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Exogenous SPARCSuppresses Proliferation andMigrationof
ProstateCancerby InteractingWith Integrinb1
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BACKGROUND. The matricellular protein secreted protein acidic and rich in cysteine
(SPARC) plays an important role on tumor metastasis and progression in several cancers.
However, the roles of SPARC in prostate cancer (PCa) remain unclear.
METHODS. To identify SPARC protein in prostate tissue, immunohistochemical analysis of
SPARC was conducted using human prostate tissue microarray. To detect SPARC expression
in prostate cancer (LNCaP, DU145, and PC-3) and stromal cells, RT-PCR, western blot analy-
sis, and ELISA was conducted. To reveal the function of exogenous SPARC in PCa cells, AKT
phosphorylation was confirmed by western blot analysis after coculture with stromal cells.
Proliferation and migration of PCa cells were examined by addition of SPARC. The interac-
tion between SPARC and integrin b1 was confirmed by western blot analysis after immuno-
precipitation.
RESULTS. SPARC protein was expressed well in normal tissue compared with PCa tissue.
ELISA showed high secreted SPARC protein in normal prostate-derived stromal cell (PrSC)
compared with PCa-derived stromal cell (PCaSC) and PCa. PCa cells cocultured with PrSC
showed reduced AKT phosphorylation more than with PCaSC. PCa cells cocultured with
PrSC whose SPARC was knocked-down restored AKT phosphorylation. Moreover, PCa cells
treated with SPARC led to reduced AKT phosphorylation. Immunoprecipitation with SPARC
revealed interaction of SPARC and integrin b1 in PCa cells. Inhibited proliferation and migra-
tion of PCa cells by SPARC was restored by integrin b1 neutralizing antibody.
CONCLUSIONS. Reduced SPARC secretion from stromal cells might affect PCa progres-
sion mediating through limiting AKT phosphorylation after interaction with integrin b1.
Prostate 73: 1159–1170, 2013. # 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Prostate cancer (PCa) is a common malignancy in
men worldwide and the second leading cause of can-
cer related death among the male population of the
United States [1]. It has been determined that ad-
vanced PCa cells usually metastasizes to bone [2] and
lymph nodes [3]. Tumor metastasis and growth occur
in the context of extracellular matrix (ECM) and re-
quire an interaction of malignant cells with various
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microenvironments [4,5]. As matricellular proteins in
the ECM mediate the interactions between cell–cell
and cell–extracellular environment, understanding
the interaction of cancer cells with their microenviron-
ment has emerged as an essential step.

Secreted protein acidic and rich in cysteine
(SPARC)/osteonectin/BM-40 is a matricellular gly-
coprotein that plays instrumental roles during cell
proliferation, immune response, migration, and cell
differentiation modulating reversible interactions
between cells and ECM [6]. Several proteinases, in-
cluding matrix metalloproteinases (MMPs), release
bioactive fragments from SPARC that also affect an-
giogenesis and cell behavior [7]. In tumorigenesis,
SPARC interacts with an ECM and is associated
with tumor cell growth, differentiation, metastasis
and invasion [8–10]. A secreted glycoprotein,
SPARC binds to several integral components of the
ECM. Although high-affinity SPARC receptor has
not been identified [11], numerous studies suggest
that SPARC regulates integrin signaling and the
ability of integrins to interact with structural compo-
nents of the ECM [12,13]. Recent studies have shown
that SPARC-knockout mice grow cancers faster than
mice expressing SPARC [14,15] and show accelerat-
ed wound healing [16,17]. SPARC acts not as a
tumor suppressor but also as a promoter of inva-
siveness through integrin axis in melanoma, and
was studied as a molecular marker, which represent
a highly aggressive phenotype [18,19]. SPARC takes
different contradictory actions depending on cell-
type and context showing contradictory effects on
tumor progression.

The role of SPARC in PCa is also not fully
understood yet. SPARC has been reported to be
predominantly tumorigenic in PCa cells [20,21]. In
contrast, recent studies with homozygous SPARC
KO/TRAMP model has been reported that SPARC
was limiting for primary prostate tumorigenesis
and progression [22]. Kapinas et al. [23] identified
bone matrix-associated SPARC limited proliferation
of PCa cells and increased their sensitivity to
ionizing radiation. Since tumors are heterogeneous
population, effects of SPARC on PCa cells are
the results of a crosstalk between PCa cells and
microenvironments.

In that respect, we aim to provide insight into how
SPARC might affect PCa cells. We investigated how
differentially expressed SPARC between normal pros-
tate derived stromal cell (PrSC) and PCa-derived
stromal cell (PCaSC) affect the progression of PCa
cells. We also confirmed an interaction between
SPARC and integrin b1, which may define the
signaling mechanism for migration and proliferation
of PCa cells.

MATERIALSANDMETHODS

Immunohistochemistryof SPARC

For tissue microarrays (TMAs), we purchased
from Isu Abxis Co. Ltd. (South Korea) and Provitro
(Berlin, Germany). The procedure for immunohisto-
chemical staining (IHC) was performed using a
Dako ChemMate ENVISION Kit/HRP(DAB)-univer-
sal kit (K5007) according to the manufacturer’s
protocol (Dako, Carpinteria, CA). After blocking en-
dogenous peroxidase activity using 3% hydrogen
peroxide for 10 min, the sections were incubated
with rabbit monoclonal antibodies against SPARC
(R&D system) at a dilution of 5 mg/200 ml at room
temperature for 60 min. After the primary antibod-
ies reaction, sections were washed with PBS slowly
and followed by peroxidase labeled secondary anti-
body (a mixture of rabbit and mouse antibodies)
combined with dextranpolymers. Brownish staining
for target proteins on tissue slides was developed
using DAB within 5 min, and counterstained with
hematoxylin. Images were captured on microscope
�40 and �100.

Cell Lines,Reagents, andTransfections

DU145, LNCaP (American Type Culture Collec-
tion, Manassas, VA) were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented
with 1% penicillin/streptomycin (Invitrogen, Carls-
bad, CA) and 5% fetal bovine serum (FBS; Sigma–
Aldrich, St. Louis, MO) and PC-3 (American Type
Culture Collection) were cultured in RPMI1640-5%
FBS. Normal prostate-derived stromal cells, PrSC,
commercially available (Cambrex, East Rutherford,
NJ) were cultured using SCGM Bullet Kit (Cambrex).
Human PCaSC were isolated from PCa tissue as de-
scribed previously [24] and cultured in RPMI1640-
10% FBS. Cell cultures were incubated at 378C with
5% CO2. For coculture, 0.4 mm pore size transwell
was used. PCa cells (LNCaP, DU145, and PC-3) were
placed on the bottom of the lower chamber while
PrSC and PCaSC were placed on the membrane of
the upper chamber. The transwell prevents direct
cell–cell interactions but allows the diffusion of solu-
ble factors through the membrane. For treatment
with SPARC (Osteonectin, Human platelets; Calbio-
chem, La Jolla, CA), all cells were serum-starved in
medium containing 0.1% FBS for 12 hr, followed by
incubation with SPARC or vehicle (media) for 24 hr.
Cells were harvested for protein and mRNA detec-
tion. For blocking experiments, 10 mg/ml nonspecif-
ic IgG, integrin b1-blocking antibody (Millipore,
USA) was added to the media during SPARC
treatment.

1160 Shinet al.

The Prostate



ReverseTranscription-PCR(RT-PCR)

Total RNA was extracted from confluent mono-
layers of cells using an RNeasy Mini Kit (Qiagen, Hil-
den, Germany). Complementary DNA (cDNA) was
made by reverse-transcription (RT) of 1 mg of each to-
tal RNA using cDNA Synthesis Kit (Bio-Rad, USA).
Each cDNA sample was amplified with ExTaq
(Takara Bio, Japan). The oligonucleotide primer sets
used for PCR analysis of cDNA were SPARC, 50-
CGGGACTTCGAGAAGAACTA-30 (forward) and 50-
AGACCTGTGACCTGGACAAT-30 (reverse), GAPD
H, 50-CCACCCATGGCAAATTCCATGGCA-30 (for-
ward) and 50-TCTAGACGGCAGGTCAGGTCCACC-
30 (reverse), Integrin a1, 50-GTGGGCCAACAAA-
GAACACT-30 (forward) and 50-TGGAAGCAGGCC-
CAAATATAG-30 (reverse), Integrin a2, 50-GTTTT
GAAAGGCGAGCAAAG-30 (forward) and 50-GCTG
TTGGCTAAAGGACTCG-30 (reverse), Integrin b1, 50-
GGCTCTGCTTTGGACAGAAC-30 (forward) and 50-
ACCACGGAAACAAGGAAGTG-30 (reverse), Integ-
rin b2, 5-CACAAGCTGGCTGAAAACAA-30 (for-
ward) and 50-ATTGCTGCAGAAGGAGTCGT-30

(reverse). For SPARC, Integrin and GAPDH amplifi-
cation, the PCR condition was 948C, 3 min followed
by 30 cycles of 948C, 40 sec; 578C, 30 sec; 728C, 30 sec;
and 728C, 3 min final extension. The amplified PCR
products were visualized using electrophoresis on a
1.5% agarose gel.

WesternBlotAnalysis

Cells were lysed in mammalian protein extraction
buffer (Pierce, Rockford, IL), and total protein was
extracted as described previously [25]. Equal amounts
of protein were resolved on a 10% or 12.5% Ready Gel
J (Bio-Rad, Hercules, CA), transferred onto a PVDF
membrane (Invitrogen), and blocked with 5% non-fat
dry milk at room temperature. Membranes were
probed overnight with primary antibodies against
SPARC (Cell Signaling Technology, Beverly, MA),
GAPDH (Novus Biologicals, Littleton, CO), AKT (Cell
Signaling), P-AKT (Cell Signaling), SPARC (Cell sig-
naling), and PARP (Cell signaling) followed by HRP-
conjugated secondary antibodies. An ECL system was
used to detect chemiluminescent signals (SuperSignal
West Pico Chemiluminescent Substrate; Pierce).

Enzyme-Linked ImmunosorbantAssay (ELISA)

Cells (4 � 105 cells/well, six-well plates) were
stimulated with SPARC for 24 hr and the amount of
SPARC protein in cell culture media was determined
by using commercially available SPARC ELISA kits
(Takara Bio). The conventional ELISAs were prepared
by coating the bottom of a 96-well plate with capture

antibodies. Cell culture media was incubated for
one h in antibody coated plate then washed four
times with TBST. Equal amounts of substrate solution
were added to each well and incubated for 15 min at
room temperature. After adding stop solution, absor-
bance readings were made at 450 nm, using a 96-well
plate spectrophotometer.

CytokineAntibodyArray

Secreted SPARC was analyzed with a cytokine an-
tibody array by using a RayBio cytokine antibody ar-
ray kit (RayBiotech, Inc., Norcross, GA), according to
the manufacturer’s instructions. Supernatants of cells
were incubated with blocked membranes and then in-
cubate with biotinylated detection antibody cocktail
and HRP-conjugated streptavidin. Signal intensities
were quantified directly with a chemiluminescence
imaging system and Image J (NIH, USA) software.

RNAInterferenceAnalysis

The specific SPARC interfering RNAs (siRNA)
sequences were designed by Invitrogen. SPARC tar-
get siRNA sequence was 50-UAGAAUUGCAACAG-
CUUGUCCUUCC-30. Non-target siRNA (NT siRNA)
were purchased from Invitrogen. For SPARC knock-
down in PrSC, transfection experiments were per-
formed using Lipofectamine RNAiMAX Reagent
(Invitrogen) according to the manufacturer’s protocol
(Invitrogen). Briefly, cells were transfected with of 5,
10, and 20 nM SPARC siRNA or 20 nM NT siRNA for
24 hr. After 6 hr of transfection, complete medium
was added and cells were cultured for another 12 or
24 hr. At the end of the culture period, total RNA
were exacted or the cells were transferred to transwell
for coculture.

Immunoprecipitation (IP)

After finishing various treatments, cells were lysed
in mammalian protein extraction buffer (Pierce) as de-
scribed under western blot procedure. Immunopre-
cipitation were performed using Catch and release IP
reagents (Abcam, MA) according to the manufac-
turer’s protocol. Briefly, total proteins were quantified
according to the method of Bradford, and equal
amounts of protein (500 mg) were mixed with 2 mg of
rabbit monoclonal antibodies against SPARC (Cell
Signaling) and Affinity ligand. After providing a final
volume 500 ml, the mixtures were incubated on a ro-
tor mixer at room temperature for 30 min. Unbound-
ed non-specific proteins were washed with the wash
buffer and immunocomplexes with Antibody Capture
Affinity Ligand (ACAL) were left. From the complex,
eluted proteins were subjected to western blot
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analysis with integrin b1 antibody (Cell signaling)
and for normalization of rabbit monoclonal antibodies
against SPARC (Cell Signaling), anti-rabbit HRP-
linked antibody (Cell Signaling) was used.

Cell ProliferationAssays

Cell proliferation was determined using a quick
cell proliferation assay kit (Abchem) according to the
manufacturer’s instructions. Cells (3 � 104/well)
were plated in 96-well microtiter plate in a final vol-
ume of 100 ml/well culture medium in absence or
presence of SPARC (mg/ml) integrin b1–blocking an-
tibody (10 mg/ml). After 12, 24, 36, and 72 hr, 10 ml/
well WST-1/ECS solution was added and incubated
4 hr in standard culture condition (378C with 5%
CO2). Plate was shaken thoroughly for 1 min on a
shaker. The absorbance of each well was measured at
450 nm with a microtiter plate reader.

MigrationAssay

In vitro wound-healing assay was performed as
previously described [25]. Cells were incubated in
culture medium containing with 1% penicillin/strep-
tomycin and 5% FBS in presence or absence of
0.5 mg/ml SPARC. Wound healing was visualized
with photographs by microscope. Cell migration as-
say using a transwell were performed in migration
and invasion chambers according to the manufac-
turer’s instructions (Cell Biolabs, Inc., CA). Before as-
say, cells were serum-deprived for 24 hr, and cells
were placed into upper chamber in serum-free medi-
um. Medium supplemented with 5% FBS was placed
in the lower chamber with SPARC (mg/ml) or isotype
control and integrin b1-blocking antibody (10 mg/
ml), respectively. After incubation, cells that had mi-
grated to the lower surface of the filters were stained
and quantified by colorimetric reading at 560 nm.

StatisticalAnalysis

All data are presented as mean � SD, and statisti-
cal significance was determined by using the Prism
4.0 software. The x2 test was utilized to assess the sig-
nificance between different proportions. Analysis of
continuous variables between different groups was
assessed by one-way analysis of variance followed
by Fisher’s protected least significant difference
test. Differences were considered to be statistically
significant. Relative amount values were expressed
as means � SD from Three replicate experiments.
� and �� represent significant difference P < 0.05, and
P < 0.01, respectively. Kruskal-Wallis test was used
to determine the statistical significance of differences
in IHC staining of tissue microarray.

RESULTS

Distributionof SPARCBetweenHumanProstate
CancerandNormalProstate

To investigate the effect of SPARC on human
PCa, we first examined the existence of SPARC pro-
tein in human prostate. As shown in (Fig. 1A–H),
immunohistochemistry using tissue microarrays
revealed that SPARC was expressed in 87% normal
prostate tissues (28/32) and in 9% of the tumor tis-
sues (4/64; Table I). Normal prostates cells showed
strong intensity of SPARC expression compared
with prostate caner tissue (P < 0.001). Strong
staining of SPARC in normal stroma was also ob-
served compared with PCa stroma. We could not
observe significant difference in the intensity of
SPARC staining among the level of Gleason score
statistically.

Differential Expressionof SPARCinProstateCancer
Cell LinesandProstateDerivedStromalCell Lines

SPARC is a highly conserved, multifunctional
protein that regulates various cell in different ways
[10]. To determine the roles of SPARC from prostate
stromal cells on PCa cells, we first examined the ex-
pression of SPARC mRNA and protein in LNCaP,
DU145, and PC-3 cells, PCaSC-5, 8 (PCa-derived
stromal cells), and PrSC (normal prostate- derived
stromal cells; Fig. 2A,B). Both mRNA and protein
level of SPARC (42 kDa) was higher in PCaSC-5, -8,
and PrSC) than PCa cells (LNCaP, DU145, and PC-
3). Moreover, western blot analysis revealed higher
expression of SPARC protein in PrSC than PCaSCs.
SPARC has been reported as secreted noncollage-
nous glycoprotein that closely associated with an
ECM [6]. We also examined secreted SPARC in me-
dium from PCa cells, PCaSCs, and PrSC by ELISA
(Fig. 2C). Secreted SPARC level from stromal cells
was relatively high compared with three kinds of
PCa cells. Furthermore, the amount of secreted exog-
enous SPARC from PrSC was 1.8–2.4 times higher
than other PCa-derived stromal cells (PCaSC-5, -6,
-7, -8) and 6.8–11.3 times higher than PCa cells
(LNCaP, DU145, and PC-3). To evaluate SPARC pro-
tein expression levels of cytoplasm, we performed
cytokine assay using anti-cytokine specific mem-
brane and compared the level of secreted cytokines
from normal prostate stromal cells (PrSC) and PCa-
derived stromal cells (PCaSC-5; Fig. 2D). This result
was coincident well with ELISA: the lower expres-
sion of SPARC in PCaSC-5 was detected compared
with normal prostate PrSC. Therefore, we investigat-
ed the effect of diminished SPARC expression in
PCa stromal cells on PCa cells.
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ExogenousSPARCReducesAKTPhosphorylation

Since stromal cells, especially normal prostate stro-
mal cells (PrSC) secreted SPARC well compared with
PCaSC, we investigated the effect of exogenous
SPARC secreted from stromal cells on PCa cells. We
first analyzed whether exogenous SPARC induces
any change in AKT signal that provides a major thera-
peutic opportunity in prostate disease [26]. Western
blot analysis revealed that exogenous SPARC reduces
AKT phosphorylation in a dose-dependent manner in
LNCaP, DU145, and PC-3 cells (Fig. 3A). We also per-
formed coculture of PCa cells with stromal cells that
secrets higher level of SPARC protein (Fig. 3B). Phos-
phorylation of AKT was decreased in all PCa cells by
coculture with stromal cells in accordance with secret-
ed level of SPARC. Many soluble factors from stromal

cells may affect phosphorylation of AKT in PCa cells.
In order to confirm reduced phosphorylation in PCa
cells is due to secreted SPARC from stromal cells, we
performed knockdown of SPARC in PrSC using small
interfering RNA. Knockdown of SPARC by siSPARC
repressed the expression level of SPARC mRNA and
secreted SPARC protein in medium in dose-depen-
dent manner (Fig. 3C). Then coculture of PCa cells
with PrSC transfected with siSPARC reduced AKT
phosphorylation in all PCa cells (Fig. 3D).

ExogenousSPARC-Integrinb1InteractionReduces
AKTPhosphorylation

Goal et al. has shown that that tumor cells express
an abnormal integrin repertoire and surrounded by
a markedly aberrant ECM [27]. To reveal the

TABLE I. ImmunohistochemistryofSPARAConProstateTissueMicroarray

Clinicopathological features

SPARC expression

Total number P-value(�) (þ) (þþ)

Normal 1 2 19 22
PIN 2 3 5 10 0.001
Gleason score

5, 6 7 2 1 10 0.001
7 28 2 0 30 0.001
8, 9, 10 23 1 0 24 0.001

Total number 61 10 25 96

Fig. 1. Immunohistochemical stainingof SPARConprostate tissue.Commercial PCa tissuemicroarray (TMA) slides (A^H)were deparaffi-
nized in xylene and rehydrated in graded alcohols and processed as describedmethod.TMAs with 96 specimens and tissue sections were
immunostainedwith SPARC antibody.Representative examples of photomicrographs are showing SPARC expression in the non-neoplastic
prostateandPCa.A:non-neoplastic fromE.B:non-neoplastic fromF.C:non-neoplastic fromG.D:non-neoplastic fromH.E:Gleason score7.
F:Gleasonscore7.G:Gleasonscore8.H:Gleasonscore9 (originalmagnification�40and�100).
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relationship between exogenous SPARC and integ-
rins, the expression level of integrin mRNA in PCa
cells treated with SPARC for 2 days was examined
using quantitative RT-PCR (Fig. 4A). Regardless of a
dose of SPARC, the expression level of integrin a1,
a2, and b2 mRNA was constant. However, the ex-
pression level of only integrin b1 mRNA was in-
creased in a dose-dependent manner. To confirm the
direct interaction between exogenous SPARC and
integrin b1, lysate from LNCaP, DU145, and PC-3
cells that were treated with exogenous SPARC were
immunoprecipiated with anti-SPARC antibodies and
were subsequently probed for anti-integrin. Although
no interaction was detected when immunoprecipita-
tion was probed for anti-integin a1, a2, and b2 (data
not shown), exogenous SPARC interacted with integ-
rin b1 (Fig. 4B). To further verify the apparent interac-
tion between SPARC and integrin b1, we pretreated

integrin b1-blocking antibody and nonspecific isotype
control antibody in LNCaP, DU145, and PC-3 cells,
and then treated with SPARC for 2 days. The interac-
tion between integrin b1 and exogenous SPARC was
diminished by integrin b1-blocking antibody. Fur-
thermore, after blocking the interaction reduced AKT
phosphorylation by exogenous SPARC was recovered
(Fig. 4C), suggesting that exogenous SPARC directly
binds to integrin b1 and affects AKT signaling.

ExogenousSPARCDecreasesProstateCancerCells
Proliferation

We analyzed the effect of exogenous SPARC on
cell proliferation (Fig. 5A). The proliferation rates of
LNCaP, DU145, and PC-3 cells treated with 1 mg/ml
SPARC were decreased compared with vehicle. To
determine whether inhibition of cell proliferation by

Fig. 2. Expression level of SPARC in PCa cells, PrSC, and PCaSCs.A: Expression levels of SPARCmRNAweremeasured in PCa cell lines
(LNCaP,DU145, and PC-3) and stromal cell lines (PCaSC-5, PCaSC-8, PrSC) by RT-PCR.B:Whole cell lysate from each cells were also sub-
jectedtoWesternblot analysis andnormalizedas a ratiousingb-actin.C:Eachcell (4 � 105)was culturedin serum-freemediumfor36 hr and
SPARCproteinconcentrations in themediumweremeasuredbyELISAassay.ODvalues obtainedbyELISAreader at 450 nmare expressedas
means � SD from fourreplicate experiments.Cells (1 � 106 cells)were culturedwith 0.2%FBS for 2days and the supernateswere incubated
with commercially available arraymembrane.D: Comparisonof SecretedSPARCinPrSC andPCaSC-5.Imageswere collectedusing a chemi-
luminescence imaging system after cytokine array. Srepresents secreted SPARC (top).The data on thebottomrepresents relative amountof
secretedSPARC.
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SPARC is resulted from apoptosis, PCa cells were
treated with 1.0 mg/ml SPARC for 2 days, and then
stained with DAPI to confirm apoptosis. However,
staining of nuclei by DAPI did not detect chromatin
condensation that shows apoptosis although total
number of cells nuclei was decreased by 1.0 mg/ml
SPARC substantially compared with vehicle (data not
shown). We also assessed the expression of apoptosis-

related protein, PARP, and tried to detect apoptosis in
PCa cells by apoptosis assay, measures the levels of
soluble caspase-cleaved fragments, however, similar-
ly there were no apoptotic change by exogenous
SPARC (data not shown). Since we confirmed that
total number of cells was decreased by exogenous
SPARC with DAPI stain, we analyzed the effects
of exogenous SPRAC on tumor growth using

Fig. 3. Inactivation of AKT by exogenous SPARC.A: After LNCaP, DU145, and PC-3 cells (4 � 105) were treated with vehicle (medium)
or0.5,1.0 mg/mlSPARC for 2days,whole cell lysate fromeach samplewas also subjected toWesternblot analysis.B:LNCaP,DU145, andPC-3
cellswere coculturedwithvehicle,PrSC,PCaSC-6, and PCaSC-7 for 48 hr in a transwell chamber as illustrated transwell coculture systems.
The cell lysates fromPCacellswere subjected towesternblot analysiswith anti-phospho-AKTandanti-AKTantibody (Leftpanel).Rightpanel
representsrelative changes ofphospho-AKTexpression.C:Knockdownof SPARCexpression in PrSCby SPARC siRNAtransfection.Expres-
sionofSPARCmRNAwasdetectedbyRT-PCR(Top).After transfectionofSPARCsiRNA(4 � 105 cells), SPARCconcentrationsin themedium
weremeasuredbyELISA(Bottom).D:LNCaP,DU145, andPC-3werecoculturedwith20 nmol/L SPARCsiRNAtransfectedPrSCfor48 hr in
a transwellchamber.The cell lysateswithanequalamountofproteins incellswere subjectedtowesternblotwith anti-phospho-AKTandanti-
AKTantibody.
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proliferation assay kit (Fig. 5A). The proliferation
rates of three kinds of PCa cells treated with 1 mg/ml
SPARC were decreased compared with vehicle. To
determine whether the roles of exogenous SPARC in
PCa cell proliferation depends on interaction with
integrin b1, cells were cultured for 12 and 72 hr with
or without integrin b1-blocking antibody, nonspecific
isotype control antibody and 1.0 mg/ml SPARC and
then assessed to proliferation assay (Fig. 5B). The
inhibited proliferation of PCa cells by treatment with
SPARC was recovered by addition of integrin b1-
blocking antibody, suggesting that anti-proliferative
effect of exogenous SPARC is mediated through
integrin b1.

ExogenousSPARCDecreases
ProstateCancerCellsMigration

To determine the effect of exogenous SPARC on
migration in LNCaP, DU145, and PC-3 cells were
assessed using the wound healing assay (Fig. 6A).
One microgram per milliliter SPARC caused inhibi-
tion of cell migration in all three kinds of PCa cells. To
further confirm this result, we performed the cell mi-
gration assay in the presence of the exogenous SPARC
using a transwel chamber. As shown in Figure 6B,
cell migration was also significantly decreased in
the presence of 1 mg/ml SPARC. We also analyzed
whether interaction between exogenous SPARC and
integrin b1 affects migration in PCa cells. After cells
treated with 1.0 mg/ml SPARC were cultured with
integrin b1-blocking antibody or non-specific isotype
control antibody for 48 hr, migration of PCa cells
were assessed. As shown in Figure 6C, migration
inhibited by treatment with SPARC in all PCa cells
was recovered by addition of integrin b1-blocking
antibody. These results suggested that exogenous
SPARC repressed migration of PCa cells mediated
through integrin b1.

DISCUSSION

Several studies have investigated that local
changes in the physical properties of the matrix-asso-
ciated factors from stromal cells might potentially
lead to cancer cell progression [28,29]. Exogenous
SPARC, one of the matrix-associated factors, has been
reported to reduce the cell growth in ovarian cancer,
neuroblastoma, and colorectal cancer [8,30,31].

Our approach was to confirm how extracelluar ma-
trix SPARC affects PCa progression. It is known that
SPARC plays important roles in development and the
control of proliferation and migration with complex
biological effects that are cell and tumor type specific
[10]. In PCa, although Jacob et al. reported SPARC as
a predominantly protumorigenic protein [21], several

Fig. 4. Interaction of SPARCwith integrin b1.A: After LNCaP,
DU145, andPC-3cells (4 � 105)were treatedwithvehicle or0.5,1.0,
and2.0 mg/mlSPARCfor2days, the expression levels of integrina1,
a2, b1, and b2 mRNAwere measured by RT-PCR. B: After cells
were treated with 0, 0.5, 1.0, 1.5, and 2.0 mg/ml SPARC for 2 days,
whole cell lysate from each samplewere subjected to immunopre-
cipitationwith anti-SPARC (source: rabbit) and anti-integrinb1.To-
tal protein used for immunoprecipitation was confirmed with an
anti-rabbit antibody as precipitated anti-SPARC antibody source
wasrabbit.C:Cellswere treatedwith1.0 mg/mlSPARCfor2daysin
presence or absence of an isotype control or integrin b1^blocking
antibody (10 mg/ml). Immunoprecipitation was conducted with
anti-SPARC and the precipitated proteins revealed with and anti-
integrin b antibodies.Whole cell lysate from each samplewas also
subjected to western blot analysis with anti-phospho-AKT and
anti-AKTantibody.

1166 Shinet al.

The Prostate



groups reported that SPARC down-regulated the
proliferation and invasion of PCa cells [22,23,32],
suggesting that SPARC can become the useful immu-
nohistochemical biomarker of PCa. Of interest, nor-
mal prostate-derived stromal cells expressed high
level of SPARC compared with PCa cells. Further-
more, the amount of secreted exogenous SPARC in
normal prostate derived stromal cells (PrSC) was also
1.8–2.4 times higher than PCa-derived stromal cells
(PCaSC-5, -6, -7, -8). Moreover, we demonstrated that
exogenous SPARC suppresses cell proliferation and
migration of three kinds of PCa cells (LNCaP, DU145,
and PC-3). Our data support the concept that gradually
diminished exogenous SPARC from PCaSC may
affect PCa progression. It still remains unclear why
the level of SPARC secretion from PCaSC is dimin-
ished compared with normal PrSC. Some factor from
PCa cells may influence stromal cells to diminish a
secretion of SPARC as well as stromal cells influenc-
ing PCa cells (Fig. 7).

Our data demonstrated that high expression of
SPARC in stromal cells was correlated with suppres-
sion of AKT phosphorylation. PI3K/AKT signaling
is critical to PCa cell survival and proliferation.
Activated AKT translocates to the cytoplasm and
nucleus and activates downstream targets involved in

survival, proliferation, cell cycle progression, growth,
migration [33,34]. To our knowledge, this is the first
report that exogenous SPARC from stromal cells
down-regulates AKT phosphorylation in PCa cells.
Several previous reports associated with glioma and
neuroblastoma showed that SPARC inhibits cancer
cell proliferation through PTEN (phosphatase and
tensin homolog deleted on chromosome 10) and AKT
mediated signaling pathway. Thomas et al. reported
that SPARC overexpression in glioma increased the
tumor-suppressing potential of PTEN both in vitro
and in vivo [35,36]. We further need to reveal whether
exogenous SPARC-induced AKT dephosphorylation
also regulate PTEN-related signaling pathway in PCa
cells.

In the present study, we did not detect significant
differences in mRNA expression of integrin a1, a2,
and b2 in PCa cells by exogenous SPARC. However,
integrin b1 mRNA expression was increased by exog-
enous SPARC. Although a number of studies have in-
vestigated the roles of integrin b1, both up-regulation
and down-regulation of integrin b1 expression were
reported during progression of prostate cancer
[37,38]. However, dramatically reduced integrin b1
expression was observed in PCa cells [39,40] and
Moran-Jones et al. [41] has shown that integrin b1

Fig. 5. Effectof exogenous SPARConproliferation ofprostate cancer cells.A: LNCaP,DU145, and PC-3 cells (3 � 104/well)were cultured
with vehicle (media) or 1 mg/ml SPARC in 5% FBS-containing medium for 12, 24, 36, and 72 hr. Cell proliferation was determined with a
colorimetric WST-1/ECS assay. Experiments were conductedwith three experimental replicates.B: Cells (3 � 104/well) were treated with
1.0 mg/mlSPARCfor72 hrinpresenceor absenceof anisotypecontrolor integrinb1^blockingantibody(10 mg/ml).
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regulated normal prostate development and its loss
was associated with increased rates of prostate tumor
progression [25]. Our results presented here are coin-
cident with these ideas. Integrin b1 by exogenous
SPARC further adds to our understanding how

integrin b1 can repress tumor progression. Moreover,
our data provide the first indication of the interaction
between exogenous SPARC and integrin b1 in PCa.
We also confirmed that blocking the direct interaction
of SPARC-integrin b1 by integrin b1-neutralizing an-
tibody prevented SPARC from inhibiting proliferation
and migration of PCa cells. These findings indicated
the possibility that integrin b1 played an important
role as a receptor through direct interaction with
SPARC. SPARC-integrin complex has studied in
some types of cancers, and SPARC-integrin b1 inter-
action was detected in lens epithelial cells (LEC) and
astrocytes [42,43]. As a result of ours, integrin b1
could be an important bridge signaling between exog-
enous SPARC and PCa cells that regulates prolifera-
tion and migration of PCa.

Our study suggests that exogenous SPARC inter-
acted with integrin b1 in PCa cells and induced sup-
pression of AKT phosphorylation. Moreover, the
interaction suppressed proliferation and migration of
PCa cells (Fig. 7). Since normal prostate-derived stro-
mal cells secrets high level of SPARC compared with

Fig. 6. Effectof exogenous SPARConmigration ofprostate cancer cells.A:Representativephotographs ofmigrated cells thatreceivedei-
thercontrol treatmentorexogenousSPARC.Cellswerewoundedand then treatedwithvehicle (media)or1 mg/mlSPARCin5%FBS-contain-
ing medium. Images are taken immediately after scratching the cultures (0 hr),12, and 36 hr later (original magnification, �40).B: LNCaP,
DU145, andPC-3cellswereculturedunder vehicle or0.5,1.0, and2.0 mg/mlSPARCconditions for2days.The cellswereincubatedon the8 mm
pore polycarbonate membrane in a transwell.C: Cells were treated with1.0 mg/ml SPARC for 2 days in presence or absence of an isotype
controlor integrinb1-blockingantibody(10 mg/ml).Cellmigrationwas assessedby transwellmigrationassay.

Fig. 7. Function of SPARC on prostate cancer. Mechanism of
how exogenous SPARC from stromal cells effect on PCa cells
growthandmigration.
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PCa-derived stromal cells, loss of exogenous SPARC
may has been linked to enhanced proliferation and
migration of PCa cells. Therefore, exogenous SPARC
and integrin b1 provides potential therapeutic strate-
gies to suppress PCa progression by maintaining the
level of exogenous SPARC and/or by controlling the
expression, availability and affinity of integrin b1 as a
receptor of exogenous SPARC. Understanding the
mechanism of SPARC from microenvironment and
integrin b1 in progression of PCa cells may be useful
as diagnostic approaches and therapeutic indicators.
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