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Introduction: trans-1-Amino-3-[18F]fluorocyclobutanecarboxylic acid ([18F]fluciclovine, also known as anti-[18F]
FACBC), is a tracer for positron emission tomography (PET) imaging for detection of tumors such as prostate can-
cer (PCa). Our previous study showed that ASCT2 (Na+-dependent amino acid transporter (AAT)) mediates
fluciclovine uptake in androgen-dependent PCa cells; its expression is influenced by androgen, a key hormone
in the progression of primary PCa and castration-resistant prostate cancer (CRPC). In this study, we investigated
the uptake mechanisms and feasibility of [18F]fluciclovine for CRPC in the androgen-dependent PCa cell line
LNCaP and LNCaP-derivatives LNCaP-SF and LN-REC4.
Methods: LNCaP-SF was established after long-term cultivation of LNCaP in steroid-free conditions, and LN-Pre
and LN-REC4were established from LNCaP inoculated in intact and castrated severe combined immunodeficient
mice, respectively. Uptake and competitive inhibition experiments were performed with trans-1-amino-3-
fluoro[1-14C]cyclobutanecarboxylic acid ([14C]fluciclovine) to characterize the involvement of AATs in

androgen-dependent PCa (LNCaP and LN-Pre) and CRPC-like (LNCaP-SF and LN-REC4) cell lines. AAT expression
was analyzed by Western blotting, and [14C]fluciclovine uptake in androgen-dependent PCa and CRPC-like cell
lines were investigated in the presence or absence of dihydrotestosterone (DHT).
Results: The contribution of Na+-dependent AATs to [14C]fluciclovine uptake in all cell lines was 88−98%, and
[14C]fluciclovine uptake was strongly inhibited by L-glutamine and L-serine, the substrates for Na+-dependent
alanine-serine-cysteine (system ASC) AATs, in the presence of Na+. DHT enhanced ASCT2 expression in
LNCaP, LN-Pre, and LN-REC4, but not in LNCaP-SF, and the responses of ASCT2 expression to DHT correlated
with [14C]fluciclovine uptake.
Conclusions: System ASC, especially ASCT2, could play a major role in [14C]fluciclovine uptake into CRPC-like and
androgen-dependent PCa cells, suggesting [18F]fluciclovine-PET is applicable to the detection of CRPC as well as
androgen-dependent PCa.
Advance in knowledge: [18F]fluciclovine-PET may be applied for the detection of CRPC.
Implication for patient care: [18F]fluciclovine-PET may permit early intervention for CRPC treatment.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Formore than 40 years since Huggins et al. published their study [1],
androgen and androgen receptor (AR) signaling have been considered
key regulators of carcinogenesis and progression of prostate cancer
(PCa) [2]. In primary PCa, cancer cell proliferation depends on andro-
gens secreted from the testis and adrenal glands. Chemical castration
di-Physics Co., Ltd., Sodegaura,
targeting androgens and androgen receptor (AR), known as androgen
deprivation therapy (ADT), is often chosen in locally advanced PCa as
well as metastatic PCa [3], and therapeutic efficacy is monitored by
serum prostate-specific antigen (PSA). Although ADT is a standard
treatment, more than half of PCa patients develop castration-resistant
prostate cancer (CRPC), an acquired androgen-independent behavior,
within several years. CRPC is one of the most aggressive recurrent PCa
types and often has poor prognosis [4]. Preclinical studies using
androgen-independent LNCaP sublines [5] demonstrated the associa-
tion between CRPC progression and androgen-dependent mechanisms
(e.g. AR overexpression, AR mutation, AR-hypersensitive variants,
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alteration of intratumor androgen metabolism) as well as androgen-
independent pathways (e.g. growth factor, cytokine) [6]. Therefore,
the characteristics of CRPCmay shift in response to the surrounding en-
vironment. Various drugs targeting androgens andARhave been proven
effective in CRPC patients (e.g. enzalutamide [7] and abiraterone [8]). It
is believed that AR signaling remains after PCa converts to CRPC [9].

Diagnostic imaging techniques such as SPECT and PET are useful
tools for detection of PCa [10]. For example, tracers such as [111In]
capromab pendetide [11], [11C]/[18F]-labeled choline [12,13], and
[11C]acetate [14] are used to detect PCa. trans-1-Amino-3-[18F]
fluorocyclobutanecarboxylic acid ([18F]Fluciclovine, also known as
anti-[18F]FACBC) is a synthetic leucine-analog amino acid PET tracer
that accumulates in PCa cells [15]. A phase I clinical trial of [18F]
fluciclovine in Japan demonstrated the favorable pharmacokinetics for
PCa detection such as slow excretion in urine and high stability [16].
In several studies, [18F]fluciclovine detected PCa lesions including pri-
mary PCa [17], local recurrence after radical prostatectomy [15], and
metastasis in pelvic lymph nodes and bone [15,18,19]. These results
suggest that [18F]fluciclovine is a useful PET tracer for the initial staging
and restaging of PCa patients.

[18F]Fluciclovine accumulation is mediated by two neutral amino
acid transporters (AATs), Na+-dependent system ASC transporters (es-
pecially ASCT2), and Na+-independent system L transporters (especial-
ly LAT1), which are upregulated in various cancers including PCa
[20–22] and are thought to be involved in fluciclovine uptake into pros-
tate cancer cells [23,24]. Moreover, the affinity of fluciclovine for human
ASCT2 is similar to that of natural neutral amino acids such as L-alanine
and L-serine [25]. We have also demonstrated that androgen enhances
ASCT2 expression, while bicalutamide, an anti-androgen drug, inhibits
androgen-induced ASCT2 expression in an androgen-sensitive cell
line, LNCaP [26]. The responses of ASCT2 to androgen and bicalutamide
correlate with trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic
acid ([14C]fluciclovine, also known as anti-[14C]FACBC) uptake [26].
These results suggest that changes in fluciclovine accumulation in PCa
might reflect changes in AAT expression and amino acid requirements
in androgen-dependent PCa cells.

Although a number of preclinical studies of PCa have been conduct-
ed, the relationship between AAT expression and [18F]fluciclovine up-
take in CRPC cells has not been addressed. If AR-related signaling
remains intact in CRPC cells, [18F]fluciclovine might be used to detect
CRPC, because ASCT2 expression is regulated by androgen [26,27]. In
this study, we investigated the uptake mechanisms of [14C]fluciclovine
through AATs in CRPC-like cells, and considered the feasibility of [18F]
fluciclovine in CRPC diagnosis.

2. Materials and methods

2.1. Reagents and radioisotope-labeled tracers

All reagents were purchased from commercial suppliers (Wako Pure
Chemical Industries, Osaka, Japan; Sigma-Aldrich Japan, Tokyo, Japan;
and Nacalai Tesque, Kyoto, Japan) unless otherwise described.

The 14C-labeled tracer was used because its long half-life
(5,700 years) makes it more convenient for in vitro experiments than
18F (110 min). [14C]fluciclovine (2.09 GBq/mmol) was synthesized
[23] by Sekisui Medical (Tokyo, Japan). The radiochemical purity was
confirmed by thin-layer chromatography, and found to be N95%.

2.2. Cell culture

LNCaP cells were obtained from the American Type Culture Collec-
tion (ATCC, Manassas, VA). The LNCaP-derived sublines (LNCaP-SF,
LN-Pre, and LN-REC4) were established and cultured as described [5].
Briefly, LNCaP-SF cells, maintained in steroid-free media in vitro, prolif-
erate only in androgen ablation conditions, but PSAmRNAwas induced
in the presence of dihydroteststerone (DHT) in a concentration-
dependent manner. LN-Pre and LN-REC4 cells, which were developed
in intact and castrated severe immunodeficient mice, exhibit
androgen-sensitive PSA expression and cell growth [5].

2.3. Uptake study

Uptake experiments were performed as described [28] with minor
modifications. Cells (5×104 per well) were suspended in medium and
seeded in 24-well flat-bottom tissue culture plates (Becton Dickinson,
East Rutherford, NJ). After 3 days, cells were washed twice with sodium
buffer (140mMNaCl, 5mMKCl, 5.6mMD-glucose, 0.9mMCaCl2, 1mM
MgCl2, and 10 mM HEPES, pH 7.3 at 37 °C) or choline buffer (sodium
chloride was replacedwith an equivalent concentration of choline chlo-
ride), and then incubated with [14C]fluciclovine at a final concentration
of 10 μM for 5, 15, 30, and 60min at 37 °C in air. Uptake was stopped by
removing the tracer solution and rapidly washing the cells twice with
ice-cold buffer. The cells were lysed in 0.1 N NaOH, and radioactivity
was measured with a Tri-Carb 2910TR liquid scintillation counter
(PerkinElmer, Waltham, MA) and Ultima Gold (PerkinElmer). The pro-
tein concentration of the cell lysate was determined with a VersaMax
microplate reader (Nihon Molecular Device K.K., Osaka, Japan) using
the BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA).
Tracer uptake is expressed as nmol/mg protein.

2.4. Competitive inhibition uptake study

Experimental procedures were performed as described [28]. Briefly,
after cells were cultured in 24-well flat-bottom tissue culture plates, they
were incubated in sodium or choline buffer containing 10 μM [14C]
fluciclovine for 5min at 37 °C in air in the presence or absence of 2mM in-
hibitors. Synthetic and natural amino acids were used as inhibitors: 2-
aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH; for system L in the
absence of Na+); 2-(methylamino)-isobutyric acid (MeAIB; for system A,
IMINO and PAT in the presence of Na+); N-ethylmaleimide (NEM; for sys-
temy+ and LAT2/3/4 in the absence of Na+); L-glutamine (Gln; for system
A, ASCT2, B0, N, y+L, L, and B0,+ in the presence of Na+); L-serine (Ser; for
system A, ASCT1/2, B0, N, y+L, asc, L and B0,+ in the presence of Na+).

[14C]Fluciclovine uptake in sodium and choline buffers without in-
hibitors was normalized to 100%, and the inhibitory effects of synthetic
and natural amino acids on [14C]fluciclovine uptakewere calculated as a
percentage of the control in each buffer.

2.5. Western blotting

After cells were lysed in lysis buffer (Cell Signaling Technology
Japan, Tokyo, Japan) according to manufacturer protocols, 10 μg total
proteinwas loaded in Any-kDPROTEAN TGXprecast gels (Bio-Rad, Her-
cules, CA) and transferred to PVDF membrane using Transblot Turbo
(Bio-Rad). The membranes were incubated in ImmunoBlock (DS
Pharma biomedical, Osaka, Japan) for 60 min at room temperature
and then incubated with primary antibodies overnight at 4 °C as fol-
lows: rabbit anti-ASCT2 (D7C12) monoclonal antibody (1:1000, Cell
Signaling Technology Japan); rabbit anti-androgen receptor pAb (ChIP
grade, 1:2000; Abcam, Cambridge, MA); goat anti-actin pAb (C-11)
(1:5000, Santa Cruz Biotechnology, Santa Cruz, CA). The next day, the
membranes were washed three times (10 min each) with Tris-
buffered saline containing 0.1% Tween-20 (TBS-T). Then, membranes
were incubated with anti-rabbit or anti-goat secondary antibody conju-
gated to horseradish peroxidase (1:10000, Sigma-Aldrich, St. Louis,MO)
for 60 min at room temperature. After washing three times with TBS-T,
proteins were detected with ECL Prime detection reagent (GE
Healthcare Japan, Tokyo, Japan) then chemiluminescence was devel-
oped using Hyperfilm ECL (GE Healthcare Japan), Hi-Rendol, and Hi-
Renfix solution (FUJIFILM, Tokyo, Japan). The protein concentration of
the cell lysate was determined as described in Section 2.3. The molecu-
lar mass of each protein band was determined according to the
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manufacturer's product information sheet. Band density was quantitated
using ImageJ 1.42 software (National Institutes of Health, Bethesda, MD),
and each density ratio was normalized to the loading control (actin).

2.6. Flow cytometry

Experiments were performed as described elsewhere [24], withminor
modifications. Cells were fixed in 90% methanol with Ca2+/Mg2+-free
phosphate-buffered saline for 30 min on ice. Then, the fixed cells were
suspended in 0.1% Triton X-100 dissolved in Ca2+/Mg2+-free HBSS with
0.5% (w/v) bovine serum albumin and 0.5 mM ethylenediaminne
tetraacetic acid for 15 min on ice for permeation of the membrane. This
step was followed by immunostaining with anti-ASCT2 primary antibody,
(which recognizes the intracellular epitope, described in Section 2.5)
for 30 min on ice. Then, the cells were stained with phycoerythrin
(PE)-labelled goat anti-rabbit secondary antibody for 30 min on ice.
Rabbit monoclonal antibody (DA1E) IgG (Cell Signalling Technology
Japan) was used as isotype control. Data were acquired using a
FACSCalibur flow cytometer (Becton Dickinson) and analyzed with
WinMDI 2.8 software (The Scripps Institute).

2.7. Dihydrotestosterone (DHT) exposure

Cells were suspended in DMEM with 5% Charcoal/Dextran-treated
FBS (CSS; Thermo Fisher Scientific) and seeded in 6-wellflat-bottom tis-
sue culture plates (5×105 perwell). The following day, DHT dissolved in
dimethylsulfoxide (DMSO) was added to each well and incubated for
three days (final concentration of DHT: 10 nM, DMSO: 0.1%). The con-
trol cells were treated with DMSO without DHT at the same concentra-
tion. Exposure conditions including the final concentration of DHT and
incubation time were determined based on the alteration of ASCT2
mRNA expression in response to DHT in LNCaP as measured by PCR
(data not shown). The uptake experiment (uptake buffer, sample prep-
aration, and measurement of protein concentration) was conducted as
described in Section 2.3.

2.8. Data and statistical analysis

All data are presented as the mean±standard deviation (SD). Statis-
tical analyseswere performed in SAS software version 5.0 (SAS Institute
Japan, Tokyo, Japan) using the two-tailed unpaired t-test or Dunnett's
multiple comparison tests. Pb0.05 was considered significant.
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Fig. 1. (A) Time-course of total [14C]fluciclovine uptake into PCa (LNCaP and LN-Pre) and CRPC-
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3. Results

3.1. Comparison of [14C]fluciclovine uptake between androgen-dependent
PCa and CRPC-like cell lines

We compared [14C]fluciclovine uptake in androgen-dependent PCa
(LNCaP and LN-Pre) and CRPC-like (LNCaP-SF and LN-REC4) cell lines.
As shown in Fig. 1A, total [14C]fluciclovine uptake did not significantly
differ between androgen-dependent PCa and CRPC-like cell lines, ex-
cept between LN-Pre and LN-REC4 cells. The uptake of LNCaP, LNCaP-
SF, LN-Pre, and LN-REC4 was as follows: 2.5±0.5, 2.4±0.3, 2.1±0.5,
and 2.6±0.4 nmol/mg protein at 5 min; 6.4±1.2, 6.0±0.9, 5.4±1.2,
and 6.7±1.0 nmol/mg protein at 15 min; 8.5±1.8, 9.6±1.4, 7.5±1.4,
and 9.7±1.4 nmol/mg protein at 30 min; and 10.1±2.7, 12.2±1.6, 9.6
±2.2, and 12.1±1.7 nmol/mg protein at 60 min, respectively. The con-
tribution of Na+-dependent AATs to [14C]fluciclovine uptake was 88−
98% of total uptake of [14C]fluciclovine in all cell lines; the contribution
of Na+-independent AATs to [14C]fluciclovine uptake was minimal
(2–12%), although Na+-independent [14C]fluciclovine uptake in
LNCaP-SF was substantially higher than in other cell lines (Fig. 1B).
These results suggest Na+-dependent AATs are largely involved in
[14C]fluciclovine uptake into LNCaP and its derivative sublines, regard-
less of androgen responsiveness.
3.2. Competitive inhibition of transport in [14C]fluciclovine in androgen-
dependent PCa and CRPC-like cell lines

To estimate the involvement of AATs in [14C]fluciclovine uptake into
androgen-dependent PCa and CRPC-like cell lines, competitive inhibi-
tion experimentswere performedwith natural/synthetic amino acid in-
hibitors (Fig. 2A–D). Gln and Ser strongly inhibited [14C]fluciclovine
transport in the presence ofNa+ (9–22% of control), and BCHmoderate-
ly inhibited [14C]fluciclovine uptake in choline buffer (16% of control in
LNCaP-SF, 75–84% of control in other cells). In contrast, [14C]fluciclovine
uptake was not inhibited by MeAIB in sodium buffer or by NEM in cho-
line buffer in all cell lines. As described in Section 3.1, the contribution of
Na+-independent (i.e. system L AATs-mediated) uptake for [14C]
fluciclovine in the PCa cell lines used in this studywas 12% atmost. Con-
sidering our previous reports on fluciclovine recognition [23–25], these
results suggest systems ASC, especially ASCT2, mediates fluciclovine
transport into CRPC-like cells as well as androgen-dependent PCa cells
(see Section 2.4. for the characteristics of inhibitors for AATs).
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3.3. Expression of ASCT2 in androgen-dependent PCa and CRPC-like cell
lines

Protein expression of ASCT2 andAR in androgen-dependent PCa and
CRPC-like cell lineswas analyzed byWestern blotting (Fig. 3). As shown
in Fig. 3A–B, ASCT2 expression in CPRC-like cells, especially in LNCaP-SF,
was lower than in androgen-dependent PCa cells (Pb0.01 between
LNCaP and LNCaP-SF; P=0.011 between LN-Pre and LN-REC4). In addi-
tion, the protein expression of AR was higher in LNCaP-SF cells, but
tended to decrease in LN-REC4 cells relative to that in the parental cell
lines (P=0.042 vs. LNCaP, and P=0.055 vs. LN-Pre, respectively)
(Fig. 3A–B). Furthermore, the same tendency of ASCT2 expression was
observed by flow cytometry (Fig. 3C).

3.4. Responses of ASCT2 expression to DHT in androgen-dependent PCa and
CRPC-like cell lines

ASCT2 expression in response to DHTwas investigated to character-
ize androgen dependency in CRPC-like cell lines. DHT enhanced ASCT2
expression 2.8-fold in LNCaP, 2.2-fold in LN-Pre, and 1.7-fold in LN-
REC4, but was unaltered in LNCaP-SF cells (Fig. 4A–B).

Finally, we investigated the effect of DHT on [14C]fluciclovine uptake
in androgen-dependent PCa and CRPC-like cell lines. [14C]Fluciclovine
uptake tended to be lower in CRPC-like cells than in androgen-
dependent PCa (Fig. 5). Further [14C]fluciclovine uptake was increased
by DHT stimulation (1.2–1.3 fold over the controls) in LNCaP, LN-Pre,
and LN-REC4, but not LNCaP-SF cells. The uptake without and with
DHT was as follows: 8.2±0.8 and 9.6±1.5 nmol/mg protein in LNCaP
(n=9, P=0.032); 5.9±0.5 and 6.4±0.8 nmol/mg protein in LNCaP-SF
(n=12, P=0.092); 7.0±0.5 and 8.1±1.1 nmol/mg protein in LN-Pre
(n=8–9, P=0.025); and 5.9±0.2 and 7.8±0.3 nmol/mg protein in LN-
REC4 (n=8, Pb0.01), respectively. These results suggest that the alter-
ation of [14C]fluciclovine uptake correlates with the degree of ASCT2
protein expression in LNCaP, LN-Pre, and LN-REC4 cell lines.

4. Discussion

This is the first study to investigate the differences between
androgen-dependent PCa and CRPC-like cells in the context of
fluciclovine uptake, AAT involvement with inhibitors, and androgen de-
pendency in vitro.

We previously reported that Na+-dependent AATs, especially
ASCT2, mediate [14C]fluciclovine transport in androgen-dependent
PCa cells [23,24]. In the present study, total uptake of [14C]fluciclovine
and inhibition profiles was similar in CRPC-like cells and androgen-
dependent LNCaP cells under normal culture conditions (Figs. 1 and
2), suggesting that [18F]fluciclovine-PET can be used to visualize lesions
in patients with androgen-dependent PCa as well as CRPC [16,19,29].

As shown in Fig. 3, ASCT2 expression in CRPC-like cells was lower
than that in the parent cells, but the inhibition profile in the presence
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(n=3). *Pb0.05 vs. CSS.
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of Gln and Ser (Fig. 2) was almost same between parent and CRPC-like
cells. This discrepancy could be attributed to the binding sites of
ASCT2 in CRPC-like cells and their parent cells being saturated, regard-
less of the expression level, because the concentration of inhibitors
(2 mM) used in this experiment was approximately 100-times the Km
value of ASCT2 (Km value of Gln 23.8 μM, Ser 18.8 μM) [30].We also be-
lieve that Gln partially inhibited LAT1 activity in LNCaP-SF because LAT1
recognizes Gln with low affinity (Km=1.64 mM) [31]. In the case of
LNCaP-SF, ASCT2 as well as LAT1 (only slightly) may be involved in
their observation because the expression of ASCT2 did not disappear
completely. Similarly, in the case of LN-REC4, ASCT2 may be involved
in their inhibition because ASCT2 activity was strongly inhibited by
Gln/Ser because of the high concentration of the inhibitors. Furthermore,
considering substrate recognition, we suggest that not only ASCT2 but
also other sodium-dependent AATs, such as system N, may contribute
to fluciclovine uptake in CRPC-like cells because Gln and Ser are also sub-
strates of SNAT5 [24]. Another possible explanation for this could be that
post-translational modifications of ASCT2, such as glycosylation level
[32] and interactionwith scaffold protein [33], may control the transport
function of ASCT2. Although there are some discrepancies between our
results and the characteristics of each cell line, we believe the molucular
mechanisms revealed here could be beneficial for future research pro-
jects because several mechanisms including androgens, growth factors,
and/or cytokines are thought to be involved in CRPC progression [5].

ASCT2 expression is upregulated in various tumors [34], and andro-
gen regulates ASCT2 expression as well as cell growth [26]. Clinical
reports suggest ASCT2 expression decreases gradually with PCa
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Fig. 5. The effect of androgen on [14C]fluciclovine uptake over 5min in PCa (LNCaP and LN-
Pre) and CRPC-like (LNCaP-SF and LN-REC4) cells. Cells were incubated in steroid-free
media (CSS) for 24 h, and then in CSS without DHT (white bar) or with DHT (black bar)
for 72 h. Each value represents the mean±SD (n=8–12).*Pb0.05 vs. CSS.
progression from normal prostate to primary PCa, to PCa with ADT.
Moreover, ASCT2 expression in CRPC is maintained as it is in PCa with
ADT [27,35]. Our results support this observation: ASCT2 expression
gradually decreased with increasing androgen independency, i.e.
LNCaP (androgen-dependent PCa) N LN-REC4 (androgen-dependent
CRPC-like) N LNCaP-SF (androgen-independent CRPC-like). In addition,
[14C]fluciclovine uptake correlated with ASCT2 expression in the
androgen-dependent PCa and CRPC-like cells in the absence of andro-
gen, mimicking ADT (Figs. 4 and 5). These results suggest that [18F]
fluciclovine-PET reflects the androgen-sensitivity of PCa and is useful
for monitoring tumor response to therapy in patients with androgen-
dependent PCa and in CRPC patients treated with alternative anti-
androgen therapy [36] or second generation anti-androgen drugs [7,8].

Wang et al. [37] reported an inverse relationship between LAT1 and
LAT3 gene expression during the progression fromprimary PCa to CRPC.
To apply their putative scheme to our study, ASCT2 and LAT3 expression
is stimulated by androgen signaling in androgen-dependent PCa, and
the mammalian/mechanistic target of rapamycin (mTOR) pathway is
activated by the intracellular abundance of leucine and glutamine,
transported by LAT3 and ASCT2, respectively. In contrast, ADT would
suppress LAT3 and ASCT2 expression in the primary PCa, leading to in-
activation of mTOR due to a shortage of intracellular leucine and gluta-
mine [37]. The activated transcription factor-4 (ATF4) then upregulates
LAT1 expression, followed by restoration of intracellular leucine [37]. As
a result, mTOR signaling is restored and the PCa cells recur as a CRPC.
AAT expression is also related to the cancer microenvironment in inter-
esting ways. Intratumoral cell density generally increases with tumor
progression, and the transport activity of system ASC, but not of system
L, decreaseswith increasing cell density [38].We recently demonstrated
that [18F]fluciclovine accumulation is positively correlated with cell
density in a rat glioma model [39]. In addition, the pH in progressive
tumor tissue is comparatively acidic [40], and the transport activities
of [14C]fluciclovine by Na+-dependent AATs including system ASC are
diminished, whereas the activity of Na+-independent AATs including
system L increased under low pH conditions [24]. Thus, the contribution
of Na+-independent AATs for [18F]fluciclovine in CRPC may increase in
the PCa microenvironment. As also shown in Fig. 2B, LNCaP-SF will be
the more suitable CRPC model for proving the mechanism of [18F]
fluciclovine uptake because the contribution of LAT1 increases with in-
creasing malignancy [21,22,37]. If our hypothesis and the proposal of
Wang et al. are correct, [18F]fluciclovine transport is mediated by
ASCT2 during early PCa growth (e.g. androgen-dependent PCa); then,
the contribution of LAT1 gradually increases after tumor progression
(e.g. CRPC) because ASCT2 and LAT1 recognize fluciclovine [23–25]. If
so, [18F]fluciclovine-PET could be a feasible PET tracer for detecting all
stages of PCa progression. Further investigation is needed to assess the
clinical application of these findings in CRPC patients.
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5. Conclusion

System ASC, especially ASCT2, probably determine [18F]fluciclovine
uptake into CPRC-like as well as androgen-dependent PCa cells, sug-
gesting that [18F]fluciclovine-PET is useful for detection of CRPC as
well as androgen-dependent PCa.
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