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Abstract: Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although
the intracellular effectors involved are not determined. Here, we report that reduction of
HBV transcripts by TGF-β is dependent on AID expression which significantly
decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication.
Immunoprecipitation reveals that AID physically associates with viral P protein that
binds to specific virus RNA sequence called epsilon. AID also binds to an RNA
degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and
P protein form a RNP complex. Suppression of HBV transcripts by TGF-β was
abrogated by depletion of either AID or RNA exosome components, suggesting that
AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA.
Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or
when viral transcription is inhibited. These results suggest that induced expression of
AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the
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RNA exosome degrades HBV RNA in a transcription-coupled manner.
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We appreciate all reviewers’ comments and questions, which greatly improved 

our manuscript. The reviewers’ comments are in italics below.  

 

Reviewer #1: In the revised submission Liang et al. have addressed many of the 

earlier concerns however some of the most important concerns still remain 

unaddressed.   

 

HBV replicon cells do not represent a good model system to study host cell 

response to HBV infection. The observation made with replicon cells should 

be further substantiated using cell culture models which resemble natural 

HBV infection or in HBV stable cell lines harboring integrated HBV 

transgene.  This is essential to rule out any AID-mediated effect on 

transfected HBV plasmid and to ascertain that the observed inhibition of 

HBV replication is a post-transcriptional event.   

 

Response 

Thanks for reminding us this important question. As shown in our results, 

experiments using HBV stable cell lines harboring an integrated HBV transgene 

were performed. First, a B cell line containing a chromosomally integrated HBV 

transgene (Fig. 3I–K) demonstrated that endogenous AID expression induced 

by cytokine stimulation (CIT) downregulates HBV RNA. Second, experiments 

using 7T7-8 cells, a stable Huh7 cell line that has the chromosomally integrated 

HBV transgene, demonstrated that TGF-1 downregulates HBV RNA and 

TGF-1-mediated downregulation of HBV RNA is dependent on AID and Exosc3 

(Fig. 7). Thus, we think that the experiments requested by reviewer 1 have been 

done. 

 

In addition, we would like to add other evidences to strengthen our conclusion. 

In this study, we excluded the possibility of an AID-mediated effect on 

transfected HBV plasmid based on three pieces of experimental evidence. 

(1) The two HBV stable cell lines mentioned above rule out any artifacts due to 

transient transfection. (2) AID- and TGF-1-mediated HBV reductions were 

rescued by knocking down of RNA exosome proteins. (3) AID-mediated HBV 

Response to Reviewers



 

 

reduction was no longer observed in the absence of intact HBV P protein, which 

cannot be explained by an AID-mediated effect on the HBV plasmid. If AID 

affects plasmids, AID should also affect the HBV P protein mutant replicon. 

However, we did not observe AID-mediate HBV RNA downregulation in the 

mutant replicon.  

 

As for an in vitro model mimicking natural HBV infection, our collaborator 

previously demonstrated that AID expression is induced by IL-1 stimulation in 

HBV-infected HepaRG cells and IL-1 restricts HBV replication in infected 

HepaRG cells. Moreover, Dr. Watashi showed that AID is essential for the 

antiviral activity of IL-1 (JBC 2013, Watashi et al.). Therefore, involvement of 

AID in an antiviral pathway against HBV was suggested using a HepaRG model 

of natural HBV infection in our previous collaborative study; however, the 

molecular mechanism by which AID suppresses HBV replication was not 

determined at that time.  

 

To further confirm the involvement of AID in TGF--mediated restriction of HBV 

replication in an HBV infection model, we asked our previous collaborators, Drs. 

Wakita and Watashi, to send an HBV-producing cell line and NTCP-expressing 

HepG2 cells. Wakita’s group has demonstrated that they can infect their 

NTCP-expressing HepG2 cells with HBV (BBRC 2013, 440:515). Those cell 

lines were received by us very recently (in Japan, material transfer of infectious 

research tool is time-consuming), and we performed a preliminary experiment of 

HBV infection by using their protocol, the results of which are shown below.  

    

NTCP-expressing HepG2 cells were 

seeded with medium containing 4% 

DMSO. HBV was concentrated in PEG. 

NTCP-expressing HepG2 cells were 

infected with HBV (8000 genome 

equivalent / cell). One day after 

infection, one group was treated with 



 

 

TGF- and the other was not treated. After 3 days of TGF- treatment, cells 

were harvested for RT-qPCR to determine AID, GAPDH, and HBV mRNA levels. 

Non-infected-NTCP HepG2 cells (treated with only PEG) were also used as a 

control. After normalization to GAPDH levels, the fold induction of AID and HBV 

RNA were determined. Cells infected with HBV but without TGF- treatment 

were defined as one-fold induction.  

 

The results above indicate that TGF- upregulates AID mRNA, and 

TGF-reduces HBV RNA levels in HBV-infected NTCP-HepG2 cells, which is 

consistent with our major claim in the manuscript; that is, AID downregulates 

HBV transcripts.  

 

In summary, experimental evidence from two HBV stable cell lines (Figs. 3I–K 

and 7) and two natural infection models (attached Fig. 1, and our previous paper 

JBC 2013 Watashi et al.), ruled out an AID effect on transfected plasmid, and 

those results are consistent with AID-mediated HBV RNA reduction. 

 

Reviewer #1 

It is also important to consider viral escape strategies involving TGFb signaling 

which may have been developed in cells chronically infected, like HBV stable 

cell lines. 

 

Response 

Thank you for intriguing comment.  

AID-mediated HBV RNA reduction depends on HBV P protein (Fig. 4C). 

Logically, the more efficiently AID reduces HBV RNA, the lower the level of P 

protein. Under the condition where P protein is limiting, AID-mediated HBV RNA 

downregulation is relatively inefficient. We think that reducing the copy number 

of HBV genome per cell is a plausible escape mechanism in HBV infection. 

It would be also possible for HBV to develop other escape mechanisms.  

Therefore, we want to leave this question open for future study. 

 

Reviewer #1 



 

 

2) The microscopic analysis done is very weak. Proper confocal 

microscopy should be performed and images need to be captured at higher 

magnification to be able to properly discern various subcellular sites and 

precisely determine the colocalization between HBV P protein and AID.  

 

Response 

We do not have access to a confocal microscope; thus, we tried very hard to 

detect AID and HBV P proteins by immunostaining using conventional 

fluorescence microscopy (together with the approach using GFP and DsRed 

fusion proteins, which was shown in the first revision). 

However, high background fluorescence and/or low specific signals of AID and P 

proteins prevented us from conclusively interpreting the results.  

Meanwhile, we demonstrated a complex formation between AID and P proteins 

by immunoprecipitation following subcellular fractionation (Supplementary Fig. 

3).  

Those results indicate that AID and P proteins form complexes in both the 

nucleus and cytoplasm. Moreover, we also determined the subcellular fraction 

containing the AID/exsoc3/HBV-RNA complex (Fig. 5 and Supplementary Fig. 4). 

Since AID-mediated HBV RNA reduction was observed in the nuclear fraction 

(Supplementary Fig. 6), we think that AID, P protein, RNA exosomes, and HBV 

RNA form RNP complexes in both the nucleus and cytoplasm, and that RNA 

degradation occurs at least in the nucleus. 

 

Reviewer #1 

3) According to the authors AID and HBV P interact both in the cytoplasm 

and nucleus and all the HBV transcripts are likely affected. Which subcellular 

site is predominantly responsible for AID mediated degradation of HBV pgRNA.  

 

Response 

We appreciate this important question. Because AID, P protein, RNA exosome 

as well as HBV RNA molecules distribute to both nucleus and cytoplasm, it is not 

easy to conclude which subcellular site is predominantly responsible for AID 

mediated HBV RNA reduction. 



 

 

To this end, we biochemically fractionated nuclear RNA and cytoplasmic RNA 

and determined the subcellular fractions in which AID reduces HBV RNA. The 

results show that AID-dependent HBV RNA reduction is observed in both 

fractions. Since nuclear RNA is an upstream of cytoplasmic RNA, we think that 

nuclear HBV RNA may be a primary target for AID-mediated RNA reduction. In 

the revised manuscript, these results are shown as Supplementary Fig. 6, and 

the main text was modified accordingly (lines 244–248, in red). 

However, we do not exclude that AID also triggers cytoplasmic viral RNA decay. 

To conclude this, we need to find a condition that AID does not induce viral 

nuclear RNA but cytoplasmic RNA decay. At present, we have not found such a 

condition (like use mutant HBV, AID mutant or inhibition of AID nuclear export), 

and once this system is established, we can make a conclusion by experimental 

results. 

 

Reviewer #1 

Is HBV P protein required for the effect of AID on all other HBV transcripts? 

 

Response 

Yes.  

Northern blotting in Fig. 4 demonstrates that AID expression reduces all types of 

HBV RNA in the presence of P protein while AID does not change the pattern of 

HBV RNA, as detected by northern blot, in the absence of P protein. In the 1st 

revised manuscript, we showed that all of HBV transcripts contain the eplison 

RNA structure that HBV P protein binds to.  Therefore, HBV P protein is 

required for the effect of AID on all other HBV RNA. 

 

 

Reviewer #1 

4) Analysis of clinical samples from HBV patients would give more 

comprehensive understanding. 

 

Response 



 

 

This is an important analysis that we are also very interested. However, to add 

any relevant information from clinical samples, we would need to obtain RNA 

samples from liver biopsies within a very short period, which is not feasible. 

Again, Japan has strict relevant laws not letting us to obtain patients’ samples in 

a short time. 

Moreover, to add supportive evidence of AID-mediated HBV RNA reduction, we 

would need two types of liver samples (high and low AID expression). 

Unfortunately, useful SNP markers associated with differential expression of AID 

or AID-deficient patients are not available in the public data base. 

 

Reviewer #1 

5) Recently a similar mechanism involving ZAP protein mediated 

posttranscriptional degradation of HBV RNA has been reported (Mao et al, PLos 

Pathogens, 2013, e1003494). Is ZAP involved in AID mediated degradation of 

HBV RNA, the authors should silence ZAP and determine if AID activity is 

affected or not.  

 

Response 

Thank you for the excellent suggestion. 

According to the study by Mao et al. (Plos Pathogenes 2013), transcriptional 

upregulation of ZAP expression by either IFN or IPS-1 is important for 

ZAP-mediated HBV RNA reduction, especially for the ZAP short form. To 

explore the potential involvement of ZAP in AID-mediated HBV RNA reduction, 

we determined ZAP mRNA expression levels, and RT-qPCR shows no change 

in ZAP expression by AID expression. These results are included in 

Supplementary Fig. 2. 

 

Next, as recommended by reviewer #1, we knocked down ZAP expression using 

siRNAs. The results demonstrated that knocking down of ZAP increases basal 

HBV RNA levels; however, it did not affect AID-mediated HBV RNA reduction. 

We think that ZAP is dispensable for AID-mediated HBV RNA reduction. These 

results will help readers to understand AID-mediated HBV RNA reduction; 

therefore, we mention knocking down of ZAP in the Discussion and the results 



 

 

are shown as Supplementary Fig. 8 in the revised manuscript. (See lines 342–

351 in red) 

 

Reviewer #2:  

The authors answered all my questions. Most of the new data provided are 

satisfied, except for the following two points. 

 

In Figure 2A, loading of the first lane has problem because the loading 

control GAPDH in this lane is much weaker than other lanes. The new figure 

is needed to replace this one. 

 

Response 

Thanks for this reminding.  

We repeated the western blot and reconfirmed expression of FLAG-A3 proteins 

as well as GAPDH. Revised Fig. 2 was updated by replacing with new blots. 

 

Reviewer #2 

2) In Figure 5A, the labeling of the third lane is wrong, GFP-Exosec3 should be 

positive in this lane. 

 

Response 

Thank you very much. We corrected it. 
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Abstract 16 

Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although 17 

the intracellular effectors involved are not determined. Here, we report that reduction of HBV 18 

transcripts by TGF-β is dependent on AID expression, which significantly decreases both 19 

HBV transcripts and viral DNA, resulting in inhibition of viral replication. 20 

Immunoprecipitation reveals that AID physically associates with viral P protein that binds to 21 

specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex 22 

(RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP 23 

complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either 24 

AID or RNA exosome components, suggesting that AID and the RNA exosome involve in 25 

TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does 26 

not occur when P protein is disrupted or when viral transcription is inhibited. These results 27 

suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome 28 

to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled 29 

manner.  30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 
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 40 

 41 

Introduction 42 

Hepatitis B virus (HBV) is recognized as the major causative factor of severe liver diseases 43 

such as cirrhosis and hepatocellular carcinoma. The clinical outcomes and development of 44 

hepatocellular carcinoma and cirrhosis are modulated by viral replication and antiviral 45 

immunity against HBV [1]. After entry into the host hepatocyte, HBV forms covalently 46 

closed circular DNA (cccDNA) in the nucleus and it initiates the transcription of viral RNAs, 47 

including a replicative intermediate known as pregenomic (pg) RNA. Two viral proteins 48 

(core and P protein) encapsidate pgRNA to form nucleocapsids, where P protein reverse-49 

transcribes pgRNA to produce relaxed circular (RC)-DNA. These nucleocapsids associate 50 

with three types of viral surface proteins for secretion as infectious virions [1,2]. Although 51 

the mechanism of HBV replication has been well studied, the mechanisms of antiviral 52 

immunity against HBV remain unclear. 53 

 54 

Several members of the apolipoprotein B mRNA editing enzyme catalytic polypeptide 55 

(APOBEC) family were recently identified as new types of antiviral factors [3-5]. In humans, 56 

the APOBEC family comprises at least 11 members, including activation-induced cytidine 57 

deaminase (AID), APOBEC 1, 2, 3A, 3B, 3C, 3D, 3F, 3G, 3H, and 4. Most family members 58 

deaminate cytidine bases on DNA and/or RNA to generate uridine [3-5]. Accumulating 59 

evidence from in vitro experiments has further revealed that A3 proteins can inhibit the 60 

replication of various types of viruses, including human immunodeficiency virus type 1 61 

(HIV-1) and HBV [4,5]. Among APOBEC deaminases, the molecular mechanism of A3G 62 

antiviral activity has been well characterized. In cases of HBV, A3G restricts viral replication 63 

through hypermutation and inhibition of reverse-transcription [4,5]. AID is another member 64 
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of the APOBEC family [4,5] and was originally isolated as a cytidine deaminase that 65 

triggered class switch recombination (CSR) and somatic hypermutation (SHM) of transcribed 66 

immunoglobulin genes in B cells [6-9]. AID expression was recently shown to be upregulated 67 

in human hepatocytes in vitro after stimulation with cytokines, including TGF-β1, TNFα, 68 

and IL-1β and in the liver in chronic hepatitis patients, and AID involvement in viral 69 

infection was suggested [10-17]. Higher serum TGF-β1 levels were reported in some HBV 70 

infections in vivo [18,19], and TGF-β1 reduces HBV replication in vitro [18,20]. However, 71 

the precise mechanisms remain elusive. In the present study, we examined the involvement of 72 

AID in TGF-β1-mediated restriction of HBV replication. We have demonstrated that TGF-73 

β1 induces AID expression in hepatocytes, which leads to the downregulation of HBV 74 

transcripts and inhibition of nucleocapsid formation. AID-dependent downregulation of HBV 75 

transcripts requires a viral RNA binding protein (P protein) and RNA exosome components. 76 

These data suggest a novel antiviral pathway in which AID recruits the RNA exosome to 77 

downregulate viral RNA in HBV infected hepatocytes. 78 

 79 

Results 80 

TGF-β1-mediated anti-HBV activity 81 

To investigate the involvement of APOBEC deaminases in TGF-β1-mediated antiviral 82 

activity against HBV, human hepatocytes (Huh7) were transfected with a HBV replicon 83 

plasmid (pPB) [21] and the cells were then treated with TGF-β1. Concentrations of 5–20 84 

ng/mL TGF-β1 were used to match the range reported in chronic HBV and hepatocellular 85 

carcinoma patients [19]. HBV replication was evaluated by measuring HBV transcript levels 86 

using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (Fig. 1A) and 87 

Northern blotting (Fig. 1D). Viral DNA in secreted virions was determined using qPCR (Fig. 88 
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1B), and nucleocapsid formation was estimated using native agarose gel electrophoresis 89 

(NAGE). Subsequently, cytoplasmic nucleocapsid core protein and nucleocapsid associated 90 

DNA (NC-DNA) levels were determined using western blotting and Southern blotting, 91 

respectively (Fig. 1C). Collectively, TGF-β1 dose-dependently inhibited the production of 92 

HBV transcripts, nucleocapsid core protein, and nucleocapsid NC-DNA in both cytoplasmic 93 

and secreted samples.  94 

 95 

In further experiments, qRT-PCR was used to determine the expression of APOBEC 96 

deaminases in the presence and absence of TGF-β1. Initially, relative expression levels of 97 

APOBEC deaminases in non-stimulated Huh7 cells were determined. Huh7 cells expressed 98 

all APOBEC3 deaminases. A3G and A3C were highly expressed among A3 deaminases (Fig. 99 

1E), whereas APOBEC1 expression was not detected in Huh7 cells. In TGF-β1-treated 100 

Huh7 cells, expression of most APOBEC deaminases, including A3A, A3B, A3C, A3F, and 101 

AID (Fig. 1F, upper and lower) was upregulated. Western blotting also detected AID protein 102 

in TGF-β1-stimulated Huh7 cells (Fig. 1G). 103 

 104 

TGF-β1-mediated reduction of HBV transcripts depends on AID expression 105 

It has been demonstrated that APOBEC3 proteins suppress HBV replication in vitro [1,4,5]. 106 

HBV plasmids and APOBEC deaminase expression vectors were transfected into Huh7 cells, 107 

and nucleocaspid formation was estimated using NAGE followed by Southern and western 108 

blotting (NAGE assay). The expression of A3G and A3F, but not A3A, reduced NC-DNA 109 

levels in cytoplasmic nucleocapsids but did not reduce nucleocapsid core protein levels (Fig. 110 

2A). HBV virion DNA was also reduced by A3C, A3G and A3F expression, whereas total 111 

HBV transcript levels were not affected by A3C, A3G or A3F (Fig. 2B and C). It was 112 

proposed that minus-strand DNA synthesis was the primary target of A3G-mediated anti-113 
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HBV activity in hepatocytes that were transiently transfected with HBV plasmids [1,4,5]. Our 114 

results support this proposed mechanism of A3G antiviral activity. In contrast with A3 115 

deaminases, the overexpression of AID reduced HBV transcript levels, nucleocapsid 116 

formation, and virion secretion (Fig. 2A-C and Supplementary Fig. 1A and B). Nucleocapsid 117 

NC-DNA levels were also reduced in AID-expressing cells, as indicated by Southern blotting 118 

using purified nucleocapsid NC-DNA (Fig. 2D). Importantly, AID expression did not 119 

suppress host cell gene transcripts (Supplementary Fig. 2), suggesting that AID expression 120 

may specifically suppress viral RNA. In accordance with the HBV life cycle, these data 121 

suggest that AID-mediated reduction of HBV transcripts leads to the downregulation of 122 

nucleocapsid core protein and NC-DNA.  123 

 124 

To investigate the contributions of APOBEC deaminases to TGF-β1-mediated anti-HBV 125 

activity, small interfering (si) RNAs targeting specific deaminases were transfected with the 126 

HBV plasmid into Huh7 cells. Cells were further treated with TGF-β1 to assess the effects 127 

on TGF-β 1-mediated reduction of HBV transcripts. TGF-β 1 stimulation in siGFP-128 

transfected control cells reduced HBV transcript levels by 76% compared with non-129 

stimulated cells (Fig. 2E, top, lane 4 vs. 8). Transfection of siAID, siA3A, or siA3G 130 

suppressed the corresponding endogenous genes by up to 51%, 40%, and 56%, respectively. 131 

However, the knockdown of A3A and A3G did not affect TGF-β1-mediated reduction of 132 

HBV RNA in comparison with the siGFP control. In contrast, TGF- β 1-mediated 133 

downregulation of HBV RNA was significantly attenuated by the knockdown of AID (Fig. 134 

2E, top, lane 1 vs. 4). These data suggest that TGF-β1-mediated downregulation of HBV 135 

transcripts is dependent on endogenous AID expression. Partial rescue of HBV transcript 136 

levels in siAID-transfected cells also suggests the involvement of either residual AID or other 137 
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unidentified effectors in TGF-β1-mediated reduction of HBV transcripts. 138 

 139 

AID expression levels required for initiating class switching are sufficient for AID-140 

mediated reduction of HBV transcripts 141 

We previously demonstrated that the induction of AID in B cells triggers class switch 142 

recombination (CSR) in immunoglobulin genes [7-9], which validates B cells as a model to 143 

study AID functions. In addition, it is anticipated that peripheral blood mononuclear cells and 144 

B cells can be extrahepatic reservoirs for HBV infection [22,23]. Thus, we investigated 145 

whether endogenous AID expression that could trigger CSR is also sufficient to trigger a 146 

reduction in HBV transcripts. AID expression and IgA class switching can be induced in 147 

CH12F3-2 mouse B cells following co-stimulation with CD40 ligand, IL-4, and TGF-β1 148 

(designated CIT) [6,24]. CH12F3-2 cells transiently transfected with the HBV plasmid were 149 

divided into two groups, and were treated with (or without) CIT to induce IgA switching, a 150 

GFP expression vector was co-transfected to verify transfection efficiency. At three days 151 

post-transfection, HBV replication and CSR were determined (Fig. 3A-D), and showed that 152 

CIT induced AID protein expression and initiated IgA class switching, as previously reported 153 

[6,24]. Moreover, NAGE assays and qRT-PCR revealed that HBV transcripts, nucleocapsid 154 

NC-DNA, and core protein were downregulated in CIT-stimulated cells, whereas the 155 

expression of GFP remained intact after CIT stimulation (Fig. 3B, C). These data indicate 156 

that CIT stimulation specifically inhibits HBV replication in mouse B cells. We further used 157 

siRNAs against mouse AID (simAID-1 and -2) to assess the contribution of AID to the 158 

suppression of HBV products in CIT-stimulated cells. Although simAIDs knocked down 159 

endogenous AID transcripts to only 39% determined by qRT-PCR (Fig. 3E), western blotting 160 

revealed clear suppression of endogenous AID protein levels (Fig. 3F). Furthermore, flow 161 

cytometric analyses revealed that IgA class switching is attenuated by the knockdown of AID 162 
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(Fig. 3G), and qRT-PCR revealed that HBV transcript levels are inversely correlated with 163 

AID expression and IgA switching efficiency (Fig. 3G, H). To avoid artifacts due to the 164 

transfection process, a tetracycline-dependent stable line of the HBV replicon plasmid was 165 

established in CH12F3-2 cells (CH12-HBV; Fig. 3I). CH12-HBV cells were treated with CIT 166 

to induce IgA switching, and HBV transcript levels were determined. Subsequent qRT-PCR 167 

analyses demonstrated significant reductions of HBV transcript levels upon IgA switching 168 

(Fig. 3J–K). These data clearly demonstrate that endogenous AID expression sufficient to 169 

trigger CSR is also sufficient to downregulate HBV transcripts. 170 

Another putative activity of AID involves the initiation of somatic hypermutation (SHM) in 171 

immunoglobulin variable genes [8,9],[25] previously demonstrated that human BL2 B cells 172 

autonomously induce SHM, which is absent following AID gene disruption by gene targeting. 173 

Thus, we transiently transfected the HBV replicon plasmid into BL2 cells and compared 174 

HBV replication in Aicda+/+ and Aicda−/− BL2 cells. We previously demonstrated that 175 

nucleocapsid NC-DNA and core protein are suppressed in Aicda+/+ in comparison with 176 

Aicda−/− BL2 cells, although co-transfected GFP expression levels were similar in both cell 177 

types [26]. Using identical samples, we here showed that HBV transcript levels in Aicda+/+ 178 

BL2 cells were almost 50% of those in Aicda−/− BL2 cells (Fig. 3L).  179 

Both mouse and human B cell lines collectively demonstrated that endogenous AID activity 180 

that can initiate either CSR or SHM of immunoglobulin genes is sufficient to trigger 181 

downregulation of HBV transcripts. 182 

 183 

AID-mediated downregulation of HBV transcripts requires intact P protein structure 184 

To investigate the mechanism of AID-mediated downregulation of HBV transcripts, we 185 

initially focus on the viral P protein, because AID, P protein and HBV transcripts form RNP 186 
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complex [26]. In these experiments, we applied a mutant HBV replicon plasmid (pPB-ΔP, 187 

Fig. 4A) that expresses a mutant P protein lacking the C-terminal half including catalytic 188 

DNA polymerase and RNase H domains [26]. Transfection with pPB-ΔP did not support 189 

nucleocapsid DNA synthesis due to inhibition of reverse-transcription, although HBV 190 

transcription and core protein synthesis remained intact in Huh7 cells (Fig. 4C, lanes 1 and 4). 191 

AID-mediated downregulation of HBV transcripts was compared between pPB- and pPB-Δ192 

P-transfected Huh7 cells. As shown in Fig. 4C, AID-mediated downregulation of HBV 193 

transcripts was not observed in pPB-ΔP-transfected Huh7 cells, indicating that AID-194 

mediated downregulation of HBV transcripts requires intact viral P protein. 195 

 196 

The requirement of cytidine deaminase activity for AID was also investigated. AID mutant 197 

P19 was isolated from a class switch deficient patient and the deaminase activity was 198 

negligible owing to a missense mutation in catalytic cytidine deaminase domain [27]. P19 199 

was then co-transfected with the wild-type HBV plasmid, and HBV transcript levels were 200 

compared with that in wild-type AID controls. These experiments showed that the P19 201 

mutant significantly reduced HBV transcript level, although less effectively than wild-type 202 

AID (Fig. 4C). Therefore, under experimental conditions of AID over-expression, cytidine 203 

deaminase activity is not exclusively required for AID-mediated downregulation of HBV 204 

transcripts.  205 

 206 

In subsequent experiments, we generated an expression vector (pFLAG-PΔC) for the mutant 207 

P protein which was a corresponding mutant P protein produced from pPB-ΔP-transfected 208 

cells (Fig. 4B). Then the physical association between AID and the mutant P protein was 209 

examined. Immunoprecipitation analyses showed that wild type P protein co-precipitated 210 

AID in an RNase A-sensitive manner (Fig. 4D, lane 5, 8, 9), whereas the mutant P protein 211 
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(FLAG-PΔC) precipitated only trace levels of AID protein, suggesting that AID may not 212 

efficiently form RNP complex with the mutant P protein in pPB-ΔP-transfected cells. To 213 

explore which subcellular sites are responsible for AID and P protein interaction, cells were 214 

biochemically fractionated into three fractions (cytoplasmic, soluble nuclear, and insoluble 215 

nuclear) (Supplementary Fig. 3). Immunoprecipitation analyses using cytoplasmic and 216 

soluble nuclear proteins revealed that AID can associate with P protein in both nucleus and 217 

cytoplasm. It is of note that robust signals of AID and P proteins were found in the insoluble 218 

fraction that contains chromatin and other nuclear proteins. 219 

 220 

AID-mediated downregulation of HBV transcripts requires the RNA exosome complex  221 

AID was recently shown to physically interact with RNA exosome proteins and promote CSR 222 

in transcribed immunoglobulin genes [28,29]. The RNA exosome comprises a ring-like 223 

structure and two catalytic components, and plays a major role in various RNA processing 224 

and degradation pathways [30,31]. Exosome component 3 (Exosc3, also known as Rrp40) is 225 

non-catalytic but is essential for the degradation and processing of target RNA, and the 226 

knockdown of Exosc3 severely diminished the RNA exosome function [32]. Thus, we 227 

investigated whether Exosc3 is involved in TGF-β1-mediated downregulation of HBV 228 

transcripts in Huh7 cells. As shown in Fig. 5A, immunoprecipitation of AID co-purified 229 

Exosc3, but did not precipitate GAPDH or GFP. Exosc3 immunoprecipitation also co-230 

purified AID but not GAPDH or GFP (Fig. 5B), indicating a physical association between 231 

AID and Exosc3 proteins. This study found a physical association between AID and the RNA 232 

exosome proteins (Exosc 2, 3, 7) in Huh7 cells in the absence of HBV replication (Fig. 5D). 233 

As expected, Exosc3 immunoprecipition also copurified with other RNA exosome proteins 234 

(Exosc2 and 7) in Huh7 cells (Fig. 5D). Furthermore, we found that AID can also associate 235 

with RNA exosome in both nucleus and cytoplasm (Supplementary Fig. 4A). Consistent with 236 
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AID-RNA exosome interaction, RNA exosome proteins localized to both cytoplasm and 237 

nucleus (Supplementary Fig. 5A and B). We previously demonstrated a physical association 238 

between HBV transcripts and AID in HBV-replicating Huh7 cells [26]. In current study, we 239 

examined whether Exosc3 associates with HBV transcripts. As shown in Fig. 5C, qRT-PCR 240 

analysis demonstrated enrichment of HBV but not HPRT transcripts in Exosc3 241 

immunoprecipitates, which was observed only when AID was present (Fig. 5C, lane 1). This 242 

is also true when nuclear or cytoplasmic Exosc3 was separately precipitated (Supplementary 243 

Fig. 4B). AID-mediated downregulation of HBV transcripts was observed in both nucleus 244 

and cytoplasm, and efficiency of downregulation was comparable between nucleus, 245 

cytoplasm, and whole cell samples (Supplementary Fig. 6A and B). These results suggest that 246 

AID recruits the RNA exosome proteins to HBV transcripts and AID downregulates HBV 247 

RNA in nucleus. 248 

 249 

To further confirm that the RNA exosome is involved in AID-mediated downregulation of 250 

HBV transcripts, we used the siRNA knockdown of Exosc3, which is essential for the RNA 251 

exosome function [32]. In these experiments, siRNAs against Exosc3 were co-transfected 252 

with the HBV plasmid and AID (or GFP) expression vectors, and HBV replication was 253 

determined. Northern blotting, NAGE assays, and qRT-PCR analyses showed the attenuation 254 

of AID-mediated downregulation of HBV transcripts and nucleocapsid formation in siExosc3 255 

transfectants (Fig. 5E-G). In contrast, AID, GFP, and GAPDH expression were not affected 256 

by Exosc3 depletion (Fig. 5E, bottom). Importantly, knock down of Exosc3 did not increase 257 

HBV RNA levels in GFP transfected samples. Moreover, siExosc3 transfection attenuated 258 

TGF-β1-mediated downregulation of HBV transcripts and nucleocapsid formation in a 259 

similar manner to that observed after transfection with siAID (Fig. 6A-F). In further 260 

experiments, knockdown of another RNA exosome component Exosc6 also attenuated TGF-261 
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β1-mediated downregulation of HBV transcripts and nucleocapsid formation, albeit less 262 

effectively than the knockdown of siExosc3 and AID (Fig. 6A-F). Similarly, the contributions 263 

of AID and Exosc3 to TGF-β1-mediated downregulation of HBV transcripts were examined 264 

in stably HBV-transfected Huh7 cells (7T7-8) [26]. The short hairpin (sh) RNA expressing 265 

lentivirus was transduced into 7T7-8 cells, and two stable transfectants (shAID and 266 

shExosc3) and a control transfectant (shLuc) were established after puromycin selection. 267 

These cells were then cultured in the presence or absence of TGF-β1 (Fig. 7A). Subsequent 268 

qRT-PCR and western blotting showed reduced endogenous AID and Exosc3 expression (Fig. 269 

7B-E). Comparison of HBV transcript levels between TGF-β1-treated and non-treated 7T7-270 

8 cells revealed that TGF-β1-mediated reduction of HBV transcripts is restored by the 271 

knockdown of AID and Exosc3 (Fig. 7F). Taken together, these data indicate that RNA 272 

exosome proteins (Exosc3 and Exosc6) and AID are required for TGF-β 1-mediated 273 

downregulutation of HBV transcripts. 274 

 275 

AID-mediated downregulation of HBV transcripts depends on transcription 276 

Immunoglobulin gene diversification triggered by AID is coupled with the transcription of 277 

immunoglobulin locus [8,9]. Here we examined whether AID-mediated HBV RNA 278 

downregulation is also coupled with transcription using a transcription inhibitor actinomycin D 279 

(ActD). Using a stable HBV transfectant (7T7-8), we generated experimental conditions in 280 

which endogenous or ectopic AID is expressed in HBV-replicating cells. ActD was then added 281 

to evaluate whether it could downregulate HBV RNA even in ActD-treated cells. As shown in 282 

Fig. 8A and B, no significant synergistic reduction in HBV RNA levels by ActD and AID was 283 

observed in TGF-β1-treated and AID-overexpressing cells, indicating that AID was unable to 284 

reduce HBV RNA levels in ActD-treated cells. These results suggest that AID-mediated HBV 285 
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RNA downregulation depends on transcription, similar to the immunoglobulin gene 286 

diversification triggered by AID. 287 

 288 

Discussion 289 

AID is a key molecule involved in the diversification of immunoglobulin genes [8,9], and 290 

thus its role in B cells is well understood. AID expression has been also found in non-B cells 291 

[11-13], however, its role in non-B cells remains elusive. In the present study, we assessed 292 

AID involvement in TGF-β1-dependent anti-HBV activity and demonstrated the following: 293 

(1) AID expression is upregulated in TGF-β1-stimulated hepatocytes and reduces HBV 294 

RNA levels (Fig. 1 and 2); (2) TGF-β1-mediated downregulation of HBV transcripts is 295 

inhibited by AID knockdown (Fig. 2); and (3) endogenous AID protein levels in B cells 296 

capable of inducing immunoglobulin diversification also downregulate HBV transcript levels 297 

in a transcription-coupled manner (Fig. 3 and 8). These data indicate that AID is involved in a 298 

TGF-β1-mediated anti-HBV pathway. 299 

 300 

Which part of the virus life cycle that is targeted by AID-mediated downregulation of HBV 301 

transcripts? Another APOBEC protein, A3A, which was previously proposed to hypermutate 302 

transfected plasmids in human peripheral monocytes [33]. However, AID did not change 303 

HBV transcript levels in hepatocytes transfected with the mutant HBV replicon (pPB-ΔP) 304 

(Fig. 4C). In contrast, HBV transcripts in hepatocytes transfected with the wild-type replicon 305 

(pPB) were specifically downregulated by following the expression of AID expression (Fig. 2 306 

and 4). Intact HBV transcript levels in AID-expressing pPB-ΔP transfectants suggest that 307 

AID-mediated reduction of HBV transcripts is not due to plasmid targeting or promoter 308 

interference by AID activity. Otherwise, targeting of HBV plasmid or promoter activity 309 

would result in reduction of HBV transcripts in both pPB- and pPB-ΔP-transfectants 310 
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because those HBV plasmids share the exactly same DNA sequences except 4 base insertion 311 

within P gene in pPB-Δ P. Previous our study demonstrated that chicken AID can 312 

downregulate cccDNA of duck hepatitis virus in a uracil-DNA glycosylase (UNG)-dependent 313 

manner [34], therefore, the next obvious candidate for AID target is cccDNA of HBV. We 314 

determined cccDNA levels of transfectants using the rolling circle amplification (RCA) assay, 315 

which specifically amplifies circular DNA, including cccDNA. As per our results, cccDNA 316 

was clearly detected in a cccDNA-producing control cell line (HepG2.2.5) [10-15,35]; 317 

however, the HBV-replicating transfectants used in this study rarely produced cccDNA 318 

(Supplementary Fig. 7A and B). Therefore, the majority of the HBV transcripts produced 319 

from HBV transfectants in the present experimental systems are derived from HBV replicon 320 

plasmids and not from cccDNA. That means that targeting of cccDNA does not explain the 321 

observed downregulation of HBV transcripts in the present experimental systems. AID over-322 

expression was previously shown to deaminate nucleocapsid NC-DNA and encapsidated 323 

pgRNA [10,13,26]. However, because NC-DNA is reverse transcribed from HBV pgRNA, 324 

AID activity against NC-DNA fails to explain the downregulation of HBV transcripts. 325 

Reduction of HBV RNA by the catalytically dead mutant AID (p19) indicates that 326 

encapsidated pgRNA editing is distinct from AID-mediated reduction of HBV RNA. Thus, 327 

we concluded that AID directly targets HBV transcripts. 328 

 329 

The viral P protein is a reverse transcriptase that binds 5′-epsilon RNA structure in pgRNA 330 

and encapsidates pgRNA to the nucleocapsid [1,2] (see also Supplementary Fig. 1). It is 331 

demonstrated that P protein can also bind 3′-epsilon RNA structure present in 2.4-, 2.1-, and 332 

0.7-kb viral mRNAs [36], indicating that P protein binds all types of HBV transcripts. AID 333 

and TGF- downregulate HBV transcripts containing 3′-epsilon but not cellular transcripts 334 

(Figs. 1D, 4C, 5E, 6A, and Supplementary Figs. 1, 2). AID-mediated HBV RNA reduction 335 
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did not occur in hepatocytes expressing a mutant P protein (Fig. 4C). We demonstrated that 336 

AID can physically associate with viral RNP complexes comprising P protein [26] (Fig. 4). 337 

Therefore, AID-mediated HBV RNA reduction is dependent on the presence of intact P 338 

protein and P protein may determine the target specificity for AID-mediated HBV RNA 339 

reduction.  340 

 341 

Mao et al. recently reported that zinc finger antiviral protein (ZAP) inhibits the replication of 342 

HBV by binding the 5′-epsilon RNA structure of HBV and degrading viral RNA [37]. To 343 

explore the molecular mechanism of AID-mediated downregulation of HBV transcripts, we 344 

first investigated the possible involvement of ZAP. RT-qPCR revealed that AID expression 345 

did not affect the level of ZAP mRNA (Supplementary Fig. 2). Knocking down of ZAP by 346 

transfection of siRNAs against ZAP increased HBV RNA levels, which indicates that ZAP 347 

reduces the basal level of HBV RNA; however, AID-mediated downregulation of HBV 348 

transcripts was not affected by knocking down of ZAP expression (Supplementary Fig. 8). 349 

These results imply that the ZAP antiviral pathway is dispensable for AID-mediated 350 

downregulation of HBV transcripts.  351 

 352 

Next, we explored the possible involvement of the RNA exosome. Basu et al. [29] 353 

demonstrated that AID binds and recruits the RNA exosome complex to R-loop structures in 354 

immunoglobulin genes. Here, we investigated whether AID forms a complex with RNA 355 

exosome proteins in hepatocytes. The immunoprecipitation of AID and Exosc3 revealed the 356 

formation of a RNP complex comprising AID and RNA exosome proteins in both nucleus 357 

and cytoplasm of hepatocytes, and that HBV transcripts formed a specific complex with the 358 

RNA exosome in an AID-dependent manner (Fig. 5, Supplementary Fig. 4). Furthermore, 359 

AID-dependent downregulation of HBV transcripts was inhibited in the absence of the 360 



 16 

essential RNA exosome component Exosc3 (Fig. 5). We also demonstrated that AID-361 

mediated downregulation of HBV transcripts does not occur when P protein loses the C-362 

terminus domain, which is essential for AID binding (Fig. 4C). Inhibition of transcription 363 

resulted in blocking of AID-mediated downregulation of HBV transcripts (Fig. 8). Taken 364 

together, we suggest that AID recruits the RNA exosome to transcribing HBV RNA through 365 

an association with the P protein, and thereby downregulates HBV transcripts (Fig. 8C).  366 

 367 

AID has been shown to reduce the transpositioning of the reverse transcriptase-dependent 368 

retroelement L1 [14,15]. Moreover, MacDuff et al. demonstrated that a catalytically dead 369 

mutant and wild-type AID suppress L1 transpositioning. Here, we showed that the AID-370 

mediated HBV RNA reduction depends on HBV reverse transcriptase (P protein), and 371 

catalytically dead mutant AID (p19) reduces HBV transcript levels (Fig. 4). It would be 372 

interesting to examine whether suppression of transpositioning by AID is also dependent on 373 

the RNA exosome. 374 

To our knowledge, this is the first study to show that AID mediates the downregulation of 375 

viral RNA through the RNA exosome complex. However, further studies are required to 376 

elucidate the mechanisms of AID-mediated HBV RNA downregulation, and to investigate the 377 

involvement of AID in anti-HBV activity in vivo.  378 

 379 

Materials and Methods 380 

NAGE assays 381 

NAGE assays were performed as previously described [20,26,38,39]. In brief, intact 382 

nucleocapsid particles were separated from crude extracts of HBV-replicating cells using 383 

agarose gel electrophoresis. Nucleocapsid particles within the gel were then denatured under 384 

alkaline conditions, and were transferred onto nitrocellulose membranes (Roche). 385 
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Nucleocapsid DNA and core proteins were detected using Southern and western blotting with 386 

a double-stranded HBV DNA probe spanning the whole viral genome and an anti-core 387 

antibody, respectively.  388 

Cell culture and transfection 389 

Plasmids were transfected into Huh7 cells using CalPhos (Clontech) or Fugene 6 (Roche). 390 

The total transfected plasmid per sample was normalized by supplementation with empty or 391 

GFP expression plasmids. Co-transfection of plasmid and siRNA was performed using 392 

lipofectamine 2000 according to the manufacturer’s instructions. Stealth-grade siRNA for 393 

mouse and human AID, A3A, A3G, Exosc3, Exosc6, and control were purchased from 394 

Invitrogen. In all transfection experiments, control siRNA was designed to differ from all 395 

mammal transcripts. BL2 [25] and CH12F3-2 cell culture, CIT stimulation, and transfection 396 

by electroporation were performed as previously described [24-26,40]. The HBV-replicating 397 

Huh7 cell line (7T7-8) was established and described previously [26]. The pTre-HBV [41] 398 

vector was transfected into tetracycline activator expressing CH12F3-2 cells (FTZ14 [42]) to 399 

establish the CH12-HBV cell line. Subsequently, shLuc, shAID, and shExosc3 expressing 400 

7T7-8 cells were established by infection with recombinant lentivirus followed by puromycin 401 

selection. Recombinant lentiviruses were generated by transient transfection of shLuc-, 402 

shAID-, and shExosc3-pLKO1-puro and packaging plasmids (pMD2.D and psPAX2, 403 

Addgene plasmid 12259 and 12260, respectively, kind gifts of Dr. Trono) in 293T cells 404 

according to the manufacturer’s instructions. 405 

 406 

Expression vectors and reagents 407 

Human TGF-β 1 and IL-4 were purchased from R&D systems. Actinomycin D was 408 

purchased from Sigma-Aldrich. The HBV replicon plasmid (pPB) contains 1.04 copies of 409 

HBV genomic DNA and expresses pgRNA under the control of the CMV promoter [21]. The 410 
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pPB-ΔP plasmid contains a frame-shift mutation in codon 306 of the P gene, leading to loss 411 

of the C-terminal 539 amino acids, which comprise catalytic and RNase H domains [26]. 412 

Probe labeling and northern and Southern blots were developed using the AlkPhos direct 413 

labeling system (Amersham). Signals for northern, Southern, and western blots were 414 

analyzed using a LAS1000 Imager System (FujiFilm). Other expression vectors are listed in 415 

Supplementary Table S1. 416 

 417 

Immunoprecipitation and western blotting 418 

Cells were lysed in buffer containing 50-mM Tris-HCl (pH 7.1), 20-mM NaCl, 1% NP-40, 1-419 

mM EDTA, 2% glycerol, and protease inhibitor cocktail (Roche). After centrifugation, 420 

supernatants were incubated with the indicated antibodies and protein G sepharose (GE 421 

Healthcare) or anti-FLAG M2 agarose beads (Sigma, A2220). For IP-qRT-PCR experiments, 422 

cells were lysed with PBS containing 0.1% Tween 20, 1% triton-X, 1-mM EDTA, protease 423 

inhibitor cocktail (Roche), and 2% glycerol. After centrifugation, crude lysates were 424 

subjected to anti-FLAG M2 beads for 4 h. Immune complexes were washed in lysis buffer 10 425 

times and were then washed in lysis buffer containing an additional 100-mM NaCl. FLAG-426 

Exosc3 and RNA complexes were eluted using free 3 × FLAG peptides (Sigma, F4799). 427 

Western blotting was performed using standard methods with rabbit anti-GAPDH (Sigma, 428 

G9545), mouse anti-FLAG (Sigma, F3165), rabbit anti-GFP (Clontech, 632376), anti-rabbit 429 

Igs HRP (Biosource, ALI3404), anti-rat Igs HRP (Jackson ImmunoResearch, 712-035-153), 430 

rabbit and mouse IgG TrueBlot (eBioscience, 18-8816, 18-8877), rat monoclonal anti-AID 431 

(MAID2, eBioscience, 14-5959), rabbit anti-A3G[38], anti-core (Dako, B0586), anti-human 432 

Exosc3 (GenWay Biotech, GNB-FF795C, F8130F), and isotype control (eBioscience 14-433 

4321) antibodies. To generate a polyclonal antibody against AID, the C-terminal AID peptide 434 

(EVDDLRDAFRMLGF) was conjugated with cysteine and rabbits were immunized using 435 
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keyhole limpet hemocyanin (KLH). Subsequently, anti-AID rabbit serum and rat monoclonal 436 

anti-AID were isolated and used in IP experiments. IgA class switching was determined by 437 

detecting surface IgA expression using flow cytometry as previously described[7,24,40]. 438 

 439 

Quantitative PCR and RT-PCR 440 

Total RNA was extracted using TRIsure (Bioline), was treated with DNase I (Takara) to 441 

eliminate transfected plasmids, and was then re-purified using TRIsure. For qRT-PCR 442 

analyses, 1 µg of total RNA was treated with amplification grade DNase I (Invitrogen) and 443 

was then reverse-transcribed using oligo-dT or random primers with SuperScript III 444 

(Invitrogen). Subsequently, cDNA was amplified using SYBR green ROX (Toyobo) with 445 

MX3000 (Stratagene) according to the PCR protocol. A1, AID, A3A, A3B, A3C, A3D, A3F, 446 

A3G, A3H, Exosc3, Exosc6, 18S ribosomal RNA, HPRT, and β-actin expression and HBV 447 

transcription were determined using PCR conditions of 95°C for 1 min followed by 40 cycles 448 

of 95°C for 15 s, 55°C for 30 s, and 70°C for 30 s, and one cycle of 95°C for 1 min, 55°C for 449 

30 s, and 95°C for 30 s. For A3A amplification, an annealing temperature of 60°C was used. 450 

Copy numbers of APOBECs were determined using plasmid standard curves for each 451 

APOBEC (Fig. 2A). Fold induction of APOBEC expression following treatment of cells with 452 

TGF-β1 was determined using the ΔΔCT method [43]. To eliminate transfected plasmids, 453 

purified NC-DNA from secreted virions and cytoplasmic lysates was obtained after serial 454 

DNase I digestion, proteinase K and SDS digestion, phenol–chloroform extraction, and 455 

isopropanol precipitation. NC-DNA copy numbers were determined using a HBV plasmid 456 

standard curve. Transcript expression levels in this study (except Fig. 2A) are presented as 457 

fold induction relative to unstimulated cells. In transfection experiments, expression levels of 458 

mock-, GFP-, siGFP-, and siLuc-transfected cells were defined as one. Expression levels in 459 

qRT-PCR analyses were normalized to the amplification of internal controls (HPRT, β-actin, 460 
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or 18S ribosomal RNA). Primers are listed in Supplementary Table S2. 461 

 462 

Statistical analysis 463 

Differences were identified using the two-tailed unpaired Student’s t-tests and were 464 

considered significant when P < 0.05. 465 
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 595 

 596 

FIGURE. LEGENDS 597 

Figure 1. TGF-β1 upregulates APOBEC3 expression and suppresses HBV replication 598 

in Huh7 cells  599 

Six hours after transfection of pPB, Huh7 cells were treated with TGF-β1 for 3 days, and 600 

HBV replication was evaluated. (A) qRT-PCR shows dose-dependent reduction of HBV 601 

transcripts by TGF-β1. (B) NC-DNA levels in secreted virions were also measured using 602 

qPCR. (C) Nucleocapsid NC-DNA and core protein levels in crude cytoplasmic extracts were 603 

assessed using NAGE assays. GAPDH protein levels in the same crude extracts were 604 

determined using western blotting. (D) Huh7 cells were treated with 150 ng/mL IL-4 or 10 605 

ng/ml TGF-β1 for 3 days. Levels of HBV RNA and GAPDH mRNA were determined by 606 

Northern blot. Control: non-stimulated Huh7 cells. (E) Relative expression levels of 607 

APOBEC deaminases in non-stimulated Huh7 cells; Relative expression levels were 608 

determined using qPCR with cDNA from non-stimulated Huh7 cells and standard curves of 609 

control APOBEC deaminase DNA. Relative copy numbers of A3B were defined as one. (F) 610 

Induction of APOBEC deaminase expression in TGF-β1-treated Huh7 cells was estimated 611 

using qRT-PCR. Fold induction of APOBEC deaminases is shown in the top (10 ng/mL TGF-612 

β1 for 24 or 48 h) and bottom (10 or 20 ng/mL TGF-β1 for 24 h) panels. (G) Huh7 cells 613 

were treated with indicated concentrations of TGF-β 1 for 3 days. AID protein was 614 

immunoprecipitated using an anti-AID antibody (or an isotype control IgG, most right) and 615 

immunoprecipitated AID protein was determined by western blot. One lane contains 616 

immunoprecipitated protein harvested from 60% of 15 cm dish. All data are representative of 617 

two to four independent experiments. Error bars represent standard errors of the mean. 618 
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 619 

Figure 2. AID is responsible for TGF-β1-mediated reduction of HBV transcripts 620 

To evaluate antiviral activity of indicated APOBEC proteins, Huh7 cells were co-transfected 621 

with FLAG-tagged A3A, A3C, A3F, A3G, GFP or GFP-tagged AID expression vectors and 622 

pPB. Cells were cultured for 3 days, and then HBV replication was estimated using NAGE 623 

assays (A). Protein expression is shown (A, bottom). qRT-PCR analyses of HBV transcripts 624 

(B), and qPCR analyses of NC-DNA in secreted virions (C). (D), Secreted virions in the 625 

culture medium and cytoplasmic extracts were treated with proteinase K and SDS to digest 626 

nucleocapsids, and levels of HBV DNA were determined using Southern blotting. (E), To 627 

evaluate contribution of indicated APOBEC proteins, Huh7 cells were co-transfected with 628 

pPB and the indicated siRNAs. Six hours later, cells were incubated in the presence or 629 

absence of 10 ng/mL TGF-β1. Three days later, total RNA was extracted, and qRT-PCR 630 

performed to determine expression levels of HBV transcripts, AID, A3A, and A3G. Although 631 

siAID significantly reduced AID expression and prevented the downregulation of HBV 632 

transcripts in TGF-β1-stimulated Huh7 cells (lane 1), siA3A and siA3G had no effects 633 

against the downregulation of HBV transcripts (lanes 2–4). siGFP was used as a control. 634 

Expression levels in lane 8 are defined as one fold induction. **P < 0.01 (t-test); Data are 635 

representative of two to three independent experiments and error bars represent standard 636 

errors of the mean. 637 

 638 

Figure 3. IgA switching activity correlates with reduction of HBV transcripts in B cells 639 

(A, B, C, D) pPB and GFP expression vectors were transiently co-transfected into a mouse B 640 

cell line (CH12F3-2). Six hours after transfection, cells were divided into two groups and 641 

stimulated with (or without) CD40 ligand, IL-4, and TGF-β1 (CIT) for 3 days to induce IgA 642 

switching; (A) Schematic diagram of experimental design; (B) Nucleocapsid formation was 643 
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measured using NAGE assays and GFP expression was used to confirm transfection. (C) 644 

HBV transcripts and AID expression levels were determined using qRT-PCR. (D) AID 645 

dependent IgA switching was determined using flow cytometry. (E, F, G, H) CH12F3-2 cells 646 

were co-transfected with pPB and the indicated siRNA against mouse AID (simAID-1 and -2) 647 

or controls (siCtrl and siGFP), and after 6 hours incubation, cells were further stimulated with 648 

CIT for 3 days. HBV transcript levels, knock down efficiency of AID, and IgA switching 649 

were determined using qRT-PCR, western blotting, and flow cytometry, respectively. (I, J, K) 650 

A tetracycline promoter-regulating HBV plasmid (pTre-HBV) was stably transfected into 651 

CH12F3-2 transfectants expressing tetracycline-responsible transactivator (Tet-off). 652 

Established CH12F3-2 transfectants were designated CH12-HBV; (I) Schematic diagram of 653 

CH12-HBV; (J) CH12-HBV cells were incubated in the presence or absence of CD40 ligand, 654 

IL-4, or TGF-β1 (CIT) and tetracycline as indicated for 2 days to induce endogenous AID 655 

expression and IgA switching. HBV transcription and AID expression levels were determined 656 

using qRT-PCR. (K) IgA switching was detected according to surface expression of IgA using 657 

flow cytometry. (L) AICDA-deficient and -wild type BL2 cells were transfected with HBV 658 

plasmid (pPB), and qRT-PCR was performed at 3 day post-transfection. *P < 0.05, **P < 659 

0.01 (t-test). Data are representative of two to three independent experiments and error bars 660 

represent standard errors of the mean. 661 

 662 

Figure 4. Intact P protein is required for AID-mediated downregulation of HBV 663 

transcripts and AID associates with HBV P protein. 664 

(A) Schematic diagram of wild-type and mutant HBV replicon plasmids. Partially redundant 665 

HBV genomic DNA is shown as black boxes and the positions of 5ʹ -ε and 3ʹ -ε are 666 

shown. Open reading frames corresponding to C, P, S, and X genes are shown as open boxes. 667 

The position of the frame-shift mutation in the mutant replicon plasmid (pPB-ΔP) is 668 
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indicated as an open triangle. This frame-shift mutation results in loss of the C-terminal 669 

portion (polymerase and RNase H domains) from the P protein; pCMV, CMV promoter. (B) 670 

Schematic diagram of P protein domain structure; (C) Replicon plasmid (pPB or pPB-ΔP) 671 

and GFP fusion expression vectors (mock, AID, and p19-mutant AID) were transfected into 672 

Huh7 cells, and after four days, AID-mediated downregulation of HBV transcripts was 673 

compared between two replicon plasmids or between wild-type and p19 mutant AID using 674 

northern blotting. Expression of HBV core and GFP fusion proteins (mock, AID, and p19-675 

mutant AID) was confirmed using SDS-PAGE and western blotting. (D) Wild-type replicon 676 

plasmid (pPB) and indicated protein expression vectors (FLAG-P, FLAG-PΔC, or AID) 677 

were transfected into Huh7 cells. Three days later, physical associations between AID and 678 

FLAG-P (or FLAG-PΔC) proteins were determined using immunoprecipitation (IP). In lane 679 

9, crude extract was incubated with RNase A before immunoprecipitation. Positions of 680 

FLAG-P and FLAG-PΔC proteins are indicated by arrows and diamonds, respectively. The 681 

structure of FLAG-PΔC protein is shown in B. Input; crude extract. Data are representative 682 

of two to three independent experiments. 683 

 684 

Figure 5. AID inducing HBV RNA reduction depends on Exosc3 685 

(A, B) Huh7 cells were co-transfected with pPB and the indicated protein expression vectors, 686 

and were cultured for 3 days. Crude extracts (input) were then subjected to IP using an anti-687 

FLAG antibody, and crude extracts and IP fractions were analyzed using western blotting. (C) 688 

Fold enrichment of HBV or HPRT transcripts upon anti-FLAG-Exosc3 IP; To determine 689 

RNA coprecipitation with the RNA exosome component Exosc3, Huh7 cells were transfected 690 

with pPB, pFLAG-Exosc3, and pCMV-AID (or pEGFP-C2), and were cultivated for 3 days. 691 

IP using anti-FLAG antibody was then performed, complexes of FLAG-Exosc3 were then 692 

eluted using free FLAG peptides, and the eluted RNA was analyzed using qRT-PCR. 693 
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Combination of expression vectors used for transfection is the same with B (see numbers 694 

below the graph), and values in lane 3 were defined as 1. Error bars represent standard errors 695 

of the mean. (D) Associations of AID with RNA exosome proteins; Huh7 cells were co-696 

transfected with indicated expression vectors, and were cultured for 3 days. Crude extracts 697 

(input) were subjected to IP with FLAG antibody, and crude extracts and IP fractions were 698 

analyzed using western blotting. Expression levels of GFP-Exosc7 were too low to be 699 

visualized in the crude extract (lanes 4 and 9, input), but GFP-Exosc7 was clearly detectable 700 

after FLAG-AID and FLAG-Exosc3 immunoprecipitation (lanes 4 and 9, IP). (E) Huh7 cells 701 

were co-transfected with pPB and either AID or GFP expression vectors and each of the 702 

siRNAs indicated in E and F, and cells were cultured for 3 days. HBV transcript levels, 703 

nucleocapsid formation, and Exosc3 expression were estimated using northern and western 704 

blotting, NAGE assays (E), and qRT-PCR analyses (F and G); siGFP and siCtrl were used as 705 

controls; **P < 0.01 (t-test); Data are representative of two to three independent experiments 706 

and error bars represent standard errors of the mean.  707 

 708 

Figure 6. TGF-β1-mediated downregulation of HBV transcripts requires RNA exosome 709 

proteins 710 

Huh7 cells were transfected with pPB and indicated siRNAs. Six hours after transfection, the 711 

cells were incubated in the presence or absence of 10-ng/mL TGF-β1 for 3 days. Total RNA 712 

was analyzed using northern blotting (A) and qRT-PCR to determine HBV transcription of 713 

AID, Exosc3, and Exosc6 (B, D, E, F). In C, NC-DNA from secreted virions was also 714 

measured by qPCR. Transfection of siAID and siExosc3 partially restored TGF-β1-mediated 715 

downregulation of HBV transcripts and viral production; *P < 0.05, **P < 0.01 (t-test); error 716 

bars represent standard errors of the mean. Data are representative of two to three 717 

independent experiments. 718 
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 719 

Figure 7. TGF-β1-mediated reduction of HBV transcripts depends on AID and Exosc3 720 

Stable HBV transfectant Huh7 cells (7T7-8) were infected with recombinant lentiviruses to 721 

express indicated short hairpin (sh) RNA, and then cells were incubated in the presence or 722 

absence of 15 ng/ml TGF-β1 for 3 days. (A) Schematic diagram of experimental design; (B) 723 

AID expression levels in qRT-PCR and (C) IP western blotting. Crude extract before IP was 724 

also blotted (input). Crude extracts from TGF- β 1-treated 7T7-8 transfectants were 725 

immunoprecipitated by anti-AID antibody. Loading control: anti-(adenosine deaminase 726 

acting on RNA) ADAR. (D) Exosc3 expression level in qRT-PCR or western blotting (E); 727 

shLuc was used as a control; (F) Reductions of HBV transcript levels following TGF-β1 728 

treatment are compared between shAID-, shExosc3-, and shLuc-expressing 7T7-8 cells. HBV 729 

transcript levels of each non-stimulated transfectant are defined as 1; shLuc was used as a 730 

non-targeted control. *P < 0.05, **P < 0.01 (t-test), error bars represent standard errors of the 731 

mean. Data are representative of two to three independent experiments. 732 

 733 

Figure 8. Transcription dependency for TGF- β 1-mediated reduction of HBV 734 

transcripts and a proposed model  735 

 736 

 HBV-expressing 7T7-8 cells were treated with 10 ng/ml TGF-β1 (A) or transfected with 737 

AID (or GFP) expression plasmid (B) and cultivated for 3 days. At 18 h before harvest, 100 738 

ng/ml actinomycin D (ActD) was added to block transcription. Total RNA was extracted to 739 

measure HBV RNA levels (normalized by HPRT) by qRT-PCR. HBV RNA levels in non-740 

treated (A) and GFP transfected cells (B) were taken as one. **P < 0.01 (t-test); Data are 741 

representative of two independent experiments and error bars represent standard errors of the 742 

mean. (C) Hypothetical model: Left panel, the canonical HBV life cycle; (a) After the entry 743 

of HBV into a hepatocyte, nucleocapsid NC-DNA is converted into cccDNA. (b) 744 
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Subsequently, cccDNA expresses viral transcripts, including pgRNA, pre-S1, pre-S2/S, X, 745 

and pre-C mRNAs. In this study, most viral RNAs were transcribed from the HBV plasmid 746 

instead of cccDNA. All transcripts possess the 3ʹ -ε RNA stem-loop structure; only pgRNA 747 

is shown. (c) P protein binds to the ε  structure and stabilizes it, and the core protein 748 

(indicated by hexagons) is then recruited to form the nucleocapsid. (d) Inside the 749 

nucleocapsid, P protein reverse transcribes pgRNA to produce NC-DNA. A mature 750 

nucleocapsid gains S proteins and is secreted as an infectious virion. The minor fraction of 751 

nucleocapsid may enter a second intracellular viral cycle. (e) Right panel, TGF-β 1 752 

stimulation of hepatocytes induces AID expression. (f) AID associates with the RNA 753 

exosome proteins. The RNA exosome comprises ring-like core and exonuclease catalytic 754 

components. AID associates with HBV transcripts and P proteins. (g) Consequently, AID 755 

bridges the RNA exosome with the RNP complex of HBV transcripts and P protein, which 756 

may trigger the degradation of HBV transcripts.  757 

 758 
 759 

Supplementary Results 760 

Supplementary Figure 1. AID suppresses all HBV transcripts.  761 

(A) Schematic diagram of putative HBV transcripts. Structure of the HBV replicon plasmid 762 

(pPB) is shown on the top. Red arrows indicate the position of the X gene primers. The 763 

putative HBV transcripts are depicted on the bottom. (B, C) qRT-PCR analysis of HBV RNA. 764 

The RNA samples used in Figure 2B and 2E (lanes 4 and 8) were subjected to qRT-PCR 765 

analysis using the X gene primers. **P < 0.01 (t-test). Data are representative of two to three 766 

independent experiments and error bars represent standard errors of the mean. 767 

Supplementary Figure 2. AID does not downregulate host cell gene expression.  768 

qRT-PCR analysis of cellular gene expression. The RNA samples used in Figure 2B were 769 

subjected to qRT-PCR analysis using the indicated gene primers. Expression levels of control 770 
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GFP-expressing cells are defined as 1-fold. Error bars represent standard errors of the mean. 771 

Supplementary Figure 3. AID binds to P protein in both the cytoplasm and nucleus in 772 

HBV replicating hepatocytes  773 

Huh7 cells were transfected with the indicated expression vectors and pPB. Two days after 774 

transfection, cells were harvested and biochemically separated into three fractions 775 

(cytoplasmic, soluble nuclear, and insoluble nuclear fractions) using the Subcellular Protein 776 

Fractionation Kit (Thermo Scientific) as recommended by the manufacturer. 777 

Immunoprecipitation with FLAG agarose M2 beads was performed. Expected positions for 778 

AID-GFP and GFP proteins are indicated at the left side of the anti-GFP blot. PCNA is a 779 

putative soluble nuclear protein and was used as a control. Interaction of AID with P protein 780 

was determined by Western blot analysis. 781 

Supplementary Figure 4. AID binds to Exosc3 in both the cytoplasm and nucleus in 782 

HBV replicating hepatocytes.  783 

Huh7 cells were transfected with the indicated expression vectors and pPB. Two days after 784 

transfection, cells were harvested and biochemically separated into three fractions 785 

(cytoplasmic, soluble nuclear, and insoluble nuclear fractions) using the Subcellular Protein 786 

Fractionation Kit (Thermo Scientific) as recommended by the manufacturer. 787 

Immunoprecipitation with FLAG agarose M2 beads was performed. Expected positions for 788 

AID-GFP and GFP proteins are indicated at the left side of the anti-GFP blot. Interaction of 789 

AID with Exosc3 was determined by Western blot analysis (A). Transcripts in the indicated 790 

fractions in A were subjected to RT-PCR analysis to determine coprecipitation of HBV and 791 

HPRT transcripts (B). 792 

Supplementary Figure 5. Subcellular localization of the RNA exosome proteins. 793 

GFP expression of Huh7 transfectants used in Figure 5D was observed by fluorescence 794 

microscopy. GFP expression of the transfectants in Figure 5D (lanes 1–4 and 6–9) are shown 795 
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in (A) and (B), respectively. GFP-tagged Exosc3, 2, and 7 are localized in both the cytoplasm 796 

and nucleus. A nuclear pattern of a GFP fusion protein is observed in some cells, especially in 797 

GFP-Exosc2- and -Exosc7-expressing cells. 798 

Supplementary Figure 6. AID downregulates HBV RNA in the nucleus. 799 

Huh7 cells were transfected with an AID-GFP (or GFP) expression vector and pPB. Two days 800 

after transfection, cells were harvested and biochemically separated into three fractions 801 

(soluble cytoplasmic, soluble nuclear, and whole cell extract) using the Subcellular Protein 802 

Fractionation Kit (Thermo Scientific) as recommended by the manufacturer. Expression of 803 

AID-GFP, GFP, and PCNA were detected by western blot (A) and HBV RNA levels were 804 

determined by qRT-PCR analysis (B). *P < 0.05, **P < 0.01 (t-test), error bars represent 805 

standard errors of the mean. Levels of HBV RNA from GFP transfectants were defined as 806 

one. 807 

Supplementary Figure 7. cccDNA level in Huh7 cells transfected with HBV replicon 808 

plasmids. 809 

Rolling circle amplification (RCA) is capable of amplifying circular DNA such as HBV 810 

plasmid and cccDNA. cccDNA production in pPB-transfected Huh7 cells and 7T7-8 cells 811 

was compared with that in cccDNA-producing cells (HepG2.2.15). (A) Schematic diagram of 812 

RCA and analysis of cccDNA is shown. (B) Huh7 cells were transfected with pPB (or pPB-813 

dP) and cultivated for 3 days. Huh7T7-8 cells were cultivated in the absence of tetracycline 814 

for 3 days. HepG2.2.15 cells were used as a cccDNA producing control cells. Nuclear 815 

fraction of each transfectant was subjected to Hirt extraction to extract cccDNA. cccDNA 816 

was amplified by RCA. As a standard reaction, 10
7
, 10

8
, and 10

9
 copies of HBV plasmids 817 

were amplified side by side as a standard reaction. Amplified RCA products were digested by 818 

EcoRI (for plasmid standard reactions, EcoRV) and agarose electrophoresis image visualized 819 

by ethidium bromide is shown (top). EcoRI digestion converts concatemeric cccDNA into 3.2 820 
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kb monomer, while EcoRV digestion converts concatemeric HBV plasmids into 3.2-kb and 821 

4.2-kb DNA. Nucleocapsid production of each transfectants was also determined by 822 

extraction of nucleocapsid RC-DNA following PCR detection of HBV DNA (bottom). 823 

Supplementary Figure 8. Knocking down of ZAP expression did not affect AID-824 

mediated downregulation of HBV transcripts. 825 

  Huh7 cells were transfected with an AID (or GFP) expression vector with indicated siRNA 826 

together with pPB. Cells were harvested after 3 days of incubation. Levels of ZAP expression 827 

and HBV RNA were determined by RT-qPCR. siZAP-1 and -2 were obtained from Invitrogen. 828 

siZAP-3 [37] was obtained from Santa Cruz Biotechnology. (A) Fluorescence microscopic 829 

image of GFP transfectants on day 3 after transfection. Knocking down of GFP expression is 830 

obvious in siGFP transfectants. (B) ZAP mRNA expression levels. The expression level of 831 

ZAP in the GFP-transfected, GFP siRNA (siGFP)-transfected (far right) was defined as one. 832 

(C) HBV RNA levels: HBV RNA level in the GFP-transfected, GFP siRNA (siGFP)-treated 833 

(far right) was defined as one. AID expression reduces HBV RNA levels in both siZAP and 834 

siGFP transfectants. (D) HBV RNA levels: The same data set in (C) was plotted with HBV 835 

RNA levels in siGFP-AID and siGFP-GFP transfectants defined as one. Knocking down of 836 

ZAP increases HBV RNA levels in both AID and GFP transfectants. **P < 0.01 (t-test), error 837 

bars represent standard errors of the mean. 838 

 839 
Table S1. List of plasmids used in this study. 840 

Table S2. List of primers used in this study. 841 
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