledge about the emergency may be very limited which causes stress 

and problems in treating patients.  

 

 

Figure 2.1- Simplified model for a healthcare facility  
(Source: PAHO) 
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Figure 2.2- System of the Hospital 
 
1.3 Physical category 
 
The physical category is a set of many groups, which can be classified into three main groups: 

1) structural group, 2) lifeline group and 3) human group.  

 
1.3.1 Structural and non-structural group 
 
The structural group includes all structural elements beams, columns etc. and non-structural 

elements (partition walls, doors, windows and such like). If this group suffers damage it may 

result in damage to all the remaining of groups; in other words it is of great importance to all 

the groups. For that reason, researchers have been focusing on finding new ways to make the 

structural group strong enough to sustain the shaking that it experiences during an earthquake. 

In classical buildings, new factors were proposed such as, construction materials, ways of 

construction, new theories to make the structure stronger among others. New structures were 

introduced, mainly the base isolation system which reduced greatly the damage to the 

structure. The isolation system allows the structure to experience non-linear deformation 

without being damaged; also it makes the natural frequency of the building very low which 

makes it survive earthquakes especially those with high frequencies. 

 
1.3.2 Lifelines and equipment group 
 
The lifeline group includes what is known as “lifeline” (electric power system, water supply 

installations, gas supply installations etc.) and equipment. Equipment can be divided into 

many categories: industrial equipment (electric power, such as generators shown in Photo 2.1, 

or Uninterruptible Power (UPS) system shown in Photo 2.2, air-conditioning controls, water 

tanks, see Photo 2.3, gas supply tank, see Photo 2.4 etc.). Alternative sources are used in 

hospitals given that the main sources can suffer damage or malfunctioning. Usually the 

problems can be damage to the actual source (electric power plant, water supply reservoir, 

telecommunication centres etc.) or it can be to their means of transport (cables, pipelines, 

antennas etc.). 

 
Medical equipment: large as X-ray units, see Photo 2.5, Magnetic Resonance Imaging (MRI), 

see Photo 2.6, Computerised Tomography Scanner (CT), see Photo 2.7, Cardiac 

Catheterisation, see Photo 2.8; or small such as bottles/boxes of medicine, X-ray films, 

laboratory quipment, computers, and printers such as shown in Photo 2.9 and Photo 2.10 etc. 



                    
Overview on healthcare facility system                                                                                         Page 12 

   
      Photo 2.1- Electric power generator             Photo 2.2- UPS system  
 

      
Photo 2.3- Water supply tank                    Photo 2.4- Gas supply cylinder 

 

    
Photo 2.5- X-Ray unit 

(Source: www.schroeder-medical.com) 

http://www.schroeder-medical.com/
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Photo 2.6- MRI Unit       Photo 2.7 CT scanners 

(Source: www.lawrencewray.co.uk) 
 

    
Photo 2.8- Cardiac Catheterisation   Photo 2.9 Blood vessel contrast unit 

(Source: www.fremantleheart.asn.au )   (Source: www.niigata-cc.jp) 
 

   
Photo 2.9- Portable computer                            Photo 2.10- Printer 
 
 
 

http://www.lawrencewray.co.uk/
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2. ROUTE OF PATIENT TO RECEIVE TREATMENT 
 
During the transportation of a patient to receive treatment in a healthcare facility many factors 

interfere with and may threaten his life given an obstacle. The obstacle that an injured party 

will most probably encounter on the way to a hospital is transportation difficulties. Depending 

on the level of damage, it is not unlikely that wide spread chaos will ensue on all remaining 

undamaged roads. Having passed through traffic problems and reached a hospital it should be 

noted that the patient may not yet be able to receive treatment, if the hospital itself is damaged 

or if it is full to capacity, transfer to another hospital may be necessary. As the following chart 

shows, many parameters can influence the route of an injured person seeking treatment. 

 

After being injured the injured party must be transported hospital. However on the way to the 

hospital he has to pass through traffic and use the roads. This means that the transportation 

systems becomes a very important parameter that affects the time it takes the injured party to 

get treatment. Some studies have been carried out with the purpose of determining the most 

vulnerable roads that will be used in the case of an earthquake for transporting patients to 

hospitals. The second parameter that can affect the treatment of casualties is the damage 

within the hospital itself. There are two kinds of damage: lifeline and structural damage. 

 

The structural damage represents the damage to the structural elements such as beams, 

columns, walls, slabs and such like. There are many levels to this kind of damage: slight 

damage, severe damage and total collapse. The affect of the damage on human life can vary 

between the different types of damage as well as the location of the damage within the facility. 

For example if a part of the building that is not used becomes damaged, the treatment will not 

be affected. However if a treatment room is damaged the treatment will be highly affected. 

 

The other parameter that can affect the hospital functioning is lifelines such as electric power, 

water supply, telecommunication and such like. Their damage can be the result of shaking of 

the ground itself as well as structural damage or it could even be damaged at the source of the 

supply itself, such as the central electrical supply, the conduits, the water reservoirs, the pipes, 

the antennas etc. Once the patient arrives at the hospital his treatment depends on the level of 

damage to the hospital. In the event of non-damage the patient will be treated and will return 

home or will be admitted to the hospital for more treatment. However, if the facility is 
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damaged the patient has to be moved to another facility. In this case the traffic parameter will 

be involved again. 

 

 
 

Figure 2.3- The Route on which an injured person should be taken to receive treatment 
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CHAPTER 3 
 

DAMAGE TO HELTHCARE FACILITIES 
 (PREVIOUS EXPERIENCE) 

 
 
 

 
 
 
 
 
 
 
1. INTRODUCTION 
 
In order to accurately assess hospitals in the event of an earthquake it is necessary to fully 

understand their condition after an event and isolate the common problems that are 

repeatedly found within them, aside from some of the factors that have a direct bearing on 

the malfunction of hospitals. It is for this reason that this chapter focuses on some cases of 

damage to hospitals from previous earthquakes. The chapter is composed of three main 

parts; A, B and C. Part A covers past experiences from a general point of view. 

Information acquired from literature about past earthquakes is presented from such events 

as the Northridge Earthquake of 1994, the Hyogo-ken Nambu Earthquake of 1995, the 

Marmara Earthquake of 1999, the Chi-Chi Earthquake of 1999 and the Bhuj Earthquake of 

2001. We considered only these events because they are recent events which reflect the 

situation of hospitals at present and therefore bring into focus the accuracy of the final 

results. Part B is an original contribution to the literature. The information of which was 

gathered from onsite visits and/or surveys that were carried out following the occurrence of 

each of the events. Seven events occurring in 2003 and 2004 are considered in the section; 

the Algerian, Boumerdes Earthquake, the Japanese, Sanriku-Minami Earthquake, Miyagi-
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ken Hokubu Earthquake, Tokachi-Oki Earthquake, the Iranian, Bam Earthquake and the 

Niigata Chuetsu Earthquake. The final Part C is a discussion and conclusion of parts A and 

B. 

 
The events presented in Part B occurred in different locations in the world that have 

varying hospital preparedness levels, some of them occurred in areas where no 

preparedness was found such as in Algeria and Iran following the Boumerdes Earthquake 

and the Bam Earthquake respectively, while the others occurred in Japan where 

preparedness levels are high and safety measures are being applied. In the first cases, we 

suggested some ideas which we hope will be considered to improve the situation with the 

purpose of helping these countries. Concerning the cases from Japan we analysed the 

events differently; the analysis of the Niigata-ken Chuetsu Earthquake and the Sanriku-

Minami, Miyagi-ken Hokubu and the Tokachi-Oki Earthquakes were done together since 

they occurred in the same area and time period (with just two months between them). The 

result of their analysis was used to determine the factors to be considered and the most 

important lifeline as shown in the following chapter, Chapter 4.  
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PART A 

DAMAGE TO HEALTHCARE FACILITIES, EARLIER EVENTS 
 

2- NORTHRIDGE EARTHQUAKE, USA, 1994 
 
2.1 Overview 
 
This earthquake occurred on January 17th, 1994 in the San Fernando Valley of Northern 

Los Angeles at 4:31AM pacific standard time; its magnitude was 6.7 (SCEDC, 2007). 

Figure 3.1 illustrates the area where the damage was found. The earthquake was not the 

first that occurred in the region, two others occurred; the latest was 5 years before the 

Northridge earthquake and the other in 1971. The magnitudes were almost equal; however 

this earthquake was the most damaging. Table 3.1 summarises the damage that resulted 

from the earthquake.  

 

 
Figure 3.1- 1994 Northridge earthquake, damaged area 

(Source: Hodgkinson et al., 2006) 
 

Luckily the damage was not as severe as it might have been due to the fact that that day 

was a holiday and also due to the time the earthquake occurred at. According to some 
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reports, the main cause of fatalities was damage occurring to buildings constructed in the 

1920s and 1930s, www.eqe.com.  

The earthquake caused damage to 750 health care facilities, 400 of them were checked in 

the first week after the earthquake. About 20 facilities suffered structural damage; eight 

hospitals were considered unsafe to be entered into because of severe damage to their 

structures. Of four hospitals in Santa Monica six structures were considered the most 

damaged having being built between the 1920s and the 1970s. The facilities experienced 

severe damage to their lifelines and their non-structural elements; the toppling of storage 

shelves was widespread. To summarize, the damage can be classified into the following 

categories: 

 

- Structural damage 

- Non-structural damage: roof-mounted equipment, vibration-isolation devices, 

equipment crossing a seismic joint 

- Lifeline damage: piping, duct systems, falling of shelves 

- Equipment damage: problems of anchorage,  

- And others. 

 
Table 3.1- General Data, Northridge earthquake 

Damage Number Remarks 
Deaths  57  
Injuries more than 1,500 Seriously injured 
Blackout 9,000 homes  
Gas outage 20,000 homes  
Water outage  More than 48,500 homes  

3,993 Severely damaged 
11,313 Moderately damaged Damaged 

buildings 51,240 Slightly damaged 
Road damage Up until 32 km from the epicentre On major motorways 

Road closure 11 major rods In all directions to downtown 
Los Angeles 

 

2.2 The Northridge Hospital 
 
This hospital is very old, composed of many wings inter-connected to each other.  Its 

structure, steel frame with brick veneer, suffered severe damage. The failure of the main 

girder connecting the wings of the facility caused damage to some corridors. Some 

structural damage was caused by equipment; some fans fell on the fourth-floor roof 

http://www.eqe.com/
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causing severe damage to some walls. Non-structural elements and lifelines were found to 

be the most damaged. Ceilings and interior lights fell down, several pipelines and their 

elbows were damaged. Emergency power generators could not be used when they were 

needed the most. It was reported that the facility suffered severe lifeline damage even more 

than has been mentioned above. 

 
2.3 The Olive View Hospital 
 
After its total collapse following the 1971 Sylmar earthquake, the facility was totally 

rebuilt with a very strong structure that resisted the 1994 earthquake, even-though it went 

through the highest ground motion acceleration ever recorded in buildings (S&VT, 2004 

and USGS, 2005). In spite of that, its lifelines suffered damage; the vibration isolators of 

two chillers situated on the roof of the facility were damaged. Their damage caused the 

chillers to move and damage the pipes that were related to them. The damage to pipelines 

caused the air-conditioning and water systems to fail. Given that the emergency power 

engines were well attached to their supports, none of them were damaged.  

 
3- HYOGO-KEN NAMBU EARTHQUAKE, JAPAN, 1995 
 
3.1 Overview 
 
The earthquake occurred on the 17th January 1995 in Kobe, Japan, at 5:46 AM local time, 

its magnitude was 7.2 (JMA), see Figure 3.2. The earthquake caused severe damage to the 

whole area. Total economic losses were estimated to be 96 billion US dollars. The largest 

part of this loss occurred to 75-80% of residential and commercial structures (Shinozuka et 

al., 1995). The remaining 20-25% of damage occurred to port, river and agricultural 

facilities. The damage was very widespread; it spread over a 100 km radius from the 

epicentre. Other cities, Kobe, Osaka and Kyoto, were touched by the earthquake with 

different levels of damage; Kobe was the most affected area. There was no problem with 

telecommunications after the earthquake. The NTT had cut off 25,000 lines in the affected 

areas. However, 2,000 lines were installed for public use at public offices and shelters. 

Table 3.2 illustrates more data about the impact of the earthquake.  
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Figure 3.2- Hyogo-ken Nabmu earthquake, Japan 

(Source: www.eqe.com) 
 

Rescue operations were made very difficult due to damage to many motorways and 

expressways and in other cases they were closed due to the rubble of destroyed buildings. 

The ambulances could neither take the injured to other hospitals in non-destroyed towns 

nor meet the demand. Some ambulance staff were injured by the earthquake too.  Many 

hospitals could not offer a high quality of treatment because of the lack of water and 

electric power. Some hospitals were severely affected by the earthquake and there was no 

communication between them. In the following part examples of damage to some health 

care facilities are summarised. 

 
Table 3.2- General Data, Hyogo-ken Nambu earthquake 
Damage Number Remarks 
Deaths Approximately 5,500  
Injuries 35,000  
Blackout More than 1,000,000 Excluding the collapsed houses. 
Gas outage 1,400 breaks  
Water outage  367,000 houses 2,000 breaks in the system 

>100,000 Complete collapse Damaged buildings 80,000 Severe damage 
Road damage Hanshin 20km, Nishinomiya 

bridge, Wangan bridge…etc 
20km was totally reversed 

Road closure -- No data 
Fire 150 fires occurred  
Telecommunication Generally it was fine  

Homeless 300,000 people In the first night of the 
earthquake 

 
 
 

http://www.eqe.com/
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3.2 Medical College of Kobe University 
 
The facility, which is located 10km from the epicentre, was built in different stages. The 

oldest was built in 1967 and the newest in 1985. The earthquake caused structural and 

lifeline damage. However, the lifeline, including equipment damage was more serious. On 

the 10th floor some equipment shifted and some fell down. The oxygen system was 

damaged and caused a drop in the pressure that caused the transfer of one patient to 

another hospital. The oxygen was centralized and then distributed to a different area of the 

hospital. Both air and water tanks were well anchored. The hospital has two emergency 

power generators, one in each building. They were installed on rubber elements to reduce 

the shocks in case of an earthquake. The generator’s connection utilities were all provided 

by flexible couplings to avoid any damage. The water was transported to the hospital 

buildings by four main pipes, the failure of one of them made the electric power engines 

switch off, since the water was used for their cooling. Therefore the facility lost electric 

power on top of the water supply. The hospital did not have any facilities to store water; 

however it had the possibility to pump water from a well at the university. There was a 

shortage of food since the gas supply was cut off. There was no problem with the 

telecommunication system, as the system was very well strengthened (Shinozuka et al., 

1995).  

 
3.3 Hyogo Medical Centre 
 
The hospital had a water tank placed on its roof. The tank fell over causing flooding of the 

hospital. As a consequence, the emergency power engines had to be turned off as their 

cooling system depended on water, causing a shortage of both, water and electric power. 

The hospital was evacuated and then closed for about two weeks until the water damage 

was repaired (Shinozuka et al., 1995). 

 
4 MARMARA EARTHQUAKE, TURKEY, 1999 
 
4.1 Overview 
 
The earthquake occurred at 3:01 AM local time on the 17th August, 1999 with a magnitude 

of 7.4 on the Richter scale in the North West of Turkey, see Figure 3.3. Its impact was very 

wide all over the city, which suffered damage to all its facilities. The affected area was one 

of the most important cities for the Turkish economy; it represents about 10% of the entire 

Turkish economy. The earthquake collapsed large number of multi-story buildings. Many 
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roads were completely destroyed which hampered transportation of the patients to 

hospitals. More information about the impact of the event is shown in Table 3.3. 

 
The major cause of death was the total collapse of buildings. Many injured suffered broken 

legs or arms as they were jumping from heights out through windows. The injured were 

taken to hospitals by ambulances, cars, trucks, helicopters, etc. In the first 48 hours the 

rescue activities were very slow. Hospitals could not provide the injured with the necessary 

treatment; patients were treated in corridors, parking lots, outside in the ruins or in mobile 

hospitals that were installed in stadiums. Many were simply turned away because there was 

absolutely no room, no supplies and even no physicians available to treat them, as many 

hospital staff were among the casualties. Some medical facilities were severely damaged or 

completely collapsed. According to some reports, the Kocaeli University Hospital treated 

700 patients in the first 24hours, 130 of them died (Scawthorn et al. 2000). 

 

 
Figure 3.3- Marmara earthquake, 17 August 1999 

(Source: USGS homepage) 
 
Twelve days after the earthquake twenty mobile hospitals and 16 permanent hospitals were 

in use for treating the injured. Three days later the health ministry announced that 115 

facilities were in use. Unfortunately due to much stress and calamity some private facilities 

increased the cost of treatment by 100% of that which was charged before the earthquake 

occurred (MCEER, 2000). Table 3.4 illustrates more information about the damage to 

healthcare facilities, and detailed information is provided in the following paragraphs.  
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Table 3.3- General Data, Marmara earthquake 
Damage Number Remarks 

Deaths  More than 17,000 According to non-official source 
30,000-40,000 were killed. 

Injuries 44,000  

Blackout The whole country Shortly after the earthquake and 
up to 12hours 

214,000 residential buildings Damaged buildings 30,500 business buildings Lightly to heavily damaged 

Roads damage At least 5 One of them a motorway 
Homeless More than 500,000 people  

 
4.2 Izmit SSK Hospital, Izmit 
 
The hospital is composed of two buildings, located at about 10km from the epicentre. The 

buildings are old, the first was built in 1938 and the second in 1978. The structural damage 

was not severe, but it suffered some minor damage to its non-structural elements. Plates in 

the expansion joint were buckled and caused non-accessibility to the hospital. The older 

buildings suffered a blackout for about 24hours and the newer building for two days. 

However, the emergency power generators were sufficient. There was no problem with the 

internal water system, waste water, heating system and hazardous waste disposal system. 

Some cylinders were moved and toppled, but no explosion or leaking was reported (Pickett, 

2000). In the first 24 hours 500 injured people were treated in tents set up in the parking 

lots and about 94 patients were sent to other hospitals. 

 
Table 3.4- Hospital Damage, Marmara earthquake 
Name of the facility Damage Remarks 
Duzce’s Faculty of Medicine Total collapse  
Duzce’s private Omur 
Hastanesi Total collapse 9 doctors were killed among 

other injured staff 
Kocaeli University 
Arslanbey 

Very severe 
damage  

Kocaeli University Hospital Very severe 
damage 

Accepted patients to be treated 
outside. 
250 doctors were treating 
injuries.  

Golcuk Hopital Damaged 
Remained open without 
electricity  
100 beds were moved outside 

 
4.3 Izmit State Hospital, Izmit 
 
The hospital is located 5km from the epicentre. It is composed of two buildings; the older 

was 60 years old, at the time of the event, and the newer was 10 years old, at that time.   
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No severe structural damage was observed except cracks at the masonry and expansion 

joints; as a result of this, the transfer of patients was difficult. The hospital lost electrical 

power for about two days. However, the emergency generators compensated. External 

telecommunication was inoperable for more than two days (Pickett, 2000). Internal 

telecommunication, including cellular phones, was inoperable for more than twenty-five 

days.  Some oxygen cylinders toppled but no leaking or exploding was reported. The 

hospital accepted 1000 outpatients to be treated in tents within the first 24 hours, about 150 

of them were evacuated to others hospitals in Istanbul, Ankara or Bursa. 

 
4.4 Adapazari SSK Hospital, Adapazari 
 
The facility is located about 40km from the epicentre. It is composed of three buildings 

built in different period, 1975, 1985 and 1996. The hospital suffered damage to one 

column and a wall. The emergency power engines worked well after the loss of 

commercial power (for about 11 hours). There was no damage to the water supply system; 

however, the sewage system suffered some ruptures. The hospital had no external 

telecommunications for more than two days including cellular phones. Interior 

communications were cut for more than twenty-five days. Walkie-talkies were however 

being used (Pickett, 2003). Some oxygen cylinders toppled over without leaking or 

exploding. Many shelves and nurses’ stations fell to the floor. During the first 24 hours 400 

patients received treatment, 160 of them were transferred to others facilities.  

 
4.5 Adapazari State Hospital, Adapazari 
 
The multi-wings facility is located at 45km from the epicentre. The oldest wing was built 

in 1970 and the latest in 1998. The hospital suffered very severe damage; two wings could 

not be accessed for more than twenty-five days. The building was erected on very bad 

quality soil, described as alluvial. Personnel stated that plans were being made to build an 

entire new facility in about 1 year “on better soil conditions” (Pickett, 2000). Generally the 

hospital did not suffer severe damage to its lifelines. The electric power was cut off for 

eleven hours, however the electrical power emergency generators were sufficient. The only 

means of communication was by cellular phone for internal and external calls. In the first 

two days there was no means of communication as even cellular phones were inoperable, 

then they became the only way of telecommunication for more than twenty-three days. The 

water and oxygen systems were fine and did not suffer any kind of damage. However, as a 
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result of the shaking some oxygen cylinders were moved and overturned but without 

causing any leak or explosions, some medical equipment, mounted shelves and monitors 

fell down. All the elevators were inoperable. About 3,600 injured people were treated in 

tents set up outside the facility; the majority of them were transferred to other hospitals.   

 
5. CHI-CHI EARTHQUAKE, TAIWAN, 1999 
 
5.1 Overview 
 
This earthquake occurred in the early morning, 1:47am local time, of the 21st September 

1999. It measured 7.6 on the Richter scale; its epicentre depth was about 8km (Lee et al., 

2000), see Figure 3.4 (a-b). About 10,252 aftershocks were registered during the weeks 

after the main shock; four of their magnitudes measured greater than 6.5 occurred in the 

next few days after the main shock. The earthquake was considered to be the strongest 

since Shin-Chu Taichung earthquake of April 1935 which measured a magnitude 7.1 and 

caused the death of more than 2,400 people (Lee et al., 2000). Further information is 

shown in Table 3.5. 

 

 
(a) Epicentre  (b) Fault 

Figure 3.4- Chi-Chi earthquake, Taiwan 
(Source: Shin et al., 2000) 

 

The damage was widespread in six counties; about 100 school buildings were damaged. 

About 4,375 healthcare facilities exist in the affected area, 163 of them are hospitals. 

Damage to hospitals can be divided into 3 major categories: 
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- Minor structural and non-structural damage, 

- Minor/partial structural damage and major non-structural damage, and 

- Severe structural damage or total collapse.  

The following is a summary of damage to three hospitals: Christian Hospital (Puli), 

Veteran Hospital (Puli) and Shiu-Tuan Hospital (Tsushan). 

 
Table 3.5- General Data, Chi-Chi earthquake 
Damage Number Remarks 
Deaths More than 2,400  
Injuries More than 10,000  
Electric Power 
damage 593 stations Total collapse or severe damage 

10,000 Total/Partial collapse Buildings damage Over 7,000 Damaged 
45km Remained closed for 10 days 

Road damage 
Over 10 bridges Totally collapsed 

Homelessness 100,000 people  
 

5.2 The Christian Hospital, Puli 
 
The hospital is composed of two main reinforced concrete structure sections. The oldest 

was built in 1979 and the newest was built in 1995. The main shock did not cause any 

structural damage, slight non-structural and lifeline damage occurred and equipment 

moved, see Photo 3.1. However following one of the aftershocks the facility suffered 

significant damage to its non-structural elements and lifelines which resulted in its 

evacuation, one week after the main shock; some of patients were moved to prefabricated 

buildings and some others to different facilities. The severity of damage was the cause of 

reducing the capacity of the hospital by 50 beds (which represents 8% of its real capacity). 

The first floor remained open and it was used for emergency treatment, patient registration 

and so forth, see Photo 3.2. The following are the most important results of that damage:  

 

1- The capacity was reduced in the time when the demand was the highest, 

2- Due to the equipment damage the quality of the service was reduced 

3- As a result of the relocation many patients suffered trauma. 
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   Photo 3.1- Exterior damage,  Photo 3.2- Interior damage (1st floor, remained open)         
Christian Hospital (Source: Lee et al, 2000)  Christian Hospital (Source: Lee et al, 2000) 
 
5.3 Veteran Hospital, Puli 
 
The Veteran Hospital is a multi-buildings facility as Photo 3.3 illustrates. The oldest 

buildings were built in 1974 and the others three years before the event. Some buildings 

suffered very severe damage, causing their complete closure, see Photo 3.4 and Photo 3.5. 

Some of the patients were moved to the other buildings while others to different facilities. 

The capacity of the hospital was dramatically reduced to 50% (220beds). The Medical 

Centre suffered considerable structural damage, lost its water supply and lost its electrical 

power. Emergency power did not work, since it was situated on the second floor of a 

separate building and as result of the amplified acceleration the majority of the components 

broke and caused their damage. Later on, the Medical Centre building had to be 

demolished and rebuilt, and the Administration Centre had to be repaired. 

 

 
Photo 3.3- Veteran Hospital, Puli 

(Source: Lee et al, 2000) 
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        Photo 3.4-Interior damage,              Photo 3.5- Exterior damage, Veteran Hospital 
             Veteran Hospital  
 

(Source: Lee et al, 2000) 
 
5.4 Shiu-Tuan Hospital, Tsushan 
 
This facility represents a special case as it is a private hospital, the largest in Nantou 

County and was only built two years before the earthquake. It was composed of 9 stories 

with a reinforced concrete structure. Given that the facility was very close to the 

Chelungpu fault (about 120m); it suffered sizable damage to its non-structural elements, 

see photos 3.6 and 3.7. The second and the third stories suffered the most damage, see 

Photo 3.8, and since the most important facilities operation rooms, recovery rooms were 

located there, the 400-beds facility had to be totally evacuated to other hospitals. Finally 

the hospital was closed. Resembling the previous two hospitals, many patients suffered 

trauma during their transfer. “Seven patients died due to the stoppage of life-support 

systems” (Lee et al, 2000). 

 

     
        Photo 3.6-Interior damage,    Photo 3.7- Interior damage, Shiu-Tuan Hospital 

Shiu-Tuan Hospital 
(Source: Lee et al, 2000) 
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Photo 3.8- Exterior damage, Shiu-Tuan Hospital 

(Source: Lee et al, 2000) 
 
6. BHUJ EARTHQUAKE, INDIA, 2001 
 
6.1 Overview 
 
The earthquake occurred at 8:46am local time on the 26th January 2001 in Bhuj city, see 

Figure 3.5. According to the Indian Meteorological Department the quake measured 6.9 on 

the Richter scale and according to the US Geological Survey it measured 7.7 on the Richter 

scale. The earthquake occurred in the Kachchh area. The earthquake occurred near the 

Pakistani border and it was felt in Bangladesh and Nepal. The seismographs in Bhuj failed 

and owing to this important data was lost. However, using broadband velocities the peak 

ground acceleration was estimated to be 375gal in Bhuj city. The earthquake affected 15.6 

million people in 21 districts and 8,800 villages, more information is shown in Table 3.6.  

 
Table 3.6- General data, Bhuj earthquake 
Damage Number Remarks 

Deaths 13,805 * 12,221 In Kachchh area 
* 1,584 In other parts 

Injuries 167,000 * 20,000 of them serious injuries 
210,000 Totally collapsed 

Buildings damage 
930,000 Damaged 
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Figure 3.5- Bhuj earthquake, India 2001 

(Source: Seismo-Watch homepage) 
 

The majority of the hospitals in the area that were supposed to receive injuries failed to do 

so and in many cases this caused the death of many people. Aside from patients, doctors, 

nurses and other support staff were killed in this earthquake. In Bhuj General Hospital 

more than 172 were killed after it collapsed, see Photo 3.9. Since the latter facility 

collapsed, the Military Hospital provided medical treatment to 12,254 patients through its 

Out-Patient Department. However, the Military Hospital became over crowded in a very 

short time. The Jubilee Hospital completely collapsed too as shown in Photo 3.10. The 

fairgrounds and Jubilee Grounds, were opened to receive patients, many doctors 

volunteered to give the injureds initial treatment. Within the two first days hundreds of 

patients were transferred to other hospitals. 

 

      
Photo 3.9- Collapsed Bhuj Central Hospital         Photo 3.10- Collapsed Jubilee Hospital 
 
6.2 Hospitals in Ahmedabad 
 
The city of Ahmedabad has a sufficient number of hospitals which helped the facilities to 

avoid the problem of overcrowding. The Ahmedabad Civil Hospital treated 675 patients in 

the first 3 weeks. Some hospitals in the Ahmedabad region were equipped to treat 

earthquake related injuries, and in others the lack of preparedness was the main cause of 
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the crises. “There was adequate arrangements for backup electric power supply at these 

hospitals” (Durgesh, 2002). The Saradabenh had no emergency power generators. In 

Vadilal Hospital the trauma division was closed because of some structural damage. 

Tertiary Care Hospitals, operated by the municipality, suffered structural damage 

 
6.3 Summary of damaged hospitals 
 
Tables 3.7 and 3.8 list and number some health care facilities that were damaged and/or 

collapsed in the State of Gujarat and Bhuj.  

 
Fortunately, the warehouses of the Central Medical Stores Organizations were not affected. 

Therefore medical supplies were available even if they were not in the needed quantities. 

Later there were enough supplies but there was a lack of surgical instruments and 

paramedic personnel since the majority of the local personnel were affected by the 

earthquake.  

 
Table 3.7- Damage to health care facilities in Gujarat State 

Facilities Collapsed Damaged 
District Hospitals 5 26 
Community Health Centre  21 46 
Primary Health Centre 48 118 
Sub-centres 227 357 
Integrated Child Development Scheme  800 2180 
Chief District Project Officers office 11 4 
Go-downs (warehouses) 6 4 
Homeopathic Dispensaries  110 8 

G
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Medical College and Special hospitals - 15 
 
Table 3.8- Damage to health care facilities in Bhuj 

Facility name Collapsed Damaged 
General Hospital   
Jubilee Hospital   
Nursing School Hostel   (serious) 
ANM Training School   
Tuberculosis Centre   

B
H

U
J 

Mental Hospital   
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PART B 
DAMAGE TO HEALTHCARE FACILITIES, RECENT EVENTS 

 

 
7. BOUMERDES EARTHQUAKE, ALGERIA, 2003 
 
The present section will focus not only on what happened during the above mentioned 

event but also on previous quakes. Some suggestions will also be given which can be the 

start of ideas to make the situation better in the future. 

 
7.1 Overview 
 
Algeria has experienced many earthquakes of different intensities and varying resulting 

damage. Table 3.9 shows that between 1365 and 2003 twenty major earthquakes 

measuring M5.0 or higher had occurred; eight of them were believed to be destructive. The 

locations of the epicentres of those events are shown in Figure 3.6. The disasters have 

caused various forms of damage to human life as well as material goods as Table 3.9 

shows. However, it is clear that the earthquake that occurred in 1716 had the largest impact 

on human life, since it caused the death of 20,000 people. In the 20th Century, Al-Asnam 

earthquake of October 1980 caused the largest number of human casualties; more than 

2,600 were killed, 8,300 injured and 348 were reported missing (CRAAG Homepage). 

 

The event that is considered in this section occurred in the Boumerdes province of northern 

Algeria. To be more precise, the epicentre was located 70km east of the capital Algiers; off 

the shore of the Zemmouri region, see Figure 3.7. The damage was widespread particularly 

in three main cities: Boumerdes, Thenia and Zemmouri. The damage was centred in an 

area of 3,500km2 within Boumerdes city. Some of the damaged buildings were not 

occupied yet, since they were brand new as shown in Photo 3.11 and Photo 3.12.  There 

was damage to 187,839 buildings; about 3.3% of which were public buildings and at least 

285 buildings were health care facilities (Belazougui, 2003). The earthquake affected a 

total of 3.5million people; one million of whom were severely affected, either by death, 

injury, homelessness or otherwise. Table 3.9 illustrates more information about the impact 

of the Boumerdes earthquake. 
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The National Earthquake Engineering Centre (CGS) has placed some accelerometers in 

some pertinent areas to record the seismic activity of the country. Figure 3.8 shows the 

measured peak ground accelerations at each station. As Figure 3.8 shows, the maximum 

ground motion was measured in the second station of Keddara and it was equal to 0.58g. 

Judging by the large amount of previous seismic activity in Algeria and the high levels of 

ground motion being currently measured, Algeria has had and will more than likely 

continue to suffer from earthquakes. We therefore feel that it imperative that the Algerian 

Nation begins to seriously prepare to save not only the lives of its people but also its 

valuable and costly infrastructures.  

 
7.2 Damage to hospitals 

 
The City Planning and Hosing Ministry had sent teams composed of engineers to visit the 

affected buildings, including health care facilities, to assess their damage. Their report 

includes details about educational buildings in addition to health care facilities. The 

assessment was conducted in accordance with the level of structural damage. For this 

purpose, they used five colours, Green1 to Red5, to assess the damage; each colour 

represents a particular level of structural damage. The description of each colour and the 

appropriate structural damage are shown in Table 3.11. In the province of Boumerdes, at 

least 242 hospitals of varying importance were affected; more than 30 of them suffered 

very severe damage or total collapse. The distribution shown in Figure 3.9 was achieved by 

the investigation of the Algerian engineers; the distribution represents the number of 

hospitals that were found in each damage category. 

 

         
Photo 3.11- Damage to new buildings    Photo 3.12- Collapse of residential building 
 



   
Damage to healthcare facilities                                                                                                Page 36
  

           
   Figure3.6- Major earthquakes 1365-200         Figure 3.7- Epicentre of  

(Source: CRAGG homepage)                Boumerdes Earthquake 
          (Source: neic.usgs.gov) 
 

 
Figure 3.8- Accelerometers Stations 
(Middle East Seismic Forum home page) 

 
Table 3.9- General data, Zemmouri earthquake 

Damage Number Remarks 
Deaths 2,278  
Injuries 11,450  
Homeless 200,000  

79,121 Slight damage 
64,316 Significant damage  

16,022 Very severe damage / should be 
demolished 

Buildings damage 

1,758 Total collapsed 
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Table 3.10- Major earthquakes that occurred between 1365 and 2003 in Algeria 
(Source: The National Centre for Research in Astronomy, Astrophysics and Geophysics Homepage, 
modified) 
Location  Date  Max. Intensity  Magnitude  Death  Injuries 
Algiers 3 January 1365 Strong Strong Many N/A 

Algiers 3 February 1716 N/A N/A 20,000 N/A 

Gouraya 15 January 1891 X 7.5 38 N/A 

El-Kalaa 29 November 
1897 IX-X 6.5-7.5 20 N/A 

Sour. El-
Ghouzlene 24 June 1910 X 6.4-6.6 30 N/A 

A. El-Hassan 25 August 1922 IX-X 5.1 2 N/A 

El-At El-Ab 7 September 
1934 IX 5.0 0 112 

Bejaia 12 February 1950 VIII-IX 5.6 264 N/A 

Chlef 9 September 
1954 X-XI 6.7 1,243 N/A 

M’sila 21 February 1960 VIII 5.6 47 88 

M’sila 1 January 1965 VIII 5.5 5 N/A 

Mansourah 24 November 
1973 VII 5.1 4 50 

Chlef 10 October 1980 IX 7.3 2,633 8,369 (+348 
missing) 

Constantine 27 October 1985 VIII 5.9 10 300 

El-Affroun 31 October 1988 VII 5.4 0 5 

Dj. Chenoua  29 October 1989 VIII 6.0 22 N/A 

Mascara 18 August 1994 VII 5.6 N/A N/A 

Algiers 4 September 
1996 VII 5.7 N/A N/A 

Ain-
Telmouchent 

22 December 
1999 VII 5.8 Many N/A 

Beni-Quartilane 10 November 
2000 VII 5.4 2 N/A 

Zemmouri 21 May 2003 X 6.8 2,278 11,450 

Note: The presented intensity is expressed in the Mercalli Scale.  
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Table 3.11- Scale used by the CTC-Centre for the assessment of structural damage  
(Source: CGS) 

Colour Description 
Green 1 Displacement of furniture 
Green 2 Slight damage to non-structural elements 

Orange 3 Slight damage to structural elements and severe damage to non-structural 
elements 

Orange 4 
Considerable damage to structural elements 
Very severe damage to non-structural elements 
Cracks on “X” shape for RC walls, bursting of joint beam-column 

Red 5 
Total collapse 
Very severe deformation  
Repair cost higher than the building itself 
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Figure 3.9- Distribution of structural damage 

 

More than 73% of the health care facilities suffered damage to their furniture and non-

structural elements; the remaining approximately 27%, suffered slight to severe damage to 

their structures. The main materials that were used for the construction of health care 

facility structures were RC, masonry and bricks. The age of the facilities were also variable, 

some facilities were built in the era of French colonization and were still in use. This issue 

made many facilities very vulnerable and weak to resist against any earthquake of such 

magnitude and perhaps of an even weaker magnitude. 
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7.3 CHU Central Hospital, Algiers 
 
7.3.1 Overview 
 
This hospital is located in the capital Algiers, about 70km from the epicentre. The facility 

is considered to be the largest hospital in the whole country, according to some sources. Its 

capacity is about 2,500 beds. It is an old hospital, built by the French during their 

colonization of Algeria so it was more than 60 years old at the time of the event. The 

facility is composed of many buildings; each building houses one or more of the hospitals 

life saving services. We observed that the building suffered only slight damage; therefore it 

did not stop functioning after the earthquake. The facility was able to accept casualties for 

treatment, but in some cases the staff had to transfer the injured because treatment was not 

possible in that facility. Some onsite medical staff helped in dispatching injured parties to 

different hospitals according to the possibility of treatment. One member of these teams 

stated that they had no plan of rescue; therefore the destination was decided by the doctor 

himself based on their own knowledge about the facilities available in the hospital. A total 

of five personnel were interviewed; two residents, two nurses and an assistant. 

 
7.3.2 Management aspects 
 
Among the five interviewed people, only one person, who commenced work there one year 

before the occurrence of the event, stated that he had attended training; however he 

claimed that it was not enough to prepare for such a disaster. The rest of the interviewed 

staff did not attend any form of training activity that would help them to act in the 

appropriate manner during an emergency. They declared that the situation would have 

been made better if they had had some form of training.  

 

The number of personnel present in the facility during the event was a serious problem as 

we observed. Some of the personnel, who were not at the hospital during the earthquake, 

had themselves been injured or members of their families had been injured or killed. Due 

to such circumstances, they were unable to be at the hospital and the lack of their valuable 

services caused additional organisational crisis. Others couldn’t physically get to the 

facility because of road closure and failure. Moreover, some of those interviewed stated 

that the number of personnel was insufficient even before the earthquake. The result of this 

inadequate organization resulted in inferior management of the patients, an increase in 

stress levels and/or difficult work conditions for the staff and poor quality of treatment. 
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7.3.3 Structural/non-structural damage 
 
The facility suffered slight structural damage. Some cracks in the walls were observed, see 

Photo 3.13. Some structural damage made the area inaccessible and therefore had an 

impact on the tasks of the personnel. Non-structural equipment fell down, broke and made 

some areas inaccessible; this in turn made moving patients difficult. 

 
7.3.4 Lifeline damage 
 
The electricity and telecommunications were cut for more than 12 hours. The staff reported 

that the commercial electric power was replaced by alternative sources. However 

telecommunications were cut in many buildings until July 2003, two months after the 

occurrence of the event. The facility had no alternative source of telecommunications, 

personnel were forced to use their own mobile phones.  

 

The water supply and gas were cut in some areas. Alternative sources were however 

available for use. Some equipment, including medical equipment, was displaced as a result 

of the earthquake. This caused them damage and/or un-operability. The radiology service 

was rendered inoperable due to the damage to its equipment. Other equipment was 

damaged as Photo 3.14 shows; the electric equipment fell because of weak attachment to 

its support; two months after the earthquake the equipment was still not fixed and therefore 

it remained unused for the whole period since the event. This damage caused delays in 

treating patients and difficulty in transferring injured people to other hospitals. 

Additionally, that damage in turn decreased the quality of services and stressed the staff 

who could not work under such conditions, as was stated by some of the personnel. 

 
7.4 Thenia Hospital 
 
7.4.1 Overview 
 
This hospital is located just several kilometres from the epicentre. It is composed of 2 parts: 

The French built the original part in 1870 during their colonization of the country. The 

second part was added in recent years. The older part of the structure, suffered very severe 

damage due to its age and the poor quality of the masonry that was used in its construction, 

see photos 3.15 to 3.17. The facility has a capacity of 213 beds. In total four people were 

interviewed: two doctors, and two administrative staff. 
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7.4.2 Management aspects 
 
Personnel never received any preparedness training such as lectures or seminars to help 

them deal with such a huge disaster. All of them were of the option that the situation would 

have been made better had they undergone some training or preparation. The number of 

personnel was not sufficient, even before the earthquake; staff members could not work 

due to injury or inability to get to the facility because of road closures. Problems with 

organization stressed the personnel and made them uncomfortable during their work. The 

same problems resulted in difficulties in treating patients and decreased the quality of 

treatment. 

 

     
      Photo 3.13- Cracks in the structure      Photo 3.14- Damage to electric equipment  

         CHU Hospital     CHU Hospital 
 

 
7.4.3 Structural/non-structural damage 
 
The building had itself suffered severe damage. A lot of damage to its structural and non-

structural elements was observed which affected the duties of personnel. The structural 

   
Photo 3.15- Damage to the 

emergency wing 
Photo 3.16- Collapsed roof 

of another wing 
Photo 3.17- Cracks in the 

walls of the emergency wing
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elements were totally collapsed throughout the majority of the facility. Non-structural 

elements had fallen, became broken and made the area inaccessible from all wings. The 

damage obliged the government to supply prefabricated buildings that were used instead of 

the actual facility, as is shown in Photo 3.18. The prefabricated buildings were used as the 

actual facility in which patients were being treated. Those prefabs were equipped with 

electricity and air conditioners to make life easier for the medical staff as well as the 

patients. The structural damage had a clear impact on the patients since they had difficulty 

being treated. The staff could not access or move the inpatients and many patients had to 

be transferred to other hospitals because their treatment became impossible in that hospital. 

 
7.4.4 Lifeline damage 
 
The situation in the hospital was dreadful; at least until July 2003. Many facilities were 

unavailable. Electrical power was cut for approximately 12 hours. During the first hours, 

candles were used until the back up emergency power began to operate. The gas and water 

supplies were cut off for more than 2 days; however alternative sources were used such as 

water tanks shown in Photo 3.19. Telecommunications were also cut, and there were no 

other options that could be used as alternative sources. Telecommunications were still not 

restored at least until July 2007, two months after the event. The lifeline damage made 

treatment difficult or even impossible; personnel stated that they could not work in the 

hospital under such difficult conditions. Damage to lifelines in particular affected life-

saving by delaying treatment, delaying the movement of patients and hindering the transfer 

of casualties to other hospitals, as equipment was strewn everywhere. 

 

  
Photo 3.18- Prefabricated buildings used Photo 3.19- Reservoir of water used as 
        instead of the actual building       alternative source 
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7.5 Findings and discussion 
 

7.5.1 Structural problems 

 

The age and type of structure were the two main reasons for the severe damage of 

structures. A building 130 years old cannot be used anymore without being reinforced; 

particularly if it is built with masonry as it is known that masonry structures cannot resist 

horizontal efforts; this issue alone made the structures very weak and therefore unable to 

withstand the earthquake. As mentioned previously, the Thenia Hospital was closer to the 

epicentre than the CHU; this issue was well witnessed; seeing as the Thenia Hospital was 

completely destroyed the personnel were obliged to transfer the majority of injured people 

to other hospitals such as the CHU. On the other hand, two main reasons show the 

vulnerability of the CHU. The first factor is its location; the facility was located about 

50km from the epicentre. The second factor was the peak ground acceleration (PGA) that 

was found to measure about 300 cm/sec2 (CRAAG); noting that such a value of PGA can 

not cause the damage that was found in the facilities. In other words, the poor state of the 

structure was what made it unable to resist any earthquake even if it was weak. 

 

7.5.2 Lifeline problems 

 

In addition to structural damage, the CHU suffered non-structural damage that was visible 

in the failure and collapse of some electrical elements, as shown in Photo 3.14. The 

radiology service was inoperable and patients who depended on that service had to be 

transferred to other hospitals. It is important to note that a radiology service is one of the 

most important facilities in a health care facility; the majority of earthquake-related 

patients need such a service because of the type of injury that they can suffer from.  

 

The situation of lifelines was not much better than that of the structure. The lifelines were 

cut for months from the occurrence of the event, which made the functioning of the 

hospital very difficult and sometimes even impossible. A hospital might be able to function 

for a few days without telecommunications but for months it cannot function properly. 

Generally, alternative sources are placed inside facilities, however in this case they were 

not. The use of candles to illuminate the hospital for the first few hours and the presence of 

a water tank is evidence that the facility did not have any supplementary sources onsite. 
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7.5.3 Management problems 

 
The personnel did not have any plan for rescuing the patients and did not have any training 

or lectures that could help them to act more appropriately during a disaster. The lack of 

personnel had a very severe impact on the treatment of patients as the personnel became 

stressed and could not carry out their tasks as they have. The CHU is the largest health care 

facility in Algeria; therefore it was expected to have a large number of personnel, 

especially considering that it has 2,500 bed places, and that it would be prepared for any 

form of disaster. Nevertheless, that was not the case given that both hospitals stated the 

lack of personnel to be a problem even before the earthquake and the absence of any 

disaster training activity or guidelines that might have helped them to respond more 

efficiently during a rescue. 

 

It is important to report that some of the personnel coped very well during the disaster 

because they were onsite treating and dispatching the injured without a plan. Many of the 

patients had to be transferred twice; the first was from the original facility to the CHU and 

since the latter was damaged too they then had to be transferred again to another facility to 

receive the necessary treatment. It is obvious that the situation would have been so much 

better if they had a rescue plan that at least aimed to reduce the number of transfers. Such 

transfers resulted in the immobilisation of a large number of staff, as they had to repeat 

their work and as such wasted time that could have been better used to save other patients.  

 

In conclusion, it was expected that at least the CHU would have been well prepared for 

such a disaster, given that it is the most important in the country and it is capable of 

accepting a large number of patients. The matter of transferring the patients twice shows 

the vulnerability of organization that health care facilities within Algeria are experiencing. 

For that reason it is recommended to make plans to protect these facilities to enable them 

to face any disaster that may occur in a country that has over a hundred year history of 

earthquakes. Some suggestions to build a methodology to protect the health care system in 

the country are shown in Appendix I with the purpose of making the situation better in the 

future.  
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8. SANRIKU-MINAMI, MIYAGI-KEN HOKUBU AND TOKACHI-OKI 
EARTHQUAKES, JAPAN, 2003 
 
8.1 Overview 
 
Since May 26th Northern Japan has experienced three large earthquakes shown in Figure 

3.10. The first two were in the Tohoku area, Miyagi Prefecture and the third was in 

Hokkaido.  

 
Sanriku-Minami Earthquake: The earthquake occurred on May 26th 2003 at 6:24 PM local 

time. The magnitude was equal to 7.0 on the JMA scale with a hypocentre situated 

approximately 60km below the sea. The maximum peak ground acceleration was measured 

at 1111 cm/sec2. The earthquake caused injury to 174 people. Buildings suffered varying 

levels of damage between total collapse (two houses), half collapse (21 houses) and slight 

damage (more than 2,300 houses). Health care facilities were also affected; some suffered 

damage to their structure while the lifelines in others were affected. This made functioning 

difficult as was the case in the Public Kesennuma Hospital, Kesennuma City. As a result of 

this earthquake many hospitals suffered a lack of telecommunications. 

 

Miyagiken-Hokubu Earthquake: This earthquake occurred at 7:13am local time on the 26th 

July, 2003. The hypocentre was located at a depth of 12km in the Asahiyama fault line 

shown in Figure 3.11. The event measured 6.2 on the JMA scale and it caused large 

physical damage; the maximum acceleration reached 367cm/sec2. The earthquake was 

preceded and followed by two strong shocks; at 00:13am and 16:56pm. Fortunately, there 

were no deaths related to the event. However, about 600 people were injured, the majority 

of them only had slight injures. The earthquake caused damage to a large number of houses. 

There was an outage of lifeline facilities such as water and electricity. Two hospitals were 

severely damaged: the Fukaya Hospital and the Kashimadai hospital. 

 
Tokachi-Oki Earthquake: On the 26th September, 2003, an earthquake occurred in the 

eastern part of Hokkaido, its epicentre was approximately 100km off the coast and 40km 

below the sea. The Tokachi-Oki earthquake occurred at 4:50am local time and it measured 

8.0 on the JMA scale with a maximum acceleration that reached 988.4cm/sec2. The quake 

was followed by 53 aftershocks; the strongest measuring 7.1 on the JMA scale. The 

earthquake caused severe physical damage and more than 700 injuries, but fortunately 

there were no deaths. The lifeline outage was very clear in the affected areas. The 
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earthquake caused a Tsunami which caused two people to be reported missing. About 

41,000 people had to be evacuated from different areas. Table 3.12 provides more 

information about the event. 

 

 
Figure 3.10- Epicentres of the earthquakes 

 
The damage was found to vary from one hospital to another, which may be as a result of 

the age of the structures, or with the site effect which needs more investigation to find the 

main cause. Lifeline malfunction was found to be one of the main problems faced during 

the events. Hospitals were equipped with alternative sources for water supply, electric 

power; these spare sources were used during the shortage of the main sources until total 

restoration was achieved. On the other hand, the facilities were experiencing miss-

telecommunication given that there was no alternative source for such a lifeline component. 

A study has shown that, within the first 10 hours more than 95% of the hospitals had their 

lifelines restored (Achour et al., 2004b). Again, the problem of displacement occurred in 

many hospitals; equipment toppled and/or turned over causing inaccessibility in the 

facilities, see photos 3.20 through 3.22. The analysis of the questionnaire will be done in 

the next chapter. 

 
On a positive note, the earthquakes did not cause severe injury to many people and that is a 

very good outcome. However, some hospitals did suffer severe damage like was the case 

of Kashimadai Hospital and Fukaya Hospital in Miyagi Prefecture; which will be 

considered later in detail.  
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Figure 3.11- Asahiyama fault Photo 3.20- Toppling and damage to small 

equipment, Kushiro Urinary Clinics 
 

   
Photo 3.21- Inaccessible door, 

Kushiro Urinary Clinics 
Photo 3.22- Turning over of medicine shelves, 
                 Kushiro Urinary Clinics 

 
8.2 Fukaya Hospital  
 
The facility was built in 1968 and it suffered very severe damage to its columns, see 

Photos 3.23 and Photo 3.24. One building collapsed, which obliged the staff to transfer 

patients. One member of the personnel was injured and some others couldn’t reach the 

hospital. As well as structural damage the facility suffered damage to its lifeline. The 

electric power was cut for about two hours but the emergency electric generators were 

sufficient. The water pipelines were damaged and caused the outage of water for about 

four days. A mobile water supply was used instead of the local water system. All forms of 

telecommunication; landlines, mobiles and PHS were cut for about one hour. 

 

Medical equipment was also damaged, the radiology service room was damaged and that 

obliged staff to make a temporary room for that service but the quality of treatment was 

low. Three injured people had to be transferred to other hospitals to receive treatment. The 

hospital suffered from a shortage of personnel (doctors and nurses) as well as medicine. 

2003/07/26  16:56  
12Km  M5.3 

2003/07/26  00:13  
12Km  M5.5 

2003/07/26  07:13  
12Km  M6.2 
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One of the reasons that made the management of the 196 beds facility difficult after the 

earthquake was the absence of the “Disaster Management Manual”; the hospital does not 

have such a manual. However, there was training for the personnel twice a year and there 

was one lecture a year to teach the personnel the methods of management during a disaster. 

 
Table 3.12- Miyagiken Hokubu and Tokachi-Oki earthquakes: General Data 

Damage Number Remarks 
Death 0  
Injured people 628 Treated in 17 hospitals 

8,079 Partial damage  

2,245 Very severe damage / should be 
demolished Building damage 

1,017 Total collapsed 
Water outage 13,925  
Electric outage More than 10,000  
Road damage 288  Locations, including 3 bridges 
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Resulted Tsunami 0  
 

Death 0  
Injured people 755 According to japantimes.com 
Water outage More than 100,000 Families 
Electric outage More than 370,000 Families 
Resulted Tsunami 1 To our knowledge 

9.3 billion yen Damage to houses and other buildings 

T
O

K
A

C
H

I-
O

K
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Economical loss 
1.7 billion yen  Others 

 

 8.3 Kashimadai Hospital 

 
The Kashimadai hospital, shown in Photo 3.25, was built in 1969 and just like the previous 

institute it suffered very severe damage to its structure. Columns suffered severe cracks as 

seen in Photo 3.26. As a result of the structural damage some patients were transferred to 

other hospitals. The 113 bed facility lost its electric power and when the engines stopped, a 

company representative went and did all the necessary repairs. There was a shortage in the 

water supply since a water pipe was broken; this too was later repaired. 

 
Medical equipment was damaged, such as the X-Ray fluoroscope table, auto crepe, 

inspection equipment and such like. Fourteen injured people were treated in the hospital, 

only one of them had serious injures. The hospital was equipped with a “Disaster 
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Emergency Manual” that takes into consideration earthquakes and fire. Staff members 

have at least one training session per year to always be prepared for disasters. 

 

      
          Photo 3.23- Fukaya Hospital    Photo 3.24- Damage to Fukaya Hospital 

(Source: JECC homepage) 
 

     
       Photo 3.25- Kashimadai Hospital  Photo 3.26- Damage to Kashimadai hospital 

(Source: JECC homepage) 
 
9. BAM EARTHQUAKE, IRAN, 2003 
 
9.1 Overview 
 
The earthquake caused damage to the majority of Bam City. The epicentre location is 

shown in Figure 3.12; it also caused more than 26,500 deaths and injured more than 25,000 

people. On account of its location, Iran has a long history of earthquakes; between 1948 

and 1998 the country has experienced at least 14 earthquakes measuring M=5 and over. 

Among those 14, at least two of them measured over magnitude 7.3 and caused the death 

of between 13,500 and 21,500 people. 

It is obvious to say that the large number of victims confirms the vital role of hospitals; the 

USAID reported that the IFRCS hospital received 550 patients per day. On the other hand, 

the local hospitals were not able to function because of the damage that they experienced at 
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the time when they were needed the most. The World Health Organization (WHO) 

described the damage caused by the earthquake to health care facilities as "significant"; 

120 health care facilities were severely damaged or completely collapsed; two of them 

were main hospitals: the Aflatoonian Hospital and the Imam Khomeini Hospital. The 

author, who was member of the Japanese investigation team, visited those two facilities to 

assess the smoothness of the rescue activities.  

 

 
Figure 3.12 – Location of the epicentre 

(Source: FARSINET homepage) 
 

9.2 Rescue activities 
 
As it has been mentioned the disaster was massive, which made the Iranian rescue teams 

incapable of rescuing all the victims; at least 44 countries sent 1,800 rescuers to help in the 

relief activities. During the first hours there was no treatment. A doctor stated that they had 

to “lie” to patients by informing them that help was coming to make them wait and resist 

the pain that they were feeling. The doctor stated that they did not even have IV lines 

which are vital in emergency situations. Moreover he declared that during the first five 

hours there was no treatment at all, later the help started coming from the neighbouring 

cities and the serious cases, which made up the majority of victims, were transferred to 

other hospitals. The hospitals of Kerman (about 200 km), Shiraz (about 120km) and Jeroft 

(120km) cities received the victims mainly by helicopter and by other means including 

their own cars. The personnel of the Aflatoonian hospital stated that during the first days, 

before the arrival of the international teams, all victims were transferred to the above 

mentioned cities. The personnel used the equipment, which they received from other cities, 

http://www.farsinet.com/bam/index.html
http://www.farsinet.com/bam/
http://www.farsinet.com/bam/index.html
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to treat the victims until the arrival of international teams who setup their mobile hospitals 

nearby the local facilities and helped them to operate, see Photo 3.28 and Photo 3.29.  

 
It is not uncommon to find problems during rescue activities, so this should be seriously 

addressed during the planning and preparedness for future disasters. The IRCS reported 

that there were mis-communication and mis-co-ordination between the 13 sectors, which 

they created in Bam for the rescue, and the 28 provinces. The same trouble caused unequal 

distribution of aid between the different sections. The local government estimated the 

number of people who needed long-term psychological support at 25,000 patients. 

 

     
Photo 3.28- Mobile hospitals, German team,   Photo 3.29- Tent, Spanish team 

February 2004 
 
9.3 Damage to hospitals 
 
9.3.1 Aflatoonian Hospital 
 
9.3.1.1 Overview 
 
The Aflatoonian hospital is a private hospital; the 2-story building was built about six years 

before the earthquake 5km from the centre of Bam. The facility has a capacity of 70 beds 

which can be extended to 120 beds in case of emergency. Between 25 and 30 patients are 

treated every day in the hospital in addition to 70 inpatients which makes the facility full 

without being in emergency mode. The medical service is composed of 57 people; 17 of 

them are doctors, 40 nurses. A problem with the facility’s insurance forced it to close on 

January 5th 2004; after that the facility partially opened to provide treatment in its garden 

and parking lot, where the international teams setup their tents, the personnel stated. The 

actual building was totally closed until July 2004, then opened again and started treating 

patients. The government of Kerman helped in repairing the facility, which was exempted 

from paying water supply fees until October 2005. Photo 3.30 and Photo 3.31 show the 

front of the facility before and after being repaired, respectively. 
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Photo 3.30- Aflatoonian Hospital, February 2004    Photo 3.31- Aflatoonian Hospital, September 2005 
 
9.3.1.2 Structural damage 
 
The hospital suffered severe structural damage; some columns tilted, some others cracked 

and some parts collapsed, see Photo 3.30. According to one member of the hospital, the 

structural damage cost 5 billion IRR, Iranian Rials (65 Million JPY, Japanese Yen) of the 

cost of the entire building which is about 12 billion IRR (155.6 Million JPY). It should be 

noted that the cost of construction has become more expensive than a few years ago, in 

other words the damage to the facility is less than 41.6% of repair cost of entire building. 

The facility suffered malfunction to its lifelines; electric power was cut for about two days, 

there was no landline telecommunication until February 2004, there was no mobile 

telecommunication for at least 12 days following the quake. With regard to concerning the 

water supply the facility was provided with two reservoirs that were used as alternative 

sources. The tanks are able to store 13m3 of water which can be used for about two days, 

see Photo 3.36 and Photo 3.37. The damage to lifelines caused malfunction of medical 

equipment which caused delay in treatment. International aid teams provided the facility 

with some equipment which helped it to re-open and provide necessary care. Nevertheless, 

some medical equipment has not been used since it fell or was displaced causing its 

damage, see Photo 3.38 and Photo 3.39. At the time of the earthquake the facility did not 

have any alternative source except the water tanks shown in photos 3.36 and 3.37. Later, a 

32KW electric power generator was brought to be used in case of emergency, as Photo 

3.40 illustrates. The generator is used only for the operation room. However, the engine is 

able to make the majority of the equipment function; it can produce 768KWh/day, thus it 

produces 23,808KWh in 31 days which is 80% of the consumption of August 2005. 
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        Photo 3.36- Water Tank 1, Aflatoonian Hospital       Photo 3.37, Water Tank 2  

      Aflatoonian hospital 
 

     
Photo 3.38- Topple of equipment           Photo 3.39- Displacement of a sterilizer 
         Aflatoonian Hospital          Aflatoonian Hospital 

 

Fortunately, none of the hospital staff members were injured in the hospital, however some 

of the personnel could not reach the hospital during the emergency. The personnel who 

were not available in hospitals were directly or indirectly affected by the quake; one doctor 

was killed and the others had injured/dead members in their families which obliged them to 

stay with them and take care of them. The facility had to manage with the present 

personnel. With more than 600 patients, shortage of lifelines and damaged medical 

equipment the situation became very difficult and obliged hospital staff to transfer the 

majority of those injured to other facilities. The large amount of medicine that the facility 

had could not save all the patients since many patients died given that they did not receive 

the necessary care because of the insufficient number of personnel. One of the questions 

asked was about the most needed item during the salvage operations; the answer was 

"doctors" then "nurses". 
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Photo 3.40- Electric power generator, Aflatoonian Hospital 

 

The facility was provided with an emergency manual that was made two years before the 

occurrence of the earthquake. Regrettably, that manual considers only fire and traffic 

accidents. On the other hand the hospital provides its personnel with disaster prevention 

lectures, 5 times per year, and 24 disaster training modules per year; such preparedness 

helped the personnel to find solutions and to share the stress of the work together during 

the emergency phase. Also, during the emergency the hospital grouped with four other 

hospitals in the vicinity to pool their resources. 

 
9.3.1.3 Equipment stability 
 
As a result of the shaking many pieces of equipment got damaged which may be the result 

of displacement, topple, rocking or displacement-rocking. The personnel of the 

Aflatoonian Hospital stated that almost all the equipment was damaged with various 

degrees of severity; the cost of repairing the damage was between 10-100% of the price of 

the equipment itself. For instance, Table 3.13 shows some of the equipment and the 

severity of its damage. Some of them were fixed and some others were disposed, such as 

the radiology unit shown in Photo 3.41. As a result of the displacement the pipelines to the 

water supply attached to the Central Sterilization Room (CSR), shown in Photo 3.42, were 

damaged rendering the equipment useless. 

 



   
Damage to healthcare facilities                                                                                                Page 55
  

Some services are still operating in prefabricated buildings, such as the operation room and 

women’s ward. The prefabs are located on small masonry walls without being attached to 

any support which may make them unstable in case of strong shaking, see Photo 3.43 and 

Photo 3.44. The masonry is not capable of resisting horizontal loads, which is the case of 

earthquakes; this may result in their damage during an earthquake. The damage to walls 

leads to the total malfunction of the service provided in the prefabricated building. 

 

  
Photo 3.41- Radiology unit Photo 3.42- CSR unit 

 

  
Photo 3.43- Operation room, Women’s ward Photo 3.44- Operation room, base view 

 
Table 3.13- Medical equipment damage 
Unit Severity of damage Remarks 
X-Ray 10%  
Sterilizer  
(CSR) 10% Damage to the water pipes because of the displacement, 

Photo 3.42 and Photo 3.39 
Radiology 100% Photo 3.41 

 

9.3.1.4 Lifeline 
 
The facility was provided with electric power generators, and water tanks which can be 

used during an emergency. As a result of the shaking of one of the water tanks buckled as 
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Photo 3.45 and Photo 3.46 show. The buckling was found on all 4 feet with various 

degrees of severity. However, two of them had serious impact and they affected the tank 

itself as it is shown in Photo 3.46. The feet should be replaced and the damaged area of the 

tank should be repaired to avoid any failure in case of another earthquake. 

 

Photos 3.45, 3.46- Buckling of feet of the water tank, Aflatoonian Hospital 
 
9.3.2 Imam Khomeini Hospital 
 
9.3.2.1 Overview 
 
The facility is a public hospital located in the centre of Bam City. Its capacity is 100 beds, 

and it hosts 290 staff members; 24 doctors, 146 nurses and 120 administrative personnel. 

The facility had many problems that hampered its normal functioning; mainly the severe 

structural damage that it experienced, see Photo 3.47. The international aid teams installed 

prefabricated hospitals beside the actual building, as Photo 3.28 and Photo 3.29 show. 

They lent Iranian personnel some of their equipment, which was used for treatment. Later 

the rubble was cleared and the rest of the original building was demolished. Some 

prefabricated buildings were installed by international companies and societies and are 

being used as small clinics, Photo 3.48, Photo 3.49 and Photo 3.50.  

 
9.3.2.2 Structural damage 
 
The facility suffered severe damage to its structure; some parts totally collapsed, see Photo 

3.47. The lifelines malfunction was widespread since electricity was cut for two days in 

some areas and seven days in others. There was no water supply until the day of our 

research teams’ first visit, there was no telecommunication; landline phones were cut for 

about 14 days and mobile phones were cut for at least one day, the heating system was 

inoperable until February 2004. The damage caused the facility to close. However, after 

receiving some equipment from the international aid teams, such as a water tank and an 



   
Damage to healthcare facilities                                                                                                Page 57
  

electric power generator, the hospital re-opened partially and started receiving patients. 

Later it had to be closed again after transferring all the patients to other facilities. Personnel 

stated that the damage had an awful impact on the patients. The facility was not provided 

with any alternative sources of water and electricity. After the event a 20KW electric 

power generator was brought to be used in the event of an emergency. The generator is 

provided with a fan for its cooling system which makes it independent from the water 

supply. Nevertheless, the facility is still in need of an alternative source of water. 

 
The number of victims was significant, the number of personnel was not satisfactory; large 

numbers of staff could not reach the hospital to aid in treatment efforts because they had to 

help their own injured families, or they were themselves the victims. The Imam Khomeini 

hospital suffered also from an inadequate supply of medicine. All the stated factors added 

to the malfunction of the hospital and the torment of the victims who did not receive the 

necessary treatment before the arrival of international aid teams. The staff reported that 

medicine, water, food and sheets were the most vital items that the facility required. 

 
The facility did not provide any activities to train personnel on appropriate action to take in 

an emergency situation. Moreover, there was no emergency manual; lectures were very 

limited and restricted to a certain category of personnel. 

 

    
Photo 3.47- Total collapse of Imam Khomeini Hospital     Photo 3.48- Prefabricated buildings installed 
February 2004                 instead of the Imam Khomeini Hospital 
                 September 2005 
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Photo 3.49- Dental Station donated by some companies      Photo 3.50- Building donated by Save the 

Children Society Japan 
 
9.3.1.3 Lifeline 
 
The facility was equipped with electric power generators. No water tank was available, at 

least until September 2005, which renders its emergency service ineffective in the event of 

an emergency.  

 
9.4 Synopsis of the problems and strengths 
 
What it can be learned from the previous sections is that there are some problems which 

need to be treated and some strengths that need to be made widespread in hospitals. The 

two hospitals under consideration have some common problems; both facilities suffered 

severe structural damage, lack of personnel, lifeline and medical equipment problems. It is 

clear that the Aflatoonian Hospital was more prepared than the Imam Khomeini Hospital. 

The latter facility was not providing its personnel with any type of training activities that 

could make the situation better, the limited quantity of medicine was used up shortly after 

the patients started arriving and there was no emergency manual that could help personnel 

in understanding the situation that they faced. The Aflatoonian hospital was a member of a 

group of hospitals that work together during emergencies, which gives more possibilities to 

save more people and protect human life. 

 
Iran has a very long history of earthquakes and has the highest number of victims which 

shows the lack of preparedness or the insufficiency of the preparedness; in other words 

there was no planning and organizing for emergencies. To help in reducing some of the 

problems we provided some suggestions which are shown in Appendix II. 
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10. NIIGATA-KEN CHUETSU EARTHQUAKE, JAPAN, 2004 

10.1 Overview 
 
The earthquake occurred on 24 October 2003 at 5:56 PM local time, lasting for about 20 

seconds. The disaster measured 6.8 on the JMA scale. The peak ground acceleration was 

very high and it measured 1715 cm/sec2 at Tokamachi town. Fortunately the earthquake 

did not result in a large number of fatalities as about 48 people died and 4,160 were injured 

(Scawthorn et el., 2006). The earthquake caused a lot of material damage; the total damage 

was estimated to be US $40 billion (Scawthorn et al., 2006). Further information is shown 

in Table 3.14.  

 
Table 3.14- General data, Niigata-ken Chuetsu earthquake 

Damage Number Remarks 
Road damage 6,000 locations  
Landslides (caused by the event) 442  

100,000 Damaged Building damage more than 3,000 Totally collapsed 
 

The event caused damage to a large number of facilities; here we present the damage to 

some facilities and in Chapter 4 we analyse the induced damage. 

 
10.2 Damage to hospitals 

 
10.2.1 Ojiya Hospital 

 
The facility is composed of 5 buildings built in different periods; 1968, 1969, 1980, 1984 

and 1990. The oldest buildings, built in 1968 and 1969, suffered severe damage as shown 

in Photo 3.51, and Photo 3.52. The joint relating the west and east wards was also damaged 

as shown in Photo 3.53. Buildings built in 1980 suffered damage to their ceilings, as shown 

in Photo 3.54, and cracks to their structures. The facility also suffered damage to its 

lifelines. Electric power was cut off for four days and water supply was cut for nine days. 

The facility was provided with a daily supply of water by a mobile tank mounted on a 

truck. The damage to pipelines caused the loss of gas supply for ten days from the 

occurrence of the earthquake. The shortage of lifelines and the shaking caused malfunction 

to medical equipment. 

 

 



   
Damage to healthcare facilities                                                                                                Page 60
  

10.2.2 Uonuma Hospital 

The facility is composed of one building, built in 1978. The shaking caused some cracks in 

its structure. The facility lost its electric power and water supply for five days; while the 

gas supply was lost for 18 days from the occurrence of earthquake. The telecommunication 

system was also inoperable. The loss of electric power caused malfunction to several 

pieces of medical equipment such as CT scanner, MRI etc.  

 

                                  
Photo 3.51- Structural damage to 1968 building, Ojiya Hospital 

 

 
Photo 3.52- Structural damage to 1968 building, Ojiya Hospital 

 

Damage to structure 
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Photo 3.53- Damage to separation joint 

 

 
Photo 3.54- Damage to ceilings, Ojiya Hospital 

 

10.2.3 Tamiya Hospital 

The facility, which is composed of three buildings, built in 1967, suffered slight to 

moderate damage. The damage to an elevated tank caused a shortage of water supply; the 

damage lasted for 19 days after the occurrence of the event. Telecommunication was very 

difficult for two days. Electric power was restored the first day after the earthquake. The 

loss of electric power caused malfunction of computers. The use of plastic medicine 

containers protected them from being damaged when they fell down from shelves. 

 

10.2.4 Nakajo Hospital 

The facility is composed of several buildings built in different periods; 1967, 1970 and 

1988. The earthquake caused moderate damage; some joints were damaged as Photo 3.55 

illustrates, or problems related to soil as seen in Photo 3.56 and Photo 3.57. Shortly after 

the earthquake all lifelines ceased because of external damage. The electric power was 
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restored one day after the event while the water supply was restored six days later. 

Equipment damage was noticed mainly in the toppling of some shelves. 

 

 
Photo 3.55- Damage to building’s joint 

 

 
Photo 3.56- Damage caused by liquefied soil 
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Photo 3.57- Liquefied soil 

 

 

Table 3.15 summarizes the damage to 11 hospitals in the main affected cities: Ojiya City, 

Kagaoka City and Tokamachi City. The “ ” illustrates the existence of damage while the 

“ ” illustrates the absence of any damage and N/A illustrates the unknown situation.  

 

Table 3.15- Summary of damage to hospitals  
Duration of malfunction of lifelines (in hours) 

City  Hospital  Structural 
damage Elec. Water Gas Land. 

Tel. 
Emerg. 

Tel. 
Ojiya Hospital  96 216 240 96 216 

O
jiy

a 

Uonuma Hospital  120 120 432 ≤ 24 ≤ 24 

Tamiya Hospital  ≤ 24 456  48 48 
Nagaoka Central 
Hospital  ≤ 24 24 120   

Yoshida Hospital       
Nagaoka West 
Hospital  ≤ 24 ≤ 24  ≤ 24 ≤ 24 

Tachikawa 
Hospital    216   

N
ag

ao
ka

 

Niigata 
Psychological 
Centre 

      

Nakajo Hospital  24 144 N/A  N/A 
Ojiya Hospital- 
Tokamachi Clinic  24  96 96 96 

T
ok

am
ac

hi
 

Niigata national 
Tokamachi 
Hospital 

 24 144 72   
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PART C 
DISCUSSION AND CONCLUSION 

 
 
11. DISCUSSION AND CONCLUSION 
 
At the end of this chapter, it is necessary to summarize the points that are found to be 

interesting and can be considered in the study. Table 3.16 summarizes the main problems 

that were faced during all previous experiences. The occurrence of a particular type of 

damage was marked with “ ”. In the case of no damage and/or no information nothing 

was marked in the appropriate cell.  Damage caused to facilities can be categorized into 

three categories: structure (including non-structural elements), lifeline and equipment. In 

this part a discussion of all categories is done to find the problems that are common and 

can be considered in the present study. 

 
11.1 Structure and non-structure 
 
In all the presented cases, the structures of healthcare facilities were damaged. The damage 

varied between cases; the difference was mainly because of the strength of structures, 

which depends on many factors such as age, construction material among others, but also 

on the strength of the earthquake. For example the magnitude of the Boumerdes, Algeria, 

and the Bam, Iran, earthquakes was not as strong as the Sanriku Minami, Miyagi-ken 

Hokubu and the Tokachi-Oki earthquakes of Japan; however the damage was huge in the 

first two cases and slight to moderate in the last one; at least none of the Japanese facilities 

collapsed while collapse was widespread in Algeria, Iran, India and others. The age and the 

construction material were the main causes for the destruction of the latter cases. Whilst, 

the location of the Shiu-Tuan hospital that was constructed just 2 years before the 

earthquake hit Taiwan in 1999. 

 

What can be concluded here is that factors play a very different role in each case. The 

Japanese experience shows clearly that it is possible to build a structure able to withstand 

strong earthquakes. For that reason, we think that focusing on structural issues may not be 

very beneficial for this study, as we are seeking a universal solution to reduce earthquake 

impact. 

 
 
 



   
Damage to healthcare facilities                                                                                                       Page 65
  

11.2 Lifelines 
 
The situation of lifelines is not very different between countries. For example, electricity is 

transported using cables, so the damage to any of those cables during shaking can cause the 

entire city to blackout. The other main cause of the vulnerability of lifelines is pipelines; to 

transport gas and water, pipelines are used. Pipelines constitute one of weakest elements in 

the lifeline systems as their geometry makes them very weak and irresistible to shaking. 

 

The difference between prepared and unprepared countries lies with alternative sources. 

Prepared countries are making use of alternative sources while unprepared countries do not 

consider them seriously. The loss of lifelines is still able to affect the functioning of 

healthcare facilities and can even cause its closure. The majority of medical equipment 

depends on one or more of the lifelines such as water, electricity, gas or others, so a 

malfunction to any of the dependent lifelines will cause the malfunction of the medical 

equipment and therefore the reduction of the quality of treatment and put people’s lives 

under threat. 

 

The lifeline issue is still being investigated by researchers with the purpose of finding a 

solution to protect its systems. In this study we will focus on the same issues but with 

different focus than other researchers. Our purpose is finding a solution to some problems 

and making a contribution to the literature. The investigations showed that internal lifeline 

system malfunction depends not only on the ground motion but also the external 

functionality of the system source. Lifeline shortage affected greatly the functionality of 

the equipment in some cases. As the ground motion increases, the damage becomes easier 

to occur and therefore malfunction is also more likely to happen. The following chapter, 

Chapter 4, discusses further problems and suggests some solutions to strengthen the 

systems. 

 
11.3 Equipment 
 
Equipment was the most unstable part that was found in all studied cases, simply because 

they are not attached to any support, i.e. they are freely standing, or are fixed by bolts if the 

size is large. Table 3.16 illustrates that almost all facilities have experienced damage to 

some of their equipment. Hospitals contain a very large amount of equipment of different 

sizes and with differing maintenance requirements. Some of them are attached to their 
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supports; others are free standing or mounted on wheels and such like. This maintenance 

difference makes their responses different too.  

 

Attached equipment shake then fall down, while free standing equipment move and hit 

other elements which may cause damage to them too. The latter also causes untidiness in 

hospitals and reduces the availability of space when it is needed the most. In both cases, 

being attached or not, the damage to equipment is apparent. This would be a good subject 

to consider in detail in ensuing chapters. 

 
11.4 Other issues 
 
Some other problems were found during the investigations but may not be considered in 

the present study as they are not directly related to engineering; however, they impact upon 

the functioning which is the goal of this study, Appendix II presents some of them.  

 



          
Damage to healthcare facilities                                                                                                                                              Page 67  

Table 3.16- Summary of damage caused by previous earthquakes 
 
 Lifelines Equipment Structure 

Event Water Elec. Gas Telecom. Mechanical Anchorage 
failure 

Displacement / 
Toppling Elevator  

Northridge 1994          

Hyogo-ken Nambu 1995          

Marmara 1999          

Chi-Chi 1999          

Bhuj 2001          

Boumerdes 2003          
Sanriku Minami, Miyagi-
ken Hokubu, Hokkaido 
Tokachi 2003 

         

Bam 2003          
Niigata-ken Chuetsu 2004          
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CHAPTER 4 
 

PERFORMANCE OF LIFELINES AND RESPONSE OF 
EQUIPMENT 

 
 
 
 
 
 
 
 
 
 
1. INTRODUCTION 
 
This chapter focuses on assuring the treatment of all injuries. This can be done by different 

methods. Here we suggest 1) ensuring the functioning of the required medical services so 

that the majority of casualties can receive treatment, 2) a strategy to dispatch the injured at 

the time of the emergency. In this study we will focus on treatment of the majority of 

casualties by ensuring the preparedness of vital lifeline systems. Given that the number of 

systems is rather large and given that making experiments is costly we will be limited to 

the preparation of certain systems rather than all systems. A system is chosen according to 

its importance for the functioning of a facility, or its extensive use in a facility. The idea is 

summarized into the next: 

 

• Finding the most important lifeline that affects the functioning of the entire 

facility. Studying its vulnerabilities and strengthening its response to emergency. 

The strengthening should reach the rest of the systems and installations. 
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• Finding the service that ensures the treatment of the majority of earthquake-

related injuries. Studying the response of each of its systems to shaking and 

estimating damaging factors.  

 

To fulfil the above purposes the chapter is divided into three divisions; the first division 

discusses in detail the impact of the Chuetsu earthquake of 2004 in Japan on the lifelines 

and the equipment. The second division classifies the lifelines according to the most 

important lifeline for the functioning of a facility. The last division is an evaluation of the 

response of equipment to dynamic waves. 

 
2. ANALYSIS OF DAMAGE DUE TO NIIGATA-KEN CHUETSU EARTHQUAKE  
 
2.1 Outline of investigation 
 
We carried out investigations on 40 hospitals to find the damage caused by the earthquake. 

The investigation was conducted via a survey (sent by postal mail) and by visits to some of 

the facilities. It is concerned with damage to structural and non-structural elements, 

equipment and furniture, medical equipment and lifelines. Table 4.1 points out the detailed 

parts that were considered in the investigation. It is also concerned with the age of 

buildings, as seen in Figure 4.1, and the number of floors, as shown in Figure 4.2. More 

than 42% of buildings are composed of four to six floors. Among the 40 facilities at least 

26 hospitals, which represents 65% of the total number, have emergency services, as is 

illustrated in Figure 4.3. More than half of the facilities are classified as 2nd class 

emergency hospitals, see Figure 4.4.  

 

The purpose behind the investigations is to find in detail the problems caused to lifelines 

and equipment. The structural and non-structural elements are not considered as it was 

discussed in the last chapter, however some information found during the investigations 

are shown but will not be analyzed in this study. 

 
2.2 Damage to healthcare facilities 
 
2.2.1 Impact of the earthquake on the healthcare system  
 
The earthquake caused damage to at least 27 hospitals varying between very severe and 

slight damage. The minimum intensity registered at the site of the facilities was 5- 

(Japanese intensity) while the maximum registered intensity was 6+; Figure 4.5 illustrates 
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that the majority of the facilities suffered intensity 5- and 6-. At least 5% of the facilities 

suffered problems to their entrances, balconies and some of their equipments were 

displaced and even turned over in cases. In more than 10% of the facilities there were some 

cracks in the external and internal walls, see Table 4.2. Furthermore, several facilities 

suffered damage to their lifelines, internal installations and medical equipment as shown in 

tables 4.3, 4.4 and 4.5, respectively. As the last four tables illustrate, the intensity 6+ caused 

damage to all the investigated elements in 10% of the facilities. 

 
It should be mentioned that in tables 4.1 through 4.5 the sign “●” illustrates that the ratio of 

facilities suffering that type of damage exceeds 10%. While sign “○” demonstrates that 

between 5% and 10% of the facilities have experienced that type of damage.  

32.5%
32.5%

22.5% 12.5%

 Unknown
 Up until 1970
 1971 - 1980
 1981 - Now

 

 

 
   Figure 4.1- Periods of construction 

15%

42.5%

35%
7.5%

 Unknown
 1-3 Floors
 4-6 Floors
 7 Floors and more

 

 

 
Figure 4.2- Number of floors 
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65%

27.5%
7.5%

 Unknown
 No
 Yes

 

 

 
Figure 4.3- Existence of an emergency service 

7.5%

52.5%

10%

20%
10%

 Unknown
 Not classified
 Primary emergency
 Secondary emergency
 Tertiary emergency

 

 

 
Figure 4.4- Classification of emergency service 
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35%
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Figure 4.5- Proportion of buildings and seismic intensity  
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Table 4.1- Aspects checked during investigations   
Elements Contents 

Cracking of concrete and peeling of facing Wall 
Reinforcement exposure 
Glass cracks/breakage, sash deformation Window - glass Window difficulties; failure to open/close 
De-formation/failure of door, glass cracks, In

te
ri

or
  

Entrance/Exit Door difficulties; failure to open and close 
Cracking/peeling of concrete facing and reinforcement 
exposure Pillar/Wall 
  
De-formation/failure of the door, glass cracks, Door Difficulty/failure to open and close 

Ceiling Slipping/falling of ceiling board 

Floor Tiles cracking/peeling off 

Furniture displacement/turning over  

B
ui

ld
in

g 

E
xt

er
io

r 

Furniture Television/glassware displacement/turning over  

Lifeline supply Electric, water, gas, communication, laundry, kitchen 

Electric installation Damage/falling of illumination 

Sink damage, rest room unserviceable, toilet damage Plumbing equipment 
Wall tiles peeling off, piping damage 
Breakdown and exit cone damage of air conditioning 
unit, Air-conditioning equipment 
Damage to piping system 
Air conditioning/elevated tank unit turning 
over/displacement Equipment attached to roof 
End of piping 
Damage to sprinkler/ incorrect operation 

Anti-disaster equipment Opening/ closing difficulty of fire door, damage of fume 
tight flap wall 

L
ife

lin
e 

an
d 

E
qu

ip
m

en
t 

Transport equipment Stoppage of elevator/breakdown 

X-Ray/Film development units, CT Scanner, MRI Inspection equipment 
  
Wound irrigation, CSR unit life support system Remedy/Disposal equipment Artificial dialysis, operation execution 
Medical supply, diagnosis and treatment units, nurse call Medication Chemical shelves/containers turned over/damaged 
Ward, clinic and examination room M

ed
ic

al
 e

le
m

en
ts

 

Medical space Operation room, preparation room and material room 
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Table 4.2- Structural and non-structural damage experienced in facilities 
Earthquake Intensity Damaged elements 

5- 5+ 6- 6+ 
External walls 
cracks ● ● ● ● 
concrete was peeled     ● ● 
Exposure of steel bars     ○ ● 
Windows: Glass and its Frame 
Glass of windows was cracked   ● ● ● 
Window glass was broken   ●   ● 
deformation of the frame   ●   ● 
Difficulty in opening/closing the window   ● ○ ● 
Window couldn't be opened/closed       ● 
Entrances and Balconies 
Deformation of the entrance ○       
Door came off         
Glass of the door broke down ○ ●     
Difficulty in opening/closing of the door ○   ○ ● 
Door couldn't be opened/closed ○   ○ ● 
Columns 
Cracks in column ○ ● ● ● 
Concrete was peeled ○ ● ○ ● 
Exposure of steel bars ○     ● 
Internal walls 
Cracks in walls ● ● ● ● 
Concrete was peeled   ●   ● 
Exposure of steel bars       ● 
Doors 
Deformation of the door       ● 
Door came off       ● 
Glass of the door broke down       ● 
Difficulty in opening/closing of the door   ● ○ ● 
Door couldn't be opened/closed       ● 
Ceilings 
Ceilings partially came off ● ● ● ● 
Ceiling fell down     ○ ● 
Floors 
Flooring cracked ● ● ● ● 
Tiles came off   ● ● ● 
Internal Equipment 
Displacement of desks   ● ● ● 
Items on top of desk turned over ● ● ● ● 
Book-shelves and tall equipment moved ○ ● ● ● 
Book-shelves and tall equipment turned-over ○ ● ● ● 
Displacement of TV   ● ● ● 
TV turned over   ● ● ● 
Glass items on top of the desk broke ● ● ● ● 
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Table 4.3- Lifeline damage experienced in facilities 
Earthquake intensity Damaged elements 

5- 5+ 6- 6+ 
Lifeline         
Failure of power ● ● ● ● 
Suspension of water supply   ● ● ● 
Cut off of gas supply ● ● ● ● 
Difficulties to use landline phone  ● ● ● ● 
Difficulties to use mobile phone  ● ● ● ● 
Laundry facilities could not be used ● ● ● ● 
Kitchen could not be used ● ● ● ● 

 

Table 4.4- Internal installation damage experienced in facilities 
Earthquake Intensity Damaged elements 

5- 5+ 6- 6+ 
Electric Installation 
Ceiling illumination slipped   ● ● ● 
Ceiling illumination breakdown   ● ● ● 
Ceiling illumination fell down   ● ○ ● 
Plumbing equipment 
Sink breakdown ○ ● ○   
Toilet could not be used   ● ● ● 
Toilet breakdown   ●   ● 
The wall tile of the rest room and the sink peeled off ● ● ● ● 
Damage to pipeline/occurrence of leakage ● ● ● ● 
Air conditioning equipment 
The ceiling and wall mounted air conditioning unit was 
broken     ● ● 

The ceiling and wall exit cone was broken   ● ○ ● 
The piping for air conditioning units was broken   ● ● ● 
The cooling unit outside the room turned over ○     ● 
Roof-mounted equipment   
The air conditioning machine moved     ●   
The air conditioning machine turned over ○   ○   
The elevated tank broke   ● ● ● 
The elevated tank turned over       ● 
Pipes were removed from attachments ○ ● ● ● 
Anti-disaster facility 
The sprinkler broke     ○ ● 
The sprinkler malfunctioned     ○   
The fire door became difficult to open and close ○   ○ ● 
The fume tight flap wall broke         
Transport equipment 
The elevator stopped automatically ● ● ● ● 
The elevator stopped due to power failure ● ● ● ● 
The elevator was broken ○ ● ● ● 
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Table 4.5- Medical equipment damage experienced in facilities 
Earthquake Intensity Damaged element 

5- 5+ 6- 6+ 
Inspection equipment 
Inoperability of X-Ray unit   ● ○ ● 
Inoperability of film development unit   ● ● ● 
Inoperability of blood test unit ○ ● ○ ● 
Inoperability of CT Scanner ○ ●   ● 
Inoperability of MRI unit ●   ● ● 
Inoperability of blood vessel contrast and Cardiac 
Catherisation units       ● 

Remedy and disposal equipment 
Inoperability of wound irrigation unit       ● 
Inoperability of CSR unit   ● ● ● 
Inoperability of life support system   ●   ● 
Inoperability of artificial dialysis     ● ● 
Inoperability of general remedy and medical examination     ○ ● 
Inoperability of operation room     ● ● 
Medication in addition 
Inoperability of automatic medicine scaling machine ○ ●   ● 
Inoperability of medical supply and the diagnosis and 
treatment material   ● ○ ● 

Inoperability of nurse calling system ● ● ● ● 
Inoperability of chart compilation       ● 
The chemicals shelf turned over ○ ● ● ● 
container for the chemicals broke down   ● ● ● 
Use of medical space 
Ward (patients rooms) could not be used     ● ● 
Clinic could not be used       ● 
Examination room could not be used       ● 
Operation room could not be used     ● ● 
Preparation room could not be used       ● 
Material room could not be used       ● 

 
2.2.2 Analysis of the results 
 
2.2.2.1 Estimation of peak ground acceleration 
 
We lead the investigation into more detail and we calculated the peak acceleration at each 

facility and we compared it to the damage in each case. The calculation of the peak ground 

acceleration was completed according to Equation 4.1. The estimation of the peak ground 

acceleration (in cm/sec2), the magnitude, M, and the hypocentre distance, X, (in km) should 

be provided.  

 

rrr cXbXMaA ++−= loglog         (4.1) 

Where 

ar, br and cr are regression coefficients. 
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To be able to estimate the acceleration at each facility the regression coefficients should be 

found. A multiple regression analysis was conducted using data from the main shock and 

seven aftershocks. The detail of each of the events is shown in Table 4.6. The data was 

obtained from the accelerometer networks of the Kyoshin Network (K-NET) and the 

Digital Strong-Motion Seismograph Network (KiK-net) in the cities shown in Table 4.7. 

Once the coefficients were determined the attenuation relation becomes as it is shown in 

Equation 4.2. The acceleration at each of the facilities is shown in Table 4.8. 

 

 0497.00031.0log596.0log +−−= XXMA               (4.2) 

 

Table 4.6- Detail of events considered during the estimation of acceleration 

Niigata Chuetsu Earthquake Magnitude 
M 

Hypocenter 
X (km) Date and time 

Main shock 6.8 13 2004.10.23 at 17：56 
Aftershock 1 6.3 9 2004.10.23 at 18：03 
Aftershock 2 6.3 10 2004.10.23 at 18：34 
Aftershock 3 6.0 10 2004.10.27 at 10：40 
Aftershock 4 6.0 12 2004.10.23 at 18：12 
Aftershock 5 5.9 10 2004.10.23 at 19：46 
Aftershock 6 5.7 15 2004.10.23 at 18：07 
Aftershock 7 5.6 10 2004.10.25 at 06：05 

 
 

Table 4.7- Name of cities used to calculate the accelerations 
K-NET KiK-net 

Iwataniguchi, Samugawa, Nagaoka, Muika and 
Murakami, Shibata, Kamo, Yuzawa 
Niigata, Niitsu, Shimoda,  
Maki, Sanjou, Yunotani,  
Matsumura, Teradomari, Shiozawa,  
Nagaoka, Ojiya, Myoukou,  
Koide, Tookamachi, Seiro,  
Shiozawa, Tsunan, Matsumura,  
Yasuzuka, Naoetsu  Kawanishi,  
Arai, NagaokaShisho Maki,  
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Table 4.8- Acceleration at the site of each facility 

Era of construction PGA (cm/sec2) Name of facilities  

790.6 Ojiya General Hospital 
548.8 Nakajou daini hospital 
548.8 Nakajou Hospital 
510.0 Tamiya Hospital 
495.0 Nagaoka Chuo General Hospital 
490.8 Yoshida Hospital 
435.1 Niigata Prefectural Tokamachi Hospital 
400.0 Saito Memorial Hospital 
386.2 Tochiogo Hospital 
235.3 Sannocho Hospital 
218.5 Oshima Hospital 

�
1970

 

196.2 Niigata Prefectural Kamo Hospital 
771.8 Uonuma Hospital 

758.0 National Health Insurance Municipal Hrinouchi 
Hospital 

735.4 Ojiya Sakura Hospital 

556.0 Minamiuonuma Municipal Yukigunidaiwa 
Hospital 

404.8 Minamiuonuma Municipal Jounai Hospital 
324.4 Niigata Prefectural Matsushiro Hospital 
318.7 Kashiwazaki Central Hospital 
301.4 Kamimura Hospital 
248.6 Municipal Tsunami Hospital 
211.0 Niigata Prefectural Kakizaki Hospital 
209.2 Tsubame Rosai Hospital 
200.0 Niigata Prefectural Yoshida Hospital 
140.7 Joetsu General Hospital 
139.0 Takada Nishishiro Hospital 

1971
～

1980 

136.2 Joetsu Medical Center Hospital 
622.7 Honda Hospital 
488.7 Yuuyuu Kenkoumura Hospital 
480.6 Tachikawa General Hospital 
468.6 Nagaoka Red Cross Hospital 
468.6 Itsukamachi Hospital 
436.8 Niigata Prefectural Psychiatry Medical Center 
344.9 Kariwagun General Hospital 

338.7 Mitsuke Municipal Adult Diseases Center 
Hospital 

325.5 Seki Hospital 
238.9 Sanjo Hospital 
230.4 Tominaga Kusano Hospital 
229.0 Sanjo Higashi Hospital 
223.6 Sanjo General Hospital 
143.7 Niigata prefectural Central Hospital 

1981
～

 

137.1 Kudo Hospital 
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2.2.2.2 Influence of acceleration on lifelines 
 
The investigation showed that from 150-250cm/sec2 lifelines start experiencing problems. 

A 150cm/sec2 acceleration was able to render some hospitals without electric power for 

about two days. While an acceleration of 750cm/sec2 caused the loss of the electric power 

for six days, see Figure 4.6. Due to the fragility of the piping system, water and gas supply 

was damaged more than the electric power system. The shortage of water and gas was for 

up to 18 days. A 200cm/sec2 acceleration caused a 2-day period shortage; while higher 

accelerations can cause the shortage period to be longer, see Figure 4.7 and Figure 4.8. 
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Figure 4.6- Duration of malfunction of electric power 
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Figure 4.7- Duration of water supply shortage 
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Figure 4.8- Duration of malfunction of gas supply 
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Figure 4.9- Impact of acceleration on the availability of space 

 

2.2.2.3 Influence of acceleration on the medical situation 
 
Obviously the earthquake affected the situation of the medical services. That effect was by 

reducing the space that is available or damaging equipment. Figure 4.9 illustrates that an 

acceleration of 300 cm/sec2 was able to cause untidiness in 20% of the space in a facility; 

where as an acceleration of 800cm/sec2 can cause untidiness in 80% of the space. It has to 

be mentioned that the condition can be made better if the response of equipment is studied 

and some measures are considered. The equipment can be affected by an acceleration of 

200-300cm/sec2, figures 4.10 and 4.11 show that it can reach 100% in some cases, 40% in 

others and 0% in different occurrences. The difference in results is due to the preservation 
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of equipment that differs from one facility to another, in addition to the stochastic problem 

of equipment displacement when nothing is connecting them to their support and thereby 

controlling their motion. 
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Figure 4.10- Impact of acceleration on remedy and disposal equipment 
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Figure 4.11- Impact of acceleration on equipment of inspection 

 
3. PERFORMANCE OF LIFELINES 
 
3.1 Introduction 
 
Previous events have highlighted problems which faced healthcare facilities in Japan 

(Shinozuka, 1995), Taiwan (Lee et al., 2000), Algeria (Hamada et al., 2004) and Iran 
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(Achour et al., 2005) particularly structural, non-structural and lifeline vulnerabilities. 

Damage to healthcare facilities is a worldwide problem. The severity of the structural 

damage varies from country to country, but lifeline damage is still somewhat comparable. 

For example, after studying several cases we learned that Japan, Turkey, Taiwan, Algeria, 

and Iran have all experienced lifeline shortage after the occurrence of earthquakes in 

January 1995, August 1999, September 1999, May 2003 and December 2003 respectively. 

The bulk of the damage lead to the same problems: blackouts, water shortage, equipment 

dysfunction among others. These problems reduced the capacity of the hospitals (Lee et al., 

2000) and caused death to patients and personnel in some cases. Consequently, healthcare 

facilities are urged to be more prepared for emergencies, not only structurally but also in 

terms of non-structural elements such as lifelines. This study focuses only on lifeline 

related issues; therefore it is vital to know the causes of lifeline damage. Specifically, it 

clarifies the importance of electricity to hospitals as a result of the experience of hospitals 

after the 2003 earthquakes; the Sanriku-Minami earthquake of May 26th, the Miyagi-Ken 

Hokubu earthquake of July 26th and the Tokachi-Oki earthquake of September 26th. 

 
The present section discusses the reinforcement of the lifelines of healthcare facilities by 

using solar energy. Myrtle et al. (2005) classified the importance of essential systems in 

hospitals under extreme events and other researchers have worked on the use of renewable 

energy such as solar systems (Paksovy et al., 2000) and fuel cells (Damberger, 1998); 

some of the studies were done on international cases such as Italy (Bizzari et al., 2005), 

Spain (Gomez-Amo et al., 2004) and the UK (Al-Daini et al., 1994). Some studies were 

applied on hospitals in Paksovy et al. (2000), Damberger (1998) and Bizzari et al. (2005). 

But, unlike those previously mentioned, this study clarifies the problem faced in healthcare 

facilities and provides a solution by discussing the use of renewable sources of energy in 

the event of an emergency, particularly an earthquake related one. 

 
This section aims to 1) show the importance of electric power in hospitals and 2) study the 

possibility of taking advantage of solar systems to strengthen the response of healthcare 

facilities during earthquake-related emergencies. Five main sub-sections constitute the 

section; a) introduction to the events under consideration and the questionnaire, b) 

illustration of the importance of electric power, c) the weaknesses of the actual systems 

used in healthcare facilities, i.e. fuel systems and proposition of the Solar System and 
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comparison between both systems d) conclusion of the comparison and e) the seismic 

response of the proposed system. 

 
3.2 Questionnaire outline  
 
We carried out a survey in the north of Japan in areas affected by the earthquakes to find 

out the difficulties encountered by healthcare facilities during the emergency. A total of 

120 copies of the questionnaire were sent, by postal mail, to different hospitals in Tohoku 

and Hokkaido areas, Japan in December 2003. Unfortunately not all facilities have replied 

to our request since only 66 facilities responded to our survey. Each hospital which did 

respond was assigned an identifying code H1 to H66. Responses numbered 66 which 

represent 55% of the total. The facilities are located in affected areas near the majority of 

incidents. Since about 45% of the respondents accepted victims, this indicates the 

importance of the sample considered in this study. The questionnaire is composed of 45 

questions divided into seven different sections: Structural Damage, Injury to Personnel, 

Lifeline Damage, Medical Equipment Damage, Relief Activities, Crisis Management and 

General Data. 

 
3.3 Questionnaire analysis 
 
Of the total respondents, 45 hospitals were found suitable for further study on how lifeline 

outages impact their operations. These 45 facilities did not suffer any structural damage 

that might in turn cause damage to equipment and therefore can be judged to have suffered 

from lifeline damage caused by true failure. The analysis was achieved by using a program 

code that applies “Discriminant Function Analysis” to resolve equations (Aoki, 2005). The 

method consists of finding an equation that relates all the variables that affect the 

functioning of the facilities and classifies the lifelines according to their importance. A 

total of six lifelines identified in Table 4.9 are considered in the analysis, given that they 

exist in any facility. Some other lifelines were found only in a few other hospitals but were 

not included in the analysis; such as elevators, special gases for treatment, among others. 

Each of the lifelines was illustrated with a mathematical variable, xi, which means the 

duration of the malfunction of each lifeline, as Table 4.9 shows. The 45 hospitals were 

screened according to the usefulness of cases; 21 cases were removed since some of them 

had incomplete information or did not suffer any malfunction to their lifelines and thus 

they functioned without any problem. The remaining 24 hospitals were found to be suitable 

for analyzing lifeline impact. Table 4.10 shows the duration of malfunction of each lifeline 
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for those hospitals analyzed each is identified by their respective codes. The data was 

divided into two groups according to the impact of the lifeline on the functionality of the 

hospital. The first group was designated by “y=0” which represents no impact, i.e. the 

facility could function, and the second group was designated by “y=1” which implies an 

impact on the performance of the hospital, i.e. existence of malfunction. We decided 

whether the impact had an effect on the performance or not by asking in question Number 

10 “Did the lifeline malfunction have any impact on your task, Yes or No?”  Having 

calculated the coefficients of the variables, using the Discriminant Function Analysis 

mentioned above, the duration of malfunction shown in Table 4.10 and the answer to 

question Number 10, Equation 4.3 was found. To perform a check Equation 4.3 was used 

to determine the malfunction of the facility by calculating value “y” and then comparing if 

the hospital had actually experienced a malfunction or not. A positive value of y implies 

functionality of the facility, i.e. considered as y=0, whereas a negative value implies 

malfunction, i.e. considered as y=1. The calculated values of “y” and the estimation of 

malfunction are shown in Table 4.10. As the table illustrates the majority of cases, about 

67%, the result was validated with the reality. The wrong estimations are displayed with 

“False” in the Remark/Results column. The standardized coefficient of each variable is 

calculated and the values are plotted in Table 4.11 (a). The classification of the importance 

of each variable is done according to the absolute value of the standardized coefficients 

(Aoki, 2005). The most important variable, i.e. lifeline, is that which has the highest 

standardized coefficient. Table 4.11 (b) shows the degree of importance of each variable. 

The coefficient of electricity is the highest among the others, thus lack of electricity having 

a standardized coefficient of 0.534 represents the most important cause of malfunction in 

hospitals. This result concurs with Myrtle et al. (2005) in which he classified the electrical 

system as the second most important lifeline after the piping system in hospitals. 

 
     123.027.1043.0067.0059.2163.036.1 654321 +++−++−= xxxxxxy       (4.3) 

 
Table 4.9- Parameter/System - Mathematical variable 
Parameter – System Mathematical variable 
Electricity 
Gas Supply 
Water Supply 
Telecommunication – Landline 
Telecommunication – Mobile phone 
Telecommunication – PHS phone 
Judgement Value (occurrence of malfunction) 

x1 
x2 
x3 
x4 
x5 
x6 
y 
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3.4 Performance of fuel power generators in emergencies 
 
The use of electric power generators as alternative sources helped the functioning of 

facilities greatly; this can be seen in Table 4.10 where only one facility, H61, lacked 

electrical power and suffered malfunction. Consequently, it is obvious to say that if power 

generators were not present the facilities could not function given that a significant amount 

of equipment, including medical equipment, depends on electricity to function. The 

Ishimaki Night Emergency Centre, H51, was forced to halt X-Ray services as the power 

generator could not cover the requirements of this vital service, a further example is the 

Tohoku Koseinenkin Hospital, H29, which uses well water which must be filtered 

electrically before use, if filtration does not occur the water is unsafe for human 

consumption. The use of emergency power generators is not always reliable as a lack of 

water or oil can cause the generators to malfunction; such as occurred during the Hyogo-

ken Nambu earthquake when the Hyogo Medical Centre had to be closed for two weeks 

because of damage to the water tank which caused a blackout (Shinozuka, 1995). The same 

was found in the Medical College of Kobe University when the generators had to be turned 

off to prevent overheating (Shinozuka, 1995). During the Niigata-ken Chuetsu earthquake, 

several facilities could not use their emergency generators for several reasons such as lack 

of water, oil and others. In Taiwan, as a result of the Chi-Chi earthquake of 1999 the 

emergency engines of the Christian and Shiu-Tuan hospitals were inoperable because they 

were damaged during the shaking (Lee et al., 2000). 

 
3.5 Comparative study 
 
3.5.1 The need of Photovoltaic Technology in hospitals 
 
If we comprehend the previous sections correctly, we will understand that current 

alternatives, i.e. power generators, are at risk of failure, thus there is a need to find other 

sources which are more reliable and not dependent on other lifelines to function. 

Photovoltaic (PV) systems respond positively to this situation as they do not depend on 

any other lifeline. The PV system is also reliable, economical and environmentally friendly. 

However, is it possible and beneficial to substitute engine power? We carried out a 

comparative study to answer this question which will be the subject of next two sections. 

The seismic safety of the PV system will be considered later.  
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3.5.2 Electricity Production 
 
Fuel System: In general, energy is defined as the product of power, PE, by time, t. The 

energy produced by an engine, EE, can be obtained according to Equation 4.4. Table 4.12 

illustrates the energy that can be produced within 3 days. 

 

tPEEE ×=             (4.4) 

 

Solar System: The total energy delivered, EPV, shown in Equation 4.5, is the energy 

delivered by a single array, EA, shown in Equation 4.6, multiplied by the number of arrays, 

nA , and the co-efficients for inverter losses, ηinvs , and absorption rate, ηabs. 

 

absinvA EAnEPV ηη ×××=          (4.5) 

 

)1()1( cptp HSEA λλη −×−×××=         (4.6) 

 

Unlike the fuel system, which depends only on the power of the engine, the solar system 

must consider more than one factor; a) the individual characteristics of each array, b) the 

location of the system, i.e. radiance, and c) the availability of space. To satisfy these 

factors we chose different types of PV arrays, see Table 4.13, and different locations where 

the system can be installed. The locations considered have different radiance levels and are 

all seismically active areas so as to realize the purpose of the entire study. The countries 

Algeria, Iran, Japan and Turkey were considered because of their earthquake vulnerability 

and because they represent an array of radiance levels from low to high. Table 4.14 shows 

the different radiance values considered in the analysis. Please note that Kanazawa, Japan’s 

minimum sunshine of 1,300 hours/year is additionally factored so as to illustrate the worst 

case scenario and also to broaden the possible spectrum for other countries in the world to 

make use of PV systems. In the other cases we considered the average brightness as shown 

in Figure 4.12. 

 

To make the comparison easy we sought the same amount of energy produced by the 

generators by using the solar system within the same period of time, 3 days. 
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Table 4.10- Malfunction in each hospital -No structural damage 
Malfunction- y Remark 

x1 x2 x3 x4 x5 x6 Hospital 

(hour) 
Real Calculation Estimation Earthquake Results 

H2 0.1 0 0 0 0.1 0.1 0 0.118 0 Hokkaido  
H3 1 0 0 0 0 0 0 -1.238 1 Hokkaido FALSE 
H7 0.2 0 0 0 0 0 0 -0.149 1 Hokkaido FALSE 
H9 0 0 0 1.5 1.5 1.5 0 1.993 0 Hokkaido  
H14 0 0 0 0 6 0 0 0.378 0 Hokkaido  
H21 0 0 0 0 2 0 1 0.208 0 Hokkaido FALSE 
H22 1 0 0 0 0 0 0 -1.238 1 Miyagi-H FALSE 
H26 0 0 0 0 1 0 0 0.166 0 Miyagi-S  
H28 0 0 0 0 3 0 0 0.251 0 Miyagi-S  
H30 0 0 0 0 3 0 0 0.251 0 Miyagi-S  
H36 0 0 0 0.5 0.5 0.5 0 0.746 0 Miyagi-H  
H37 0 0 0.7 3 3 0 0 1.491 0 Miyagi-S  
H38 0 0 0 3 3 0 0 0.050 0 Miyagi-S  
H39 0 0 0 0.1 0.1 0 1 0.121 0 Miyagi-N/A FALSE 
H41 0 2 0 0 0 0 0 0.448 0 Miyagi-H  
H42 0 0 0 8 8 0 0 -0.072 1 Miyagi-H FALSE 
H43 0 0 0 1 1 0 0 0.099 0 Miyagi-S  
H45 0 0 0 1 1 1 0 1.369 0 Miyagi-H  
H53 0 0 0 1 1 1 0 1.369 0 Miyagi-N/A  
H54 0 0 0 3 0 0 0 -0.078 1 Miyagi-N/A FALSE 
H57 0 0 0 3 3 0 1 0.050 0 Miyagi-S FALSE 
H61 1.5 0 0 1 1 0 1 -1.943 1 Miyagi-H  
H62 0 0 0 0 1 0 0 0.166 0 Miyagi-S  
H65 0 10 0 2 2 0 0 1.670 0 Miyagi-S  

Hokkaido: Tokachi-Oki Earthquake, Miyagi-H: Miyagi-ken Hokubu Earthquake,  
Miyagi-S: Miyagi-ken Sanriku-Minami Earthquake, Miyagi-N/A: the response is not précised Miyagi-H or Miyagi-S. 
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Table 4.11- Standardized coefficients and classification of lifelines 
(a) Standardized coefficients            (b) Classification 

System Standard. Coef.  Degree of 
importance 

Absolute value of 
Standard. Coef. System 

Electricity 
Gas 
Water 
Tel. Landline 
Tel. Mobile phone 
Tel. PHS phone 

-0.534 
0.328 
0.288 
-0.120 
0.083 
0.506 

 
 
 
 
 
 

1 
2 
3 
4 
5 
6 

0.534 
0.506 
0.328 
0.288 
0.120 
0.083 

Electricity 
Tel. PHS 
Gas 
Water 
Tel. Landline 
Tel. Mobile phone 

 

PV installation: The PV installation depends on two main techniques for its use: Off-Grid 

and On-Grid techniques (Ministry of Natural Resources, 2005). The evaluation was 

achieved according to the On-Grid technique. Panels are supposed to be fixed and placed 

30o from the horizontal to collect the maximum energy. The stability of the system will be 

discussed in a different study. 

 

Evaluation Results  

Productivity of energy:  To produce a certain amount of energy in a fixed period of time 

the solar system should have a minimum power. The results in Table 4.15 show that 

minimum power is constant and it does not depend on the individual power of the array. 

This is met by adjusting the number of panels in relation to the panel power 
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Figure 4.12- Average radiance in Algeria, Japan, Iran and Turkey 
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Table 4.12- Engines characteristics and energy produced in 3 day 
Nominal Engine Power- NPE 
(KW) 

η (%) Prime-Power- PE  
(KW) 

Produced energy in 3 days  
(KWh) 

30 
500 
770 
1,000 
1,840 
5,200 

10 
10 
10 
10 
10 
10 

27 
455 
700 
909 
1,673 
4,680 

1,944 
32,760 
50,400 
65,061 
120,456 
371,799 

 
 
Table 4.13- PV arrays’ characteristics, module type Mono-Si 
Rating (W) Nominal module efficiency (%) Nominal Power (KW) Area (m2) Weight (Kg) 
285 
195 
190 
185 
180 
175 

11.7 
17.3 
16.1 
14.2 
15.3 
13.5 

0.285 
0.195 
0.190 
0.185 
0.180 
0.175 

2.43 
1.28 
1.18 
1.30 
1.18 
1.30 

47 
14 
14 
17 
14 
17 

 
Table 4.14- Considered locations and their radiance 

Radiance (KWh/m2/day) Country/City 
Horizontal Plane PV array Plane 

Month Remark 

Japan/Kanazawa 0.83 
3.83 

1.25 
3.66 

December 
May 

1300h/year 
Average 

Algeria/Algiers 
Iran/Kerman 
Turkey/Istanbul 

6.34 
7.28 
7.39 

5.93 
6.53 
7.07 

July 
July 
July 

Average 
Average 
Average 

 

Table 4.15- Delivered Energy by PV arrays 
Panel Power (KW) No. of panels Sys. Total power (KW) Delivered Energy (KWh) 
0.285 
0.195 
0.190 
0.185 
0.180 
0.175 

2,062 
3,014 
3,093 
3,177 
3,265 
3,358 

587.67 
587.73 
587.67 
587.75 
587.70 
587.65 

1,944 
1,944 
1,944 
1,944 
1,944 
1,944 

 

For each of the radiances we determined the PV power system PPV relevant to each engine 

power PE, Figure 4.13 shows the relation between PPV and PE for each radiance case. The 

PV power varies linearly with the engine power in accordance with Equation 4.7. Besides 

its dependence on the engine power, the PV power depends on the radiance, given that the 

curves are different for each of the radiances. The coefficient, α, was plotted against 

radiance to find its relation, see Figure 4.14. Equation 4.8 illustrates the variability of the 

coefficient α as a function of total daily radiance in the plane of the PV array, tH . The two 

equations 4.5 and 4.6 were found graphically from the curves shown in Figure 4.13 and 

Figure 4.14 respectively. 
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PEPPV ×= α                 (4.7) 

 
γδα −×= tt HH )(          (4.8) 

Where, 

  δ: constant = 26.673 and γ: constant = 0.9246 

The lower the value of α, the easier the deliverance of energy will be; Figure 4.13 and 

Figure 4.14 show that for high radiance, i.e. a low value of α, the possibility of producing a 

high quantity of energy is greater. For low radiance, i.e. a large value of α, the production 

of a large amount of electricity is quite difficult, yet still possible. Table 4.14 shows 

different radiances, when the radiance is low, such as in Kanazawa City where the 

maximum solar energy does not reach the 0.83KWh per square meter per day, the PV 

system needs more power to deliver a small quantity of energy. While in high radiance 

areas, such as Istanbul where the maximum solar energy is 7.39KWh per square meter per 

day, the system needs low power to deliver a large amount of energy. This explains why 

the PV system power reduces when the radiance is high and vice-versa. 
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Figure 4.13- PV system power - Engine power 
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Figure 4.14- Variance “α” – Radiance 

 

Space: According to Equation 4.7 and Equation 4.8, EA is zero only when tH  is equal to 

zero. In other words, as long as the radiance is different from zero (existence of brightness) 

the array delivers energy. However, the area needed to install the system should be verified 

to find the practicability of the system. During the analysis of power we also determined 

the total area needed to install the solar system that can deliver the energy sought. Unlike 

the power, the total area varies from one panel to another, given that the characteristics of 

panels are different. The required-areas of each panel were plotted versus the engine power. 

For instance, Figure 4.15 represents the case of six panels considered to be placed in 

Kanazawa City. Each of the radiances has its relevant diagram. Figure 4.15 shows that the 

required area, S, varies linearly with the power of the engine to-be-substituted, PE. The 

195W panel requires the least space while the 285W panel requires the largest space. This 

is because the module of efficiency of panel 195W is the highest, while panel 285W is the 

lowest, see Table 4.13. The curves have the form shown in Equation 4.9. 

 

PES ×= β                (4.9) 

 

The coefficient β was found depending on the radiance and the individual PV array power. 

In this study only the radiance will be considered because further studies of the coefficient 

may not benefit the present study. The coefficient will be noted with little PV to show that 

it depends on the type of the panels as well. To find the relation between β and the radiance 

we plotted its values versus the radiance, see Figure 4.16. The coefficient has the form 

shown in Equation 4.10. 

Alpha = 26.673*Radiance-0.9246
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ψξβ −×= ttPV HH )(              (4.10) 

Where, 

tH : Daily total radiance average in the plane of the PV array 

ξ and ψ are constants, depending on the type of panels, see Table 4.16 for 

numerical values 

 
The results show that in low radiance areas it is not practical to substitute engines with 

high power since the total required PV area becomes very large. On the other hand, in high 

radiance locations it may be beneficial to do so.  

 
Table 4.16- Value of ξ and ψ 
PV Array Power (KW) ξ ψ 
0.285 
0.195 
0.190 
0.185 
0.180 
0.175 

227.97 
154.15 
165.63 
187.81 
174.30 
195.54 

0.9254 
0.9248 
0.9247 
0.9248 
0.9248 
0.9247 

 

Finally, it is theoretically possible to deliver any amount of energy by a solar system, yet it 

may not be a viable proposition for large quantities if the radiance is low. The result that is 

found is beneficial not just for hospitals/primary response centres but also for other 

facilities. It may be beneficial not just in a state of emergency but also for normal use.  

 

To make an economical comparison we found that it is best to use an actual example of a 

facility. We decided to consider one of the worst cases that can be found, low radiance and 

high consumption. 
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Figure 4.15- PV total area - Engine power (Radiance 1.25KWh/m2/day) 
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Figure 4.16- Variance β – Radiance 

 
3.5.3 Case study; Kanazawa University Hospital 
 
3.5.3.1 Overview 
 
It is commonly believed that Japan has low radiance which makes the use of solar systems 

limited. Kanazawa City has a very limited annual sunshine rate and so we decided to use it 

as our case study to find out whether it is possible to use solar panels as an alternative 

power source or not. Between 1971 and 2000 Kanazawa City had a radiation average of 
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1,706 hours/year (Meteorological Data, 2005) which makes it one of the lowest in Japan; 

see Figure 4.17 and Table 4.17 illustrating the average monthly radiance for Kanazawa 

City. The minimum radiance on a horizontal area in December reaches 1.11 KWh/m2/day. 

Kanazawa City is home to a very large hospital, Kanazawa University Hospital. The 

facility has a total area of 150,000m2; 33,541m2 of which comprises built areas, which 

have a total floor area of 153,678m2 (Kanazawa Medical University Hospital, 2005). 

Kanazawa University Hospital is composed of many buildings, the oldest was built in 1974 

and the newest in 2003. It provides health care to more than 723,000 patients every year, 

among them 2% are emergency patients served by 1,482 staff members. This makes its 

power consumption very high. It rose from 11GWh in 1982 to 26GWh in 2004, see Figure 

4.18. 

 

The present study takes into consideration only the new building, which is one of the most 

important buildings in the whole facility. It is reinforced concrete and steel in some areas. 

The building is composed of 12 floors with a total area of 51,849m2. Its isolated base is 

able to protect the structure from earthquakes. The facility has a capacity of 673 beds, 

representing 72% of the capacity of the entire facility which is 938 beds. The roof of the 

building has a total area of 4,380m2. The building has annual power consumption of 6GWh. 

During an emergency the emergency power generators can produce 2,050KWh, which is 

sufficient for 72hours according to the hospital staff, in other words the daily minimum 

consumption is 683.3KWh, and thus the annual minimum consumption is 250MWh. 
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Figure 4.17- Annual average sunshine in Japan 
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Figure 4.18- Hospital annual consumption (1982-2004) 

 
3.5.3.2 Power Evaluation 
 
At first, let’s apply the results of the previous sections to find out the power required by a 

PV system that may replace the engine and its relevant area. To do that, we should find a) 

the equivalent engine power able to produce the same amount of energy within the same 

period and b) the minimum radiance to cover the whole year. An engine of 28.5 KW power 

shall produce 2,050KWh within 72 hours, the minimum amount for the facility to function. 

According to Table 4.17 and Figure 4.12, December has the lowest radiance, thus it is the 

appropriate case for the study. Once the evaluation is done according to equations 6 and 5, 

the PV power should be at least 519.32KW. The relevant area is shown in Table 4.18. 

 

Ultimately, the second type of panel, 195W, gives the lowest area and therefore it shall be 

adopted further in the study. It is clear that the installation of the system is possible given 

that the system is able to deliver the required energy and it can be installed since the 

required area represents only 68.5% of the building roof area. 

 

To find the number of panels and to check whether the result is correct or not we used a 

program code called RETScreen® (RETScreen International, 2005). The results showed 

that 2,664 panels have a power of 519.48KW and a total area of 3,002.8.4m2. The 

estimation achieved by the equations found in the previous sections agrees with the 

analyses that have been achieved by RETScreen®. This confirms the study done 
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previously and that the equations are able to give a good estimation for the system power 

and the required area to install the system. 

 
Table 4.17- Average monthly radiance, Kanazawa City 

Radiance (KWh/m2/day) Month 
Horizontal Plane PV array plane 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

1.19 
1.78 
3.08 
4.47 
5.11 
4.69 
4.69 
4.75 
3.50 
2.78 
1.69 
1.11 

1.57 
2.07 
3.39 
4.58 
4.88 
4.36 
4.41 
4.72 
3.75 
3.31 
2.12 
1.51 

 

Table 4.18- Total area required to deliver 2,050 KWH/72hours 
Array Power (KW) Area (m2) Total weight (Kg) 
0.285 
0.195 
0.190 
0.185 
0.180 
0.175 

4,437.08 
3,001.03 
3,224.66 
3,656.33 
3,393.32 
3,845.90 

85,820 
32,824 
38,259 
47,814 
40,260 
50,293 

 

The 2,664 panels are able to deliver 2,050KWh within 3days and 21,186KWh during the 

month of December and the annual average energy delivered may reach 528,924KWh as is 

illustrated in Figure 4.19. The deliverance of energy is verified. Some of it has to be stored 

in an uninterruptible power system (UPS) system i.e. batteries. The number of batteries 

depends on their capacity and the amount of energy that the facility desires to store; in the 

present case we chose the same as the actual situation of the facility i.e. 72hours. To avoid 

any risk of not being able to deliver energy within a certain period (case of very low 

radiance or less than 3 days period after installation of the system) the batteries have to be 

stored with commercial power so that it can be used for any emergency that may occur. 

Batteries are usually stored in cupboards as Photo 4.1 shows. They are very well tightened 

with bars from the four directions covered with rubber to reduce the shocks that they can 

experience in case of an earthquake. Photo 4.2 illustrates the control of the UPS system. 

Finally, it can be concluded that it is safe to consider a PV system as an alternative source 

of electrical power. 
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 Photo 4.1- Batteries’ cupboard              Photo 4.2- UPS control system 

 

3.6 Environmental and economical issues 

Evidently, the PV system does not release any toxic waste where as power engines do, but 

the question is how much pollution is produced in the considered case of Kanazawa 

University Hospital. The following paragraph reveals the mount of toxic elements released 

by using such a supply. 

 
3.6.1 Environmental issue: toxic waste 

There are many types of generators which use different types of fuel, in this study we 

considered; oil, western coal, eastern coal, gas and biomass. At least five types of toxic 

waste are released in using these fuels; Sulphur Dioxide (SO2), Oxides of Nitrogen (NOX), 

Particular Matter smaller than 10 microns (PM10), Carbon Dioxide (CO2), Volatile 

Organic Compounds (VOCS). The evaluation of the quantity of waste was achieved by a 

calculator available online (EPPC, 2006). To produce a quantity of energy enough for 3 

days, 2,050KWh, the generator emits the quantity of toxic components shown in Table 4.19. 

 
3.6.2 Economical issue 

The best system should help reduce extra expenses on the facilities, principally when 

hospitals are suffering from economic difficulties. In fact, in California a study showed 

that 33% of the facilities in California are loosing money (Myrtle, 2004); therefore the 

alternative source should not burden the healthcare facilities with further expenses. The 

present section compares both the solar system and the fuel system. The comparison 

includes the cost of installing the system, and the power production expenses, some other 
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expenses may be difficult to calculate such as the pollution effect on the environment as 

well as on lives. 

 

Table 4.19- Pollution emitted by producing 2,050KWh 
Pollutant (Kg) SO2  NOx  PM10  CO2 VOC 

FU
EL

 

Oil 
Western Coal 
Eastern Coal 
Gas 
Biomass 

11.381 
38.832 
18.076 
0.067 
1.339 

14.060 
64.728 
49.079 
12.719 
27.896 

0.446 
2.232 
1.339 
0.446 
2.455 

18.746 
22.316 
23.187 
14.282 
0.000 

0.670 
1.339 
2.009 
1.116 
13.612 

 
Table 4.20- Cost of commercial energy 
Plan No. Period Cost (tax included, 5%) dollar/KWh* 

July-September 0.1039 412 
October-June 0.0945 

* 1 Dollar=118Yen.  
 

Table 4.21- Produced energy and cash flow, 1st year 

 January-June July-September October-December 

Energy (KWH) 273,333 159,442 93,148 

Cost (dollar) 25,830 16,571 8,803 

Total Cost (dollar) 51,204 

 

3.6.2.1 Case of PV arrays 
 
Information we gathered from a company that manufactures and installs solar arrays in 

buildings confirms that the price of 1KW is 11,017 dollars. However, from April 2005 the 

price decreased by 70% to 3,305 dollars. This discount was confirmed by a study showing 

that prices have decreased by 73% in 2005 compared to prices in 1992 (Moony et al., 

2003). The prices will continue to decrease at least until 2008; in fact 2008 prices will be 

18% of those in 1992 (Moony et al., 2003). 

 

The whole system has a capacity of 519.48KW therefore the total cost becomes 171,924 

dollars. To calculate the amount of savings we used the prices provided by the Hokuriku 

Denryoku Company, from where the facility obtains its supply. The company has different 

prices for each KWh depending on a) the set plan that the facility joins and b) on the 

months; July, August and September which are the most expensive months. Table 4.20 

illustrates the plan to which the hospital subscribes (HDC, 2005). The savings that the 
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facility makes within 3 days is calculated according to Table 4.21. They are 213 dollars or 

194 dollars, July-September or October-June respectively. 

 
3.6.2.2 Case of power generators 
 
Unlike the solar system, the evaluation of the cost of generator-produced energy includes 

the cost of the engines, the cost of the fuel, cost of cooling water and cost of toxic waste, 

which includes the impact on the environment and on lives. The impact on the 

environment, on lives, (mainly human), diseases which may ensue and the cost of treating 

them are not considered. Hence only the cost of engines, fuel and water are considered. 

 

Unfortunately we could not get the exact cost of an engine of 5,200KW such as that which 

the facility has; however according to some internet sites we found that an engine of this 

type costs around 169,492 dollar. By converting the amount of electric energy, 2,050KWh, 

into oil using the conversion rate oil/electric energy, 1,000litter equal to 4,110KWh 

(ZEXEL, 2005), the necessary amount of oil is 498.8 litres. Before calculating the cost of 

oil we should consider that the price of oil has become very expensive, the record of oil 

prices of the last two years is plotted in Figure 4.20. According to the records of the first 

week of June 2004 the prices became 40% higher than that of 2003; the price in the same 

period in 2005 is double that of 2003 (OPEC, 2005). To calculate the cost of oil we used 

0.593dollar/litre thus 296 dollars in 72hours. The generator in question needs 69.84m3 of 

water which costs about 158 dollars. Finally the total amount needed to produce electricity 

for 3 days is 509 dollars. Table 4.22 summarizes the expenses and savings for both systems. 

 

According to Table 4.22 it is clear that the solar system is more beneficial than the fuel 

system even though both cannot pay back the amount that they consume to produce the 

required energy. Moreover, the Japanese government encourages the use of renewable 

energy by offering a subsidy of up to 50%, to those who are willing to install solar power 

to reduce environmental pollution. Finally, it is clear that by using the solar system the 

facility would reduce its expenses, use a reliable power source, save lives and be more 

compliant with the Kyoto convention. 
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Figure 4.19- Monthly PV system delivered energy 

 

 
Figure 4.20- Oil price (OPEC, 2005) 

 

Table 4.22- 3-day expense summary (dollar) 
 Equipment Operation cost Savings Total 

PV 564 0 213 
194 

-351* 
-370** 

Engine 56 453 0.000 -509 
*July-September **October - June 
 

Table 4.23- Comparison Summary 
 Fuel System Solar System 
Deliverance of the required amount of energy 
Limited space use 
Environment friendly (no impact after use) 
Economical savings 
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Table 4.24- Annual energy production 
Country (City) Delivered Energy (MWh) 
Iran (Kerman) 
Turkey (Istanbul) 
Algeria (Algiers) 
Japan (Kanazawa) 

848.831 
721.511 
692.057 
528.924 

 
3.7 Analysis result 
 
3.7.1 Results of comparison 
 
At this point it is necessary to look back at what has been achieved in the previous sections 

to ascertain the usefulness of replacing a fuel system with a solar system. Table 4.23 re-

encapsulates the results of the previous sections; the symbol “ ” is used when the 

proposition is true and the symbol “ ” is used when it is false. According to the table the 

solar system responds positively to three out of four propositions while the fuel system 

responds only to two of four. Therefore, Table 4.22 shows that the solar system is 

generally better than the fuel system. 

 
3.7.2 International Cases 
 
It may be useful to study cases of other countries that may benefit more than Japan by 

using a photovoltaic system, by looking at Algeria, Iran and Turkey. The radiance in these 

countries is higher than in Japan as Figure 4.12 illustrates. To compare all cases we kept 

the same data (number and type of arrays, some model of googlanalysis etc.) and we 

carried out the evaluations for all cases and plotted the results in Figure 4.21. Iran has the 

highest production of energy except in June-August when Turkey has the highest amount; 

that difference is because of the difference of temperature between both locations. 

Nevertheless, Iran still has the highest annual delivered energy, see Table 4.24. The 

Aflatoonian Hospital in Bam city, Iran, consumed 29,680KWh in August 2005. According 

to Figure 4.21 in August the system is able to deliver over 83,000KWh. It is clear that the 

system can be used not just as an alternative source but also as a main source. 
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Figure 4.21- Possible energy production for Algeria, Iran, Japan and Turkey 

 
3.8 Seismic response of the system 
 
3.8.1 Models 
 
To support the panels two models can be adopted; mobiles and fixed. As mentioned before 

only fixed models are considered as they are more stable than the mobile ones. Within the 

fixed model the design of a model depends on the requirement of the designs and on the 

engineer who designs it. We visited the solar system installed in our university, Kanazawa 

University, and we found that there are several types that were used. The models depend 

on the type and size of panel. We chose two models which will be considered in the study. 

The first model is that shown in photos 4.3, 4.4 and Figure 4.22 and the second is shown in 

Figure 4.23; Table 4.25 shows the detail of each of both models. The numbers shown in 

the figures are the number of bars, on top or below the appropriate bar, and the number of 

Nodes. The detail of each of the sections used in the models is shown in Figures 4.24, 4.25 

and 4.26. Both structures are considered to be fixed to the building.  
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Photo 4.3- Solar panel support    Photo 4.4- Attachment support-building 

 

 
Figure 4.22- View of the first model considered in the study, Model 1 

 
Figure 4.23- View of the second model considered in the study, Model 2 
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Table 4.25- Detail of models 
Model Bar #  Node I Node J Section Length (cm) 

1 1 2 Double-Angle-50 150.0 
3 1 4 Double-Angle-50 121.5 
4 2 4 Double-Angle-50 86.4 

M
od

el
 1

 

5 4 5 Double-Angle-50 167.7 
1 1 2 Angle-50 100.0 
2 2 3 Angle-50 228.8 
3 3 4 Angle-50 156.1 
4 4 5 Double-Angle-50 247.6 
5 5 6 Double-Angle-50 100.0 
6 2 5 IPE50 294.7 
7 3 5 Angle-50 192.2 
8 1 7 Angle-50 178.1 

M
od

el
 2

 

9 7 6 Angle-50 178.1 
 

 
Figure 4.24- Detail of section “Double-Angle-50” 

 

 
Figure 4.25- Detail of section “Angle-50” 
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Figure 4.26- Detail section IPE 

 
3.8.2 Loading 
 
The purpose behind this study is to find out the response of the solar system on top of a 

building. The building may be provided with a base isolation system as it can be a regular 

building. To fulfil this criteria we considered different frequencies and different 

accelerations. We considered a sinusoidal pulse with variable frequencies (1Hz-10Hz). It is 

known that buildings with base isolation system have low natural frequencies. These 

systems were created to move with the natural frequency of the building far from the 

predominant frequencies of earthquakes and therefore avoid its collapse. The models were 

considered to be linear models given that the structure is very stiff (large cross-sections and 

relatively small size of the entire structure).  

 
3.8.3 Response of structure 
 
Calculation of the response of the structure was done with software called “SAP2000®” 

version 10.0.1 by Computers and Structures Incorporation. At first we made a modal 

analysis to find out the modes and the natural frequencies of the structure. Table 4.26 

illustrates the different frequencies and their relevant periods as well as their Eigen values. 

The first mode in both models was found to be very far which means that the structures 

will never pass through resonance and therefore the response will be very low. We 

considered the maximum response at Node 2, i.e. maximum response, and we compared it 

to Node 1, i.e. input acceleration, for Model 1 and Node 4, i.e. maximum response, to 

Node 6, i.e. input acceleration, in Model 2. In all cases the response was the same as the 

5mm 

5mm 

5mm 

100mm 

100mm 
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input acceleration, Figure 4.27 and Figure 4.28 show the cases of 1Hz and 10Hz 

respectively.  

Table 4.26- Natural modes of both structures 
Model Mode # Period (sec) Frequency (Hz) Eigen value (Rad2/sec2) 

Mode 1 0.003477 287.56 3264600 
Mode 2 0.001877 532.62 11200000 
Mode 3 0.001791 558.35 12308000 Model 1 

Mode 4 0.000911 1098.3 47621000 
Mode 1 0.008661 115.47 526340 
Mode 2 0.00519 192.67 1465400 
Mode 3 0.004488 222.82 1960000 
Mode 4 0.003696 270.55 2889700 
Mode 5 0.00273 366.3 5297100 
Mode 6 0.002141 466.99 8609300 
Mode 7 0.002058 485.84 9318400 
Mode 8 0.001645 608.03 14595000 
Mode 9 0.0015 666.5 17537000 

Model 2 

Mode 10 0.001207 828.39 27091000 
 
 

   
Figure 4.27- Response acceleration versus input acceleration for Model 1 (left) and Model 

2(right) for the case of 1Hz 
 

  
Figure 4.28- Response acceleration versus input acceleration for Model 1 (left) and Model 

2(right) for the case of 10Hz 
 

For further investigations we considered the amplification factor AMP1, defined in 

Equation 4.11, and plotted it versus the frequency, Figure 4.29, and the input acceleration, 

Figure 4.30. The response increases with the frequency but only very slightly as at 10Hz 

the amplification becomes equal to 1.042, i.e. 4.2% of the input for Model 1 while it 
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becomes 17.9% for Model 2. The difference of response can be explained simply by the 

difference in height of both nodes in both models (1.5m for Model 1 and 3.47m for Model 

2) as well as the difference of the stiffness in both structures. Moreover, the amplification 

varies with the frequency according to the Gauss model, in which the peak is at each of the 

frequencies relevant to the first mode, i.e. 287Hz for Model 1 and 115Hz for Model 2. The 

amplification does not vary with the acceleration and that is simply because the analysis 

was supposed to be linear. The amplification factor AMP1 of the Model 1 is lower than 

Model 2 and this is for the same reasons précised previously for the amplification-

frequency relation. In both cases the structure is very strong; the reaction at the base is very 

small as it is seen in Table 4.27. Fx, Fz and My represent the horizontal reaction according 

to X-direction, vertical direction according to Z-direction and the bending moment around 

Y-direction. The reactions, Fx, Fz and My, are very low which makes the structure safe and 

the possibility of its collapse low because shaking is very low. 

 

a
xaAMP
&&+

=1               (4.11) 

 
Where 

a:  Input maximum acceleration;  

xa &&+ :  Maximum absolute acceleration (response) 
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Figure 4.29- Effect of the frequency on the response 
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Figure 4.30- Effect of the acceleration on the response 

 

4. RESPONSE OF EQUIPMENT; STABILITY 
 
4.1 Introduction 
 
As mentioned in chapter 2, a healthcare facility is a mixture of a variety of facilities. 

Equipment, that a facility has, has different sizes, shape, attachment methods, materials etc. 

Large equipments are difficult to be moved, but the damage that they may go through can 

be mechanical, electrical or malfunction caused by the shortage of something they depend 

on. Previously we studied their fortification by strengthening the electric power which is 

one of the most important lifelines that they depend on. This section represents a study of 

the response of services’ equipments. The question is how best to select the service that’s 

equipments are needed the most in an emergency? There are many ways to determine this 

but here we propose using the information about previous earthquakes, i.e. casualties.  

 

4.2 Determination of most required equipments- Casualties 
 
4.2.1 Dependence of casualties 
 
Since 1900 and until 2005, over 1.7 million people were killed as Figure 4.31 illustrates, 

and 1.5 million were injured by main earthquakes that occurred in 85 countries. It is 

obvious to say that the preparedness of a county reduces the number of causalities, and that 

the number of causalities varies from one country to another proportionally to its 
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preparedness. The question that can be asked is “Is it possible to classify data taken from 

different locations in the world to find out the most important type of injury that should be 

considered?” To answer this question we used the Contingency Table Approach (Johnson 

et al., 2006).  

 

The null hypothesis, H0, represents the independence of the classification, i.e. number of 

casualties is independent from one country to another. H0 is true if the value of the test 

static shown in, Equation 4.12, is higher than the critical value also known as Chi-Square 

value. Table 4.28 shows the data that was used for this test. As Table 4.29 shows, the test 

static value is larger than the critical value, i.e. hypothesis H0 is true. Thus, the number of 

casualties does not depend on the countries, but rather on the level of its preparedness for 

earthquakes. Therefore the classification of casualties should be done always within the 

same country. 

 

Table 4.27- Reactions at the base of structures for an acceleration of 1000cm/sec2  
Model 1 Model 2 

Frequency Fx Fz My Fx Fz My Node (Hz) (kgf) (kgf) (kgf.cm) Node (kgf) (kgf) (kgf.cm) 
1 4.94 13.43 4.86 38.02 41.74 17.81
2 4.95 13.48 4.88 38.30 42.11 17.94
3 6.29 15.19 5.03 38.42 42.39 18.00
4 4.97 13.59 4.91 38.90 42.90 18.23
5 4.98 13.65 4.92 39.20 43.30 18.37
6 4.99 13.65 4.93 39.52 43.72 18.52
7 5.00 13.68 4.95 39.84 44.11 18.67
8 5.01 13.80 4.97 39.92 44.54 18.72
9 5.02 13.81 4.98 40.43 44.98 18.95

1 

10 5.04 13.91 5.00

1 

40.80 45.41 19.13
1 18.27 13.44 0.38 38.04 41.74 31.48
2 18.33 13.49 0.38 38.32 42.11 31.70
3 18.43 13.56 0.59 38.44 42.35 31.77
4 18.45 13.58 0.39 38.92 42.93 32.19
5 18.52 13.63 0.40 39.22 43.34 32.44
6 18.55 13.65 0.40 39.54 43.77 32.69
7 18.62 13.70 0.41 39.86 44.16 32.95
8 18.70 13.76 0.41 39.94 44.58 32.97
9 18.76 13.81 0.42 40.44 45.07 33.41

5 

10 18.84 13.86 0.42

6 

40.81 45.53 33.73
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Where 

n
cr

nE ji
ij =)(ˆ           (4.13) 

nij: expected cell frequency 

n: total number of casualties 

ri and ci: row i and column j  

 
4.2.2 Classification of injuries 
 
To prepare a healthcare facility for an earthquake it is useful to find out the most important 

systems required to treat the maximum number of injuries. This can be done by many 

means; here we suggest using statistics related to old earthquake experiences. The 

suggestion is based on the type and cause of injuries; a study, similar to the previous one, 

can show the classification of each type of injuries and its cause. If the variables, type and 

cause of injuries, are dependents, then the classification should be done according to the 

cause. If the type and the cause are independent then the classification should be done 

according to the type of injury. The classification in both would lead to a need for a 

particular service, which has to receive the highest attention. 

 

There are several types of injury, but they can be classified into six categories: slight 

injuries, fracture, spine and pelvic problems, crush syndrome, burns and others. These 

types of injury have many caused, which we cite here: falling debris, falling, struck by 

objects, traffic accident, burns/electrocution, piercing/cutting, and others. It was difficult to 

collect the relevant information. Samples of five different earthquakes, each from a 

different country, are considered. The data that we did collect is from Armenian et al. 

(1997), McArthur et al. (2000), Peek-Asa et al. (1998), Tanaka et al. (1999), Erek et al. 

(2002), Server et al. (2002), Demirkiran et al. (2003), Ozdogan et al. (2001), Kurt et al. 

(2001) and Roy et al. (2005), following the 1988 Armenia, 1994 Northridge, 1995 Hyogo 

Nambu, 1999 Marmara and Bhuj earthquakes, see Table 4.30. A rough classification is 

done according to the type of injuries, and the results are shown in Figure 4.32 through 

Figure 4.36. The main causes of those injuries are shown in Figures 4.37 through 4.39.  

To explain further the usefulness of this study we considered the case of Japan. To prepare 

a healthcare facility, a Japanese engineer should pay attention to the service that treats the 

fractures as it has the highest probability to occur; Figure 4.34 shows that 44.6% of the 
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injuries may have a fracture. Therefore with the purpose of saving the maximum number 

of injuries, all equipments required to treat a fracture should be functioning after an event.  

 
It should be mentioned that this classification is true only for the cases shown, given that 

the number of data is limited which does not allow us to generalize the case. Another type 

of causality not previously mentioned are psychological traumas and difficulties related to 

earthquakes. These should not be overlooked as there effects can be serious and long 

lasting. 
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Figure 4.31- Accumulation of major earthquakes related death toll 1900-2005 in 85 

countries 
 



 

   
Performance of lifelines and response of equipment                                Page 112  

25.2%

33.8%

41%

 Injuries
 Fracture
 Crush syndrome

 

 

1988 Armenia earthquake, Type of injuries

 
Figure 4.32- Classification of injuries caused by the Armenia earthquake 
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1994 Northridge earthquake, type of injuries

 
Figure 4.33- Classification of injuries caused by the Northridge earthquake 
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1995 Hyogo-ken Nambu earthquake, type of injuries

 
Figure 4.34- Classification of injuries caused by the Hyogo-ken Nambu earthquake 
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2001 Bhuj earthquake, type of injuries

 
Figure 4.35- Classification of injuries caused by the Bhuj earthquake 
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1999 Marmara earthquake, type of injuries

 
Figure 4.36- Classification of injuries caused by the Marmara earthquake 
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1995 Hyogo-ken Nambu earthquake, cause of injuries

 
Figure 4.37- Classification of causes causing injuries in Hyogo-ken Nambu earthquake 
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2001 Bhuj earthquake, cause of injuries

 
Figure 4.38- Classification of causes causing injuries in Bhuj earthquake 
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1994 Northridge earthquake, cause of injuries

 
Figure 4.39- Classification of causes causing injuries in Northridge earthquake 

 
4.2.3 Steps to follow 
 
Finally it may be interesting to show the steps to find the most probable service required 
post earthquake. Figure 4.40 is a chart summarizing all steps. The first step involves 
relating the cause of injuries and the type of injuries. In the case of a relation the 
classification shall then be done according to the cause of injuries. Otherwise the 
classification shall be done according to the type of injuries. Therefore, the most probable 
type of injury and the most important medical service needed to save the maximum 
number of injuries can be found.   
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Table 4.28- Earthquake-related Casualties in 85 countries (part 1/2) 
CASUALTIES COUNTRY 
(death/event) (injuries/event) 

TOTAL 
 (people) 

PROBABILITY 
PC 

1 471 440 910 0.007011551 
2 9 98 107 0.000825636 
3 375 1128 1503 0.011574135 
4 2015 7073 9088 0.069995750 
5 11 210 221 0.001702104 
6 26 233 260 0.001999908 
7 6 104 110 0.000845917 
8 1 15 16 0.000123229 
9 38 17 55 0.000423601 
10 33 56 89 0.000685463 
11 3 0 3 2.31055E-05 
12 1681 2752 4433 0.034143806 
13 7926 2223 10149 0.078166004 
14 157 605 763 0.005874661 
15 2 0 2 1.54037E-05 
16 154 65 219 0.001684775 
17 1 24 25 0.000188695 
18 21 53 74 0.000566084 
19 38 8 46 0.000350433 
20 709 30 739 0.005690688 
21 119 2005 2124 0.016358682 
22 426 3658 4083 0.031448488 
23 3 24 27 0.000207949 
24 46 0 46 0.000354284 
25 71 445 516 0.003976069 
26 0 20 20 0.000156604 
27 17 0 17 0.000130931 
28 34 132 166 0.001276379 
29 1 13 14 0.000107826 
30 0 71 71 0.000546830 
31 2516 7016 9532 0.073411721 
32 275 1436 1711 0.013177827 
33 0 2 3 2.05382E-05 
34 2468 8563 11031 0.084958553 
35 294 273 567 0.004366744 
36 1730 1976 3706 0.028544061 
37 20 0 20 0.000154037 
38 4119 409 4528 0.034873050 
39 1200 0 1200 0.009242193 
40 3868 3455 7323 0.056401200 
41 242 0 242 0.001863842 
42 3 626 629 0.004844450 
43 19 33 53 0.000405630 
44 136 200 336 0.002587814 
45 320 0 320 0.002464585 
46 9 100 109 0.000839499 
47 395 1233 1628 0.012540857 
48 1200 0 1200 0.009242193 
49 4243 1414 5657 0.043569239 
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Table 4.28- Earthquake-related Casualties in 85 countries (part 2/2) 
CASUALTIES COUNTRY 

(death/event) (injuries/event) 
TOTAL 
 (people) 

PROBABILITY 
PC 

50 110 0 110 0.000848741 
51 1986 1354 3340 0.025724104 
52 0 20 20 0.000154037 
53 55 8 63 0.000486756 
54 1523 2567 4090 0.031500475 
55 6490 4011 10501 0.080878993 
56 8 168 176 0.001353596 
57 7 23 30 0.000229129 
58 1947 4289 6237 0.048032662 
59 456 621 1078 0.008300003 
60 116 0 116 0.000893412 
61 202 923 1126 0.008670481 
62 286 146 433 0.003332691 
63 45 108 153 0.001178380 
64 1 100 101 0.000777885 
65 1 3 3 2.31055E-05 
66 18 0 18 0.000134782 
67 9 20 29 0.000224316 
68 6644 655 7299 0.056219323 
69 2 8 9 6.93164E-05 
70 1755 1294 3050 0.023488863 
71 1 13 13 0.000102049 
72 1 1 1 1.11249E-05 
73 1 5 6 4.62110E-05 
74 0 2 2 1.54037E-05 
75 13 0 13 0.000100124 
76 1247 1308 2555 0.019678061 
77 11 0 11 8.47201E-05 
78 28 128 155 0.001195709 
79 83 384 468 0.003600831 
80 9 0 9 6.93164E-05 
81 2 13 15 0.000112639 
82 60 329 390 0.003001512 
83 759 770 1528 0.011768393 
84 115 542 657 0.005057300 
85 17 331 347 0.002672534 
TOTAL 61460 68380 129839 1.000000001 

 
 
Table 4.29- Evaluation of the Approach and results, level of significance=0.001 

Variable ∑
=

85

1i
ci

p  pd pi (pd + pi) χ2 χ2
0.001,84’ 

Value 1.0 0.47335 0.52665 1.0 36559.4 129.8 
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Table 4.30- Type and cause of injuries after the Northridge, Hyogo Nambu, Armenia, Marmara earthquakes 
Northridge  

(1994) 
Hyogo Nambu   

(1995) 
Armenia  

(1988) Marmara (1999) Bhuj  
(2001)  TOTAL 

Type of injuries 
Number of Cases   

Injuries 100 24 0 955 646 0 571 0 796 0 100  3192 
  Lower extremities 74 10             70  154 
  Upper extremities 26               15  41 
  extremities            512  790      1302 
  soft tissue damage      955          15  970 
  non-fracture injuries        646   59  6      711 
  bruise/sprain   14                14 
Fracture 10 0 0 1539 533 46 83 0 133 0 9  2353 
  Fracture      934 533     133      1600 
  Extremities      555   46 83        684 
  head injuries 10    50          9  69 
Spine and pelvis 18     160   44         25  247 
Crush syndrome 3 0 63 518 397 63 110 18 749 26 6  1953 
  chest and abdominal 3   63 146       110 26 5  353 
  crush syndrome      372 397 63 110 18    1  961 
  renal problems              639      639 
Burn 14     51                65 
Others       140                140 
               

TOTAL CASES 145 24 63 3363 1576 153 764 18 1678 26 140  7950 
               

Cause of injuries Nothridge 
(1994) 

Hyogo Nambu   
(1995) 

Armenia 
 (1988) Marmara  (1999) Bhuj 

(2001)  TOTAL 

    Number of Patients  3013 
  Falling debris 11 4  1360        83  1458 
  Falling/stumbling 77 1  248        50  376 
  Struck by objects 21 11  607           639 
  Traffic 4   64           68 
  Burns/Electrocution 10               10 
  Piercing/Cutting 7 6              13 
  Others 8 2   439                449 
                

TOTAL PATIENTS 138 24 487 2718 1454 273 639 18 5302 356 133  11542 
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Figure 4.40- Steps to find the most important equipment 

 
4.2.4 Considered equipment 
 
We decided to consider only three different types of equipment; a wheeled table, shelves 

and small equipment which can be a medicine container (bottle or any other type). Each of 

them has different characteristics and will be studied under the majority of possible states 

which can be found or used.  

 
The idea of choosing these particular elements came from their excessive use in healthcare 

facilities. Photo 4.5 and Photo 4.6 show the case of some equipments mounted on wheels. 

In some cases, wheels turned out to be the cause of malfunction in some facilities, see 

Photo 4.7. Photo 4.8 shows the large number of small equipment placed in shelves and 

illustrates the risk of being thrown given an earthquake. 

  

Studying relationship between 
Cause of injury and Type of injury 
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Type of injury 
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Most probable type of injury 
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  Photo 4.5- Blood bank   Photo 4.6- Incubator, supports 

 
The smallest equipment is supposed to be freely standing on top of the table, see Figure 

4.41, or stored in shelves as shown in Figure 4.42. Experiments were done only to find out 

the response of the nurse table, the results are shown in the following section. 

 

    
      Photo 4.7- Displacement of furniture       Photo 4.8- Equipment toppled from selves 
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Figure 4.41- equipment placed on top of table   Figure 4.42- equipment stored in shelves 
 
 
4.3 Response of a wheeled equipment: nurses table 
 
4.3.1. Case I-1: Unlocked wheels 
 
4.3.1.1 Theoretical Model  
 
Figure 4.43 (a) shows the motion of the table. The table is considered as a rigid body, i.e. 

all legs move in the same way at any moment. Therefore, the entire table can be considered 

as one degree of freedom system (1DOF) as shown in Figure 4.43 (b). The system verifies 

the second law of Newton of a system in motion shown in Equation 4.12. The system’s 

motion is a forced vibration without any restoring system; in other words only the loading, 

i.e. input acceleration, the response of the system and the frictional force which makes the 

latter the only resistance to the loading. The system will not start moving only when the 

external forces exceed the frictional force. The nearest system that responds similarly to 

our system is the Friction Pendulum System (FPS). A regular FPS has a radius, R, of 

curvature of the sliding surface, which affects the stiffness, k, and the natural period, T0, of 

the system as Equations 4.13 and 4.14 show respectively. The present system has a radius 

equal to infinity which makes it without any stiffness and with very high natural period, i.e. 

very low natural frequency. Figure 4.43 shows one motion of the table under motion and 

the model relevant to it.  
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∑
=

×−=
n

i
i amF

1
         (4.12) 

 

Where  

 Fi: Loads applied on the system  

 m: mass of the system 

 a: acceleration 

 

R
Wk =           (4.13) 

 

Where 

 W: weight of the system 

 

g
RT π20 =          (4.14) 

   

    
(a) Real case      (b) Theoretical model 

Figure 4.43- Model of the unlocked wheels case 

 
4.3.1.1.1 Friction 
 
Friction is the main factor in the present case, as it is the only factor that affects the 

response of the system. Up until now, there is no exact definition that describes the precise 

phenomena of this factor. Many researchers have been working on this issue. However, all 

of them are based on the Coulomb definition of friction. Chowdhury et al. discussed the 

R=∞ 

Direction of motion 

Ground 

Nurses Table 
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influence of duration of rubbing on friction; while Chaudhuri et al. (2005) presented the 

influence of acceleration on friction. Friction was considered by mechanical engineers such 

as in Vil’ke et al. (2004), Friberg (2005), Kinkaid et al. (2005) and Bucher et al. (2006); 

some of them used in industry such as in Uranker et al. (2006), and others of the impact of 

plane viscosity on friction such as in Poscel et al. (1999 and 2004). Civil engineers were 

also interested in using friction such as Wen et al. (1976), Mosaghel et al. (1987), 

Papageorgiou et al. (1990), Tsai et al. (2003), Ates et al. (2006) and others. Other 

researchers considered the affect of dryness or wetness on friction such as Sinopoli (1987)    

 

In our case it is best to consider those models that are used in civil engineering, mainly in 

FPS systems, i.e. base isolation systems. Among the models that we have checked we 

found that the model proposed by Mokha et al. (1990) is the best, as it gives the best results. 

The case study considered by Ates et al. (2006) is very similar to our case which maybe 

useful for this study. The model is used for finding the response of bridge isolated with 

FPS. In this model the friction force is shown in Equation 4.15. The equation will be 

simplified more since the radius of the isolation system is considered to be infinity which 

makes the first part of the equation, stiffness of the system k, vanish and becomes as shown 

in Equation 4.16. 

 

)sgn(xWx
R
WF sr &μ+=         (4.15) 

 

Where 

 W: Weight of the equipment, 

 R: Radius of the spherical concave surface (isolation system), 

 μs: Coefficient of friction of the sliding surface, 

x: Sliding displacement 

x& : Sliding velocity 

 

)sgn(xWF sr &μ=         (4.16) 

 

The coefficient of friction was measured by making a simple test in which we pulled the 

table and measured the minimum force that causes its movement. The force then was 
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divided by the weight of the table to finally obtain the coefficient sought. Table 4.31 

illustrates the COF for each of the cases that were considered in the study. 

 

Table 4.31- Coefficient of frictions 

Case Coefficient of friction (Crr/μs) 

No Locks (Case I-1) 0.050 

4 Locks (Case I-2) 0.570 

 
  
4.3.1.1.2 Equation of motion 
 
The general system’s equation of motion is shown in Equation 4.12, considering each of 

the applied forces the equation becomes as shown in Equation 4.17. 

 

amFxcxm re ×−=++ &&&          (4.17) 

 

Where  

 ce: Equivalent damping factor 

 Fr: Friction force 

 

The equivalent damping factor depends on the friction which makes it the most important 

factor that affects the response of the equipment. It is defined as in Equation 4.18 (Ates et 

al., 2006), in which the linear viscous damping, cb, is shown in Equation 4.19 (Chopra, 

2000). 
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   bbb mc ωξ2=                (4.19) 

 

Where  

 x&σ : Root mean square value of velocity defined in Equation 4.20 
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 ξb: damping ratio 

 ωb: Natural frequency 

 Sa: Power spectral density function of the input acceleration (Ohsaki, 1976) 

 

To determine the damping ratio we made a small test and we found that it is about 10%. 

The natural frequency of the table was found by making a modal analysis by SAP2000® 

version 10.0.1 (Computers and Structures Inc.) the results are shown in Table 4.32. In our 

case we are between Mode 1 and Mode 2, so the natural frequency that will be used is that 

of the 1st mode. The mass of the table is about 7.5kg. Equation 4.17 was changed to have 

the form of Equation 4.21, in which the new parameters are defined in Equation 4.22 and 

Equation 4.23. To resolve Equation 4.17 we made a programme code in a flowchart as is 

shown in Figure 4.44. The detail of the programme is shown in Appendix III. The expected 

results of the programme are: Displacement, x, velocity, v, Acceleration, A, and absolute 

acceleration, ABA. Also the hysteresis loop of the movement.  

 

amgxx d −±= '2 μγ&&&         (4.21) 

Where 

    
m
c

2
−=γ                (4.22) 

 

    
m

d
d

μ
μ ='                (4.23) 

 

4.3.1.1.3. Results of simulation 
 
The simulation showed that the equipment responds similarly to a base isolated building. 

The response was defined as an amplification factor that was defined in Equation 4.11; the 

amplification reduces with the acceleration, the results are plotted in Figure 4.45. In other 

words, the absolute response of the equipment reduces when the acceleration increases 

which makes the equipment more stable. 
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The fist shock makes the equipment relocate and then it vibrates constantly, as shown in 

Figure 4.46. As much as the shock gets stronger it affects the relocation of the equipment; 

“d” increases with the acceleration as shown in Figure 4.47. To find out the influence of 

the frequency on the stability of the equipment we plot the residual displacement, d, versus 

the frequency as shown in Figure 4.48. In low frequencies the equipment moves for long 

distances. The stability of the equipment depends on both acceleration and frequency. Low 

frequencies and high accelerations tend to make the equipment instable, while high 

frequencies tend to stabilize the equipment. This can be explained by the fact that the 

equipment’s first mode is at very low frequencies, see Table 4.32. The first mode of the 

equipment is translation which explains that the equipment tends to resonate when the 

frequency is low, i.e. relocates easily with low frequencies. The second mode is rocking, 

i.e. displacement tends to become nil even with high acceleration. The acceleration makes 

the equipment rock since it is not able to move. What can be learned here is that equipment 

mounted on wheels might not be safe in buildings with base isolation systems. 

 

Isolation systems are usually provided with systems to restore their initial conditions, i.e. 

position. These systems can be the use of springs with stiffness k, or equivalent stiffness 

such as a curvature radius in FPS systems. In the present case none of these systems were 

used, i.e. k=0 and R=∞, and this caused the displacement of the equipment from its 

original position to a new location. In other words, the non-existence of restoring force 

caused the equipment to relocate. In point of fact, the equipment has a restoring force; the 

friction force can be that force. However, it is very low. So increasing the friction may be a 

good option to reduce the relocation. Figure 4.49 illustrates the hysteresis curve relevant to 

the case of 1Hz and 900cm/sec2. The curve shows that the elastic period is very short or 

maybe it can be considered as nil, after that the equipment becomes pure elastic, i.e. non-

linear, behaviour. 
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Figure 4.44- Flowchart followed to resolve the equation 

No

Start

ADi=Ai‐1 

xi=xi‐1+vi‐1*DT+(2*Ai‐1+ADi)*DT2/6 
vi=v +(A +AD )*DT/2

i≠1

Yes 

ADi=‐ai 
xi=0, vi=0, Ai=‐ai 

REi=0

No 

vi≥0 Ai=‐ai‐1‐2γvi+μd’N 
REi= μd’N

ABAi=Ai+ai

No

Ai=‐ai‐1‐2γvi‐μd’N 
REi= μd’N

Yes

ADi<10‐6

Yes 

ε<
−

i

ii
AD

AADNo ADi=Ai 

IC=IC+1
No

IC≥100

ADi=Ai

Yes 

ND, DT, μs, μd, ε, m, ξb, 
ωb 

μd’= μd/m, N=m*980 
i=1,ND ai

FPAC (Ohsaki, 
1976) bb

s g
ωξπ

μ
22

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+= 1)(41

22 22

2

g
Sg

s

bab

bb

s
x

μ
ωξπ

ωξπ
μσ &

 

x

s
b

Wcc
&σ

μ
π
2

+=

γ=c/2m 

END

Yes



 

    
Performance of lifelines and response of equipment                                Page 127  

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
m

p
li

fi
ca

ti
o
n

Input acceleration (cm/sec2)

 1Hz
 2Hz
 3Hz
 4Hz
 5Hz
 6Hz
 7Hz
 8Hz
 9Hz
 10Hz

 
Figure 4.45- Variation of amplification versus the input acceleration 

 

 
Figure 4.46- History of equipment displacement, 1Hz 
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Figure 4.47- Relationship between residual displacement, d, and acceleration 
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Figure 4.48- Relationship between residual displacement, d, and frequency 

 
 

 
Figure 4.49- Hysteresis loop of the equipment, 1Hz-900cm/sec2 
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Table 4.32- Natural frequencies of the table  
Mode Period Frequency Circular Frequency Eigen value 

 Sec Hz rad/sec rad2/sec2 
Mode 1 7.073969 0.1414 0.8882 0.7889 
Mode 2 0.058429 17.115 107.54 11564 
Mode 3 0.031656 31.589 198.48 39395 
Mode 4 0.025975 38.499 241.90 58513 
Mode 5 0.018601 53.761 337.79 114100 
Mode 6 0.017980 55.617 349.45 122120 
Mode 7 0.017913 55.827 350.77 123040 
Mode 8 0.017323 57.728 362.72 131560 
Mode 9 0.012885 77.608 487.63 237780 
Mode 10 0.011304 88.463 555.83 308950 
Mode 11 0.009454 105.77 664.59 441690 
Mode 12 0.008488 117.82 740.28 548010 

 
4.3.1.2 Experiment 
 
4.3.1.2.1 Overview 
 
The experiments were done using typical equipment found at any hospital in the world. It 

is a nurse’s table mounted on casters, see Photo 4.9, the sizes are shown in Figure 4.50. 

The use of wheels is common in healthcare facilities since they make movement and 

distribution of medicine, food, etc between the patients easier. The wheels are able to 

rotate around two axes; horizontal and vertical. The wheels can be fastened which makes 

them unable to rotate around a horizontal axis by using little brakes on the side of each 

wheel, see Photo 4.10. Four possible cases can be considered; 1) wheels unlocked, 2) one 

wheel locked, 3) two wheels locked and 4) four wheels locked. 

 

  
Photo 4.9- First table used for the experiment Photo 4.10- Wheel of the table 
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Figure 4.50- Detail of the table 

 

      
     Photo 4.11- Second table used for the experiment 

 
The experiment was done using two shaking-tables; the first is shown in Photo 4.9 and the 

second is shown in Photo 4.11. As Table 4.33 illustrates, table 1 is larger than the second 

but unfortunately its ability is limited. The second table has to possibility to reach very low 

frequencies; and it also has the possibility to shake equipment in two directions; X and Y. 

However its limited dimensions make its use very limited. For that reason we had to use 

both tables, each of them was used in particular cases: 

 

- Table 1: One and two wheels locked cases, 

- Table 2: No locks and four wheels locked cases. 
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During the experiment we limited the motion of the equipment by blocking the vertical 

rotation with the purpose of making the analysis easier and assuring a 2D model rather 

than 3D one. We measured the horizontal accelerations at the level of plates, top and 

bottom, the vertical acceleration and the input acceleration. The vertical accelerometers 

were placed on top of each leg of the equipment. With the purpose of reducing errors the 

experiments were done three times for each case. We could have more possibilities with 

the unlocked-wheels case; frequencies varied between 0.9Hz and 6Hz and the measure of 

the residual displacement was possible. 

 
Table 4.33- Characteristics of the shaking tables 

Characteristics Table 1 Table 2 

Size 1500×1500mm 1000x1000mm 
Force of excitation ±100kN ±60kN ±0.5kN 

Maximum amplitude ±50mm ±75mm 
Maximum velocity ±40cm/s ±30cm/s ±50cm/s 

no loading ±3.3G ±5.0G ±0.62G 
Maximum acceleration 

Loading ±2.0G ±1.0G N/A 
Frequency range 0.5-25Hz 0.1-50Hz 

 

4.3.1.2.2 Loading 
 
To cover different cases of response we decided to use sinusoidal wave rather than 

earthquake waves. As it gives the possibility to cover all desired frequencies, which in turn 

depends on many variables: soil conditions, building type (usual or with base isolation 

system), height of building and other criteria. Frequencies were varied between 0.6Hz and 

6Hz as it is very difficult to measure the motion with higher frequencies. Within the same 

building, floors have different responses, i.e. accelerations. This makes the acceleration 

another factor to be considered. For that reason, we varied it between 60 and 1000 cm/sec2. 

Also, because of some technical limitations, it was very difficult to reach high 

accelerations with low frequencies, for that reason only medium and high frequencies were 

considered in the case of high accelerations. 

 
4.3.1.2.3 Results 
 
Shenton (1996) showed that the response of equipment freely standing on an accelerating 

ground can be 1) rest, 2) slide, 3) rock, 4) slide-rock or 5) free flight. Equipment passes 

from a rest state to another state depending on the strength of excitation, friction and 

geometry. The equipment does not start moving only when the load exceeds the friction 
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force. Table 4.34 shows the value of the coefficient of friction of each case as well as the 

minimum equivalent acceleration that is able to make the equipment move. The 

acceleration was calculated according to Equation 4.24. The case of all locked wheels was 

calculated according to Equation 4.25 (Shenton 1996) because the coefficient of friction is 

large enough to make the equipment rock rather than slide. 

 

gx sμ=&&   or gCx rf=&&      (4.24) 

Where 

 μs: Static Friction (or Crf for Coefficient of Rolling Friction for the case of no locks) 

 g: Acceleration due to gravity 

 x&& : Equivalent acceleration that is able to move the equipment from resting status 

 

( )
( ) s

s
g
X

μψψ

ψμψ

'3'4

'3'41
2

2

−+

−+
≤

&&
     (4.25) 

Where 

ψ': size ratio defined as ψ’ =h/b; b and h: width and height respectively 

 

As in the theoretical analysis the response was defined as an amplification factor, shown in 

Equation 4.11, to facilitate the analysis of the results as well as to compare the response 

between the different cases. 

 
Table 4.34- Coefficient of friction and minimum acceleration to make the equipment move 

Case Coefficient of friction 
(Crr/μs) 

Minimum Equivalent Acceleration 
(cm/sec2) 

No Locks (Case I-1) 0.050 49 
4 Locks (Case I-2) 0.570 475 

 

Given some limitations, the experiments could not be performed for all frequencies and 

accelerations, only frequencies varying between 0.6-6 Hz and accelerations varying 

between 60-400 cm/sec2 were performed. In the following section we will show the results 

relevant to both experiment and simulation to make sure that the model conforms well with 

the reality, after that only simulation will be considered. 

In this case the wheels were free to move, the motion started from very early stages as the 

rolling friction coefficient is very low, see Table 4.34. For low accelerations the equipment 

moves slightly, which makes the amplification equal to unity. However, for high 
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accelerations the equipment seems to respond less than the input acceleration. The system 

responds similarly to a friction pendulum system (FPS), in other words a base isolation 

system. Figures 4.39 (a-g) illustrate that for an acceleration of 400cm/sec2 the response 

reduces to 20%. The figures show that there is a slight difference between the experimental 

results and the simulation. However, considering the fact that errors may occur during 

experiments and that some other factors may be overlooked during the simulation.  Not 

withstanding the “uncertain” definition and values of friction we believe that the results 

can be accepted and that the theoretical model is verified vis-à-vis the acceleration. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 100 200 300 400 500

Input Acceleration (cm/sec2)

A
m

p
lif

ic
at

io
n

0.9Hz-Experiment (Average)

0.9Hz-Experiment (Min)

0.9Hz-Experiment (Max)

0.9Hz-Simulation

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 100.00 200.00 300.00 400.00 500.00

Input Acceleration (cm/sec2)

A
m

p
lif

ic
at

io
n

1Hz-Exp (Average)

1Hz-Exp (Min)

1Hz-Exp (Max)

1Hz-Simulation

 
Figure 4.51 (a)      Figure 4.51 (b) 
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Figure 4.51 (c)      Figure 4.51 (d) 
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Figure 4.51 (e)      Figure 4.51 (f) 
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Figure 4.51 (g) 

    
Figure 4.51- Relationship amplification-Input acceleration 

 

We measured the residual displacement, d, using a laser sensor, an example of the data 

recorded by the sensor is shown in Figure 4.52. The experiments confirm what has been 

found during the simulation. The frequency is anti-proportional to displacement, d. Figures 

4.51 (a-g) show that the equipment stabilizes more with high frequencies and becomes 

unstable with low frequencies. This may lead us to say that when wheeled equipment is 

placed in a base-isolated-building, where frequency is very low, the risk of displacement of 

the equipment is very high and then the risk of hitting people, damaging other equipment 

becomes high too. The experimental and simulation results are very similar, even though 

slight difference was found between both results. However, considering the same factors as 

in the acceleration the theoretical model can be adopted and used for the rest of the study. 
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Figure 4.52- Time history of displacement, 0.9Hz-200cm/sec2 
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Figure 4.53 (a)      Figure 4.53 (b) 
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Figure 4.53 (c)      Figure 4.53 (d) 
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Figure 4.53 (e) 

 

Figure 4.53- Relationship between residual displacement and frequency 

 
4.3.2 Case I-2: All wheels locked 
 
4.3.2.1 Theoretical model 
 
4.3.2.1.1 Overview 
 
Once the wheels are locked the equipment becomes difficult to move as the friction 

becomes about 10 times larger as shown in Table 4.34. Two possible behaviours can occur; 

sliding or rocking. The first step therefore should be finding which of both motions will 

start first. Table 4.34 illustrates that at 475cm/sec2 rocking starts, while applying Equation 

4.24 it starts sliding at 559 cm/sec2. This shows clearly that the equipment will start 

rocking first therefore the study will be done for rocking. 

 

Several researchers have been working on equipment overturning, i.e. rocking. Some of 

them have discussed symmetric rigid bodies such as in (Shenton et al., 1991a and 1991b), 

(Andreaus et al., 1999), (Makris et al., 2000), (Zhang et al., 2001), (Makris et al., 2001), 

(Makris et al., 2003), (Ozer et al., 2005), and others. Boroshek et al. (2004) studied the 

overturning of non-symmetric rigid bodies freely standing on a shaking ground. Other 

studies focused on blocks anchored to their support such as Makris et al. (1999). More 

studies were subjected to blocks placed on top of each others such as in Spanos et al. (2001) 

and Bende (2000). This has helped us to analyse our case and to find out its response.  
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Figure 4.54- Model considered for the rocking study 

 

4.3.2.1.2 Equation of motion 

 

The equipment, i.e. table, was considered to be a rigid block as shown in Figure 4.54. The 

equipment is considered to have a height equal to 2h and width equal to 2b. R represents 

the half-diameter of the block, defined in Equation 4.26, and p is its frequency parameter, 

defined in Equation 4.27 and the slenderness α’ shown in Figure 4.54. The block is under a 

rotational movement, i.e. the equation of motion has the form of Equation 4.28. The block 

is submitted to two movements; the first is due to the horizontal force caused by the 

acceleration and the second is due to the weight. Considering all the forces being applied at 

the centre of gravity, see Figure 4.55, the equation of motion becomes as seen in Equation 

4.29, in which Ig is the moment of inertia about the block’s centre of gravity defined as 

shown in Equation 4.30. After rearranging Equation 4.29, the equation of motion becomes 

as shown in Equation 4.31. The block is considered to be stable until the angle θ becomes 

equal to the slenderness of the equipment α. The equation is non-linear which requires 

special programmes, here we used the solvers provided in Matlab version 7.0 (R14) by The 

MathWorks, Inc. A programme was made to solve the equation the detail of which is 

shown in Appendix IV. 

 

22 hbR +=          (4.26) 

x
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Figure 4.55- Loads of the block 

 
4.3.2.1.3 Results 
 
After solving the equation of motion, we obtained the velocity and the angle of rotation of 

the block. We chose to have velocity rather than acceleration since our experiments were 

done with accelerometers that measures only angular velocity. Some of the results are 

x
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shown in Figure 4.56 (a, b and c) relevant to case of frequency 2Hz and accelerations 0.5g, 

0.55g and 0.57g successively. The first figure represents the block before rocking, the 

second is during rocking and the third is its turning over. We kept varying the acceleration 

and frequency until the block turned over. We plotted the maximum attended velocities, 

for each case of the frequencies, against the input acceleration and we obtained the Figures 

4.57 (a-i). The block remains rocking at very high acceleration when the frequency is very 

high too, and may fall from the first time it starts rocking in low frequencies. The block 

starts rocking at about 500cm/sec2 regardless of the frequency.  

 

 
(a) Before rocking starts     (b) During rocking 

 

 
(c) Overturning of the block 

 
Figure 4.56- Response to sinusoidal wave with a frequency 2Hz 
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Figure 4.57 (a)       Figure 4.57 (b) 
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Figure 4.57 (c)    Figure 4.57 (d) 
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Figure 4.57 (e)     Figure 4.57 (f) 
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Figure 4.57 (g)     Figure 4.57 (h) 
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Figure 4.57 (i) 

 
Figure 4.57 Relation of angular velocity and input acceleration 

 
4.3.3.2 Experiment 
 
4.3.3.2.1 Overview 
 
The equipment was put on the shaking table with four wheels locked. Two seismographs 

were used to measure the accelerations and angular velocity. Each of them is able to 

measure three accelerations (Ax, Ay and Az) and three angular velocity (Vx, Vy and Vz) 

at the same time. We placed the first on top of the equipment and the second on top of the 

shaking table as shown in Photo 4.12. As in the previous case, i.e. unlocked wheels, a sine 

wave with variable acceleration and frequency was used during the experiment. Because of 

some limitations we could not go below 2Hz for high accelerations that are able to cause 

rocking. Also we were limited to accelerations around 600-700cm/sec2. The shaking was 

done according to the X-axis as shown in Photo 4.12. The duration of shaking was 30 

seconds which is the duration of many earthquakes such as the Japanese Hyogo Nambu 
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earthquake of 1995. The friction of the system is already measured and shown in Table 

4.31.  

 
4.3.2.2.2 Results 
 
The experiments were repeated three times for the purpose of reducing errors. For the same 

purpose and because of the influence of electric and other factors all experimental values 

(input and response) were filtered by using twice the input frequency filter, i.e. frequencies 

with over twice the input frequency were not allowed to pass. We used software called 

Origin version 7.0265 by OriginLab Corporation. In none of the cases did the equipment 

turn over. Figure 4.58 and Figure 4.59 show the response of the equipment before the 

rocking starts and when the rocking starts successively. The equipment starts rocking at 

about 450cm/sec2 which is slightly lower than the model in which the block starts rocking 

at about 500cm/sec2. 

 
Unlike the previous case (unlocked wheels), the model considered is not exact as it gave 

some difference in results as can be seen in Figure 4.60 (a-e). There are two main 

differences; the first is the experimental angular velocity is less than that of the model. This 

may be because the wheels are not rigid, i.e. the equipment is not a totally rigid box, but it 

is a mixture between a rigid body and a soft attachment which can be considered as 

unilateral springs that works only when the equipment falls on the floor. Each time the 

equipment hits the floor wheels absorb some of the energy and therefore reduces its 

velocity. The second difference is with the starting point of the rocking; this issue requires 

more time for investigations which includes more experiments and analysis. Figure 4.61 

shows the first accelerations that were recorded when the rocking started. The acceleration 

reduces with the frequency. Table 4.32 illustrates that the second mode after sliding is 

rocking if the first mode is sliding which is at very low frequencies. Furthermore, the 

frequency and the displacement are anti-proportional, i.e. high frequency leads to low 

displacements and vice versa. These two phenomena would affect the type of response and 

make the rocking easier to start which explains Figure 4.61. However, since not all 

equipments are mounted on wheels and that the difference between both results is not very 

large we will accept this model for the rest of the analysis.  
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Photo 4.12- Equipment before the start of rocking 

 

 
Photo 4.13- Equipment during the rocking 
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Figure 4.58- Response of the equipment before the rocking starts 

 

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
n

g
u

la
r 

v
el

o
ci

ty
 (

ra
d

/s
ec

)

Time (sec)

 2Hz-450cm/sec2

 
Figure 4.59- Rocking of the equipment 
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Figure 4.60 (a)- Results 2Hz  

 

 
Figure 4.60 (b)- Results of 3Hz 

 
 

 
Figure 4.60 (c)- Results of 4Hz 
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Figure 4.60 (d)- Results of 5Hz 

 

 
Figure 4.60 (e)- Results of 6Hz 

 
Figure 4.60- Relationship angular velocity and acceleration 
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Figure 4.61- Relationship acceleration starting the rocking and frequency 
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Two more cases were considered during our experiments but unfortunately could not be 

deeply investigated even though we believe that they are extremely important cases. For 

that reason we present the experimental results that we have reached and we hope to 

consider these two cases in the future in more detail. 

 
3.3.4 Case I-3: Two wheels locked 
 
We asked some personnel of Matto Public Hospital in Hakusan City in Japan about the 

number of wheels that they usually lock. We were told that two wheels is the norm for 

those items of equipment that are rarely moved. Considering this, we carried out 

experiments using the shaking-table shown in Photo 4.5 as it is larger than the other one. 

The wheels were able to turn around the vertical axis which makes them able to move in 

both directions; X and Y. Only three frequencies were considered in this case; 1Hz, 3Hz 

and 5Hz. The locked wheels stop the equipment from sliding, but when the acceleration 

induced load exceeds the friction force the equipment moves very fast in the direction of 

the unlocked wheels as the friction force is about 10 times lower than the locked ones, see 

Figure 4.62. The equipment does not start sliding only when the friction of the locked 

wheels is exceeded. Figure 4.63 shows the absolute response acceleration and the 

amplification versus the input acceleration; the figure on the left is the response toward the 

X-direction, while the one on the right is the response toward the Y-direction. The 

acceleration was high in both directions as is seen in both figures 4.63 (a) and (b) this 

resulted in large displacement of the table which, unfortunately, was not possible to 

measure. The amplification AMP2, shown in Equation 4.32, depends on the frequency. 

APM is about seven times in the case of 3Hz and six times for the case of 5Hz as Figure 

4.63 (c) illustrates. This might be because of the low natural frequency that the system has; 

however we cannot confirm this now as we don’t have the sufficient information to decide. 

The present case can be treated as two-dimensional model if we consider that the wheels 

cannot rotate around the vertical axis. This makes the analysis much easier than a three-

dimensional model. 
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Figure 4.62- State of table with two wheels lacked 
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Figure 4.63 (a)     Figure 4.63 (b) 
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Figure 4.62 (c) 

 

Figure 4.63- Response of Two-wheel-locked case 
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4.3.4 Case I-4: One wheel locked 
 
When a wheel is locked it becomes like a rotating centre about which the equipment 

rotates. The rotation occurred because the unlocked wheels are free to rotate around the 

vertical axis given that their friction is very low. This made the entire system work as a 

base isolation system until the load induced by the acceleration exceeded the friction force 

to make the equipment slide. Figures 4.64 (a) and (b) show that the response acceleration is 

always increasing in both directions; however Figure 4.64 (c) shows that the amplification 

AMP2 is decreasing until a certain level then starts increasing. Similarly to previous case, 

Case I-3, the response to 3Hz is higher than that of 5Hz. It is difficult to use a two-

dimensional model for the present case as the sliding occurs in the plane XY, i.e. plane of 

the shaking table or floor. 
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Figure 4.64 (a)    Figure 4.64 (b) 
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Figure 4.64 (c) 

 

Figure 4.64- Response of One-wheel-locked case 
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4.4 Response of shelves 
 
4.4.1 Overview 
 
Shelves are the second elements to be considered in this study because of the enormous 

amount of medicine and equipment that they store. After visiting some facilities we found 

that there is large variety of shelving, they are of various sizes, methods of connection to 

their supports vary and others. For that reason, we considered a model with a variety of 

connections. Some shelves were attached to the structure with bolts, see Photo 4.14, others 

are built-in structures as shown in Photo 4.15, while some others were connected with 

flexible connections, such as bolt + rubber, or freely standing as Photo 4.16 shows. In this 

section we considered four different cases of shelf connections; a) shelf connected at the 

bottom, b) top and bottom, c) bottom and side and d) half fixed and half flexible. The 

freely standing shelves have the same response as Case I-2 in which all the wheels of the 

table are locked. The response therefore is rocking; the friction and the geometry of the 

shelf lead to rocking and not sliding. The fixed anchorage was later changed by flexible 

anchor which created four more cases to be considered. The model considered in this study 

is a five-storey shelf with a uniform square cross section with 1.5cm dimension of each 

side and 0.15cm uniform thickness; Figure 4.65 and Figure 4.66 represent the model and 

the cross section considered in the study respectively.  

 

       
   Photo 4.14- Shelf connected with bolts     Photo 4.15- Built-in-structure shelf 
 

Bolt fixing the 
shelve to the

built‐in‐
structure shelf
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Photo 4.16- Freely standing shelves 

 

In some cases a layer of rubber is used to reduce the vibration of shelves, see Figure 4.67. 

We modelled this connection by a spring of stiffness k1=50kg/cm and k2=500kg/cm, see 

Figure 4.67. Table 4.35 illustrates the name of cases that are considered during this study. 

The stiffness of the spring depends on the stiffness of the rubber, and the way that the bolt 

is fastened; the more the bolt is tightened, the greater the stiffness.  

 

   
Figure 4.65- Model of shelf  Figure 4.66- Cross section used for shelves 
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Figure 4.67- Connection Models 
 

It was hoped to carry out an experimental study which could then be confirmed with a 

theoretical model, but unfortunately that was not possible because of several limitations. 

Only a simulation using software SAP2000® is considered. The software uses a finite 

element methodology which makes the results very detailed and given at each node of the 

structure. The equation of motion of the structure is shown in Equation 4.33. The damping 

is defined in Equation 4.34 (CSI, 2005); in which cM is the mass coefficient and it is 

considered equal to zero, and cK is the stiffness coefficient considered as constant equal to 

2%. The finite element methodology, provided in the software, helps greatly in practice as 

medicines are usually placed at the level of nodes 2, 3, 4 and 5. All what is required from 

this study is finding the time history of response acceleration at each of the précised nodes 

to be used in the next step, i.e. studying the stability of small equipment. 

 

The shelves were considered to undergo the same loadings as the previous equipment, i.e. 

the nurses table; sinusoidal wave with frequency variable between 1-10Hz and acceleration 

variable between 100 and 1000cm/sec2. The structure was under loading for 30seconds. 

 

MaKXXCXM =++ &&&         (4.33) 

 

Where 

a: Input acceleration (sinusoidal wave) 

M: Mass matrix, determined automatically by the software considering the 

material and the length bar 

Attached bottom 
(symmetrically)

Attached bottom 
(differently)

Attached top & 
bottom

Attached side & 
bottom

  k1    k1   k2
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K: Stiffness matrix, determined automatically by the software according to 

bar sections 

C: Viscous damping matrix, defined as follows 

 

    KcMcC KM +=         (4.34) 

 
4.4.2 Results of simulation 
 
4.4.2.1 Case II-1 and Case-II-2 
 
The results showed that the flexibility given to the shelf reduces the natural frequency; for 

the fixed shelf the first mode is about 7Hz, while for the flexible model it is about 6Hz, 

Table 4.36 shows the modes of both cases. The spring stiffness is relatively large that 

makes the structure very close to being fixed; this in turn made both models similar and 

therefore respond similarly. The shelf is supposed to respond linearly for the purpose of 

simplifying the analysis and achieving the purpose faster. 

 

Table 4.35- Detail of considered connections 
Case Fixed nodes Flexible nodes Stiffness (Kg/cm) 

Case II-1 1 and 7 - - 
Case II-2 - 1 and 7 500 
Case II-3 7 1 50 
Case II-4 - 1 and 7 50 and 500 (respectively) 
Case II-5 1, 6, 7 and 12 - - 
Case II-6 - 1, 6, 7 and 12 500 
Case II-7 1, 7, 8, 9, 10, 11 and 12 - - 
Case II-8 - 1, 7, 8, 9, 10, 11 and 12 500 

 

As previously considered, the amplification factor AMP1, shown Equation 4.11, was used 

as the parameter to analyse the response. When the shelf is fixed it responds less than when 

it is flexible, the structure is able to move more than when it is fixed to the floor. The 

results show that the response may reach 1.75 times the input acceleration for a fixed shelf, 

see Figure 4.68 (a), and it may become twice the input acceleration if the connection is 

flexible, see Figure 4.68 (b). This was translated in larger displacement of the flexible 

model as the maximum displacement was about 0.125cm for an acceleration of 100cm/sec2 

for a flexible connection; while it was about 0.075cm for the same acceleration if the 

connection is fixed see Figure 4.69 (a) and Figure 4.69 (b) respectively. The flexibility 

causes the shelf to move more but it releases the bars internal constraint.  
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Figure 4.68 (a)     Figure 4.68 (b) 

 

Figure 4.68- Relationship between the amplification and the frequency, Case II-1 and Case 
II-2 
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Figure 4.69 (a)     Figure 4.69 (b) 

 

Figure 4.69- Deformation of shelves, Case II-1 and Case II-2 
 

3.4.2.2 Case II-3 and Case-II-4 
 
Simulation showed that first natural modes are not so different. Case II-3 resonates at 

4.2Hz while Case II-4 resonates at 4.1Hz as seen in Table 4.37. At this level of frequency 

the shelf starts rocking, however because of the difference of stiffness the weakest spring 

allows the motion of the node to which it is attached to while the stronger does not allow 

larger movements. For high frequencies, higher or equal to 8Hz, the response of the 

structure changes as the frequency gets closer to Mode 2; Figure 4.70 illustrates in high 

frequencies the amplification becomes very low. In the same way as the previous case, the 

flexibility did not change much in the modes of the structure. The natural frequency is 

reducing given that the stiffness is reducing too; in comparison to the previous cases the 

structures are less connected to their support, i.e. low stiffness. 
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Table 4.36- Natural modes of shelves in cases II-1 and II-2 

Case # Mode # Period 
(sec) 

Frequency 
(Hz) 

Circular Frequency 
(rad/sec) 

Eigen value 
(rad2/sec2) 

Mode 1 0.141773 7.054 44.32 1964
Mode 2 0.040812 24.503 153.96 23702
Mode 3 0.021468 46.581 292.67 85659
Mode 4 0.014160 70.622 443.73 196900
Mode 5 0.010919 91.582 575.42 331110
Mode 6 0.002518 397.190 2495.60 6228000
Mode 7 0.002491 401.490 2522.70 6363800
Mode 8 0.000867 1153.100 7245.20 52492000
Mode 9 0.000866 1154.500 7253.90 52620000
Mode 10 0.000556 1797.900 11296.00 127610000
Mode 11 0.000556 1798.700 11301.00 127720000

C
as

e 
II

-1
 

Mode 12 0.000539 1855.100 11656.00 135870000
 

Mode 1 0.164997 6.061 38.08 1450
Mode 2 0.044187 22.631 142.20 20220
Mode 3 0.021562 46.378 291.40 84914
Mode 4 0.014523 68.859 432.65 187190
Mode 5 0.014046 71.197 447.34 200120
Mode 6 0.011004 90.875 570.99 326020
Mode 7 0.010734 93.162 585.35 342640
Mode 8 0.003549 281.740 1770.20 3133700
Mode 9 0.003544 282.170 1772.90 3143300
Mode 10 0.001224 817.000 5133.30 26351000
Mode 11 0.001221 818.710 5144.10 26462000

C
as

e 
II

-2
 

Mode 12 0.000647 1545.200 9709.00 94265000
 
 
The amplification factor AMP1, defined as previously in Equation 4.11, is used to analyse 

the results of simulation. The amplification reaches 2.75times the input acceleration. This 

high acceleration encourages the instability of medicine and small equipment that are 

placed on shelves. In comparison to Case II-1 and 2 these cases, Case II-3 and 4, are more 

unstable as the amplification is larger than the former. The maximum displacement was 

found at the top node, Node 6. An acceleration of 100cm/sec2 caused a maximum 

displacement of 0.375cm when Node 1 is fixed and 0.475cm when it is flexible, 

k2=500kg/cm. Figures 4.71 (a) and (b) show the deformation of the structures; in 

comparison to the previous cases, the shape of the structure does not change. 
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Table 4.37- Natural modes of shelves in cases II-3 and II-4 

Case # Mode # Period 
(sec) 

Frequency 
(Hz) 

Circular Frequency 
(rad/sec) 

Eigen value 
(rad2/sec2) 

Mode 1 0.239344 4.178 26.25 689
Mode 2 0.050978 19.616 123.25 15191
Mode 3 0.022534 44.377 278.83 77746
Mode 4 0.020841 47.982 301.48 90889
Mode 5 0.014056 71.144 447.01 199820
Mode 6 0.011041 90.573 569.08 323860
Mode 7 0.010269 97.376 611.83 374340
Mode 8 0.002504 399.360 2509.30 6296400
Mode 9 0.001231 812.210 5103.30 26043000
Mode 10 0.000867 1153.800 7249.60 52556000
Mode 11 0.000648 1542.800 9693.70 93968000

C
as

e 
II

-3
 

Mode 12 0.000556 1798.300 11299.00 127660000
Mode 1 0.246724 4.053 25.47 649
Mode 2 0.051145 19.552 122.85 15092
Mode 3 0.024605 40.641 255.36 65208
Mode 4 0.021582 46.334 291.13 84754
Mode 5 0.014614 68.427 429.94 184850
Mode 6 0.011574 86.403 542.89 294730
Mode 7 0.011028 90.677 569.74 324600 
Mode 8 0.010262 97.443 612.25 374850 
Mode 9 0.003547 281.960 1771.60 3138500 
Mode 10 0.001231 812.080 5102.50 26035000 
Mode 11 0.001223 817.980 5139.50 26415000 

C
as

e 
II

-4
 

Mode 12 0.000648 1542.700 9693.40 93961000 
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Figure 4.70 (a)     Figure 4.70 (b) 

 

Figure 4.70- Relationship between the amplification and the frequency, Case II-3 and Case 
II-4 
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Figure 4.71 (a)     Figure 4.71 (b) 

 
Figure 4.71- Deformation of shelves, Case II-3 and Case II-4 

 
3.4.2.3 Case II-5 and Case-II-6 
 
The structure has, evidentially, become stronger by strengthening its stiffness, which made 

the first mode around 16Hz for both cases fixed and flexible, see Table 4.38. The table 

shows also that springs do not change much in the first natural modes which is the same as 

the first four cases. The fact of having the first mode at 16Hz reduces the response of the 

structure and therefore gives more stability to medicine and small equipment. 

 

The shelf is almost stable as the amplification AMP1 did not reach even 1.2 times the input 

acceleration in both cases; fixed and flexible as shown in Figure 4.72 (a) and (b). Unlike 

the previous cases, Node 3 is the most unstable node as it is located in between both 

connected nodes, Node 1 and Node 6. In other words, equipment placed at the level of 

Node 3 is the most unstable among those on the other levels. The flexibility did not affect 

the response of the shelf, at least at the level of this study; the maximum displacement was 

about 0.012cm in both cases, Figure 4.73 (a) and (b) illustrate the deformation of Case II-5 

and Case II-6 respectively. 
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Table 4.38- Natural modes of shelves in cases II-5 and II-6 

Case # Mode # Period 
(sec) 

Frequency 
(Hz) 

Circular Frequency 
(rad/sec) 

Eigen value 
(rad2/sec2) 

Mode 1 0.061183 16.34 102.70 10546
Mode 2 0.025834 38.71 243.22 59155
Mode 3 0.015301 65.35 410.63 168620
Mode 4 0.011128 89.87 564.64 318820
Mode 5 0.001233 810.71 5093.90 25947000
Mode 6 0.001230 812.73 5106.50 26076000
Mode 7 0.000648 1542.10 9689.10 93879000
Mode 8 0.000648 1543.00 9695.20 93997000
Mode 9 0.000539 1855.10 11656.00 135870000
Mode 10 0.000539 1855.40 11658.00 135900000
Mode 11 0.000539 1856.00 11662.00 136000000

C
as

e 
II

-3
 

Mode 12 0.000538 1857.10 11669.00 136160000
Mode 1 0.062645 15.96 100.30 10060
Mode 2 0.026152 38.24 240.25 57722
Mode 3 0.015474 64.62 406.04 164870
Mode 4 0.011173 89.50 562.37 316260
Mode 5 0.009857 101.45 637.44 406320
Mode 6 0.008638 115.76 727.35 529040
Mode 7 0.004917 203.37 1277.80 1632800
Mode 8 0.003549 281.74 1770.20 3133700
Mode 9 0.003544 282.17 1772.90 3143300
Mode 10 0.001215 823.22 5172.50 26754000
Mode 11 0.001212 824.93 5183.20 26865000

C
as

e 
II

-4
 

Mode 12 0.000646 1548.4 9729.00 94654000
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Figure 4.72 (a)     Figure 4.72 (b) 

 
Figure 4.72- Relationship between the amplification and the frequency, Case II-5 and Case 

II-6 
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Figure 4.73 (a)     Figure 4.73 (b) 

 
Figure 4.73- Deformation of shelves, Case II-5 and Case II-6 

 

3.4.2.4 Case II-7 and Case-II-8 
 
Evidentially the present cases are the most stable cases among all those seen previously 

cases II-1 to 6. The connection of 7 nodes, out of 12, to their support makes the structure 

very strong and responds with the building. Table 4.39 shows the natural modes of Case II-

7 and Case II-8. It is impossible to put the shelves into resonance simply because the 

frequency is extremely high, about 400Hz for fixed connections and 80Hz for flexible 

connections. The damage that the shelves may go through is then that of the building; if the 

structure is damaged then the shelves will be too, and if the structure is provided with 

special devices to protect it, i.e. base isolation etc., then it is not possible that the shelves 

will be damaged. The stability if the equipment then depends only on its characteristics, i.e. 

geometry, weight, friction etc. 

 

After looking at the natural modes of both cases it can be expected that the amplification 

will not be different from the unity, i.e. response is equal to input acceleration. The 

simulation confirms the speculation and it can be seen clearly in Figure 4.74 (a) and (b); 

the amplification AMP1 is equal to unity in all the nodes and under all the frequencies. 

These cases are the safest among all the others, Case II-1 through Case II-66, as equipment 

placed on them would fall after the others fall. The unconnected nodes could displace but 

with very low values which can be neglected. The maximum attained displacement was 

7.10-6 cm, Figure 4.75 (a), for the fixed connection case, and 2.10-4 cm, Figure 4.75 (b), for 

the flexible case. 
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Figure 4.74 (a)     Figure 4.74 (b) 

 
Figure 4.74- Relationship between the amplification and the frequency, Case II-7 and Case 

II-8 
 

Table 4.39- Natural modes of shelves in cases II-7 and II-8 

Case # Mode # Period 
(sec) 

Frequency 
(Hz) 

Circular Frequency 
(rad/sec) 

Eigen value 
(rad2/sec2) 

Mode 1 0.002504 399.33 2509.10 6295500
Mode 2 0.000867 1153.80 7249.50 52556000
Mode 3 0.000762 1311.80 8242.50 67939000
Mode 4 0.000762 1312.20 8245.00 67981000
Mode 5 0.000761 1313.20 8251.20 68083000
Mode 6 0.000761 1314.70 8260.70 68240000
Mode 7 0.000622 1607.10 10098.00 101960000
Mode 8 0.000556 1798.30 11299.00 127660000
Mode 9 0.000440 2272.30 14277.00 203840000

C
as

e 
II

-3
 

Mode 10 0.000393 2542.80 15977.00 255260000
Mode 1 0.012422 80.50 505.80 255830
Mode 2 0.008697 114.98 722.46 521950
Mode 3 0.008356 119.68 751.96 565440
Mode 4 0.007724 129.46 813.44 661680
Mode 5 0.007027 142.30 894.10 799420
Mode 6 0.006600 151.52 952.00 906300
Mode 7 0.005509 181.52 1140.50 1300700
Mode 8 0.003549 281.74 1770.20 3133700
Mode 9 0.003544 282.18 1773.00 3143500
Mode 10 0.001223 817.81 5138.40 26404000
Mode 11 0.001199 833.68 5238.20 27439000

C
as

e 
II

-4
 

Mode 12 0.000647 1545.60 9711.50 94314000
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Figure 4.75 (a)     Figure 4.75 (b) 

 

Figure 4.75- Deformation of shelves, Case II-7 and Case II-8 

 

5. CONCLUSION 
 
The questionnaire, while very specific and therefore perhaps limited has served well to 

highlight some of the problems that were faced during emergencies. It is clear that it is not 

just internal systems that are important for the functioning of hospitals but also external 

installations. The importance of electricity was clarified by the equation and verified by the 

previous experiences and other studies done for cases around the world. It should be 

stressed that our study is done using a limited amount of data from three particular 

earthquakes this makes Equation 4.3 true only for the presented data. The equation can be 

generalized but it is difficult with the data that we have, so more information is needed and 

it is hoped that this can be done as future research. 

 

This study has shown that the use of PV technology is economically profitable for 

healthcare as an alterative source and showed that it can also be used as a main source in 

some locations in the world. The solar system has many benefits mainly: independence, 

eco-friendliness and reliability. Even if the cost of the PV system is still high, once 

installed there are no more expenses. Equations 4.7 and 4.8 are limited only to the six 

considered panels; the general case will be considered in future studies. The seismic study 

proved the system is safe to be installed and that the supports are strong enough to 

withstand very strong earthquakes. 
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The relation between the type of injuries and their causes could not be found because of 

shortage of data. However, it was possible to roughly classify the patients and therefore 

determine the most required service to treat the majority of patients. 

 

The response of equipment mounted on wheels modifies according to locking or unlocking 

wheels and the number of wheels to be locked or unlocked. The summary is presented in 

the following:  

 

- Unlocked wheels is the best case for high accelerations and/or frequencies, but 

it is not recommended for low frequencies and mainly in high accelerations, 

i.e. in base isolated buildings it maybe safer to lock all wheels, 
 

- All wheels locked case is not recommended in high frequencies and high 

accelerations, i.e. it maybe safer to unlock all wheels when a building is not 

provided with an isolation system, and 
 

- Preliminary results show that the cases of one and two wheels locked are not 

stable as the equipment is able to move and the risk of damage is very high. 

 

Further studies are required to find relation between the frequency and the start of rocking, 

also the case of one or two wheels locked have to be investigated more and special models 

should be considered. 

 
To stabilize a shelf it is better to attach it as much as possible to the structure, because that 

makes the natural frequency very high and therefore it is impossible for the shelf to 

resonate, i.e. get damaged. 

 
To summarise all that has been achieved so far. The purpose was in studying the most 

important lifelines, and the services that ensure the best treatment to the majority of 

injuries. The evaluation showed that electric power is the most important lifeline. The 

study of the medical service was done by considering two pieces of equipment which are 

common to the majority of the cases which can be found at any service. To further study 

the vulnerability of systems we need to use the response acceleration of each case 

discussed in this chapter and use it as the input for small equipment such as medicines or 

any other type of small equipment. This will be the focus of the next chapter. 
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CHAPTER 5 

 

EVALUATION OF FRAGILITY 

 

 

 

 

 

 

 

 

 

 
1. INTRODUCTION 

 

In the last two chapters we have seen 1) the factors that affect a healthcare facility’s 

operation; structure, lifelines, equipments, personnel and others, 2) the performance of 

lifelines through the consideration of electric power system and 3) the response of some 

equipment (nurse table and shelves) which hold medicine containers and such like. The 

third point was about finding the response of equipment which are freely standing on the 

floor, mounted on wheels and attached to their support with or without flexible connection. 

If we consider that all systems, mounted on wheels or freely standing, as rigid bodies we 

can therefore use the same models to find out the level at which the small size equipments 
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and medicine containers get damaged. Systems which are attached to their supports might 

be easier as they are classical structures. In other words we can study the stability of each 

of the systems, i.e. their fragility of each system. 

 

The present chapter discusses the fragility of some systems within a healthcare facility. 

Here we considered two main systems; lifeline and equipment. As it was impossible for us 

to study all lifeline systems, we studied only the electric power system and water supply 

system using some results found by researchers.  

 
The following sections discuss the fragility of each of the systems considered in the study. 

As mentioned before the only lifeline and equipments are considered. The fragility of 

structure is not considered, however it can be easily added 

 
2. FRAGILITY OF SYSTEMS 
 
2.1- Lifeline 
 
2.1.1- Water supply 
 
The fragility of water system is supposed to be the occurrence of the first leakage in the 

piping system. Because of their geometry, pipelines are still very vulnerable to earthquakes; 

Photo 5.1 shows damage to some pipelines after the occurrence of the 2003 Tokachi-Oki 

Earthquake, Japan. Several researchers worked on the damage to pipelines such as Ishida 

et al (2000) and Kuwata et al (2003) who presented Equation 5.1 that is able to predict the 

number of leakages in 1km of pipelines. The damage depends on the kind of tube Cp, its 

diameter Cd, the topography of its installation Cg and the possibility of liquefaction Cl. 

Two types of tubes were considered DIP-ф75 and CIP-ф100-150 installed in a building, i.e. 

others for topography, and in non-liquefied soil.  

 
It should be noticed that the considered assumptions do not have any real meaning as we 

could not consider a real case to study this part.  

 
The fragility of the system is considered to be the fragility of the pipes as they are the most 

fragile elements in the water supply system, for that we assumed that the fragility of water 

installation is that of the pipes. The result of the evaluation is shown in Table 5.2 in which 

the probability of damage is defined as the first appearance of the first leak. The best fit 

was found using Origin v7 software by OriginLab Corporation; Figure 5.1 illustrates the 
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fragility curves after fitting. A Sigmoidal function, which has the form shown in Equation 

5.3, was found to be the best for fitting the data. The parameters of fitting are shown in 

Table 5.3. 

 
Table 5.1- Pipes information (Source: Kuwata et al., 2003) 
Tube Kind Tube Diameter Topography Liquefied conversion 
Cp Cd Cg Cl 
DIP 0.3 Ф75 1.6 Alteration mountain region 1.1 None 1 
CIP 1 Ф100-150 1 Terrace 1.5 Partially 2 
VP 1 Ф200-450 0.8 Valley, Old water section 3.2 Entirely 2.4 
SP 0.3 Ф500- 0.5 others 1   
ACP 1.2       0.4   

 

( ) lidipii CCCafS ×××=           (5.1) 

 
Where 

 f(a): number of leaks/km defined in Equation 5.2 

 a: Input acceleration 

 

( ) 97.16 )100(1088.2 −××= − aaf          (5.2) 

nn

n

xk
xVy
+

= max             (5.3) 

 

2.3  
Photo 5.1- Pipe damage, Kushiro Urinary Clinic 

                  

 



 

       
Evaluation of fragility                                                               Page 166 
 

Table 5.2- Damage to pipes 
Probability of damage Acceleration 

(cm/sec2) 
f(a) 
(leak/km) DIP CIP 

0 0.000000 0.000000 0.000000 
100 0.000000 0.000000 0.000000 
200 0.025084 0.012040 0.025084 
300 0.098270 0.047170 0.098270 
400 0.218435 0.104849 0.218435 
500 0.384991 0.184796 0.384991 
600 0.597535 0.286817 0.597535 
750 1.001917 0.480920 1.000000 
800 1.159406 0.556515 1.000000 
900 1.508272 0.723971 1.000000 
1000 1.902174 0.913043 1.000000 
1100 2.340952 1.000000 1.000000 
1200 2.824464 1.000000 1.000000 

 

Table 5.3- Parameters of the fitting 
Parameter DIP CIP 
Vmax 1.0 1.0 
k 730 529 
n 4.6 6.3 
χ2 /DOF 0.002 0.004 
Coefficient of determination R2 (%) 97.9% 97.9% 
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Figure 5.1- Fragility of water system 

 

The fragility of the water system depends on the way the pipelines are used. In other words, 

many factors should be considered to find the fragility of the water system such as the 

importance of each pipe for the functioning of the system. Here we consider that both 
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pipelines have the same impact on the system and therefore the most fragile pipe, i.e. CIP, 

represents the fragility of the water system. 

 
2.1.2- Electric power 
 
The fragility of electric installation considers only the case of the alternative source as the 

commercial power is usually turned off automatically for security measures or because of 

damage outside of the hospital. In general electric installations are very large, extremely 

flexible, because of the electric wires, and attached to the building structure which makes 

their damage dependant on the structural damage. Moreover batteries are very well 

attached to each other and placed in shelves placed on the floor, i.e. they can be considered 

as a part of the structure of the building as well. The only element that may have the 

possibility to be damaged, therefore, is the supports of panels. For that the fragility of 

electric power installation will be considered as the stability of the support of its panels. 

The removal of the panel supports from their connections is then considered as the damage 

to the electric power system. Using the results found during the simulation in Chapter 4, 

the reaction does not depend on the frequency. Thus the maximum reactions will be 

considered, i.e. Fx=18.84kgf, Fz=15.19kgf for Model 1 and Fx=40.81kgf, Fz=45.53kgf for 

Model 2. Bolts type M20 were used for Model 1 while bolts M22 were used for Model 2. 

Figure 5.2 shows the resistance of bolts M20 and M22 (PBA, 2003), to simplify the 

problem we considered that the minimum force for the bolt to be removed is equal to the 

horizontal resistance as it is the lowest force. The probability for the panels to be damaged 

then is equal to the reaction of the support divided by the resistance of 1 bolt. The reaction 

R is defined as square root of the squared value of each reaction: horizontal Fx and vertical 

Fz, see Equation 5.4. The results are shown in Table 5.4 then fit with using the software 

Origin V7; the results fragility curves are shown in Figure 5.3. The same fitting model, 

Sigmoidal function, was taken which parameters are shown in Table 5.5. The support is 

extremely strong as well as the bolts. The result confirms what was found during the 

simulation in Chapter 4; it is almost impossible that the support will fall over, i.e. the 

system is safe. We believe that other factors should be considered such as the age of the 

support and building structure which be the focus in future studies. 

 

22
zx FFR +=           (5.4) 
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Figure 5.2- Resistance of bolts and maximum reaction 

 

Both supports are considered with the same power of impact on the malfunction of 

electricity. The fragility of the electric power installation is therefore is equal to the most 

fragile support, i.e. Model 1. 

 
Table 5.4- Total reaction and probability of damage 
 Model 1 Model 2 
Acceleration F1 Probability F2 Probability  
(cm/sec2) (kgf) (%) (kgf) (%) 
100 2.4201 0.0756 5.2945 0.1655 
200 4.8402 0.1513 10.5890 0.3309 
300 7.2603 0.2269 15.8835 0.4964 
400 9.6803 0.3025 21.1780 0.6618 
500 12.1004 0.3781 26.4725 0.8273 
600 14.5205 0.4538 31.7670 0.9927 
700 16.9406 0.5294 37.0615 1.1582 
800 19.3607 0.6050 42.3560 1.3236 
900 21.7808 0.6806 47.6505 1.4891 
1000 24.2009 0.7563 52.9450 1.6545 

 

Table 5.5- Parameters of the fitting 
Parameter Model 1 Model 2 
Vmax 1.0 1.0 
k 128446.8 57160.5 
n 1.0 1.0 
χ2 /DOF 0.0 0.0 
R2(%) 100 100 
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Figure 5.3- Fragility of the solar system 

 
 
2.2- Equipment 
 
2.2.1 Introduction 
 
Four different types of medicine container (e.g. bottle) or any other small size equipment 

were considered to be placed on wheeled tables, and shelves. The four models have the 

same shape and size as shown in Figure 5.4, different weight, m=100grammes and 

m=500grammes, and different frictions, μs1=0.15 and μs2=0.45, see Table 5.6 contains the 

summary of all factors that will be considered in this section. The difference of weight is 

for the purpose of covering several pieces of equipment as well as to consider the case of 

bottles being full or half full. The difference of friction is the purpose of making the model 

slide when the friction is low and rock when the friction is high.  

 

 
Figure 5.4- Model of the small equipment/medicine 

20cm

10cm
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 Table 5.6- List of the cases of medicine containers 
Case Mass (Kg) Static Friction 
Case III-1 0.100 0.150 
Case III-2 0.100 0.450 
Case III-3 0.500 0.150 
Case III-4 0.500 0.450 

 
2.2.2 Conditions of damage 
 
2.2.2.1 Sliding 
 
The same theoretical models used in Chapter 4 were used to analyse the response and find 

out when the damage is likely to occur. For the low friction the equipment slides until it 

reaches the edge of the table or shelf and falls down. The goal then is finding the maximum 

displacement that the container reaches during the shaking. Figure 5.5 and Figure 5.6 show 

the case of container placed on table and shelf respectively. The container is assumed to be 

placed at the furthest location from both edges. 

 

 
Figure 5.5- Conditions of damage for equipment placed on table 

 

2.2.2.2 Rocking 
 
For the case of high friction the container rocks until it turns over and therefore becomes 

damaged; Figure 5.7 illustrates the case placed on a wheeled table and Figure 5.8 the case 

of containers placed on shelves. Some of the equipment may have been padded to not be 

broken but that case is not considered as it is only some particular types which are not 

spread in all hospitals around the world. Equation 4.31 was used again for the parameters 

of the containers. Both containers have the same response as the weight does not affect the 

results. For the results it is used for both cases; m=100grammes and m=500grammes. 

 

22.5cm 22.5cm Fall over

Initial condition  Damage condition 
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The container starts rocking at about 500cm/sec2. In low frequencies, f≤4Hz, it falls at the 

start of rocking. While in high frequencies it stabilizes more than low frequencies. Figure 

5.9 illustrates the fitting of the fragility of the container’s response. The fitting was done by 

Origin version 7, Sigmoidal model was used which parameters are shown in Table 5.7.  

 

 
Figure 5.6- Conditions of damage for equipment placed on shelves 

  
 

 
Figure 5.7- Conditions of damage for equipment placed on table 
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Figure 5.8- Conditions of damage for equipment placed on shelves 
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Figure 5.9- Fragility of container 
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Table 5.7- Parameters of the fitting of container’s fragility 
Parameter 1Hz-4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 462.8 524.3 601.8 772.6 800.0 950.0 1150.0 
n 397.6 45.1 12.7 9.8 7.9 7.9 7.8 
χ2 /DOF 0.000 0.011 0.007 0.006 0.027 0.009 0.017 
R2 (%) 100 95.0 95.6 97.2 85.5 92.8 86.3 

 
2.2.3 Considered cases 
 
In Chapter 4 two sets of cases where considered; a nurse’s table and shelves. Each of the 

four medicine containers considered were placed on the nurse table and shelves. Thus a 

total of forty cases are considered for the equipment as illustrated in Table 5.8. The 

following paragraph discusses all cases.  

 

2.2.3.1 Equipment placed on wheeled table 
 
2.2.3.1.1 Unlocked wheels (Case IV-1 through Case IV-4) 
 
To move the medicine container the horizontal force should exceed the friction force. 

According to the experiment and simulation in Chapter 4, in low frequencies the table 

seems to respond stronger than in higher frequencies as the equipment has very low natural 

frequency. Table 5.9 illustrates the maximum acceleration achieved on top of the table as 

well as the minimum acceleration required for the medicine to start moving. The medicine 

container cannot slide except in the case of 1Hz where the exciting acceleration slightly 

exceeds the minimum required acceleration to start moving. In low friction, i.e. Case IV-1 

and Case IV-3, the container is able to move which makes its probability of being damaged 

high as shown in Figure 5.10 and Figure 5.11. Containers of high friction, i.e. Case IV-2 

and Case IV-4, do not move as the acceleration does not reach the minimum acceleration 

required to make them move as shown in Figure 5.12. 

 

Fragilities relevant to 1Hz in Case IV-1 and Case IV-3 were fit with Sigmoidal model 

using Origin version 7. The detail of fitting is shown in Table 5.10. 
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Table 5.8- Fragility cases 
Case Combination 
Case IV-1 Case III-1 and Case I-1 
Case IV-2 Case III-2 and Case I-1 
Case IV-3 Case III-3 and Case I-1 
Case IV-4 Case III-4 and Case I-1 
Case IV-5 Case III-1 and Case I-2 
Case IV-6 Case III-2 and Case I-2 
Case IV-7 Case III-3 and Case I-2 
Case IV-8 Case III-4 and Case I-2 
Case IV-9 Case III-1 and Case II-1 
Case IV-10 Case III-2 and Case II-1 
Case IV-11 Case III-3 and Case II-1 
Case IV-12 Case III-4 and Case II-1 
Case IV-13 Case III-1 and Case II-2 
Case IV-14 Case III-2 and Case II-2 
Case IV-15 Case III-3 and Case II-2 
Case IV-16 Case III-4 and Case II-2 
Case IV-17 Case III-1 and Case II-3 
Case IV-18 Case III-2 and Case II-3 
Case IV-19 Case III-3 and Case II-3 
Case IV-20 Case III-4 and Case II-3 
Case IV-21 Case III-1 and Case II-4 
Case IV-22 Case III-2 and Case II-4 
Case IV-23 Case III-3 and Case II-4 
Case IV-24 Case III-4 and Case II-4 
Case IV-25 Case III-1 and Case II-5 
Case IV-26 Case III-2 and Case II-5 
Case IV-27 Case III-3 and Case II-5 
Case IV-28 Case III-4 and Case II-5 
Case IV-29 Case III-1 and Case II-6 
Case IV-30 Case III-2 and Case II-6 
Case IV-31 Case III-3 and Case II-6 
Case IV-32 Case III-4 and Case II-6 
Case IV-33 Case III-1 and Case II-7 
Case IV-34 Case III-2 and Case II-7 
Case IV-35 Case III-3 and Case II-7 
Case IV-36 Case III-4 and Case II-7 
Case IV-37 Case III-1 and Case II-8 
Case IV-38 Case III-2 and Case II-8 
Case IV-39 Case III-3 and Case II-8 
Case IV-40 Case III-4 and Case II-8 

 

Table 5.9- Acceleration affecting the medicine container   
Frequency (Hz) 1 2 3 4 5 6 7 8 9 10 
Acceleration at the top of the 
table (cm/sec2) 151 134 124 124 105 98 92 93 83 78 

Min. required acceleration (cm/sec2), μs=0.15 147 
Min. required acceleration (cm/sec2), μs=0.45 441 
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Table 5.10- Parameters of the fitting 
Parameter Case IV-1 Case IV-3 
Vmax 1.0 1.0 
k 1100 1200 
n 4.0 3.3 
χ2 /DOF 0.003 0.002 
R2(%) 76.4 86.6 
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Figure 5.10- Fragility of Case IV-1 
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Figure 5.11- Fragility of Case IV-3 
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Figure 5.12- Fragility of Case IV-2 and Case IV-4 

 
The fragility of equipment placed on top of a wheeled table is equal to the average of 

fragilities of all containers. Containers are considered to have the same importance for the 

functioning of the facility. The original data were used for the purpose of reducing the 

errors. Results then were fit using the same methodology and model as in previous sections. 

Figure 5.13 illustrates the fitting of fragility of equipment placed on top of wheeled tables. 

The parameters of fitting are shown in Table 5.11. 
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Figure 5.13- Fragility of equipments placed on top of wheeled table 
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Table 5.11- Parameters of the fitting 
Parameter Equipment placed on wheeled table 
Vmax 1.0 
k 1400 
n 3.7 
χ2 /DOF 0.001 
R2(%) 80.4 

 

2.2.3.1.2 All wheels locked (Case IV-5 through Case IV-8) 

 

In Case IV-5 and Case IV-7 the containers slide until the table starts rocking, given that the 

friction is high, μtable=0.57. The table passes through two main stages; the first is stability, 

i.e. no response, and the second is rocking. During the first the stage the container slides 

without falling down as the friction is low, μcontainer=0.15. Once the table starts rocking, the 

container will fall down and is therefore damaged. Figure 5.14 and Figure 5.15 show the 

results of evaluation before the fitting. The fitting was done by the same method as the 

previous curves; the new figures are shown in Figure 5.16 and Figure 5.17 relevant to Case 

IV-5 and Case IV-7 respectively. The parameters of fitting are shown in Table 5.12.  

 

A heavy container tends to fall before the rocking starts as the friction is low, i.e. easy 

motion, and the weight is high, i.e. stronger horizontal force. This can be clearly seen in 

the case of 1Hz in figures 5.14 through 5.17. 

 

Table 5.12- Parameters of the fitting of Case IV-5 
Case IV-5 

Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 414.7 415.9 416.0 416.1 416.1 416.1 416.2 416.2 416.2 416.1 
n 24.2 55.3 72.2 85.8 93.8 101.1 107.4 113.6 118.4 125.8 
χ2 /DOF 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 97.6 99.8 99.9 100 100 100 100 100 100 100 

Case IV-7 
Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 365.5 415.2 415.9 416.0 416.0 416.1 416.1 416.1 416.0 416.2 
n 5.96 47.4 65.7 81.1 89.3 97.3 104.2 111.9 114.6 121.8 
χ2 /DOF 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 96.5 99.6 99.91 99.97 99.98 100 100 100 100 100 

 



 

       
Evaluation of fragility                                                               Page 178 
 

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y
 o

f 
d

am
ag

e

Input Acceleration (cm/sec2)

 1Hz
 2Hz
 3Hz
 4Hz
 5Hz
 6Hz
 7Hz
 8Hz
 9Hz
 10Hz

m=100grammes
all wheels locked table

 
Figure 5.14- Fragility of Case IV-5 before fitting 
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Figure 5.15- Fragility of Case IV-7 before fitting 
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             Figure 5.16- Fragility of Case IV-5 
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Figure 5.17- Fragility of Case IV-7 

 

In Case IV-6 and Case IV-8 both the table and containers are stable before the rocking 

starts at around the same acceleration, 500cm/sec2. Once the table starts rocking the 

container is considered as damaged as it is not stable anymore because of its light weight, 

which makes it easily toppled. The container then passes from stability, 0% of damage, to 

total damage, 100%, at 500cm/sec2. The fragility of Case IV-6 and Case IV-8 is then 

shown in Figure 5.18. 
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Figure 5.18- Fragility of Case IV-6 and Case IV-8 

 

The fragility of equipment placed on top of a free standing table, including tables mounted 

on locked wheels, is equal to the average of fragilities of all containers. Containers are 

considered to have the same importance for the functioning of the facility. The original 

data was used for the purpose of reducing errors. Results then were fit using the same 

methodology and model as in previous sections. Figure 5.19 illustrates the fragility of 

equipment placed on top of free standing tables. The parameters of fitting are shown in 

Table 5.13. 
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Figure 5.19- Fragility of equipments placed on top of free standing table 
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Table 5.13- Parameters of the fitting of Case IV-5 
Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 415 416 416 416 416 416 416 416 416 416 
n 38.3 69.4 86.7 101.3 109.6 116.4 121.8 128.7 134.1 138.5 
χ2 /DOF 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 99.1 99.9 100 100 100 100 100 100 100 100 

 

2.2.2 Equipment placed on shelves 
 

2.2.2.1 Introduction 
 

All shelves are considered to have four levels to hold containers. Only containers of same 

characteristics are placed together in a single shelf. In other words, if containers of a single 

layer are damaged and the others are still stable the damage of the shelf is considered to be 

25%. This is not true for the case of containers of different characteristics as they do not 

respond similarly. Particular study is needed to determine the impact of each type on the 

damage of the shelf; many factors are included in the study such as the friction, size, 

weight, number of containers in a single shelf and others. Unfortunately the time was 

limited for considering this case, however it will be considered in future work.   

 

In Chapter 4 we considered eight different types of shelve connections, bottom fixed (Case 

II-1), bottom flexible (Case II-2), mixture between fixed and flexible (Case II-3), different 

bottom flexibility (Case II-4), top and bottom fixed (Case II-5), top and bottom flexible 

(Case II-6), bottom and side fixed (Case II-7) and bottom and side flexible (Case II-8). 

Each of the containers is supposed to be placed in each of the shelves which make the total 

number of cases equal to 32.  

 

In the following sections the fragility of each of the shelves. The first case, Case IV-9 to 

Case IV-12, the methodology followed to evaluate the fragility of all shelves. Later on only 

the results will be shown as the same judgment was followed to reach the required results. 

 
2.2.3.2.2 Bottom fixed shelf (Case IV-9 through Case IV-12) 
 

In Case IV-9 and Case IV-11 the containers slide until the falling over which represent the 

total damage. To evaluate the displacement we used the acceleration evaluated in Chapter 

4 at each of the relevant nodes, 2 3 4 and 5, as input for the computer programme, which 
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chart-flow is shown in Figure 4.44. A container, with characteristics shown in Case III-1 

placed on a shelf Case II-1 excited with sinusoidal of frequency 1Hz, has the fragility 

shown in Figure 5.20, Figure 5.21, Figure 5.22 and Figure 5.23 if it is placed at the level of 

Node 2, Node 3, Node 4 and Node 5 respectively. The figures show two curves the first is 

the original curve and the second is its fitting using Origin v7. The model is Sigmoidal 

model as shown in Equation 5.3 which parameters are shown in Table 5.14. The fragility 

of the shelf is assumed to be the average of all fragilities. The original data was used rather 

than the fitting for the purpose of reducing errors. The fragility of Case IV-9 (case of 1Hz) 

becomes as shown in Figure 5.24; the parameters of fitting are shown in Table 5.15. 

Following the same judgment the fragilities of all the rest of cases were obtained. Figure 

5.25 and Figure 5.26 show the fitting of the fragilities of Case IV-9 and Case IV-11 

respectively; parameters are shown in Table 5.15.  

 

In Case IV-10 and Case IV-12 containers pass from stability to rocking. As stated 

previously, the weight of containers do not affect their response therefore results of both 

cases lead to the same result, i.e. Case IV-10 and Case IV-12 have the same response 

shown in Figure 5.26 and the fitting parameters shown in Table 5.16.  
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Figure 5.20- Fragility of container Case III-1 placed at the level of Node 2 
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Figure 5.21- Fragility of container Case III-1 placed at the level of Node 3 
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Figure 5.22- Fragility of container Case III-1 placed at the level of Node 4 
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Figure 5.23- Fragility of container Case III-1 placed at the level of Node 5 
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Figure 5.24- Fragility of shelf, Case IV-9 f=1Hz 

 

Table 5.14- Parameters of fitting nodes of shelf type Case IV-9, f=1Hz 
Parameter Node 2 Node 3 Node 4 Node 5 
Vmax 1.0 1.0 1.0 1.0 
k 459.6 457.5 456.2 455.4 
n 3.26 3.26 3.26 3.26 
χ2 /DOF 0.004 0.004 0.004 0.004 
R2 (%) 96.9 96.9 96.9 97.0 
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Table 5.15- Parameters of fitting Case IV-9 
Case IV-9 

Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 457 1053 1090 2559 3251 4231 4642 5871 6743 8086 
n 3.28 1.87 1.65 1.60 1.60 1.62 1.57 1.53 1.57 1.57 
χ2 /DOF 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

0 0.000 

R2 (%) 97.11 99.8 99.9 99.9 99.8 99.9 99.9 99.7 99.7 99.7 
Case IV-11 

Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 284 596 1071 1538 2048 3123 2971 3491 4136 6024 
n 4.30 3.52 2.22 2.01 1.94 1.79 1.82 1.84 1.86 1.71 
χ2 /DOF 0.00

2 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R2 (%) 98.5 96.8 99.7 100 99.9 100 100 100 99.9 99.8 
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Figure 5.25- Fragility of Case IV-9 
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Figure 5.26- Fragility of Case IV-11 
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Figure 5.27- Fragility of Case IV-10 and Case IV-12 

 

Table 5.16- Parameters of fitting Case IV-10 and Case IV-12 
Parameter 1Hz-5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 
k 457.6 402.7 601.6 700.0 780.0 2200.0 
n 421.5 107.5 9.5 15.1 7.9 1.7 
χ2 /DOF 0.000 0.000 0.000 0.017 0.015 0.000 
R2 (%) 100 100 91.2 91.4 85.0 88.2 

 

2.2.3.2.3 Fragilities of all cases 
 

According to Case IV-9 through Case IV-12 results can be classified into three classes; two 

classes of sliding and the third is rocking. The response of sliding depends on the weight of 

the container while the response of rocking is the same for all cases. The results are 

presented in the following three sections; the first presents the results of m=100grammes, 

the second section presents the case of m=500grammes and the third is the case of rocking. 

The figures show the fitting of the original results which parameters are shown the relevant 

tables that follow each set of figures. 
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2.2.2.3.1 Case of m=100grammes  
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Figure 5.28- Fragility of Case IV-13 
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Figure 5.29- Fragility of Case IV-17 and Case IV-21 
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Figure 5.30- Fragility of Case IV-25 
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Figure 5.31- Fragility of Case IV-29 
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Figure 5.32- Fragility of Case IV-33 and Case IV-37 
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Table 5.17- Parameters of fitting m=100grammes and μs=0.15  
Case IV-13 

Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 455 850 1763 2468 3208 4427 5175 6206 6956 8392 
n 3.7 2.2 1.6 1.6 1.6 1.6 1.5 1.5 1.6 1.6 
χ2 /DOF 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 92.2 99.4 100 100 100 99.8 99.9 99.9 99.9 99.6 

Case IV-17 & Case IV-21 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 448 970 1546 2207 3352 4384 4713 6203 6875 8157 
n 3.3 1.9 1.6 1.6 1.6 1.6 1.6 1.7 1.8 1.8 
χ2 /DOF 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 97.0 99.8 100 100 99.9 99.9 99.8 99.9 100 99.9 

Case IV-25 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 463 1101 1960 2759 3644 4760 5181 5674 6377 7309 
n 3.3 1.8 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 
χ2 /DOF 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 96.9 99.9 100 100 100 99.9 100 100 99.9 99.9 

Case IV-29 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 462 1101 1929 2759 3644 4611 5215 5517 6212 6985 
n 3.6 1.8 1.7 1.6 1.6 1.7 1.6 1.6 1.6 1.6 
χ2 /DOF 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 92.9 99.9 100 100 100 100 99.9 100 99.9 100 

Case IV-33 & Case IV-37 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 448 970 1546 2207 3352 4384 4713 6202 6875 8157 
n 3.3 1.9 1.6 1.6 1.6 1.6 1.6 1.8 1.8 1.8 
χ2 /DOF 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 97.0 99.8 100 100 99.9 100 99.8 99.9 100 99.9 

 
 
2.2.2.3.2 Case of m=500grammes 
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Figure 5.33- Fragility Case IV-15 
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Figure 5.34- Fragility Case IV-19 and Case IV-23 
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Figure 5.35- Fragility of Case IV-27 
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Figure 5.36- Fragility of Case IV-31 
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Figure 5.37- Fragility of Case IV-35 and Case IV-39 

 
Table 5.18- Parameters of fitting m=500grammes and μs=0.15  

Case IV-15 
Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 306 589 1028 1469 1973 3203 3087 4163 5512 7046 
n 4.3 3.5 2.3 2.0 1.9 1.7 1.8 1.8 1.7 1.7 
χ2 /DOF 0.003 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 98.1 96.3 99.6 99.9 99.8 99.9 100 99.9 100 99.8 

Case IV-19 & Case IV-23 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 279 556 871 1275 2455 3202 3573 5136 5766 6423 
n 4.2 3.7 2.4 2.0 1.8 1.8 1.8 1.8 1.9 1.9 
χ2 /DOF 0.002 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 98.6 96.7 2.4 99.9 100 100 100 100 100 100 

Case IV-27 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 288 621 1162 1771 2495 3636 3342 3688 4184 4878 
n 4.3 3.4 2.2 2.0 1.9 1.8 1.8 1.9 1.8 1.8 
χ2 /DOF 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 98.4 97.4 99.9 100 100 100 100 100 100 100 

Case IV-31 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 299 620 1166 1772 2506 3644 3310 3702 4218 4665 
n 4.5 3.4 2.2 2.0 1.9 1.8 1.9 1.8 1.8 1.9 
χ2 /DOF 0.004 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 97.7 97.4 99.7 100 100 100 100 100 100 99.9 

Case IV-35 & Case IV-39 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 378 796 1357 2138 2674 3229 3676 4188 6305 5731 
n 4.7 2.8 2.1 1.9 1.8 1.8 1.9 1.9 1.6 1.8 
χ2 /DOF 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R2 (%) 97.9 99.3 99.9 99.9 99.8 99.4 98.7 98.7 97.2 96.2 
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2.2.2.3.3 Case of rocking 
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Figure 5.38- Fragility of Case IV-14 and Case IV-16 
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Figure 5.39- Fragility of Case IV-18 and Case IV-20 
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Figure 5.40- Fragility of Case IV-22 and Case IV-24 
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Figure 5.41- Fragility of Case IV-26, Case IV-28, Case IV-30 and Case IV-32 
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Figure 5.42- Fragility of Case IV-34, Case IV-36, Case IV-38 and Case IV-40 

 
Similarly to previous systems, equipment are supposed to have the same importance for the 

functioning of the facility. The fragility of equipment placed on shelves, therefore, is equal 

to the average fragility of all containers. For the purpose of reducing errors, the original 

data, without fitting, was used to determine the fragility. After that we applied the same 

model, Sigmoidal function, to find the fragility shown in Figure 5.43 which parameters are 

shown in Table 5.20. 

 
 
 
 
 
 
 
 
 
 



 

       
Evaluation of fragility                                                               Page 194 
 

Table 5.19- Parameters of fitting  
Case IV-14 and Case IV-16 

Parameter 1Hz-5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 
K 458.2 403.2 585.6 750.0 1196.9 2399.3 
N 421.7 107.6 10.7 8.5 4.2 2.1 
χ2 /DOF 0.000 0.000 0.008 0.029 0.002 0.001 
R2 (%) 100 100 96.8 81.2 89.3 84.7 

Case IV-18 and Case IV-20 
Parameter 1Hz-2Hz 3Hz-5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
K 458.2 356.9 618.1 850.0 1300.0 1515.5 1360.1 
N 421.7 327.8 27.8 10.4 4.3 4.3 6.90 
χ2 /DOF 0.000 0.000 0.010 0.012 0.001 0.001 0.000 
R2 (%) 100 100 96.2 88.4 81.1 85.5 85.7 

Case IV-22 and Case IV-24 
Parameter 1Hz,2Hz,5Hz 3Hz,4Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 356.9 255.2 602.8 850.0 1200.0 1300.0 1367.7 
n 327.8 237.9 157.8 9.4 6.6 6.1 6.8 
χ2 /DOF 0.000 0.000 0.000 0.021 0.001 0.001 0.000 
R2 (%) 100 100 100 78.2 74.1 81.8 84.7 

Case IV-26, Case IV-28, Case IV-30 and Case IV-32 
Parameter 1Hz-4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 458.2 501.5 616.6 618.6 780.0 2191.5 2200.0 
n 421.7 132.4 24.7 42.3 11.8 1.7 1.9 
χ2 /DOF 0.000 0.000 0.008 0.005 0.021 0.001 0.001 
R2 (%) 100 100 96.8 98.2 86.3 87.4 84.9 

Case IV-34, Case IV-36, Case IV-38 and Case IV-40 
Parameter 1Hz-4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 462.9 524.3 601.8 772.6 800 1100 1350 
n 388.9 45.1 12.7 9.7 7.8 5.1 4.5 
χ2 /DOF 0.000 0.012 0.007 0.007 0.032 0.002 0.001 
R2 (%) 100 94.6 95.1 95.5 75.8 82.2 79.8 
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Figure 5.43- Fragility of all equipment placed on shelves 
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Table 5.20- Parameters of fitting of equipment placed on shelves 
Case IV-13 

Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

k 422 526 602 657 726 817.1 939 1064 1618 3135 
n 10.9 3.5 2.3 2.1 2.2 2.8 3.5 4.9 3.1 2.0 

χ2 /DOF 0.058 0.008 0.009 0.010 0.008 0.005 0.001 0.000 0.000 0.000 
R2 (%) 83.7 94.6 90.9 87.9 89.8 93.0 98.3 98.2 97.4 96.5 

 
3. FRAGILITY OF HEALTHCARE FACILITY 
 
The fragility of a healthcare facility is the summation of fragilities of each of the systems 

that it contains multiplied by a coefficient that depends on the importance of the system to 

the functionality of the facility. The importance, of each system, depends on many factors 

such as the availability of the system at the facility, the availability of its alternative system 

and other factors. It should be noticed that the importance depends also on the impact that 

the system in question has on other systems if it is damaged; e.g. damage to all systems can 

be damaged by the structural damage such as what happened in India, Algeria and Iran 

after the Bhuj Earthquake of 2001, Boumerdes Earthquake of 2003 and Bam Earthquake of 

2003 respectively. Another example is equipment that can cause damage to structure such 

as that happened in Japan or Taiwan where damage to equipment, water tank and electric 

power engine caused the closure of the entire facilities after the Hyogo-ken Nambu 

Earthquake 1995 and Chi-Chi Earthquake of 1999 respectively. Equation 5.5 represents the 

fragility of a facility composed of N systems. F is bounded between zero and unity; a null 

value means that the facilities is functioning perfectly without any damage while value 1 

means that the facility cannot function and it has to be closed.  

 

∑
=

=
N

i

sys
ii FF

1
α            (5.5) 

Where 

 Fsys
i:  Fragility of system i, 0 ≤ Fsys

i ≤ 1 

αi: a coefficient of importance of system i 

 

Unfortunately, it was not possible for us to study the coefficient of each system as a large 

amount of information is required. For that reason we considered that all systems have 

equal importance to the functioning of the facility. The coefficients, αi, are all equal to 1/5 

as we have five different systems; electric power system, water supply system, equipment 
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mounted on wheels, equipment mounted on free standing tables and equipment placed on 

shelves. The fragility of the healthcare facility was fit with the same way as the systems’ 

fragilities and shown in Figure 5.44. Table 5.21 illustrates the parameters of fitting. Finally, 

the coefficient of importance will be considered in our future studies to make the accuracy 

of the results higher. 
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Figure 5.44- Fragility of healthcare facility 

 
Table 5.21- Parameters of fitting of healthcare facility 

Parameter 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 
Vmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
k 607 739 776 793 808 828 864 918 979 1009 
n 2.8 2.2 2.1 2.1 2.1 2.2 2.2 2.1 2.0 1.9 
χ2 /DOF 0.004 0.007 0.007 0.007 0.007 0.006 0.004 0.004 0.005 0.005 
R2 (%) 96.5 90.9 89.7 89.0 89.4 60.5 92.3 92.3 89.4 88.2 

 

4. CONCLUSION 
 
The fragility of the water supply system and electric power system does not depend on 

frequencies. A water system is likely to be damaged more easily than an electric power 

system, given that the geometry of both systems is different. Water systems are composed 

with rigid long elements, i.e. pipes, which are very weak. While an electric power system 

is a mixture of very flexible elements, i.e. wires, and very strong elements, i.e. support of 

solar panels, this makes it very difficult to be damaged. Unconnected equipment response 

depends on frequency as their natural frequencies are low, less than 1Hz; low frequencies 

cause their damage easier than high frequencies. 
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The results show that low frequencies are the most dangerous for the malfunctioning of a 

facility. All non-connected equipment has very low natural frequencies and therefore 

exciting them with low frequencies makes them resonate and therefore become unstable. 

This leads us to conclude that hospitals with base isolation systems suffer damage to their 

unconnected equipment more than facilities built with usual structure.  
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CHPATER 6 
 

CONCLUDING REMARKS 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 
This dissertation presents a new methodology to estimate the malfunction of healthcare 

facilities following an earthquake with the purpose of saving human life. Several 

researchers have been working on similar studies but this methodology offers better results 

which make it very particular. The methodology provides detailed fragility determinations 

1) of each element of a system, 2) of each system, 3) each facility and 4) of the healthcare 

system. The first two points, 1) and 2), help engineers to reduce the vulnerabilities of 

elements and therefore the entire system. The third point mainly helps doctors in 

dispatching the injured during an earthquake-related emergency. This leads to reduced 

transfer of the injured from one facility to another and therefore fewer traumas and higher 

chance to survival. This also helps the administration of the hospital to find out wich 

system needs attention most urgently and thus helps them take measures to reduce its 

vulnerability. The fourth point provides the decision makers with a clear idea of the 

situation of each hospital in the health system. This helps them to take the necessary 

measures in preparing for an earthquake. Finally the proposed methodology is universal, 

i.e. valid for any hospital or healthcare system around the world which makes it unique and 

useful for developed and developing countries.  
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Chapter 2 pointed out  a) the different systems of a healthcare facility and  b) the factors 

that may affect the treatment of an injured person. A healthcare facility is composed 

mainly of two categories; the human category (composed of patients, medical staff, mainly 

doctors and nurses, administrative and support staff) and the physical category (composed 

of structural and non-structural category as well as lifeline and equipment category). 

Several factors affect the treatment of an injury. Some of them are related to traffic and 

road conditions and others are related to the healthcare facility. The latter depends on 

internal and external factors such as structural and non-structural elements as well as 

lifeline and equipment conditions. 

 

Chapter 3 provides general idea about damage experienced in health facilities following 

previous earthquakes around the world. Damage was classified into three main types; 1) 

structural and non-structural damage, 2) lifeline damage and 3) damage to equipment. 

Other types were found such as crisis management but they were not considered in the 

study. Damage to structural and non-structural elements was found to be very different 

from one case to another; some were very strong and could withstand very high seismic 

intensity while others collapsed under low intensities. Several factors were found to cause 

the difference; some of them were related to the age of buildings, others to the material 

used, reinforced concrete or masonry, others to the type of structures, with base isolation or 

without base isolation among others.  

The damage to lifelines was found to be somehow comparable between the cases as 

lifelines are similar everywhere; similar elements are being used around the world and 

obviously similar causes, i.e. earthquakes, applied to similar systems, i.e. lifelines, would 

cause similar damage. The difference was found to be in the level of alternative sources. 

Facilities with alternative sources have a higher chance to withstand emergency situations, 

while facilities without alternative sources are in risk of malfunction given an earthquake. 

Internal lifeline system malfunction depends on both the ground motion and external 

lifeline system. Lifeline shortage greatly affects the functionality of equipment which in 

turn affects the operation of the facility.  

A hospital is home to large amount of equipment; some are connected to the structure, 

others are free standing which can be mounted on wheels or not etc. The past events 

highlighted the problem of equipment instability and the damage that they can cause; 

damage to structure, lifelines, other equipment and people.  
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Chapter 4 discussed the main problems found in hospitals; lifeline and equipment stability. 

Electric power was found to be the most important lifeline for the functioning of a facility. 

Emergency power generators, which are used as alternative sources in hospitals, were 

found to be vulnerable. To reduce this vulnerability and strengthen the lifeline system solar 

panels were proposed. A comparison between both systems, considering energetic delivery, 

economic and environmental issues, was completed. The solar system has many benefits 

mainly: independence, unlike the generators, they are eco-friendly and reliable. The system 

was also studied with relation to dynamic loads, i.e. earthquakes, and found to be safe. The 

study showed that a solar system is able to be installed as an alternative and even main 

source in some cases.  

A couple of equipment categories were studied; a) connected and not connected to their 

supports. Eight types of shelves were considered; each type was connected in a particular 

way which can be fixed or flexible. The results showed that the more the shelf is attached 

to the structure the more stable it becomes. The most unstable types of shelves are those 

which are connected only by their bottoms. Simulation and experimental determination 

response of wheeled equipment was finalised. The wheels are equipped with brakes and 

this causes a difference in response according to the brakes being in a locked or unlocked 

position; rocking or sliding respectively. An unlocked setting was found to be stable while 

the locked setting was unstable. Low frequencies seem to make the equipment unstable 

while high frequencies seem to stabilize it.  

 

Chapter 5 is a study of the fragility of some systems. The fragility of water supply and 

electric power systems was finalised. The frequency does not affect their fragilities. 

Electric systems are stronger than water supply systems. Water supply system is more 

easily damaged as its elements are more fragile than the electric system’s elements. The 

fragility of equipment depends on the frequency. Low frequencies tend to make the highest 

damage to systems and therefore to healthcare facilities. Hospitals with base isolation 

systems suffer damage to their unconnected equipment more than facilities without base 

isolation system. 

 

This dissertation shows a feasible methodology to estimate malfunction in critical facilities, 

mainly hospitals. Its simplicity makes it remarkable and accurate. The study has opened 

the door for more research. In the future, the methodology will be improved by considering 

more factors such as the importance of each system and other considerations.  
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APPENDIX I 

 

BOUMERDES EARTHQUAKE; SUGGESTIONS 

 

 

 

 

 

 

 

 

 

 
This section represents some suggestions that we thought they might be helpful for those 

who are concerned about the situation of healthcare system in Algeria. 

 

1. SUGGESTIONS SOLUTIONS 

The three issues, structural, lifeline and organizational, need to be protected by 

reconstructing new stronger structures or strengthening the actual structures, providing the 

necessary lifelines and protecting them from any damage and organizing the functioning of 

the facilities to have better response capabilities in the case of an emergency. However, it 

is difficult to have all these issues done at the same time because of the high cost that is 
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needed. For that, we propose the following solutions classified according to their priority 

and taking into consideration the economical aspects of the country. 

 

1.1 Management issue 
 
Training seminars and lectures are two of the main activities that should be conducted to 

help personnel understand the situation of an emergency. They can be prepared based on 

the previous experiences of such disasters as the Boumerdes earthquake, or any other more 

serious situation that can be expected. The personnel performed well after the Boumerdes 

disaster and so their experiences can be used to educate other staff members based on what 

they went through. Only they have the details of the rescue and the many problems that 

they faced. Their experiences can be used as the basis of the training sessions as well as 

becoming the goal of what they would like to improve. In the following paragraphs we 

propose some guidelines that the trainers may need. 

 

After the occurrence of an earthquake the personnel can be divided into three main groups; 

the first group is onsite (affected area), the second is the transport team and the third is the 

treatment team that is present at the hospital. The onsite group is asked to access the 

patients, provide preliminary care and dispatch the victims who need special treatment and 

send home those that do not need medical treatment. This group is asked to know: the 

situation of hospitals, to which victims will be transferred; also they should know the 

ability of the hospital to receive patients (no damage, not crowded). The transport group is 

asked to know perfectly the roads that lead to hospitals. The roads to be taken should be 

neither damaged nor crowded and they should be the fastest. Among them some members 

of a medical team should be ready to provide the victim with the necessary treatment until 

they reach the hospital. The group based in hospitals should be ready to accept the victims 

as well as dispatch them to the necessary department in the shortest possible time. 

 
1.2 Structural issue 
 
Algerian investigators have declared that many factors contributed to the structural damage. 

Some of those factors are architectural and structural design problems; poor quality of 

design as well as low quality materials used such as the concrete; poor inspection during 

the construction and poor construction techniques; and inadequate building maintenance 

(Belazougui et al., 2003). As has been stated previously, the main causes of structural 
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damage that we found during our visit were the age and the type of the structure, which 

was masonry. Two solutions are possible to fix such problems; the first is to retrofit the 

actual structures and the second is to rebuild completely new structures. Retrofitting should 

be carried out by adding new structural elements to the masonry. The retrofitting must 

cover the foundations as well as the roof. This has the effect of making the charge 

distribution smoother. However, this type of retrofitting is very costly, it can cause 

malfunction to the hospital and the quality of the retrofitting may not be as good as is 

needed. Therefore the best option is to build a new structure considering some 

measurements to have the needed strength and quality. The new facilities should be built 

step by step to not hamper the functioning of the actual facilities and to not affect the 

economy. There are three main factors of consideration; architecture, design and 

construction. We strongly recommend that the construction of a newer, stronger structure 

be seriously considered. 

 

There are several errors that are being committed during the construction of any building in 

the North African area and these should be avoided during the construction of the new 

facilities. The majority of buildings have frame-type-structures filled with bricks or 

masonry. In some cases concrete walls or concrete cages, which can be used for elevators 

or escalators, are needed for the structure. The location of those elements should be chosen 

very carefully so as to avoid or at least minimise any problems in structural response. For 

example, the location of an elevator cage can cause eccentricity between the centre of mass 

and the centre of stiffness, that eccentricity can cause torsion during the buildings response 

to seismic waves. The same type of problem was described by the PAHO and the solution 

was to have symmetrical shaped structures (PAHO, 2000). Some other types of problems 

should be investigated and avoided during the design of new health care facilities. 

 

Concerning construction, it is important to check the quality of materials such as concrete, 

the type of steel used and the method that is followed during the construction. The 

characteristics considered during the design should conform to those used in the 

construction. Finally, it is highly recommended that architects and engineers consider the 

problems stated herewith during their design to avoid unnecessary damage to vital hospital 

structures. 
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1.3 Lifeline issue 
 
To protect lifelines some measurement should be well thought-out. In reality lifeline 

preparedness depends on the type of lifeline itself. The lifeline should be protected always 

from any danger that can harm its functioning. There are some common problems such as 

attachment of the equipment to their supports. The attachment should be strong enough to 

not allow the equipment to fall down and it should be flexible enough to not damage the 

support itself. It is obvious that the type of attachment depends on the equipment itself 

since some equipment needs to be mobile. Pipeline joints should be flexible to provide the 

different pipes with the necessary movement during seismic shaking.  

 

The facilities should be equipped with alternative sources that may be needed during an 

emergency, electricity, water and telecommunications. Those sources should be 

permanently present in the hospital and should be in operation immediately after the loss of 

the main source. To be sure about their functionality they should be tested regularly. It 

should be noted also that dividing the lifeline systems into subsystems would help to 

restrict any malfunction to that particular subsystem rather than leaving the entire facility 

without the use of that lifeline, like we found in Algeria. 

 
2. DEDUCTION 
 
Simply by looking at the presented pictures and tables, the level of preparedness of 

Algeria’s health care facilities for any disaster, but particularly earthquakes, can be clearly 

understood. Thousands of buildings collapsed and no alternative sources were provided or 

available in hospitals. 

 

The table that presents Hospital Damage Distribution, while being useful in viewing 

clearly the damage to structural elements, is not so useful for the case of health care 

facilities. A study has shown that structural elements represent 10-15% of the whole cost 

of a hospital and the remaining percentage is representative of the non-structural elements 

including medical equipment (PAHO, 2000). Health care facilities, with all their types 

(fixed or mobile) are the only locations where a patient can receive complete treatment. 

Therefore their importance cannot be judged by their structural elements without taking 

into consideration the rest. Algeria, as well as many other countries import medical 

equipment; that import has a direct affect on the national economy of the country. 
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Therefore such types of equipment should be very carefully protected. The colour coded 

classifications of Green1- Red5 do not serve any role within a hospital because even if a 

vital piece of equipment is displaced and damaged, this can result in one or many patients 

not having access to the necessary treatment that they require. Therefore a better 

classification is necessary, one that is more relevant to life saving. 

 

The types of structural problems encountered are common in developing countries. There 

are many reasons behind these problems. Some of them are as follows; - the technical 

problems: since engineers and constructors do not pay attention to the quality of the 

materials used as well as the correct design. – Lack of knowledge of seismic problems: 

many architects look for the aesthetics of the structure more than the strength of it. 

Unfortunately, some countries are ignorant to such disasters by using the seismic history as 

the main reason to show that earthquakes do not occur in their areas. 

 

The presented solutions may not be very detailed so as to provide the protection of the 

facilities; however, they do give the main guidelines that the Algerian engineers, architects 

and medical staff may need to prepare for future disasters. The proposed solutions take into 

consideration the economical difficulties of the country by depending on the human 

resources more than material resources. It is possible to change the proposed ideas 

according to the cases that were faced by the staff and according to the available 

possibilities during the final preparation, but it is important to follow the sequence of the 

main steps: i.e. referring always to organizational issues, structural issues then lifeline 

issues. The best way to make a good method is the one in which all specialities share in its 

operation. Therefore, engineers, architects and medical staff should gather and discuss the 

architectural drawings as well as the location of the equipment and try to find the best 

solution to make the hospital strong enough to resist against earthquakes. 

 

Lastly, what can be learned from the presented disaster is the importance of health care 

facilities and the obligation to protect them through the correct preparation of their 

structural, non-structural and organizational aspects. They should be able to face any type 

of emergency, particularly natural disasters such as earthquakes. 
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APPENDIX II 

 

BAM EARTHQUAKE; SUGGESTIONS 

 

 

 

 

 

 

 

 

 
Similarly to the Algerian case, this section focuses on particular issues that were found 

during the investigations. Some suggestions are proposed for those who are interested in 

the Iranian case. 

 
1. DISCUSSION AND SUGGESTIONS 

 

Damage to health care facilities depends from country to country, in another word 

depending on the level of preparedness in each country. Usually it starts with the structural 

and it ends with lifelines and organization; for that Iran should take in consideration the 

experience of other countries such as Algeria, following the Boumerdes earthquake of 21st 

May 2003. Additionally, the preparedness should be done according to trustful systems, 
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such as the case of Japan. Japan could reduce greatly the number of victims even if some 

problems are still being found during emergencies. The preparedness should be done to all 

the categories; structure, lifeline and organization. 

 

The following section deals with the different hospital categories, some suggestions are 

presented to help the decision makers to prepare their health care facilities to save as many 

as possible lives. The section is divided into three main sub-sections are shown in the 

following; structural planning, lifeline planning and management of the facilities. 

 
1.1 Structural and non-structural issues 
 
It is clear that Iran needs a total reform to its structures, two possibilities exist and can be 

applied; a) retrofitting the existent facilities and rebuild the parts that totally collapsed, b) 

rebuild the whole facilities. The author recommends the second solution since the first can 

be very costly and may not able to give the expected strength. It is important to notice that 

many studies have shown the vulnerabilities of structures that should be taken in the design 

phase; hereby we remind that the difficult shapes may be able to concentrate the strain and 

therefore can cause the damage of the structure; some of the structures that should be 

avoided are shown in Figure II.1 and Figure II.2. The location should be well chosen; it is 

advisable to have hospitals far from seismic faults, at the same time it highly recommended 

to have facilities near the concentration of inhabitants. When facilities are close to 

residential area it may be easier for the victims to reach them, hospitals, when they need 

them the most; close facilities save the patients time and reduce the risk of trauma or death 

while travelling. The facility buildings should be built according to the newest building 

codes since they consider new factors that were not considered in the old ones.  

 
1.2 Lifeline issues 
 
The difference between any commercial/living building and health care building is the 

lifeline/equipment that exists in both of them. Healthcare facilities are equipped with very 

particular equipment that are used to treat patients. Hospitals’ equipment are related to 

each other with very complicated ways. The main problems that were found in Iran and in 

many other facilities in the world can be classified into three categories; alternative 

sources, topple and damage of equipment and malfunction. 
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As their name indicates “alternative sources” have to be always in the hospitals; an 

alternative source is a source that would be used in case of loss of the main source 

therefore it has to exist with the main source. A health care facility cannot function if it 

doesn’t have electricity or water or any other lifeline. The Khomeini hospital did not have 

any emergency electric generators, did not have any water supply and therefore it had to be 

closed. The facilities could not use their landline phones and even the mobiles were not 

functioning, this was because of damage to external problems. To reduce this risk it is 

highly recommended to have different sources of lifelines so that if one cannot be used the 

other(s) will be. 

 

           
Figure II.1- Shapes, in plan, that should be  Figure II.2- Vertical shapes to be  
avoided during the design (Source: PAHO, 2000)         avoided  (Source: PAHO, 2000) 
 

1.3 Management issues 

 

Management and planning are the main issue that has two different edges; the first is the 

correct behaviour during the emergency, and the second is dealing with the actual 

condition of the facilities. In other words management represents saving the lives with the 

lowest cost. 

 

Managing for disasters deals with many issues; number of personnel and their education, 

choosing the right location of equipment, providing the facility with the necessary 

equipment needed for treating causalities. The number of personnel should be well studied 

according to the number of inhabitant within the same area, and the average number of 

patient per year. Also the personnel should be always aware of the emergencies situation. 

Special activities such as training and lectures can be organized to make the personnel 

aware of the situation. The Aflatoonian hospital already started teaching its personnel 
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which helped them during the emergency. The situation is the more or less the same as 

Algeria, therefore we propose the same idea proposed about the Algerian earthquake.  

 

Healthcare facilities should have always emergency manuals that explain to the personnel 

in detail the situation of emergencies with very easy way. The Aflatoonian hospital had 

emergency manuals but unfortunately it does not consider the case of earthquakes.   

 

The location of equipment should be well chosen since during earthquakes equipment 

move and may make the area inaccessible, see Photos II.1, II.2 and II.3. Noting that this 

issue is related directly to the previous section, lifeline issues, since the problem of 

anchorage imposes itself; also it is related to the decision of the location which depends on 

the medical and administrative personnel. 

 

Finally, we propose some ideas that might inspire Iranian engineers, as well as those who 

are living in countries that are facing the same danger. 

 

1- Building strong structures that can resist disasters. 

2- Organizing the inside and the outside of the facilities to avoid any equipment 

from falling and harming displacement inside and outside the facility. 

Equipment should be well attached to their support with flexible couplings.  

3- Providing the health care facilities with the necessary number of personnel. 

4- Providing the medical staff as well as the rest of the staff with special 

emergency response lectures and training to help them to behave correctly 

during a disaster. 

5- Providing the hospitals with the necessary medical products that are needed in 

the case of an emergency. 

6- Providing the hospitals with alternative sources that can be used immediately 

after the lack of the principal lifeline such as electric generators for the case of 

a blackout. 

 
1.4 Other issues 
 
Management and economical issues are still one the main problems for health facilities 

around the world. Each country has its own specific problems but in total they are similar. 

It is known that public hospitals are not beneficent from treatment. The public facilities are 
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built using the tax of the citizen, for that the cost of treatment cannot be advantageous. On 

the other hand, hospitals must have very particular equipment which is very expensive. 

The possibility of affecting the national economy is very high and mainly in countries such 

as Iran seeing that they have to buy these types of equipment from other countries. The 

Aflatoonian Hospital had to close because of some problems with its insurance company; 

therefore economical problems. The government can encourage the providers of the 

hospitals and the technical services to take maintain the facility with the necessary service, 

maintenance of the equipment, with a reduction of certain amount from the taxes that have 

to pay. This way will save the government expenses on health care facilities after the 

occurrence of disasters and will make sure the operation of the equipment when they are 

needed the most; and finally saving more lives. 

 

        
Photo II.1- Falling over of a gas cylinder    Photo II.2- Displacement of equipment 

 

 
Photo II. 3- Topple of medical equipment 
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2. DEDUCTION  
 
Iran is in high risk of having earthquakes, yet it still has not prepared for them. Many 

problems were faced during the emergencies and it should be noticed that they are not 

particular only to Iran because many countries are suffering from the same problems. 

However, the situation in Iran can be made much better using the resources that the 

country has. It has to be mentioned that this is the best time to organize correctly its health 

care facilities by building new facilities and equipping them with the necessary equipments. 

The preparedness of personnel is very necessary since they are the most important people 

who are able to treat injuries and therefore save lives. 

An important lesson shall be learned from the rescue nuisance; the planning and the 

organization are very important and should be done always even if the risk of having 

disasters is low. If preparedness was done the situation would be much better and the 

numbers would be less than they are as well as the economy losses would not be as they 

are. 

 

 

 

 


