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Abstract 4 

 5 

Purpose: To evaluate the therapeutic effect of adipose-derived regenerative cell (ADRC) 6 

administration on tendon-bone healing in a rabbit ACL reconstruction model. 7 

Methods: Anterior cruciate ligament (ACL) reconstruction with semitendinosus tendon autograft 8 

was performed on the right knees of adult white rabbits. Eighty rabbits were divided into 2 groups: 9 

a treatment group, in which the graft was coated with ADRCs mixed in fibrin glue carrier during 10 

surgery, and a control group, in which the graft was coated with fibrin glue only. At 2, 4, 6, 8, and 12 11 

weeks postoperatively, 8 rabbits were sacrificed in each group. Three were used for histological 12 

evaluation at the tendon-bone interface, and 5 for biomechanical examination. 13 

Results: In histological analysis, chondroid cells appeared more orderly and more regular in size 14 

and shape, and Sharpey-like fibers, which connected the tendon graft and bone tissue, appeared 15 

earlier in ADRC-treated tissues than in control tissues. In biomechanical analysis, the ultimate 16 

failure load in the ADRC-treated group was significantly greater than that in the control group at 2 17 

and 4 weeks (29.5 ± 7.2 N vs. 20.9 ± 2.7 N; P = .016 and 32.3 ± 3.9 N vs 22.8 ± 5.4 N; P = .016, 18 

respectively). Stiffness was significantly higher in the ADRC-treated group than in the control 19 

group at 6 weeks (21.7 ± 5.9 N/mm vs. 12.6 ± 4.9 N/mm; P = .037). Although the ultimate failure 20 

load and stiffness of the ADRC-treated limb was higher than that of the limb in the control group at 21 

8 and 12 weeks, these differences were not significant. 22 

Conclusions: Local administration of ADRCs promoted the early healing process at the tendon-bone 23 

junction, both histologically and mechanically, in the rabbit ACL reconstruction model. 24 

Clinical Relevance: ADRCs could be used to enhance graft healing in ACL reconstruction. 25 

26 
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Introduction 27 

 28 

Autologous tendon grafts are currently popular for anterior cruciate ligament (ACL) reconstruction. 29 

Secure healing between tendon and bone is necessary for successful ACL reconstruction. However, 30 

tendon-bone healing occurs slowly, which can limit early return to sports activities. Several studies 31 

have shown that tendon-bone healing occurs more slowly than bone-to-bone healing,1-3 which raises 32 

concerns regarding the adhesive strength between tendon graft and bone tunnels and the 33 

subsequent risk of graft failure. Interventions that can improve and accelerate tendon-bone healing 34 

could potentially reduce the rate of graft failure and allow for early aggressive rehabilitation. 35 

 36 

Adipose tissue has been gaining attention as a promising source of undifferentiated mesenchymal 37 

stem cells. Adipose-derived regenerative cells (ADRCs) have multilineage potential equivalent to 38 

bone marrow-derived stem cells and can be easily obtained in large amounts from subcutaneous 39 

adipose tissue without the need for culture and expansion.4,5 Although a number of reports have 40 

been published regarding clinical applications of ADRCs,6-16 we are unaware of any study 41 

investigating ADRCs for their potential benefit in enhancing tendon graft healing in a bone tunnel. 42 

The aim of this study was to evaluate the therapeutic effect of ADRC administration on 43 

tendon-bone healing in a rabbit ACL reconstruction model. We hypothesized that ADRC 44 

administration at the tendon-bone interface may promote the healing between tendon graft and 45 

bone tunnel. 46 

  47 
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Methods 48 

 49 

Experimental Design 50 

Eighty-two female Japanese white rabbits (age, 15-17 weeks) weighing between 3.0 and 3.5 kg were 51 

used in this study. Because of the unified standards, we integrated the sex of the animals. We did 52 

not especially mean anything by selecting female rabbits. ACL reconstruction with a 53 

semitendinosus tendon autograft was performed on the right knee. Eighty animals were randomly 54 

divided into 2 groups, and the remaining 2 were used for tracing of ADRCs. In the treatment group, 55 

the graft was coated with ADRCs mixed in fibrin glue carrier during surgery. In the control group, 56 

the graft was coated with fibrin glue only. The animals in both groups were divided into five 57 

subgroups and killed at 2, 4, 6, 8, and 12 weeks postoperatively; thus, 8 animals per group were 58 

sacrificed at each time point after surgery, at which time femur-graft-tibia complexes were 59 

harvested for histological and biomechanical evaluations. In all subgroups, 5 of the 8 rabbits were 60 

used for biomechanical evaluation, and the remaining 3 were used for histological observation. The 61 

animal experiments were conducted with the approval of the Institutional Animal Care and Use 62 

Committee and carried out in strict accordance with its regulations. 63 

 64 

ADRC Preparation 65 

ADRCs were isolated by modifying a previously established method.17,18 Adipose tissue (1.5 g) of 66 

female rabbits that were not included in the study was harvested from the adipose tissue pouch on 67 

the interscapular region located along the dorsomedial line, nearly 5 cm from the skull in the 68 

craniocaudal direction, and then washed with phosphate-buffered saline (PBS, Wako, Osaka, 69 

Japan). The tissue was cut into strips over a period of 5 min. Collagenase (Wako) was dissolved in 70 

PBS for a concentration of 0.12% in 20 ml and used to digest adipose tissue at 37°C for 45 min in a 71 

water bath. The mixture was shaken every 15 min during the digestion period. Immediately after 72 

the reaction was completed, 20 mL of Dulbecco’s modified Eagle’s medium (DMEM, Wako) was 73 

added, and collagenase activity was neutralized. The resulting solution was filtered. The filtrate 74 
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was centrifuged at 1300 rpm for 6 min at 25°C, and the supernatant was removed. The pellet of 75 

ADRCs was subsequently administered at the tendon-bone junction. Approximately 1 × 105 cells 76 

were included in this pellet. 77 

 78 

Surgical Procedure 79 

Surgery was performed in accordance with the Guide for the Care and Use of Laboratory Animals 80 

published by the US National Institutes of Health (NIH publication no. 85-23, revised 1996). The 81 

animals were operated on under general anesthesia with subcutaneous injection of xylazine (5 82 

mg/kg body weight; Bayer, Tokyo, Japan), and sedation was maintained by intravenous injection of 83 

2.5% sodium phenobarbital (Kyoritsu Pharmaceutical, Tokyo, Japan). Using an aseptic technique, 84 

we approached the right knee joint through a medial parapatellar incision. The semitendinosus 85 

tendon was identified and transected at its musculotendinous junction, and the graft was prepared 86 

by removing the attached muscle and passing the holding sutures through each end of the tendon 87 

graft. The original ACL was resected, and then tunnels (2.0 mm in diameter) were drilled in the 88 

lateral femoral condyle and the medial aspect of the tibia at the footprint of the original ACL. The 89 

graft was routed through the tunnels, and then the previously mentioned materials were injected 90 

onto the interface between the grafted tendon and the bone tunnel. In the ADRC group, 0.2 ml of 91 

fibrin glue containing ADRCs was injected. On the other hand, in the control group, an equal 92 

amount of fibrin glue only was injected onto the interface. In the 2 animals used for tracing of 93 

ADRCs, the equal amount of fibrin glue containing ADRCs labeled with 94 

1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI) was injected. After the 95 

injection, both graft ends were secured under tension to the neighboring soft tissue with 2-0 96 

Ethibond suture (Ethicon, Somerville, New Jersey). The incision was closed at each layer in a 97 

standard fashion. Postoperatively, the limbs were not immobilized, and the animals were allowed 98 

normal activity in individual cages. At each time point after surgery, the animals were sacrificed 99 

with an overdose of intravenous pentobarbital after general anesthesia. 100 

 101 
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Histological Evaluation 102 

At the time the animals were killed, the entire joint including the femoral and tibial bone tunnels 103 

was harvested. For histological observation, tissues were fixed in 10% formalin, and conventional 104 

paraffin-embedded sections were prepared. The samples were cut into 5-μm-thick sections 105 

longitudinal to the bone tunnels in the femur and tibia and stained with hematoxylin and eosin 106 

(H&E) for the examination of healing at the interface between the tendon graft and bone tunnel 107 

under light microscopy. Bone-tendon healing was graded in a semiquantitative manner with a scale 108 

from 0 (worst) to 8 (best) using a modified version of the histological scoring system of Nakase et 109 

al.19 based on new tissue formation at the interface and graft remodeling (Table 1). The two sections 110 

of each specimen were graded by two investigators (J.N., K.H.) in a blinded fashion, and the mean 111 

histologic scores of the two observers were determined as the final results to minimize sampling 112 

error and misinterpretation. 113 

 114 

ADRC Labeling 115 

In the 2 animals used for tracing of ADRCs, cells were labeled with DiI (Vybrant® DiI Cell Labeling 116 

Solution; Life Technologies, Carlsbad, CA, USA) and transplanted to confirm the survival potential 117 

and location of transplanted ADRCs. DiI binds to cellular thiols and has long-term stability, which 118 

enables the tracing of DiI-labeled transplanted cells in the host tissue. Two weeks after injection of 119 

labeled cells, the rabbits were euthanized, and frozen sections were prepared in the longitudinal 120 

plane. The presence of Dil-labeled cells in the bone tunnel was then observed using a fluorescence 121 

microscope. 122 

 123 

Biomechanical Evaluation 124 

At the time of each animal’s death, the femur and tibia were sectioned 5 cm from the knee joint. In 125 

addition, 5 knees of normal rabbits were evaluated to obtain the structural biomechanical 126 

properties with intact ACLs. All soft tissues around the knee were carefully removed except for the 127 

tendon graft connecting the 2 bones. The suture material used to secure the grafts during surgery 128 
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was also disturbed. Each specimen was stored at -80°C until testing. Before mechanical testing, 129 

each knee was thawed overnight at 4°C. The femur and tibia were separately mounted in 130 

cylindrical aluminum tubes using polymethylmethacrylate resin. During all preparations and 131 

testing, specimens were kept moist with saline spray. These samples were mounted on an 132 

electromechanical testing machine (Legacy 4482, Instron, Kanagawa, Japan), and all mechanical 133 

testing was conducted by one investigator (M.K.). Each femur-graft-tibia complex was mounted in a 134 

custom jig to ensure that the tensile load could be applied along the longitudinal axis of both the 135 

femoral and tibial tunnels. The femur-graft-tibia complex was applied with a preload of 1 N for 30 136 

seconds, and the specimen was cycled 5 times between elongation limits of 0 and 0.75 mm at a rate 137 

of 2 mm/min. A tensile force was applied at a constant elongation rate of 20 mm/min. The ultimate 138 

load at the point of failure was recorded. The stiffness was calculated from the slope of the linear 139 

region of the load-displacement curve. Furthermore, the site of failure, either by pullout of the 140 

tunnel or midsubstance graft rupture, was determined by gross examination. 141 

 142 

Statistical Analysis 143 

The semiquantitative histological scores, mean ultimate failure load, and stiffness between 144 

treatment and control groups were compared using the Mann-Whitney U test. The inter-observer 145 

reliability was assessed by kappa () statistic, and agreement in percentage was calculated. The 146 

Mann-Whitney U test was also used for the comparison of biomechanical properties at different 147 

time points within each group. The failure patterns of the femur-graft-tibia complex shown by the 148 

biomechanical testing were analyzed with the Fisher exact test. Differences were considered 149 

statistically significant at P < .05. 150 

  151 
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Results  152 

 153 

In this study, except minor redness and swelling at the reconstructed knee, there were no 154 

premature deaths, nor were there any serious joint infections on postmortem examination of the 155 

knees. All of the animals were euthanized at the planned times. 156 

 157 

Histological Analysis 158 

The adhesion of tendon to bone was analyzed histologically during the 12 weeks after treatment. At 159 

2 weeks after surgery, in the control group, light microscopic examination revealed inflammatory 160 

response around the autografts and a highly cellular, vascular, and fibrous tissue infiltrating the 161 

interface (Fig 1A). Poorly organized and sparse collagen fibers appeared at the interface of the bone 162 

and the tendon graft. At 2 weeks in the ADRC-treated group, fibrovascular tissue appeared better 163 

organized, and cartilaginous tissue had appeared (Fig 1B). At 4 weeks, loose connective tissue 164 

characterized by directionally arranged collagen fibers was seen in fibrovascular tissue, and large 165 

areas of fairly disorganized cartilaginous tissue were observed around the tendon-bone interface in 166 

the control group (Fig 1C). In the ADRC-treated group, the fibrovascular interface tissue became 167 

denser and better organized, and occasionally Sharpey-like fibers, which connected the tendon graft 168 

and bone tissue, appeared. In addition, the chondroid cells appeared more regular in size and shape, 169 

with more orderly laying down of chondro-osteoid matrix (Fig 1D). At 6 weeks, the area between 170 

tendon and bone was seen to become more mature, with the fibrous connective tissue and 171 

narrowing of the distance between the tendon and bone in both groups (Fig 1E,F). The chondroid 172 

cells were closely associated with surrounding tendon and bone, and fibrocartilaginous tissue was 173 

seen to gradually blend into the tendon substance especially in the ADRC-treated group (Fig 1F). At 174 

8 weeks, the interface area between tendon and bone was still a distinct entity, although it was 175 

definitely narrower in both groups (Fig 1G,H). The interface was more organized and mature in the 176 

ADRC-treated group (Fig 1H). At 12 weeks, gradual blending of fibrocartilaginous tissue into the 177 

tendon substance and occasionally mineralized fibrocartilaginous tissue appeared in the control 178 
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group (Fig 1I). In the ADRC-treated group, a gradual and smooth transition was seen from bone to 179 

mineralized fibrocartilaginous tissue, fibrocartilaginous tissue, and finally tendon (Fig 1J). 180 

Bone-tendon healing was graded in a previously described manner, and the score of both groups 181 

increased with time. For example, in one case histological appearance was scored 2 (1 based on graft 182 

remodeling and 1 based on new tissue formation at the interface) at 2 weeks (Fig 1A), and scored 6 183 

(2 based on graft remodeling and 4 based on new tissue formation at the interface) at 8 weeks (Fig 184 

1G). The semiquantitative score of tendon-bone healing quality was significantly higher in the 185 

ADRC-treated group than in the control group at 2, 4, and 6 weeks postoperatively (all P < .05) 186 

(Table 2). The percentage of agreement and  for inter-observer reliability were 78.3 and 0.737, 187 

respectively. 188 

 189 

ADRC Labeling 190 

The distribution of DiI-positive (red) areas was detected at 2 weeks after transplantation (Fig. 2). 191 

DiI labeling suggested that the transplanted cells had survived and were localized to the site where 192 

they were transplanted at 2 weeks post-transplantation. The transplanted cells survived up to at 193 

least 2 weeks after transplantation, with some cells being focally distributed in the bone tunnel. 194 

 195 

Biomechanical Analysis 196 

Fifty limbs were analyzed after ACL reconstruction. The ultimate failure load of the 2 groups 197 

increased with time. The ADRC-treated limb generally had a greater failure load than the limb in 198 

the control group. There were significant increases between the ADRC-treated group and the 199 

control group at 2 weeks (29.5 ± 7.2 N and 20.9 ± 2.7 N, respectively; P = .016) and 4 weeks (32.3 ± 200 

3.9 N and 22.8 ± 5.4 N, respectively; P = .016). Although the ultimate failure load of the 201 

ADRC-treated limb was higher than that of the limb in the control group at 6 weeks (34.2 ± 5.3 N 202 

and 26.6 ± 5.9 N, respectively; P = .076), 8 weeks (43.7 ± 17.5 N and 36.5 ± 15.1 N, respectively; P 203 

= .076), and 12 weeks (61.0 ± 18.5 N and 57.2 ± 12.5 N, respectively; P = .754), the difference was 204 
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not significant (Fig 3). The within-group analysis showed significant differences between 2 weeks 205 

and 12 weeks, 4 weeks and 12 weeks, and 6 weeks and 12 weeks in the ADRC-treated group, and 206 

between 2 weeks and 8 weeks, 2 weeks and 12 weeks, 4 weeks and 8 weeks, 4 weeks and 12 weeks, 207 

6 weeks and 12 weeks, and 8 weeks and 12 weeks in the control group (P = .016, P = .016, P = .016, 208 

P = .009, P = .009, P = .016, P = .009, P = .009 and P = .047, respectively). The ultimate failure loads 209 

of the limbs in both ACL reconstructed groups were much weaker than those of intact ACLs (273.1 210 

± 27.3 N) (P < .001). 211 

 212 

The stiffness in the ADRC-treated group was significantly higher than that in the control group at 6 213 

weeks (21.7 ± 5.9 N/mm and 12.6 ± 4.9 N/mm, respectively; P = .037). There were no significant 214 

differences in stiffness between the groups at 2 weeks (15.4 ± 8.1 N/mm and 11.5 ± 2.9 N/mm, 215 

respectively; P = .465), 4 weeks (17.2 ± 8.0 N/mm and 13.9 ± 5.6 N/mm, respectively; P = .917), 8 216 

weeks (23.3 ± 13.6 N/mm and 17.3 ± 12.3 N/mm, respectively; P = .076), and 12 weeks (30.2 ± 12.7 217 

N/mm and 26.8 ± 11.1 N/mm, respectively; P = .917) (Fig 4). The within-group analysis showed 218 

significant differences between 2 weeks and 12 weeks in the ADRC-treated group, and between 2 219 

weeks and 8 weeks, 2 weeks and 12 weeks, and 6 weeks and 12 weeks in the control group (P = .047, 220 

P = .046, P = .047 and P = .047, respectively). 221 

 222 

At 2 and 4 weeks, all tendons were pulled away from the bone tunnel at the failure point. At 6 223 

weeks, 1 of the 5 ADRC-treated limbs failed by rupture in the midsubstance of the tendon, while all 224 

of the control limbs failed by tendon pullout from the bone tunnel. At 8 weeks, 1 each of the 5 225 

ADRC-treated limbs and control limbs failed by rupture in the midsubstance. At 12 weeks, 3 of 5 226 

ADRC-treated limbs and 2 of 5 control limbs failed by rupture in the midsubstance. Fisher exact 227 

test showed no significant difference between the rates of pullout in the ADRC-treated and control 228 

limbs in each time point and overall. 229 

  230 
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Discussion 231 

 232 

This study demonstrated that local administration of ADRCs has the potential to promote healing 233 

at the tendon-bone interface, both histologically and mechanically, in a rabbit model of ACL 234 

reconstruction. Histological maturation occurred earlier, and the semiquantitative score of 235 

tendon-bone healing quality at 2, 4, and 6 weeks postoperatively was significantly higher in 236 

ADRC-treated tissues than in control tissues. Biomechanical properties were significantly better in 237 

the ADRC-treated group than the control group at 2 and 4 weeks after surgery in terms of the 238 

ultimate failure load. 239 

 240 

Several investigators have demonstrated positive effects of stem cells on tendon-bone healing. Lim 241 

et al.20 reported that coating of tendon grafts with mesenchymal stem cells (MSCs) in ACL 242 

reconstruction promoted healing by the formation of an intervening zone of cartilage resembling the 243 

chondral enthesis of the normal ACL insertion. They also found that MSC-enhanced 244 

reconstructions demonstrated significantly higher failure load and stiffness than controls on 245 

biomechanical tests in rabbits. Similarly, Soon et al.21 reported that MSCs applied at the 246 

tendon-bone interface during ACL reconstruction resulted in the development of an intervening 247 

zone of fibrocartilage and improvement in load-to-failure rates. Li et al.22 reported that bone 248 

marrow mesenchymal stem cell (BMSC) transplantation to the tendon-bone interface was shown to 249 

enhance its mechanical properties by promoting tendon-bone tunnel healing at early time points 250 

4–8 weeks after ACL reconstruction. Mifune et al.23 reported that ACL-derived stem cells 251 

contributed to the tendon-bone healing after ACL reconstruction by enhancing angiogenesis and 252 

osteogenesis, which in turn contributed to increasing biomechanical strength. Lui et al.24 reported 253 

that wrapping the ACL graft with a sheet of tendon-derived stem cells before graft insertion 254 

promoted graft healing in the early stage after ACL reconstruction radiographically, histologically, 255 

and biomechanically in a rat model. 256 

 257 
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These studies suggest that many types of stem cells can improve the tendon-bone healing process 258 

and result in better mechanical properties. However, these agents also have drawbacks to clinical 259 

use because of concerns such as donor site morbidity, limitation of the cell source, difficulty of 260 

isolating stem cells, time and effort required for ex vivo culture of stem cells and formation of a cell 261 

sheet if needed, possible side effects after transplantation in humans, and ethical considerations. 262 

 263 

The stromal vascular fraction of adipose tissue contains a mixed, multipotent population of cells, 264 

and a number of investigations have described the potential applications of adipose-derived stem 265 

cells (ADSCs).4,5,17,18,25 ADRCs are the nonbuoyant cellular fraction containing several types of stem 266 

and regenerative cells, including ADSCs, vessel-forming cells such as endothelial and smooth 267 

muscle cells and their progenitors, and preadipocytes.26 ADSCs and ADRCs could be used in 268 

regenerative medicine in various conditions.6-16 According to an in vitro study, ADSCs, similar to 269 

BMSCs, can differentiate into various cell types, including adipocytes, chondroblasts, endothelial 270 

cells, fibroblasts, myoblasts, and osteoblasts.4,5,17,25,27 On the basis of both in vitro experiments and 271 

preclinical studies, multiple reports have already been published regarding clinical applications of 272 

ADSCs and ADRCs, including beneficial results of their use in breast reconstruction.6,7 There are 273 

also reports of their use to treat ischemic cardiomyopathy,8 calvarial bone defects,9 enterocutaneous 274 

fistulas in patients with Crohn’s disease,10 and chronic ulcers caused by radiotherapy.11 Recently, 275 

various basic and applied studies on the use of ADSCs in the orthopaedic field also have been 276 

conducted.12-16 In addition, ADSCs have immunosuppressive properties that can be used to control 277 

graft-versus-host disease.28 278 

 279 

ADRCs have several advantages as a source of tissue stem cells that led us to focus on them in this 280 

study. First, autologous ADRCs can be easily isolated in large amounts from abundant and 281 

accessible subcutaneous adipose tissue. Furthermore, harvesting of ADRCs is less invasive than 282 

that of BMSCs and other stem cells, and many more stem cells can be harvested at one time.29 283 

Adipose tissue yields approximately 500-fold more stem cells than the same amount of adult bone 284 
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marrow.4,27 In addition, as mentioned above, ADRCs have already been applied in various clinical 285 

fields. For the above reasons, we have considered ADRCs a potentially efficient source for clinical 286 

applications in promoting tendon-bone healing. 287 

 288 

ADSCs have the ability not only to directly differentiate into some types of topical cells but also to 289 

indirectly facilitate the healing process by promoting the secretion of various humoral factors also 290 

called paracrine effects.30,31 In secretory protein analysis, ADSCs secrete significantly larger 291 

amounts of growth factors and inflammatory cytokines, such as vascular endothelial growth factor, 292 

hepatocyte growth factor, and interleukin 6, than BMSCs.30 ADRCs contain ADSCs, vessel-forming 293 

cells such as endothelial and smooth muscle cells and progenitors, and preadipocytes.26  294 

 295 

Limitations 296 

There are several limitations to this study. First, we chose to use a rabbit model of ACL 297 

reconstruction. This model has been validated in previous reports in the literature.3,20 However, 298 

studies using small-animal models of ACL reconstruction have inherent problems such as a wide 299 

range in biomechanical results, which was also seen in the present study.20 In addition, the healing 300 

potential of small animals is different from that of humans. Therefore, the results obtained from 301 

this animal model cannot be assumed to be directly applicable to clinical settings. More accurate 302 

and reliable results may have been achieved with the use of a larger animal model. Second, we did 303 

not conduct a histological analysis of the intra-articular portion of the graft. Although this 304 

evaluation was not included as an aim of this study, remodeling of the graft midsubstance is also an 305 

important part of graft healing and could affect the results of biomechanical analysis. The failure 306 

patterns of the femur-graft-tibia complex shown by biomechanical testing changed from pullout 307 

from the bone tunnel to rupture in the midsubstance with time. This shift could be the result of 308 

changes in the histological features of the intra-articular graft. Third, the sample size in each group 309 

was relatively small, while we studied multiple time points and thus had information on changes 310 

over time. Although the blinded nature of this study avoids biases in the assessments, the small 311 
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sample size limits the statistical rigor of the findings and efficacy conclusions of the study. Future 312 

investigations with a larger sample size at specific time periods would increase the strength of this 313 

study for a more accurate evaluation of the effects of ADRCs on tendon-bone healing. Fourth, we did 314 

not identify the proper cell concentration in the pellet and its true contents. We calculated the 315 

number of cells in the pellet using a microscope, and our result was similar to the concentration 316 

assumed from previous studies. Additionally, ADRCs are known to contain ADSCs and several 317 

other types of cells and their progenitors, as mentioned above. However, for a stricter analysis, a 318 

rigorous analysis of the pellet is necessary using indirect methods, such as flow cytometry and 319 

indirect immunofluorescence of the pellet. In addition, we did not trace labeled ADRCs over a 320 

longer period, although we confirmed that the cells implanted with the fibrin glue infiltrated into 321 

the bone-tendon interface at 2 weeks after ACL reconstruction. We are thus unable to comment on 322 

whether the healing tissue at the tendon-bone junction originated from the ADRCs themselves or 323 

from cells recruited locally. Analysis of the fate of the ADRCs is the subject of a subsequent study by 324 

our group. Fifth, we did not have a group without fibrin glue. Shoemaker et al.32 had previously 325 

examined the effects of fibrin glue on the healing of tendons to bone tunnels in the proximal tibia in 326 

dogs. In the first 2 weeks after surgery, fibrin glue appeared to speed up the organization of the 327 

fibrovascular interface, but no histological differences were visible between the two groups with or 328 

without fibrin glue at 28 days. Although biomechanical evaluation was not performed in that 329 

experiment, we believe that using a fibrin glue carrier in both the treatment and control 330 

reconstructions did not appreciably influence the outcome of our results. Sixth, the histological 331 

findings presented in this study were mainly subjective and preliminary. More objective and precise 332 

quantitative methods are needed for more accurate evaluations. Molecular biological data or 333 

immunohistological examination may also be valuable for showing the underlying mechanisms by 334 

which ADRCs aid ACL reconstruction. 335 

 336 

Conclusions 337 

Local administration of ADRCs promoted the early healing process at the tendon-bone junction, 338 
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both histologically and mechanically, in the rabbit ACL reconstruction model. 339 

  340 
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Figure Legends 424 

 425 

Fig 1. The healing process between tendon graft and bone tissue after anterior cruciate ligament 426 

reconstruction. Representative photomicrographs from the control limbs (upper row: A-E) and the 427 

adipose-derived regenerative cell (ADRC)-treated limbs (lower row: F-J) at 2, 4, 6, 8, and 12 weeks 428 

after surgery (hematoxylin and eosin, original magnification ×100). The histological maturation at 429 

the tendon-bone interface occurred earlier and was more improved in the ADRC-treated tissues 430 

than that in the control tissues, especially in the early period after surgery. (B, bone; IF, interface; T, 431 

tendon graft.) 432 

 433 

Fig 2. Serial sections of an adipose-derived regenerative cell-treated limb showing (A) histology of 434 

the tendon-bone interface at 2 weeks after surgery stained with hematoxylin and eosin (original 435 

magnification ×40) and (B) fluorescence microscopy for DiI. Dil-labeled cells at the tendon-bone 436 

interface were observed under a fluorescent microscope using frozen tissue sections. Red 437 

fluorescence indicating Dil-labeled cells was clearly visible on the tendon-bone interface at 2 weeks 438 

after surgery (original magnification ×40). (B, bone; IF, interface; T, tendon graft) 439 

 440 

Fig 3. Biomechanical properties of the femur-graft-tibia complex after anterior cruciate ligament 441 

(ACL) reconstruction. Bar charts showing the ultimate load at the point of failure of the 442 

femur-graft-tibia complex at each time frame after ACL reconstruction in the control and 443 

adipose-derived regenerative cell (ADRC)-treated groups (*P < .05). The ultimate failure load in the 444 

ADRC-treated group was significantly greater than that in the control group at 2 and 4 weeks after 445 

surgery (P = .016 and P = .016, respectively). 446 

 447 

Fig 4. Bar charts showing the stiffness of the femur-graft-tibia complex at each time frame after 448 

anterior cruciate ligament reconstruction in the control and adipose-derived regenerative cell 449 

(ADRC)-treated groups (*P < .05). The stiffness in the ADRC-treated group was significantly higher 450 
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than that in the control group at 6 weeks after surgery (P = .037). 451 

  452 
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Table 1. Scoring System for Histological Examination 453 

Histological features Points 

Graft remodeling  

None (0% of graft) 0 

Slight (<10% of graft) 1 

Fair (<25% of graft) 2 

Moderate (<50% of graft) 3 

Abundant (≥50% of graft) 4 

Interface connection / integration  

 None 0 

 No directivity of collagen fiber 1 

 Appearance of directivity of collagen fiber 2 

 Appearance of fibrocartilaginous tissue 3 

 Appearance of mineralized cartilaginous tissue 4 

NOTE. The maximum possible score is 8 points. 454 

  455 
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Table 2. Histological Scoring and Comparison between Groups 456 

Time Point ADRC-treated Control P value 

2 wk 3.8 ± 0.7 2.3 ± 0.4 .005 

4 wk 4.7 ± 0.4 3.1 ± 0.6 .005 

6 wk 5.8 ± 0.4 3.6 ± 0.8 .005 

8 wk 6.5 ± 0.5 5.8 ± 0.8 .093 

12 wk 6.9 ± 0.7 6.3 ± 0.5 .149 

NOTE. Data are given as mean ± standard deviation. 457 

 458 


