Increase of CD14⁺HLA-DR^{-/low} Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma Patients and Its Impact on Prognosis

Fumitaka Arihara¹, Eishiro Mizukoshi¹, Masaaki Kitahara¹, Yoshiko Takata¹, Kuniaki Arai¹,

Tatsuya Yamashita¹, Yasunari Nakamoto², Shuichi Kaneko¹

¹Department of Gastroenterology, Graduate School of Medicine, Kanazawa University,

Kanazawa, Ishikawa, Japan

² Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui, Japan

Correspondence author:

Fumitaka Arihara

Department of Gastroenterology, Graduate School of Medicine Kanazawa University

13-1, Takara-machi, Kanazawa, 920-8641, Japan

Tel: +81 76 265 2235

Fax: +81 76 234 4250

E-mail: arihara@m-kanazawa.jp

Abbreviations: MDSCs, myeloid-derived suppressor cells; HCC, hepatocellular carcinoma; CLD, chronic liver disease; RFA, radiofrequency ablation; TACE, transcatheter arterial chemoembolization; PBMC, peripheral blood mononuclear cell; Tregs, regulatory T cells; HLA, human leukocyte antigen; FGF, fibroblast growth factor; CCL, chemokine C-C motif ligand; G-CSF, granulocyte colony stimulating factor; GM-CSF, granulocyte macrophage colony stimulating factor; IP, interferon gamma-induced protein; MCP, monocyte chemoattractant protein; MIP, macrophage inflammatory protein; PDGF, platelet-derived growth factor; RANTES, regulated upon activation,

 $\mathbf{2}$

normal T cell-expressed and secreted; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor; JAK, Janus kinase; STAT, signal transducer and activator of transcription;

Financial support: This study was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Myeloid-derived suppressor cells (MDSCs) are known as key immune regulators in various human malignancies, and it is reported that CD14⁺HLA-DR^{-/low} MDSCs are increased in hepatocellular carcinoma (HCC) patients. However, the host factors that regulate the frequency and the effect on the prognosis of HCC patients are still unclear. We investigated these issues and clarified the relationships between a feature of MDSCs and host factors in HCC patients. We examined the frequency of MDSCs in 123 HCC patients, 30 chronic liver disease (CLD) patients without HCC and 13 healthy controls by flow cytometric analysis. The relationships between the clinical features and the frequency of MDSCs were analyzed. In 33 patients who received curative radiofrequency ablation (RFA) therapy, we examined the impact of MDSCs on HCC recurrence. The frequency of MDSCs in HCC patients was significantly increased. It was correlated with tumor progression, but not with the degree of liver fibrosis and inflammation. In terms of serum cytokines, the concentrations of IL-10, IL-13 and VEGF were significantly correlated with the frequency of MDSCs. In HCC patients who received curative RFA therapy, the frequency of MDSCs after treatment showed various changes and was inversely correlated with recurrence-free survival time. *Conclusion*: The frequency of MDSCs is correlated with tumor progression and this frequency after RFA is inversely correlated with the prognosis of HCC patients. Patients with a high frequency of MDSCs after RFA should be closely followed and the inhibition of MDSCs may improve the prognosis of patients.

recurrence, cancer

Precis: The frequency of CD14+HLA-DR-/low MDSCs in HCC patients was increased and correlated with tumor progression. In the patients treated by radiofrequency ablation, the frequency of MDSCs after treatment was inversely correlated with their prognosis.

Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer mortality globally [1, 2]. Current treatment options including surgical resection, radiofrequency ablation (RFA), liver transplantation, chemotherapy, transcatheter arterial chemoembolization (TACE) and sorafenib are reported to improve survival in HCC patients [3-7]. However, despite curative treatments for HCC, tumor recurrence rates remain high and the survival of those who have advanced HCC remains unsatisfactory [3-7]. Therefore, the development of new anti-tumor treatments for HCC remains an urgent and important field of research.

To overcome the limitations of these treatments, several immunotherapies have been developed as attractive strategies for HCC. In several studies of HCC immunotherapy, effective induction of immune-mediated cells by tumor antigen-derived peptides or antigen-presenting cells showed anti-tumor effects, but the population of patients who exhibited such effects was very small [8-12].

In previous studies, it was reported that many kinds of tumor generate a number of

immune-suppressive mechanisms [13-15]. Recently, myeloid-derived suppressor cells (MDSCs) have been characterized as key immune regulators in various human cancers [15-24]. They show the capacity to inhibit T-cell function and promote tumor development [15, 25]. Human MDSCs are a heterogeneous population that shows CD11b⁺, CD33⁺, HLA-DR^{-/low} and can be divided into granulocytic CD14⁻ and monocytic CD14⁺ subtypes [26-28]. In most recent studies, it has been reported that CD14⁺HLA-DR^{-/low} MDSCs were increased in HCC patients and the cells inhibited the function of T cells through the induction of regulatory T cells (Tregs) [24]. Tregs represent 5% to 10% of CD4⁺T cells, and can suppress the activation and proliferation of CD4⁺and CD8⁺T cells [14, 29]. It was reported that an increased frequency of circulating Tregs were associated with poor survival of HCC patients [30].Understanding the inhibitory mechanism of MDSCs and controlling their function are very important to develop more effective immunotherapy for HCC.

In this study, we investigate the host factors that are associated with the frequency of MDSCs in HCC patients and the effect of MDSCs on the prognosis of patients, and clarify the relationships between a feature of MDSCs and host factors in HCC patients.

Blood samples were obtained from a total of 123 HCC patients, 26 chronic liver disease (CLD) patients without HCC and 13 healthy controls. The diagnosis of HCC was histologically confirmed in 68 patients. For the remaining 55 patients, diagnosis was made by dynamic CT or MRI. Patient characteristics and disease classification are shown in Suppl. table 1. All CLD patients without HCC underwent percutaneous liver biopsy to evaluate the disease severity according to the Metavir scoring system. In 33 patients treated with curative percutaneous RFA, blood samples were obtained on the day of treatment and 2 to 4 weeks after treatment and we observed recurrence of these patients with periodic imaging studies. All subjects provided written informed consent to participate in this study in accordance with the Declaration of Helsinki. This study was approved by the regional ethics committee (Medical Ethics Committee of Kanazawa University).

Cell isolation and flow cytometric analysis

Peripheral blood mononuclear cells (PBMCs) were separated as described below; heparinized venous blood were diluted in phosphate-buffered saline (PBS) and loaded on Ficoll-Histopaque

(Sigma, St. Louis, Mo.) in 50ml tubes. After centrifugation at 2000 rpm for 20 min at room temperature, PBMCs were harvested from the interphase, resuspended in PBS and centrifuged at 1400 rpm for 10min and finally resuspended in complete culture medium consisting of RPMI (GibcoBRL, Grand Island, NY), 10% heat inactivated FCS (Gibco BRL), 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco BRL). PBMCs were resuspended in RPMI 1640 medium containing 80% FCS and 10% dimethyl sulfoxide and cryopreserved until use. The viability of cryopreserved PBMCs was 60-70%. In some patients, fresh and cryopreserved PBMCs were obtained from the same sample. To determine the frequency and phenotype of MDSCs and Tregs, multicolor fluorescence-activated cell sorting analysis was carried out using the Becton Dickinson FACSAria II system. The following anti-human monoclonal antibodies were used: anti-CD4 (Becton Dickinson), anti-CD11b (Becton Dickinson), anti-CD14 (Becton Dickinson), anti-CD15 (Becton Dickinson), anti-CD25 (Becton Dickinson), anti-CD33 (Becton Dickinson), anti-CD127 (Becton Dickinson) and anti-HLA-DR (Becton Dickinson).

Suppression assay

CD14⁺HLA-DR^{-/low} MDSCs and CD14⁺HLA-DR⁺ cells were sorted using the Becton Dickinson FACSAria II system. 2X10⁴ PBMCs were cultured and stimulated with 1µg/mL plate-bound anti-CD3 (eBioscience) and 1µg/mL soluble anti-CD28 (eBioscience) in 96-well round-bottomed

plates. 24 hours later, to determine the suppressive ability of MDSCs, increasing concentrations of MDSCs were added to the stimulated PBMCs. Proliferation was measured by³Hincorporationafter 72 hours. [³H] thymidine was added and cell proliferation was measured by incorporation of radiolabeled thymidine for 24 hours.

Cytokine and chemokine profiling

Blood samples were collected from patients at the same time of PBMC isolation. After centrifugation at 3000 rpm for 10 min at 4°C, serum fractions were obtained and stored at -20°C until use. Serum levels of various cytokines and chemokines were measured using the Bio-Plex Protein Array System. Briefly, frozen serum samples were thawed at room temperature, diluted 1:4 in sample diluents, and 50 μ l aliquots of diluted sample were added in duplicate to the wells of 96-wellmicrotiter plates containing the coated beads for a validated panel of human cytokines and chemokines according to the manufacturer's instructions. The following 27 cytokines and chemokines were targeted: IL-1 β , IL-1 receptor antagonist (IL-1Ra), IL-2, IL-4, IL-5,IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17,basic fibroblast growth factor (FGF), eotaxin (chemokine C-C motif ligand (CCL) 11), G-CSF,GM-CSF, IFN- γ , interferon gamma-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1 α , MIP-1 β , platelet-derived growth factor (PDGF)-BB, regulated upon activation, normal T

cell-expressed and secreted(RANTES), TNF- α and vascular endothelial growth factor(VEGF). Nine standards (ranging from 0.5 to 32,000 pg/ml) were used to generate calibration curves for each cytokine. Data acquisition and analysis were performed using Bio-Plex Manager software version 4.1.1.

Statistical analysis

Data are expressed as the mean \pm SD. Chi-squared test with Yates' correction, unpaired *t*-test, Mann-Whitney's U test and Kruskal-Wallis were used for univariate analysis of two groups that were classified according to the frequency of MDSCs. The probability of tumor recurrence-free survival was estimated using the Kaplan-Meier method. The Mantel-Cox log-rank test was used to compare curves between groups. The prognostic factors for tumor recurrence-free survival were analyzed for statistical significance by the Kaplan-Meier method (univariate) and the Cox proportional hazard model (multivariate). Variables with p < 0.1 were entered into multivariate logistic regression analysis. A level of p < 0.05 was considered significant.

Results

CD14⁺HLA-DR^{-/low} MDSCs are increased in the peripheral blood of HCC patients

We analyzed the peripheral blood of 123 patients with HCC, 26CLD patients without HCC and 13 healthy donors for the prevalence of CD14⁺HLA-DR^{-/low} MDSCs. Because the PBMCs are tested after Ficoll, where some cells may be lost. Therefore, we examined the population of MDSCs as a percentage of total CD14⁺ cells by flow cytometry after cell surface labeling for expression of HLA-DR (Figure 1A). CD14⁺HLA-DR^{-/low} population in PBMCs of HCC patients represented 3.2% to 56.8% of the CD14⁺cells. The frequency of CD14⁺HLA-DR^{-/low} MDSCs / CD14⁺cells in cryopreserved PBMCs correlated with that in fresh PBMC (Figure 1B). Therefore, we analyzed the frequency of CD14⁺HLA-DR^{-/low} MDSCs / CD14⁺cells using cryopreserved PBMCs.

To confirm the function of these cells, sorted CD14⁺HLA-DR^{-/low} MDSCs and CD14⁺HLA-DR⁺ (control) cells were added at different ratios to autologous anti-CD3/CD28-stimulated PBMCs and the proliferation was measuredby³Hincorporation. CD14⁺HLA-DR^{-/low} MDSCs of HCC patients significantly decreased autologous PBMC proliferation (Figure 1C). On the other hand, CD14⁺HLA-DR⁺ (control) cells could not suppress the autologous PBMC proliferation.

As shown in Figure 1D, the frequency of MDSCs was significantly higher in HCC patients (19.0%) than in healthy donors (9.4%) (p< 0.01). Overall frequencies of CD14⁺ cells did not differ significantly between the groups (Figure 1E). Individual frequencies of MDSCs of all the patients and healthy donors are represented as scatter plots (Figure 2A). The frequency of MDSCs was correlated with the stage of HCC (stage III and IV: 22.3% (n=46) vs. stage I and II: 17.0% (n=77),

p < 0.01) and was significantly higher in HCC patients than CLD patients without HCC and healthy donors. Interestingly, there was no difference between CLD patients without HCC and healthy donors. Moreover, these numbers did not change depending on the degree of fibrosis or inflammatory activity of the liver (Figures 2B and 2C).

In previous reports, granulocytic MDSCs were defined in combination with several surface markers including CD14, CD15, CD11b, CD33, CD66b and HLA-DR in several cancers. Therefore, we examined the frequency of CD15⁺CD14⁻CD11b⁺CD33⁺ cells in 37 HCC patients and 11 healthy donors (Suppl. figure 1A). Although there was no statistical significant difference, the frequency of CD15⁺CD14⁻CD14⁻CD11b⁺CD33⁺ cells in HCC patients was higher than that in healthy donors. (2.84% vs. 2.06%, p = 0.073) (Suppl. figure 1B). The frequency was correlated with the stage of HCC (stage III and IV: 3.69% (n=13) vs. stage I and II: 2.39% (n=24), p = 0.022) (Suppl. figure 1C).

Relationship between the frequency of Tregs and MDSCs

It is well known that the frequency of circulating Tregs is increased and correlated with disease progression in HCC patients. The frequency of CD4⁺ CD25⁺ CD127^{-/low} Tregs was significantly increased in HCC patients (Suppl. figure 2A) and associated with tumor progression (Suppl. figure 2B). However, there was not a strong correlation between the frequency of MDSCs and Tregs in our study (Suppl. figure 2C).

We divided the HCC patients into two groups using the threshold of an MDSC ratio of 22%. This threshold is the average + 2SD of the MDSC ratio in non-HCC patients. In the group with high frequency, the tumor factors including size, multiplicity and stage were significantly worse (tumor size, 28.3mm vs. 24.4mm; tumor multiplicity (multiple/solitary), 27/12 vs. 42/42; TNM stage (I and II vs. III and IV), 17/22 vs. 60/24, p< 0.05) (Table1). In addition, hepatic reserve was also worse in the group with high frequency (Child-Pugh classification (A/B/C), 20/17/2 vs. 64/16/4, p< 0.05). In addition, overall survival was significantly shortened in the group with high frequency (hazard ratio 2.67, p= 0.008) (Suppl. figure 3A), and recurrence free survival was also significantly shortened (hazard ratio 1.94, p= 0.010) (Suppl. figure 3B).

Relationship between serum cytokine levels and the frequency of MDSCs

In previous studies, the balance of circulating cytokines was thought to promote accumulation and activation of MDSCs [18, 36-39]. Therefore, we examined the relationship between serum cytokine levels and the frequency of MDSCs in HCC patients. In 54 HCC patients, serum levels of cytokines and chemokines were measured using the Bio-Plex Protein Array system. Serum concentrations of

IL-10, IL-13 and VEGF were significantly increased in the group with a high frequency of MDSCs (Table 2). In addition, there was a positive correlation between these cytokine levels in serum and the frequency of MDSCs. We also examined the relationship between serum cytokine levels and the frequency of Tregs. We divided the HCC patients into two groups using the threshold of 7%, which is the average + 2SD of the % of Tregs among $CD4^+$ cells in non-HCC patients. Serum concentration of IL-10 was significantly increased in the group with a high frequency of Tregs (Suppl. table 2).

Kinetics of MDSCs before and after curative RFA therapy

We examined the frequency of MDSCs before and after curative RFA therapy in 33 patients. For this analysis, blood samples were obtained on the day of treatment (before) and 2 to 4 weeks after treatment (after). The frequency of MDSCs was significantly decreased after RFA therapy (18.0% to 15.5%, p < 0.05) (Figure 3A). However, in several patients, the frequency of MDSCs remained at a high level compared with that in non-HCC patients. The clinical parameters before RFA were not statistically different between the patients with and without a high frequency of MDSCs after RFA (Suppl. table 3).

Next, we followed up these patients for recurrence and analyzed the risk factors. If a high frequency of MDSC was observed after curative RFA therapy, the recurrence-free survival was significantly shortened (Figure 3B). In contrast, the frequency of MDSCs before treatment did not

affect the recurrence. In univariate analysis for recurrence, post-treatment MDSC ratio $\geq 22\%$ (p= 0.023) and tumor multiplicity (p= 0.010) were significantly associated with HCC recurrence (Table 3). In multivariable analysis for recurrence, considering the variables in the univariate analysis with p< 0.1, only post-treatment MDSC ratio $\geq 22\%$ (HR 3.906, p= 0.014) was extracted as a significant risk factor for recurrence.

Discussion

MDSCs are expanded in pathological conditions such as malignancy, infection or trauma and consist of a heterogeneous population of immature myeloid cells [15, 25]. In pathological conditions, immature myeloid cells are blocked to differentiate into mature macrophages, dendritic cells or granulocytes; as a result, MDSCs are accumulated [15, 25]. MDSCs strongly inhibit anti-tumor immune response through a number of mechanisms [15, 25]. As monocytic subsets of MDSCs, CD14⁺HLA-DR^{-/low} MDSCs have been reported in various malignancies, including melanoma, multiple myeloma, prostate cancer and bladder cancer [18, 20, 22, 35]. In the most recent study, Hoechst et al. reported that CD14⁺HLA-DR^{-/low} MDSCs were significantly increased in HCC patients and they suppressed T cell functions through the induction of CD4⁺CD25⁺Foxp3⁺ Treg [24].

In the present study, in addition to an increase in the number of MDSCs in HCC patients, we observed that the frequency was correlated with the progression of HCC. Consistent with our results, it has also been reported that the frequency of CD14⁺HLA-DR^{-/low} MDSCs was correlated with tumor progression in patients with other cancers, such as melanoma, prostate cancer and bladder cancer [22, 35, 36]. However, the mechanisms behind the increase of MDSCs in advanced cancer patients are still unclear. As is well known, there is a close relationship between hepatocarcinogenesis and histological status of underlying liver [37, 38]. Therefore, the advance of hepatic fibrosis and the increase of inflammatory cell infiltration into liver might result in an increase

of MDSCs following the progression of HCC. However, there was no relationship between the frequency of CD14⁺HLA-DR^{-/low} MDSCs and underlying liver status in our study. From our observations, increase of MDSCs was only correlated with tumor progression, but not with hepatic fibrosis or disease activity of CLD. This finding suggests that the expansion of CD14⁺HLA-DR^{-/low} MDSCs was mostly derived from the tumor environment itself, but not from inflammation or fibrosis of liver tissue around the tumor. The finding that a significant decrease in the frequency of circulating CD14⁺HLA-DR^{-/low} MDSCs is observed in most patients with curative treatment in this study supports this hypothesis. On the other hand, Tregs were also increased in HCC patients and associated with the progression of HCC. Though it was reported that MDSCs suppressed T cell

function through the induction of Tregs, there was not a strong correlation between the frequencies of these two immunosuppressive cells.

Regarding the mechanism of MDSC expansion, we also analyzed the relationship between the serum cytokine levels and the frequency of MDSCs. We observed that the serum concentrations of IL-10, IL-13 and VEGF were significantly increased in the group with high frequency of MDSCs and there was a positive correlation between these cytokine levels and the frequency of MDSCs. Moreover, although there was no significant difference, the serum concentrations of IL-1ra, IL-2, IL-6, IL-12(p70) and G-CSF tended to be increased in the group with high frequency of MDSCs. In accordance with our results, various cytokines, including IL-6, IL-10, IL-13, G-CSF and VEGF, that trigger Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling

pathways have been reported to be associated with the frequency of MDSCs [39]. In particular, the cytokines involved in the JAK2-STAT3 signaling pathway are considered to be the main regulators of the expansion of MDSCs, which leads to stimulation of myelopoiesis and inhibition of myeloid-cell differentiation [40-42].

Another important finding of our study is that the frequency of MDSCs showed various changes after curative RFA and this frequency is an independent risk factor of HCC recurrence. In most of the patients, the frequency of MDSCs decreased after RFA. A similar phenomenon has also been reported in other cancer treatments [19, 21, 36]. Liu et al. reported that MDSCs were decreased in non-small cell lung cancer patients who had clinical benefit from chemotherapy or who received curative surgery [21]. These results suggest that a decrease of the frequency of MDSCs is due to tumor eradication.

It is well known that tumor factors including multiplicity, tumor diameter, serum levels of tumor marker and hepatic reserve are risk factors of HCC recurrence after RFA [43, 44], but it has not been reported that the frequency of circulating MDSCs is also a risk factor. From our findings, there was a clear inverse correlation between the frequency of MDSCs after RFA and recurrence-free survival. Consistent with our results, in the patients with pancreatic, esophageal and gastric cancer, Gabitass et al. reported that an increase of MDSCs was associated with an increased risk of death and that the frequency of MDSCs was an independent prognostic factor for patient survival[23]. Taken together with these findings, our results suggest that the frequency of MDSCs might be one of the prognostic factors of patients after cancer treatments.

As we showed, the frequency of MDSCs is primarily correlated with tumor progression. However, between the patients with high and low frequency of MDSCs after RFA, there was no significant difference in hepatic reserve and tumor factors before treatment. Although an incomplete HCC eradication at a microscopic level may allow a high frequency of MDSCs after RFA, there may be other mechanisms such as subsequently tumor-specific immune responses after RFA. In addition, there is a limitation of the present study because we used cryopreserved PBMCs for phenotypic analysis of MDSCs. Further studies using fresh PBMCs are needed for precise phenotypic analysis of MDSCs and elucidation of the mechanism to regulate the frequency of MDSCs after HCC treatment.

In conclusion, the frequency of MDSCs in HCC patients is correlated with tumor progression and the frequency after RFA is inversely correlated with the prognosis of HCC patients. HCC patients who show a high frequency of MDSCs after RFA should be closely followed and the inhibition or elimination of MDSCs after HCC treatments may improve the prognosis of HCC patients.

Conflict of interest The authors declare no conflict of interest

References

- Thomas MB, Jaffe D, Choti MM, Belghiti J, Curley S, Fong Y, Gores G (2010) Hepatocellular carcinoma: consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol 28:3994-4005
- 2. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907-1917
- 3. Lencioni R, Chen XP, Dagher L, Venook AP (2010) Treatment of intermediate/advanced hepatocellular carcinoma in the clinic: how can outcomes be improved? Oncologist 15 Suppl 4:42-52
- 4. Curley SA, Izzo F, Ellis LM, Nicolas Vauthey J, Vallone P (2000) Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis. Ann Surg 232:381-391
- 5. Ishizaki Y, Kawasaki S (2008) The evolution of liver transplantation for hepatocellular carcinoma (past, present, and future). J Gastroenterol 43:18-26
- Yamashita T, Arai K, Sunagozaka H, Ueda T, Terashima T, Mizukoshi E, Sakai A (2011) Randomized, Phase II Study Comparing Interferon Combined with Hepatic Arterial Infusion of Fluorouracil plus Cisplatin and Fluorouracil Alone in Patients with Advanced Hepatocellular Carcinoma. Oncology 81:281-290
- Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378-390
- 8. Butterfield LH (2004) Immunotherapeutic strategies for hepatocellular carcinoma. Gastroenterology 127:S232-241
- 9. Sun K, Wang L, Zhang Y (2006) Dendritic cell as therapeutic vaccines against tumors and its role in therapy for hepatocellular carcinoma. Cell Mol Immunol 3:197-203
- Zerbini A, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A, Schivazappa S (2006) Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res 66:1139-1146
- 11. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM (2009) A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 49:124-132
- 12. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53:1206-1216
- Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16:3-15
- 14. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337-342
- Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162-174
- 16. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D (2005)

Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044-3048

- 17. Gordon IO, Freedman RS (2006) Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res 12:1515-1524
- 18. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546-2553
- Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49-59
- 20. Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR⁻/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72:540-547
- 21. Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC (2010) Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14⁻/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 136:35-45
- 22. Vuk-Pavlović S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 70:443-455
- 23. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419-1430
- 24. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234-243
- 25. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499-4506
- 26. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791-5802
- 27. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802-807
- 28. Filipazzi P, Huber V, Rivoltini L (2011) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61(2):255-263
- 29. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F (2005) Increased

populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457-2464

- 30. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328-2339
- 31. Kusmartsev S, Gabrilovich DI (2006) Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25:323-331
- 32. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284-290
- 33. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019-10026
- 34. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273-2284
- 35. Yuan XK, Zhao XK, Xia YC, Zhu X, Xiao P (2011) Increased circulating immunosuppressive CD14(+)HLA-DR(-/low) cells correlate with clinical cancer stage and pathological grade in patients with bladder carcinoma. J Int Med Res 39:1381-1391
- 36. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335-4345
- 37. Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127:S35-50
- 38. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557-2576
- 39. Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139-1142
- 40. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464-474
- 41. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41-51
- 42. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235-2249
- 43. Izumi N, Asahina Y, Noguchi O, Uchihara M, Kanazawa N, Itakura J, Himeno Y (2001) Risk factors for distant recurrence of hepatocellular carcinoma in the liver after complete coagulation by microwave or radiofrequency ablation. Cancer 91:949-956
- 44. Komorizono Y, Oketani M, Sako K, Yamasaki N, Shibatou T, Maeda M, Kohara K (2003) Risk factors

 for local recurrence of small hepatocellular carcinoma tumors after a single session, single application of percutaneous radiofrequency ablation. Cancer 97:1253-1262

Figure legends

Figure 1: (A) Flow cytometry shows CD14⁺HLA-DR^{-/low+} MDSCs. PBMCs from patients and healthy donors were labeled with anti-CD14 and HLA-DR. Three staining examples of HCC patients are shown in the order from a small number (left) to a large number (right). (B) The increase of CD14⁺HLA-DR^{-/low} MDSCs/CD14⁺ cells in cryopreserve PBMC correlated with that in fresh PBMC (r^2 =0.52). (C) Proliferation of PBMCs stimulated by anti-CD3/28 in the presence or absence of MDSCs was measured by³Hincorporation assay. CD14⁺HLA-DR^{-/low} MDSCs significantly decreased autologous PBMC proliferation (n=4; *, *p*<0.05). (D) The frequency of MDSCs was significantly higher in HCC patients than healthy donors (*, *p*<0.01). (E) Overall frequencies of CD14⁺ cells did not differ significantly.

Figure 2: (A) Scatter plots of MDSC ratio (CD14⁺HLA-DR^{-/low} MDSCs/CD14⁺ cells) in patients and healthy donors. The frequency of MDSCs was significantly increased in HCC patients compared with that in non-HCC controls. Moreover, the frequency of MDSCs was correlated with tumor progression (stage III and IV: 22.3% (n=46) vs. stage I and II: 17.0% (n=77); *, p<0.05). In non-HCC controls, there was no significant difference in the frequency of MDSCs. (B), (C) In non-HCC patients, the frequency of MDSCs did not change depending on the degree of fibrosis or inflammatory activity of the liver according to the Metavir scoring system.

Figure 3: (A) In 33 HCC patients who received curative RFA therapy, the frequency of MDSCs was significantly decreased after treatment. However, in several patients, the frequencies were

increased after treatment (dotted lines) (*, p < 0.05). (B) Kaplan-Meier curve for recurrence-free survival after RFA therapy. The patients with high frequency of MDSCs (solid line) relapsed.

	MDSC ratio ≥22	MDSC ratio < 22	n value	
	(n=39)	(n=84)	p value	
Age (yr)	68.5	70.1	0.646	
Sex (M/F)	29/10	54/30	0.267	
AST (IU/l)	62.0	61.5	0.543	
ALT (IU/l)	47.1	53.9	0.759	
LDH (IU/l)	225	218	0.832	
γGTP (IU/l)	78.0	76.0	0.252	
Platelet (10 ⁴ /µl)	10.9	10.6	0.884	
Prothrombin time (%)	75.2	82.3	0.045	
Serum albmin (g/dl)	3.53	3.68	0.120	
Total Bilirubin (mg/dl)	1.21	0.94	0.286	
WBC (/µl)	3910	3610	0.235	
Neutrophil (%)	63.2	59.4	0.093	
Lymphocyte (%)	26.1	29.5	0.047	
Total Cholesterol (mg/dl)	151	149	0.926	
HbA1c (%)	5.27	5.43	0.197	
Type IV collagen 7S (ng/ml)	8.2	7.3	0.086	
DCP (mAU/ml)	5157	432	0.561	
AFP (ng/ml)	1301	934	0.240	
Tumor Size (mm)	28.3	24.4	0.014	
Tumor Multiplicity	27/12	12/42	0.046	
(multiple/solitary)	27/12	42/42	0.046	
TNM Stage (I plus II/III plus IV)	17/22	60/24	0.003	
Child-Pugh (A/B/C)	20/17/2	64/16/4	0.015	
Etiology (HCV/HBV/others)	21/11/7	61/11/12	0.081	
$CD4^+ \ CD25^+ \ CD127^{\text{-/low}} Tregs \ /$	7.04	6.70	0.291	
CD4 ⁺ cells (%)	/.04	0.70	0.281	

Table 1. Clinical findings and MDSCs

Abbreviations: AST, aspirate aminotransferase; ALT, alanine aminotransferase; LDH, lactic dehydrogenase; γGTP, gamma glutamyltransferase; WBC, white blood cell; Hb, hemoglobin; DCP, des-gamma-prothrombin; AFP, Alpha-fetoprotein; HCV, hepatitis C virus; HBV, hepatitis B virus; Tregs, regulatory T cells

Chi-squared test with Yates' correction, unpaired t-test, Mann-Whitney's U test and Kruskal-Wallis test were used for univariate analysis of two groups that were classified according to the frequency of MDSCs.

Cytokine	Healthy donor	MDSC ratio ≥22	Range	MDSC ratio < 22	Range	p value
	(mean)	(mean)		(mean)		
	(n=13)	(n=21)		(n=31)		
IL-1ra	34.2	97.0	(21.5-600)	40.3	(3.4-151)	0.057
IL-2	10.5	38.1	(4.3-54.3)	11.3	(0.9-49.7)	0.055
IL-4	2.6	5.75	(1.47-11.9)	5.03	(0.71-10.9)	0.159
IL-6	9.9	21.5	(1.2-130)	10.1	(0.2-97.2)	0.065
IL-8	24.5	64.7	(10.9-291)	35.1	(6.2-142)	0.156
IL-10	2.76	6.01	(0.8-11.5)	2.81	(0.1-12.0)	0.003
IL-12(p70)	14.6	33.3	(0.6-140)	17.6	(1.4-57)	0.058
IL-13	7.6	13.1	(1.2-33.6)	8.2	(2.7-22.9)	0.015
IL-17	15.7	23.5	(4.6-70)	20.8	(2.1-119)	0.115
Eotaxin	104	141	(51.9-493)	124	(26.3-331)	0.675
G-CSF	7.9	13.2	(2.7-41.3)	8.7	(0.5-17.9)	0.050
IFN-γ	52.6	95.4	(23.1-417)	69.9	(2.5-238)	0.136
MCP-1	20.2	26.8	(8.4-114)	23.8	(3.5-77)	0.744
MIP-1b	97.6	120	(58.3-490)	108	(39.7-263)	0.508
PDGF	4012	4375	(1312-10136)	4013	(831-13557)	0.484
RANTES	2978	2890	(1040-4826)	3184	(599-6165)	0.186
TNF-α	10.5	34.9	(0.1-175)	27.6	(2.9-105)	0.756
VEGF	34.6	101.7	(22.5-371)	59.5	(9.3-183)	0.045

Table 2. Serum cytokines and MDSCs

Abbreviations: IL, interleukin; G-CSF, granulocytic colony stimulating factor; IFN, interferon; MCP, monocyte chemoattractant protein; MIP,

macrophage inflammatory protein; PDGF, platelet-derived growth factor; RANTES, regulated upon activation, normal T cell-expressed and secreted;

TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor

Mann-Whitney's U test was used for univariate analysis of two groups that were classified according to the frequency of MDSCs.

Table 3. Cox proportional-hazards regression for recurrence

Variant	Univariate HR (95% CI)	p value	Multivariable HR (95% CI)	p value
Sex: female	0.763 (0.446-1.308)	0.326		
Age:≥70 yr	1.111 (0.671-1.840)	0.683		
Pre MDSC ratio: ≥22%	1.210 (0.698-2.096)	0.497		
Pre neutrophil	0.990 (0.969-1.012)	0.385		
Pre lymphocyte	1.014 (0.987-1.043)	0.311		
Pre neutrophil/lymphocyte	0.978 (0.787-1.216)	0.844		
Pre ALT	1.001 (0993-1.008)	0.882		
Pre serum albumin: < 3.5 mg/dl	1.143 (0.665-1.982)	0.647		
Pre prothrombin time: < 70%	1.662 (0.961-2.903)	0.073	1.881 (0.522-6.777)	0.101
Post MDSC ratio: ≥22%	2.795 (1.150-6.792)	0.023	3.906 (1.313-11.616)	0.014
Post neutrophil	1.005 (0.975-1.035)	0.762		
Post lymphocyte	0.993 (0.960-1.027)	0.678		
Post neutrophil/lymphocyte	1.003 (0.810-1.242)	0.980		
Post ALT	0.995 (0.981-1.010)	0.501		
type IV collagen 7S	1.122 (0.992-1.268)	0.067	1.192 (0.907-1.566)	0.207
AFP: ≥100 ng/ml	1.357 (0.743-2.480)	0.321		
Tumor size: ≥20 mm	1.29 (0.78-2.12)	0.328		
Tumor Multiplicity: multiple	2.00 (1.18-3.40)	0.010	1.851 (0.721-4.753)	0.201

Abbreviations: HR, hazard ratio; CI, confidence interval; ALT, alanine aminotransferase; AFP, Alpha-fetoprotein

Fig. 2

Fig. 3

Clinical	No. of	S M/E		Etiology AFP (ng/ml) (HCV/HBV/others)		Child-Pugh	Tumor Size	Tumor Multiplicity	TNM Stage
Diagnosis	Patients	Sex M/F	ALI (IU/L)			(A/B/C)	(large/small)	(multiple/solitary)	(I/II/III/IV)
HCC patients	123	83/40	52 ± 36	82/22/19	1051 ± 4391	84/33/6	69/54	69/54	32/45/35/11
CLD patients	26	14/12	46 ± 27	22/4/0	11 ± 7	26/0/0	ND	ND	ND
Healthy donors	13	8/5	17 ± 5	ND	ND	ND	ND	ND	ND

Supplemental Table 1.	Characteristics of	patients and health	y donors
-----------------------	--------------------	---------------------	----------

Abbreviations: ALT, alanine aminotransferase; HCV, hepatitis C virus; HBV hepatitis B virus; AFP, Alpha-fetoprotein; HCC, hepatocellular carcinoma; CLD, chronic liver disease;

SD, standard deviation

All continuous variables were expressed as mean \pm SD.

Cytokine	Healthy donor	Treg≥7 %	Range	Treg<7%	Range	p value
	(mean)	(mean)		(mean)		
	(n=13)	(n=29)		(n=23)		
IL-1ra	34.2	54.2	(11.0-430)	79.7	(5.9-600)	0.383
IL-2	10.5	26.0	(2.1-54.3)	16.0	(0.9-50.6)	0.167
IL-4	2.6	6.17	(1.47-11.9)	4.54	(0.71-10.9)	0.128
IL-6	9.9	14.6	(0.2-97.2)	15.1	(1.6-130)	0.872
IL-8	24.5	49.5	(6.2-291)	40.1	(10.9-256)	0.563
IL-10	2.76	4.99	(0.6-12.1)	2.97	(0.1-10.4)	0.030
IL-12(p70)	14.6	25.8	(0.6-140)	23.2	(2.8-78)	0.715
IL-13	7.6	11.6	(2.7-33.6)	8.8	(1.2-22.9)	0.167
IL-17	15.7	20.1	(4.2-70)	25.4	(2.1-119)	0.340
Eotaxin	104	132	(59.0-493)	119	(26.3-245)	0.906
G-CSF	7.9	11.2	(2.7-41.3)	10.1	(0.5-33.7)	0.424
IFN-γ	52.6	85.9	(23.1-417)	78.6	(2.5-343)	0.319
MCP-1	20.2	27.2	(3.5-114)	21.9	(8.4-71)	0.375
MIP-1b	97.6	123	(56.6-490)	103	(39.7-229)	0.696
PDGF	4012	4179	(1271-10136)	4305	(831-13557)	0.815
RANTES	2978	3041	(1040-4714)	3097	(599-6165)	0.598
TNF-α	10.5	29.1	(0.1-175)	32.7	(2.9-155)	0.747
VEGF	34.6	83.4	(24.5-371)	71.9	(9.3-224)	0.538

Supplemental Table 2. Serum cytokines and CD4 ⁺ CD25 ⁺ CD127 ^{-/low} Tre	egs
---	-----

Abbreviations: IL, interleukin; G-CSF, granulocytic colony stimulating factor; IFN, interferon; MCP, monocyte chemoattractant protein; MIP,

macrophage inflammatory protein; PDGF, platelet-derived growth factor; RANTES, regulated upon activation, normal T cell-expressed and secreted;

TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor

Mann-Whitney's U test was used for univariate analysis of two groups that were classified according to the frequency of MDSCs.

	MDSC ratio ≥22	MDSC ratio < 22	
Clinical characteristics	(n=8)	(n=25)	p value
Pre MDSC ratio (%)	28.7	14.8	0.004
Post MDSC ratio (%)	30.2	10.8	<0.001
Sex (M/F)	6/2	13/12	0.252
Prothrombin time (%)	82.8	79.9	0.663
Serum albmin (g/dl)	3.70	3.67	0.794
Total bilirubin	0.83	1.03	0.408
Platelet (10 ⁴ /µl)	8.6	9.5	0.473
Type IV collagen 7S (ng/ml)	7.5	7.6	0.924
AFP (ng/ml)	146	41.7	0.214
Pre neutrophil/lymphocyte	1.98	2.19	0.486
Post neutrophil/lymphocyte	2.70	2.16	0.097
Pre ALT (IU/l)	45.0	55.3	0.421
Post ALT (IU/l)	42.6	52.2	0.584
Child-Pugh (A/B/C)	7/1/0	20/5/0	0.632
Tumor Size (mm)	21.8	18.2	0.313
Tumor Multiplicity	6/2	12/12	0.252
(multiple/solitary)	0/2	13/12	0.232

Supplemental table 3. The clinical parameters before RFA

Abbreviations: AFP, Alpha-fetoprotein; ALT, alanine aminotransferase

Suppl. fig. 1

A CD15⁺ CD14⁻ CD11b⁺ CD33⁺ cells

Suppl. fig. 2

250

30

8-

250

200

102

SSC

CD25

~=

102

SSC "

Suppl. fig. 3

Suppl. figure 1: (A) Gating strategy of CD15⁺CD14⁻CD11b⁺CD33⁺ cells (B) The frequency of CD15⁺CD14⁻CD11b⁺CD33⁺ cells in PBMCs was higher in HCC patients than healthy donors (2.84% vs. 2.06%, p = 0.073). (C) The frequency of CD15⁺CD14⁻CD11b⁺CD33⁺ cellswas correlated with tumor progression (stage III and IV: 3.69% (n=13) vs. stage I and II: 2.39% (n=24), p=0.022). Suppl. Figure 2: (A) Gating strategy of CD4⁺ CD25⁺ CD127^{-/low} Tregs (B) The frequency of CD4⁺ CD25⁺ CD127^{-/low} Tregs was significantly increased in HCC patients than healthy donors (*, p<0.01). (C) The frequency of Tregs was correlated with tumor progression. (D) There was only a weak correlation between the frequencies of CD14⁺HLA-DR^{-/low} MDSCs and CD4⁺ CD25⁺ CD127^{-/low}

Tregs (r=0.24).

Suppl. figure 3: (A) Kaplan-Meier curve for overall survival in our cohort. (B) Kaplan-Meier curve for recurrence free survival in our cohort.