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A B S T R A C T

Gastric cancer with peritoneal dissemination has poor clinical prognosis because of the presence of rich
stromal fibrosis and acquired drug resistance. Recently, Angiotensin II type I receptor blockers such as
candesartan have attracted attention for their potential anti-fibrotic activity. We examined whether
candesartan could attenuate tumor proliferation and fibrosis through the interaction between gastric cancer
cell line (MKN45) cells and human peritoneal mesothelial cells. Candesartan significantly reduced TGF-
β1 expression and epithelial-to-mesenchymal transition-like change, while tumor proliferation and stromal
fibrosis were impaired. Targeting the Angiotensin II signaling pathway may therefore be an efficient strat-
egy for treatment of tumor proliferation and fibrosis.
© 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Gastric cancer is a major global health concern, with an estimated
989,600 new cases and more than 738,000 attributable deaths in 2011
[1]. A critical indicator for poor prognosis and the most frequent meta-
static pattern in gastric cancer is peritoneal dissemination [2–4]. While
clinical outcomes for gastric cancer patients with peritoneal dissemi-
nation have improved with advances in systemic and/or intraperitoneal
chemotherapy, desirable outcomes remain elusive [5–10]. Peritoneal
dissemination is characterized by cancer cell infiltration of and prolif-
eration within the peritoneal cavity, with accompanying extensive
stromal fibrosis [11,12]. This leads to disorders including ileus, obstruc-
tive jaundice, and hydronephrosis. Therefore, new strategies for the
treatment of tumor proliferation and fibrosis in peritoneal dissemina-
tion of gastric cancer are required.

Many studies suggest that the volume and composition of fibrous
tissue in various organs are influenced by epithelial–mesenchymal
transition (EMT), which is characterized by a loss of epithelial cell
characteristics and gain of extracellular matrix-producing
myofibroblast characteristics [13–15]. TGF-β1 signals play an im-
portant role in the progression of EMT and contribute to the
metastatic spread of cancer cells, influencing migration and inva-

sion [16,17]. Activated TGF-β1 can be found in tumor cells, fibroblasts,
and peritoneal lavage fluid, and previous studies have demon-
strated that TGF-β1 serum and tissue levels are significantly
correlated with survival in gastric cancer patients [18–20]. There-
fore, targeting the effects of TGF-β1-induced EMT is important to
attenuate both metastasis and fibrosis in gastric cancer.

Recent developments have shown that tumor progression results
from interactions between cancer cells and various stromal cells,
including endothelial cells, immune cells, and fibroblasts in the tumor
microenvironment [21–23]. Bone marrow-derived fibroblasts have
been shown to contribute to the tumor stromal environment and
influence tissue fibrosis, being dubbed cancer-associated fibro-
blasts (CAF) [24]. We have previously reported that TGF-β1-
mediated activation of human peritoneal mesothelial cells (HPMCs)
induces an EMT-like process whereby these cells adopt a fibro-
blast or myofibroblast-like phenotype process [25]. Furthermore,
activated HPMCs function as a source of CAFs, and drive the process
of fibrosis [25]. HPMCs, which are classified as epithelial in the broad-
est sense of the term, form a monolayer of squamous epithelial cells
that cover the peritoneal cavity to form a serosal membrane which
serves as a protective anatomical barrier [26]. Previous studies have
suggested that CAFs produce stroma-modulating growth factors
including TGF-β1, VEGF, and HGF [27–29]. VEGF is a potent and
selective endothelial mitogen capable of inducing a rapid and com-
plete angiogenic response [27,28]. HGF may also be involved in
promoting the growth of various epithelial cells that express c-met,
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which is the HGF receptor [29]. Therefore, CAFs stimulate tumor
proliferation and induce fibrosis [25]. Additionally, fibrotic tumors
demonstrating advanced progression can be established in a sub-
cutaneous xenograft model using the gastric cancer cell line MKN45
in co-culture with HPMCs [25]. Therefore, the interaction between
cancer cells and HPMCs in the tumor microenvironment contrib-
utes to tumor proliferation and fibrotic change.

Previously, several studies have identified that Angiotensin II can
promote cell proliferation during cancer development, and Angio-
tensin II type 1 (AT1) blockers (ARBs) may suppress this effect by
antagonizing the AT1 receptor [30–32]. Furthermore, ARBs have re-
cently attracted attention for their direct anti-fibrotic activity. In
particular, ARBs may have the potential to inhibit fibrotic change
in chronic kidney disease by reducing TGF-β1 expression [33–35].
Additionally, ARB treatment in patients with Marfan’s syndrome sig-
nificantly slowed the rate of progressive aortic-root dilation, which
is caused by excessive TGF-β1 signaling [36]. These findings led us
to hypothesize that ARBs may effectively suppress tissue fibrosis
during peritoneal dissemination of gastric cancer.

Therefore, this study aimed to assess whether ARBs attenuate
proliferation and fibrosis in our established fibrotic tumor model,
and also to clarify the mechanisms of Angiotensin II–AT1 receptor–
TGF-β1 molecular interactions in gastric cancer.

Materials and methods

Cell lines and cell culture

HPMCs were isolated from surgical specimens of human omentum as previ-
ously described [37]. Briefly, small pieces of omentum were surgically resected under
sterile conditions and were incubated in pre-warmed phosphate-buffered solution
(PBS) containing 0.125% trypsin/EDTA (Gibco/Invitrogen, USA) for 30 min at 37 °C.
The suspension was centrifuged at 1500 × g for 5 min. Collected cells were cul-
tured in RPMI-1640 medium (Gibco/Invitrogen) supplemented with 20% heat-
inactivated fetal bovine serum (FBS; Nichirei Bioscience Inc., Japan). The cells were
cultured at 37 °C in a humidified atmosphere of 5% CO2 in air. For the following ex-
periments, cells were used during the second or third passage after primary culture.
HPMCs possibly contaminated with endothelial cells or fibroblasts at the time of
harvest were not used. Donors were not subjected to chemotherapy or radiation treat-
ment prior to surgery, and had no evidence of peritoneal inflammation and/or
malignancy. We used homogeneous HPMCs from a different donor for each exper-
iment. All patients provided written informed consent prior to participation in the
study. The gastric cancer cell lines used in this study were MKN7, MKN74, and MKN45
which were purchased from American Type Culture Collection (Rockville, MD, USA).
Cells were maintained in RPMI-1640 medium supplemented with 10% FBS.

Chemicals

Angiotensin II and the AT1 receptor blocker, candesartan (CV-11974), and
telmisartan were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Mouse xenograft model

All animal experiments were performed according to Kanazawa University’s stan-
dard guidelines. Female immunocompromised BALB/c-nu/nu mice (Charles River
Laboratories Inc. Japan) at 4–6 weeks of age were maintained in a sterile environ-
ment. HPMCs were first stained using a red fluorescent dye PKH26 cell linker kit
(Sigma) according to the manufacturer’s instructions; the concentration of PKH26
during incubation was 4 μM. MKN45 cells were co-cultured with an equivalent
number of HPMCs for five days, and a total of 5 × 106 cells in 100 μL of RPMI-1640
were then subcutaneously injected into the dorsal side of each mouse on day 0. Three
groups of 10 mice each were established: MKN45 cells alone (a total of 5 × 106 cells)
without candesartan, and MKN45cells co-cultured with HPMCs with or without
candesartan. Beginning on day 7, mice were administered 10 mg/kg of candesartan
daily by gavage. Animals were carefully monitored, tumors were measured every 4
days. The tumor volume (V) was calculated according to the formula V = AB2/2, where
A is the length of the major axis, and B is the length of minor axis.

Immunohistochemistry

Tumor specimens were fixed in 10% neutral buffered formalin and embedded
in paraffin. Sections were stained with hematoxylin and eosin (H&E) and Azan stain
for assessment of fibrosis, while the expression levels of E-cadherin (H-108, rabbit
polyclonal IgG, diluted 1:100; Santa Cruz Biotechnology, Inc.) and α-smooth muscle

actin (α-SMA; 1A4, mouse monoclonal IgG, diluted 1:100; Dako Cytomation, Denmark)
were assessed immunohistochemically. Deparaffinized sections were pretreated by
autoclaving in 10% citric acid buffer (pH 8.0) at 120 °C for 15 min. Following treat-
ment with protein block serum (Dako Cytomation, Kyoto, Japan) for 10 min and
incubation with 2% skim milk for 30 min to block non-specific reactions, sections
were incubated with primary antibody at 4 °C overnight. The Envision-polymer so-
lution (horseradish peroxidase, HRP, Dako Cytomation) was then applied for 1 h.
Signals were developed in 0.02% 3,3′-diaminobenzidinetetrahydrochloride (DAB) so-
lution containing 0.1%. Sections were then lightly counter stained with hematoxylin
and examined using a fluorescence microscope (Olympus, Tokyo, Japan). The degree
of fibrosis was calculated as a percentage of fibrosis within the whole section in all
samples using a BZ-9000 BZII microscope (Keyence, Osaka, Japan).

Preparation of serum-free conditioned media (SF-CM)

SF-CM was prepared from MKN45 and MKN7 cells as previously reported [12].
Briefly, 1.0 × 106 cells were seeded into 100-mm tissue culture dishes with 10-mL
RPMI, supplemented with 10% FBS and incubated at 37 °C for 3 days. To obtain SF-
CM, the cells were washed twice with PBS and then incubated for 2 days with 5 mL
of serum-free RPMI with or without 100 nM of Angiotensin II. Cells were pre-
treated for 1 h with 1000 nM of candesartan prior to treatment with Angiotensin II
where required. The SF-CM was harvested, centrifuged at 1500 × g for 5 min, passed
through a filter (pore size: 0.45 μm) and stored at −80 °C until used.

Phase contrast microscopy

Briefly, HPMCs were seeded into 100-mm tissue culture dishes at 5.0 × 104 cells
in RPMI growth medium with 10% FBS. The HPMCs in cultures were treated with
SF-CM or left untreated (control) for 24 h and morphological changes were visual-
ized by phase contrast microscopy. The images were collected using a Nikon inverted
microscope (Nikon Corp., Japan).

MTT assay

The effect of Angiotensin II and ARB on the proliferative capacity of MKN45 cells
was quantified using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide (MTT) assay. Briefly, MKN45 cells were seeded in 96-well plates at 4 × 103

cells per well in RPMI growth medium with 10% FBS and incubated overnight at 37 °C
in a humidified environment containing 5% CO2. Following incubation, the super-
natant was discarded and replaced with fresh serum-free medium containing different
concentrations (1–100 nM) of Angiotensin II. When required, candesartan (1–
1000 nM) was added 1 h before Angiotensin II treatment to ensure that the
proliferative effect caused by Angiotensin II occurred via the AT1 receptor. At 48 h
post-treatment, the supernatant was discarded and MTT solution was added to each
well (final concentration, 500 μg/mL) and incubated at 37 °C for 3 h. The superna-
tant was then removed and 150 μL of DMSO (Wako, Japan) was added. The absorbance
of the solution was read at 535 nm with a microplate reader (Bio-Rad 550; Bio-
Rad, Japan). Cell viability was calculated as: viability = (absorbance of experimental
wells)/(absorbance of control wells). All experiments were repeated at least three
times.

Enzyme-linked immunosorbent assay (ELISA)

The concentration of TGF-β1 in the SF-CM was measured using an ELISA assay
(Quantikine, R&D Systems, Wiesbaden, Germany) according to the manufacturer’s
instructions.

Western blotting

Approximately 5 × 106 cells were lysed in RIPA buffer containing 1% protease in-
hibitor cocktail (Sigma-Aldrich, Inc.). Protein from each sample was loaded onto 12.5%
SDS-PAGE gels and subjected to electrophoresis. Proteins were transferred to a PVDF
membrane (Bio-Rad, USA) and blocked with blocking solution (0.1% Tween-20; EZ
Block ATTO Corporation, Japan) at room temperature for 30 min. Blots were incu-
bated overnight at 4 °C with each primary antibody (see below). The blots were then
incubated for 1 h with appropriate HRP-conjugated secondary antibodies. The
immunoblots were visualized using an ECL Plus Western blotting detection system
(GE Healthcare Japan Ltd., Japan) and the Light-Capture system (ATTO). To ensure
equal protein loading, β-actin levels were measured using an anti-β-actin mono-
clonal antibody (AC-15, mouse monoclonal IgG, diluted 1:10,000; Sigma). The
following primary antibodies were used: AT-1 (N-10, rabbit polyclonal IgG, diluted
1:500; Santa Cruz Biotechnology, Inc.), E-cadherin (H-108, rabbit polyclonal IgG, diluted
1:1000; Santa Cruz Biotechnology, Inc.), α-SMA (1A4, mouse monoclonal IgG, diluted
1:5000; Dako Cytomation, Denmark), TGF-β1 (V, mouse polyclonal IgG, diluted 1:500;
Santa Cruz Biotechnology, Inc.) and anti-β-actin.
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Immunofluorescence

For visualization of E-cadherin and α-SMA in HPMCs, cells were grown on 4-well
collagen type I-coated culture slides (BD BioCoat) at 1.0 × 103 cells, incubated
overnight, fixed in a mixture of methanol and acetone (1:1) for 10 min and then in-
cubated with E-cadherin and α-SMA antibodies (each diluted 1:100) at 4 °C overnight.
Following three PBS washes, slides were incubated with anti-mouse IgG-Alexa Fluor®
488 and anti-rabbit IgG-Alexa Fluor® 546 (1:400 dilution; Molecular Probes/
Invitrogen, USA) for 1 h at room temperature. Slides were then incubated with Hoechst
33258 for 5 min to aid nuclear visualization and mounted with propyl gallate con-
taining phenylenediamine under glass coverslips. The slides were observed with an
immunofluorescence microscope (BX50/BX-FLA; Olympus, Japan).

Statistical analysis

All data are expressed as mean ± SD. Statistical analyses were conducted using
the SPSS statistical software, version 11.0 (SPSS). Comparisons of drug effects were
made using one-way analysis of variance (ANOVA) or Student’s t-test. A p-val-
ue < .05 was considered significant.

Results

Effect of ARB in subcutaneous xenograft models

To determine whether ARB could be evaluated for anti-
proliferative and anti-fibrotic activity in vivo, ARB (candesartan
10 mg/kg) was delivered orally to female nude mice with tumor xe-
nografts (Fig. 1). Tumors derived from MKN45 cells co-cultured with
HPMCs without administration of candesartan were significantly
larger than those from MKN45 cells alone when measured at day
28 (p = .003). This was consistent with results from our previous study
[25]. Furthermore, tumors derived from MKN45 cells co-cultured
with HPMCs were significantly smaller in the candesartan treat-
ment group compared with those in the untreated group as early

as day 20 (p = .004). Therefore, candesartan suppressed tumor growth
of cells derived from MKN45 and HPMC co-cultures.

Histological examination of xenograft tumors

Fibrotic areas in tumors derived from MKN45 cells co-cultured
with HPMCs were significantly larger than those in tumors from
MKN45 cells alone (Fig. 2A, B). We confirmed the implantation of
the subcutaneous tumors and HPMCs by labeling cells using a PKH26
cell linker kit (Fig. 2C). MKN45 cells co-cultured with HPMCs also
possessed increased α-SMA expression and decreased E-cadherin
expression (Fig. 2D, E). Conversely, tumors from the candesartan
treatment group exhibited increased E-cadherin expression, and de-
creased α-SMA expression when compared with untreated tumors
in the co-culture groups (Fig. 2A–E.). Furthermore, Azan staining re-
vealed that fibrotic areas within tumors of the candesartan group
were significantly smaller (Fig. 2F). This suggests that candesartan
was responsible for the suppression of EMT and fibrosis in the tumors
from treated mice.

AT1 receptor expression in human gastric cancer cell lines

We examined three human gastric cancer cell lines for the pres-
ence of the AT1 receptor by Western blot analysis. All gastric cancer
cell lines expressed AT1 receptor protein as shown in Fig. 3.

The influence of Angiotensin II and ARB on cellular proliferation

To quantitate the effects of Angiotensin II and ARB on the growth
of human gastric cancer cells the MTT assay was employed. Pro-
liferation of MKN45 cells was significantly increased following

Fig. 1. (A) Candesartan inhibits growth of tumors derived from MKN45 and HPMC co-cultures. Tumor volume was measured every fourth day. Results are expressed as the
means ± SD (n = 10). (B) Representative images depict the macroscopic appearance of the tumors at day 28. MKN45 ARB(−): MKN45 without candesartan, MKN45+HPMC
candesartan(−): co-culture of MKN45 and HPMCs without candesartan, MKN45+HPMC candesartan(+): co-culture of MKN45+HPMCs with 10 mg/kg candesartan, a) p < .01
vs. MKN45 candesartan(−) b) p < .01 vs. MKN45+HPMC candesartan(+).
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treatment with 100 nM Angiotensin II (p = .016, Fig. 4A). Further-
more, pretreatment of cells with 1000 nM of candesartan or 500 nM
of telmisartan for 1 h completely inhibited the Angiotensin II-
induced proliferative response (candesartan; p = .001, telmisartan;

p = .036, Fig. 4B). As neither candesartan nor telmisartan (0.1–
1000 nM) had a cytotoxic effect on MKN45 cells as determined by
MTT assay (data not shown), these findings demonstrate that the
inhibition of Angiotensin II by a specific AT1 receptor antagonist
could reduce cellular proliferation.

The effect of SF-CM from MKN45 cells on HPMC cell morphology

Control HPMCs without SF-CM treatment grew as a monolayer
of polygonal and cobblestone-like cells (Fig. 5A). In contrast, HPMCs
treated with SF-CM of MKN45 cells demonstrated the elongated
spindle-shaped morphology characteristic of fibroblasts (Fig. 5B).
Similar phenotypic changes were observed with treatment using
SF-CM from cells treated with Angiotensin II (Fig. 5C). HPMCs with

Fig. 2. Growth and EMT is inhibited in MKN45-HPMC co-culture-derived tumors
on mice treated with candesartan. (A) Histological examination using H&E stain-
ing. (B) Fibrotic tissue as determined by Azan staining of subcutaneous xenograft
tumors 28 days after inoculation. (C) Fluorescence microscopy investigating im-
plantation of HPMCs. Red indicates labeled HPMCs. Immunohistochemical
examination of (D) E-cadherin and (E) α-SMA in subcutaneous xenograft tumors (orig-
inal magnifications ×200). (F) The fibrotic area was measured and shown as a
percentage (fibrotic area/whole section area) of that in (B) *p < .01. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Three gastric cancer cell lines express AT1 receptor. Western blot analysis
demonstrating expression of the AT1 receptor in all three gastric cancer cell lines.

Fig. 4. Angiotensin II-induced proliferation of MKN45 cells is inhibited by ARBs. (A)
The proliferation of MKN45 cells treated with increasing doses of Angiotensin II was
measured by MTT assay. (B) Cells were then pretreated with increasing doses of
candesartan prior to addition of Angiotensin II and measurement of proliferation
by MTT assay at 48 hours. Results are mean ± SD of three experiments.*p < .05.
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SF-CM of these phenotype changes were attenuated by pretreat-
ment of MKN45 cells with 1000 nM candesartan and 1000 nM
telmisartan prior to harvesting SF-CM (Fig. 5D, E). We selected
candesartan for the following experiments because it is a more se-
lective ARB than telmisartan, which also affects peroxisome
proliferator-activated receptor-γ (PPAR-γ) [38,39].

TGF-β1 expression

To investigate whether Angiotensin II and candesartan influ-
ence the expression of TGF-β1, we used an ELISA and Western
blotting to measure levels of TGF-β1 in the culture media. Treat-
ment of MKN45 and MKN7 with Angiotensin II elevated the level
of TGF-β1, while pretreatment of cells with candesartan effective-
ly inhibited this response (Fig. 6).

Examination of EMT marker expression in HPMCs

Immunofluorescence staining of HPMCs cultured with SF-CM
from MKN45 cells treated with Angiotensin II demonstrated ex-
pression of the mesenchymal marker α-SMA in the cell membrane
and cytoplasm, with no nuclear staining observed (Fig. 7A). Con-
versely, HPMCs cultured with SF-CM from MKN45 cells pretreated
with candesartan had a markedly diminished presence of α-SMA
signal in the cytoplasm (Fig. 7A). Western blotting confirmed the
immunofluorescence study, with increased α-SMA expression and
decreased E-cadherin expression found in HPMCs cultured with SF-
CM from MKN45 cells treated with Angiotensin II (Fig. 7B). Western
blotting also detected diminished α-SMA and increased E-cadherin
expression was identified in HPMCs cultured with SF-CM from
MKN45 cells pretreated with candesartan (Fig. 7B). Blots were re-
probed for β-actin to ensure equal protein loading in each lane.
Results are representative data from three separate experiments.

Discussion

We used candesartan and telmisartan as ARBs in this study.
However, we chiefly used candesartan because telmisartan is also
a partial agonist of PPAR-γ [38,39]. Our data reveal that the

candesartan can significantly suppress tumor proliferation and fi-
brotic changes in a subcutaneous xenograft model. Furthermore, we
have demonstrated that Angiotensin II induces TGF-β1 expression
and that ARB suppresses this stimulation in the gastric cancer cell
line MKN45. SF-CM from MKN45 cells and exposure to Angioten-
sin II induced an EMT-like change in HPMCs, while pretreatment
with candesartan impaired this change.

Angiotensin II is a main effector peptide in the renin–angiotensin
system (RAS) and also plays a fundamental role as a vasoconstric-
tor in controlling cardiovascular function and renal homeostasis [40].
Recent studies have shown that a local RAS can exist in malignant
tumor tissue, with Angiotensin II potentially acting as a key factor
for promotion of tumor growth and metastasis via the AT1 recep-
tor [41]. Arakawa and Maruta have demonstrated that trypsin
generates Angiotensin II from circulating angiotensinogen in the
absence of angiotensin converting enzyme (ACE) at a weakly acidic
pH of 5.5 [42]. In acidic tissues, such as those found in gastric cancer,
tryptase and trypsinogen derived from migrating mast cells may
convert angiotensinogen to Angiotensin II. We have further sug-
gested that circulating angiotensinogen in the blood is converted
directly to Angiotensin II by trypsin in the tumor microenviron-
ment at the weakly acidic pH found with anaerobic glycolysis [43].
We have also previously demonstrated that gastric cancer and in-
trahepatic cholangiocarcinoma tissue have higher levels of
Angiotensin II than normal tissues [30,31]. Furthermore, gastric
cancer tissue and cell lines alike have been found to express the AT1
receptor in both the current and previous studies [30,44]. Local tissue
RAS signaling is potentially able to up-regulate the Angiotensin II/
AT1 receptor pathway in an autocrine fashion, resulting in
Angiotensin II-induced progression of gastric cancer malignancy [44].

Lever and colleagues reported the first clinical evidence that a
long-term Angiotensin II blockade may be protective against car-
cinogenesis [45]. We have previously reported that Angiotensin II
has the potential to enhance cell proliferation and impair apopto-
sis by promoting ERK1/2 and NF-κB activation and overexpression
[30]. ERK1/2 transduces extracellular signals to the nucleus and in-
creases the expression of genes involved in cellular proliferation [46].
Meanwhile, the transcription factor NF-κB regulates the expres-
sion of numerous genes, including survival factors and cell growth

Fig. 5. SF-CM from MKN45 cells induces morphological changes in HPMC cells that are impaired by pretreatment of cells with candesartan and telmisartan. Representa-
tive images of morphological changes induced after culture of HMPCs with SF-CM HPMCs cultured in control medium (A), SF-CM of MKN45 (B), SF-CM from MKN cells
treated with Angiotensin II (C), or SF-CM from MKN45 cells pretreated with candesartan (D) and telmisartan (E) prior to Angiotensin II. Images were obtained by phase
contrast microscopy at magnification, × 40.
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regulatory molecules [47,48] Hence, the blockade of Angiotensin II
has been considered a potential target for anti-proliferative therapy
in tumorigenesis. Our finding that ARB suppresses Angiotensin II-
induced tumor growth in vitro and in vivo supports this.

Fibrosis is a common feature of both peritoneal dissemination
and chronic renal disease. Numerous studies have demonstrated that
the Angiotensin II/AT1 receptor axis contributes to renal fibrosis
through endogenous production of TGF-β1 [49,50]. Angiotensin II
induces expression of the TGF-β1 activator thrombospondin-1 via
the AT1 receptor, thereby mediating activation of latent TGF-β1
[51,52]. TGF-β1 then signals to the nuclei through activation of the
Smad pathway, and promotes EMT in tubuloepithelial cells [50].

The development of peritoneal dissemination is a multistep
process. Cancer cells within the peritoneal cavity can attach to HPMCs
and induce an EMT-like change by release of TGF-β1 [17,53]. Such
spindle-shaped HPMCs can then facilitate adhesion of cancer cells
to the submesothelial basement membrane [26]. Furthermore, ac-
tivated HPMCs are a source of CAFs through transformation to a
myofibroblast-like phenotype. These CAFs can infiltrate the
submesothelial basement membrane together with cancer cells and
promote the processes of proliferation and fibrosis [25]. Thereaf-
ter, locally synthesized Angiotensin II stimulates cellular proliferation
and fibrosis through AT1 receptor activation and TGF-β1 signals. In
this cascade, TGF-β1 is produced by both cancer cells and CAFs [21].
This interaction between gastric cancer cells and CAFs through the
Angiotensin II/AT1 receptor axis likely has autocrine and paracrine
synergistic effects on tumor progression and fibrosis. As a result, peri-

toneal dissemination progresses rapidly with extensive stromal
fibrosis, contributing to the poor prognosis associated with dis-
seminated gastric cancer.

Inhibiting the effects of Angiotensin II and TGF-β1 described above
is important for the attenuation of tumor proliferation and fibro-
sis. Previous reports have shown that TGF-β1 neutralizing antibodies
and TGF-β1 receptor kinase inhibitors can suppress EMT and reduce
stromal fibrosis [17,54]. However, these agents cannot be admin-
istrated to patients with various cancer and fibrotic diseases because
TGF-β1 and its receptors are almost ubiquitously expressed in normal
tissues. This is a major conceptual problem with the long-term clin-
ical use of these agents as there is a high likelihood of adverse side
effects because of disruption of the many important roles played
by TGF-β1 in normal tissues [55]. However, as candesartan has been
widely used as a clinical antihypertensive agent without serious side
effects [56], it could potentially be safely used as an anticancer agent.
This current study supports the hypothesis that candesartan offers
a new strategy for peritoneal dissemination through suppression
of both tumor proliferation and fibrosis.

In conclusion, we have shown that candesartan can signifi-
cantly reduce TGF-β1 expression, and suppress tumor cell
proliferation and stromal fibrosis in a mice xenograft tumor model.
Candesartan was effective at a dose rate of 10 mg/kg/day, which is
close to the maximal clinical dose [57]. Targeting the Angiotensin
II signaling pathway may not only impair tumor proliferation, but
may also be a novel, efficient strategy for treating associated tissue
fibrosis. Therefore, combination therapy using ARBs and cytotoxic

Fig. 6. Angiotensin II-induced elevation of TGF-β1 levels in MKN45 and MKN7 cell media is wholly inhibited by pretreatment of cells with candesartan. Levels of TGF-β1
were measured in both the culture media and cells from MKN45 and MKN7 cultures treated with Angiotensin II or pretreated with candesartan as indicated. Results are
mean ± SD of three experiments. (A) MKN45 and (B) MKN7 TGF-β1 levels by ELISA, *p < .01 and (C) Western blot.
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antineoplastic agents could potentially improve the prognosis for
patients with peritoneal dissemination of gastric cancer.
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