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Abstract: Because of an increased number of Acanthamoeba keratitis (AK) along with 26 

associated disease burdens, medical professionals have become more aware of this pathogen 27 

in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal 28 

RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains 29 

that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains) and 30 

T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all 31 

over the world, and thus no specificity of the haplotype distribution in Japan was found. The 32 

T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear sub-33 

conformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, 34 

addition to the previously reported sub-genotypes T4a–T4h. Furthermore, the 9 out of 23 35 

strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems 36 

to be a causal haplotype of AK. While the heterozygous nuclear haplotypes were observed 37 

from the 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the 38 

both strains, and suggested that the possibility of nuclear hybridization (mating reproduction) 39 

between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 40 

16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for 41 

the genotyping analyses, and those specific features could contribute to the establishment of 42 

molecular taxonomy for the species complex of Acanthamoeba. 43 
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INTRODUCTION 49 

The genus Acanthamoeba has been isolated from various environmental samples such as 50 

soil [1], water [2], air [3], and also human nasal mucosa [4]. While, during the last few 51 

decades, this ubiquitous free-living amoeba [5] has become increasingly recognized as an 52 

causal agent of serious human diseases, such as vision-threatening Acanthamoeba keratitis 53 

(AK), life-threatening granulomatous amoebic encephalitis, and disseminated infections of 54 

other tissues [6].  55 

Due to an increased number of Acanthamoeba infections along with associated disease 56 

burdens, medical professionals have become more aware of this pathogen in recent years [7]. 57 

Since 1973 when the first case was reported in a contact lens wearer (CLW), AK has been 58 

reported from all over the world [8]. While the prevalence of AK was shown to vary from 1 59 

per 10,000 to 1,000,000 [7, 9], the infection clearly appears to be dominant in CLW; on the 60 

other hand, the cases of AK in non-CLW are quite limited [10]. To date, the numbers of 61 

clinical cases worldwide have been increased as consequently gained the disease recognition 62 

[11]. Such a trend has also been observed in Japan, since the first case reported in 1988 [12]. 63 

The previous classification of Acanthamoeba spp., especially using morphology, caused 64 

various ambiguities and therefore has been revised several times [13]. In the early time 65 

classification trial divided this species into three groups (I, II, and III) according to the cyst 66 

size and shape [14], which, however, was criticized by later studies showing numerous 67 

inconsistencies between the morphological classification and previous species categories [13, 68 

15]. The current molecular classification divides Acanthamoeba spp. into 15 haplotypes (T1–69 

T15), based on nucleotide sequence variations in the 18S rRNA gene [16]. While two 70 

additional genotypes, T16 and T17, have been recently reported [17-18], the number of these 71 

isolates is still limited. Therefore, far more reference information is required to confirm these 72 

novel clusters. 73 
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Among a total of 15 (or 17) genotypes, the majority of clinical and environmental isolates 74 

belong to the T4 genotype [13, 19]; however, phylogenetic reconstructions of the T4 sub-75 

genotypes were problematic, due to the low resolutions of the 18S rRNA gene [13]. On the 76 

other hand, the mitochondrial 16S rRNA gene locus seems to have some promising 77 

characteristics for the T4 sub-genotype analysis [20-21]. In addition, the 16S rRNA gene 78 

locus contains no intron and has more diversity than the 18S rRNA gene locus. However, the 79 

number of mitochondrial reference genes is still quite limited. 80 

In this study, the genetic diversity of Acanthamoeba spp. isolated from keratitis patients 81 

was examined using both the nuclear and mitochondrial gene loci. Our results reveal the 82 

detailed diversity of T4 sub-genotypes. 83 

MATERIALS AND METHODS 84 

Isolates and culture condition: Twenty-seven cultured Acanthamoeba spp. isolates were 85 

used in this study. The samples JPH1 to JPH8 were reference isolates provided from the 86 

National Institutes of Infectious Diseases (Tokyo, Japan), originally isolated from AK 87 

patients all over Japan. While the samples JPH9 to JPH27 were collected from AK patients 88 

between 2006 and 2009, at Kanazawa Medical University and Kanazawa University 89 

Hospital, Ishikawa, Japan, and have been culturally maintained in our group. As culture 90 

medium, an amoeba saline containing 0.012% NaCl, 0.00035% KCl, 0.0003% CaCl2, and 91 

0.0004% MgCl2, 7 H2O in 0.05mM Tris-HCl (pH 6.8) supplemented with inactivated 92 

Escherichia coli [22] was used, and maintained at 27°C. 93 

DNA extraction: Cultured samples were centrifuged at 8000 rpm for 5 min at 4°C. From 94 

the pellet fraction, the whole cell DNA was extracted using QuickGene DNA tissue kit S 95 

(FUJIFILM Corporation, Tokyo, Japan) according to the manufacturer's instructions, and 96 

concentrated by an ethanol precipitation method. The DNA was preserved as an aqueous 97 

solution at −20°C until use. 98 
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18S rRNA Polymerase chain reaction (PCR): A partial DNA fragment (537–560 bp) of 99 

the nuclear 18S rRNA gene of Acanthamoeba was amplified using a modified primer set 100 

(YKF2/JDF2, Table 1) based on the previously published primers [19] on MyCyclerTM 101 

(BioRad Laboratories, California, USA). PCR amplifications were carried out in 20 µl 102 

reaction mixture as 1×PrimeSTAR buffer containing a 1–2 µl of the extracted Acanthamoeba 103 

DNA template solution, 0.8 mM of each deoxynucleoside triphosphate (dNTP), 0.3 µM of 104 

primers and 1 U of PrimeSTAR HS DNA Polymerase (Takara Bio Inc., Shiga, Japan). The 105 

PCR cycling profile consisted of 98°C for 2 min, followed by 35 cycles of 98°C for 10 sec, 106 

an annealing temperature of 63°C for 5 sec, and 72°C for 40 sec, then a final extension of 107 

72°C for 5 min. The PCR products were electrophoresed on 2% L03 agarose (TaKaRa) with 108 

ethidium bromide, and visualized on a UV trans-illuminator, Gel DocTM EZ Imager, BIO 109 

RAD. The target bands were then excised from the gel and purified using the Quantum 110 

Prep™ Freeze ‘N Squeeze DNA Gel Extraction Spin Columns (BioRad Laboratories) 111 

according to the manufacturer's instructions. 112 

16S rRNA PCR: A partial DNA fragment (1507–1533 bp) of the mitochondrial 16S 113 

rRNA gene of Acanthamoeba was amplified using a primer set with the reference of 114 

previously published primers (FP16/RP16, Table 1) [20]. The PCR conditions and following 115 

visualization and purification procedures of the amplicons were the same as used for 18S 116 

rRNA PCR. While the PCR cycling profile consisted of 98°C for 2 min, followed by 30 117 

cycles of 98°C for 10 sec, an annealing temperature of 62°C for 5 sec, and 72°C for 95 sec, 118 

then a final extension of 72°C for 5 min. 119 

DNA sequencing: Generally, the purified PCR products were directly sequenced with 120 

amplification primers and/or appropriate sequencing primers in both directions on Applied 121 

Biosystems 3130 Genetic Analyzer by using the ABI Prism BigDye® Terminator v3.1 Cycle 122 

Sequencing Kit (Applied Biosystems, Tokyo, Japan).  While, due to mixed-nucleotide 123 
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profiles observed in the sequence data of JPH5 and JPH17, a sub-cloning strategy was 124 

adopted to confirm the sequences. Those PCR amplicons were cloned into the EcoRV site of 125 

pBluescript II SK(+) (Stratagene, California, USA) using the Mighty Cloning Reagent Set 126 

(Blunt End) (Takara Bio Inc, Shiga, Japan). The recombinant plasmids were transformed into 127 

Escherichia coli DH5a (Stratagene) and screened on Luria Broth (LB) agar plates 128 

supplemented with 100 mg/L of ampicillin. The clones were picked up as E. coli DH5a 129 

colonies on the plate and cultured overnight in the 2 ml LB supplemented with 100 mg/L of 130 

ampicillin. From the E. coli pellet, plasmid purification was conducted using the QIAGEN® 131 

Plasmid Mini Kit (QIAGEN K.K., Tokyo, Japan) according to the manufacturer’s 132 

instructions, and their full-length sequences were confirmed using T3 and T7 primers.  All 133 

DNA sequences were assembled using the DNASIS-Mac v3.6 (Hitachi, Yokohama, Japan) 134 

and confirmed in both directions.  135 

Sequence alignment and phylogenetic analysis: All reference sequences of the 18S 136 

rRNA and 16S rRNA genes of Acanthamoeba used in this study were obtained from the 137 

DNA Data Bank of Japan (DDBJ) using the blastn algorithm (http://blast.ddbj.nig.ac.jp/top-138 

e.html).  DNA sequence alignments were performed by ClustalW2 v2.1 on the European 139 

Bioinformatics Institute (EBI) homepage (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The 140 

phylogenetic reconstructions of neighbor-joining (NJ), maximum parsimony (MP) and the 141 

maximum likelihood (ML) methods were conducted by MEGA5 [23] and used for its 142 

comparative analysis. To construct NJ, MP and ML phylogenetic tree we used the same 143 

options as bootstrap method with 1000 of replications, nucleotide substitution type, and 144 

complete deletion of gaps/missing data treatment. The other and specific options we used in 145 

NJ analysis: maximum composite likelihood model and uniform rates; in MP analysis: close-146 

neighbor-interchange (CNI) on random trees of MP search method and MP search level 1; 147 

and in ML analysis:  general time reversible model and nearest-neighbor-interchange (NNI) 148 
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of ML heuristic method. We also estimated the average evolutionary divergence of partial 149 

sequence of 18S rRNA (25 sequences including 2 sub-clone variations) and 16S rRNA (23 150 

sequences) genes within the T4 genotype confirmed in this study by MEGA5 [23] with the 151 

options for the distance analysis preference: bootstrap method with 1000 of replications from 152 

variance estimation method, nucleotide substitution type, maximum composite likelihood 153 

model, and complete deletion of gaps/missing data treatment; as the result of this option, the 154 

final sequence length used in the analysis were approximate 500 bp. 155 

Nucleotide sequence accession numbers: All the newly identified partial sequences of 156 

the 18S rRNA and 16S rRNA genes of Acanthamoeba in the present study were deposited in 157 

the DDBJ/European Molecular Biology Laboratory (EMBL)/GenBank nucleotide sequence 158 

databases under accession numbers of AB741044–AB741047, AB795719 and AB795705–159 

AB795718 respectively. 160 

RESULTS  161 

Microscopic examination: In all 27 cultured Acanthamoeba spp. samples, we observed 162 

two life cycle stages, an active trophozoite stage and a dormant cyst stage. After inoculation 163 

of the cyst forms, it took 2 to 12 days (average, 3.4 days) to detect trophozoites by 164 

microscopic examination. The trophozoites, approximately 15–40 µm in diameter, were 165 

found to produce many spine-like processes, whereas the cysts, approximately 10–20 µm in 166 

diameter, typically had wrinkled double walls and were almost round in shape (Fig. 1). 167 

18S rRNA gene analysis: The 18S rRNA gene segments (517–570 bp) were successfully 168 

PCR amplified from all the 27 samples. Of these amplicons, 25 sequences were confirmed by 169 

direct sequencing using the amplification primers, whereas the other two, JPH5 and JPH17, 170 

showed sequence heterogeneity. To separate mixed haplotypes from the amplicons of JPH5 171 

and JPH17, we used the sub-cloning procedure described in “Materials and Methods”. The 172 

results confirmed the presence of two clones in each amplicon, designated as JPH5A and B 173 
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and JPH17A and B. In total, 29 sequences of the 18S rRNA gene from 27 isolates were 174 

confirmed. As the result of phylogenetic reconstruction, these 29 sequences and previous 175 

reference sequences formed three monophyletic clusters, T3, T4, and T5, with significant 176 

bootstrap values (100%, 81%, and 100%, respectively, by the NJ method) (Fig. 2). In the T3 177 

cluster, JPH6, 23, and 25 showed 100% identity to the reference sequences S81337, 178 

GQ397466, and GQ905499, respectively. In the T4 cluster, several groups also showed 100% 179 

identity to their respective reference sequences (accession number in parenthesis): JPH10, 16, 180 

and 21 (U07410); JPH26 (AY703004); JPH3, 12, 15 17B, and 20 (U07403); JPH4 (U07413); 181 

JPH27 (AY148954); JPH11 (GU808328); JPH1, 9, and 17A (U07415); JPH5B and 22 182 

(AY173000); JPH2 and 14 (GU936484); and JPH5A and 19 (U07408). As for the T5 cluster, 183 

only JPH7 was clustered with 98% homology to the reference sequence of A. lenticulata 25/1 184 

(U94740).  185 

16S rRNA gene analysis: The 16S rRNA gene segments (1520–1545 bp) were also 186 

successfully PCR amplified from all the 27 samples, and subsequently, all the sequences 187 

were confirmed by direct sequencing. Unlike the 18S rRNA gene analysis results, no 188 

sequence heterogeneity was observed in any of the strains analyzed. The reconstructed 189 

neighbor-joining tree further showed that these 27 sequences of the 16S rRNA gene and 190 

previous reference sequences formed two monophyletic clusters, T3 and T5, with significant 191 

bootstrap values (100/99/100% and 100/99/100%, respectively, by NJ/MP/ML methods) 192 

(Fig. 3). Although the whole T4 cluster was not statistically supported by the bootstrap values 193 

(52/<50/<50%), the individual T4 sub-clusters were significantly supported as follows: T4a 194 

(96/91/98%, excluding the reference AF479553), T4b (99/98/99%, excluding the reference 195 

AF479507), T4c (100/99/100%), T4d (100/99/100%), T4e (100/99/100%), T4g (99/74/99%), 196 

and T4i (100/99/100%). The bootstrap values were not calculated for T4f and T4h, two 197 

previously proposed sub-clusters [21], since none of the 27 samples analyzed in this study 198 
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was clustered with the reference sequences. Based on the phylogenetic reconstruction results, 199 

all the 27 sequences were classified as specific genotypes as follows: T3 cluster, JPH6 200 

(AB795707), JPH23 (AB795915), and JPH25 (AB795717); T4a cluster, JPH1, 3, 4, 8, 9, 12, 201 

15, 20, and 26 (AF479533), JPH27 (AB795718), JPH17 (AB795711), JPH19 (AB795713), 202 

JPH14 (AB795710), and JPH24 (AB795716); T4b cluster, JPH11 (AF479524) and JPH22 203 

(AB795714); T4c cluster, JPH5 (AB795706); T4d cluster, JPH13, 16, and 21 (AF479534), 204 

and JPH10 (AB795709); and T4i cluster, JPH18 (AB795712) and JPH2 (AB795705). In the 205 

T5 cluster, only JPH7 was clustered with 97% homology to the reference sequence of A. 206 

lenticulata PD2S (AF479541). Overall, there was no dissimilarity between the genotyping 207 

results of 18S rRNA and 16S rRNA gene analyses.  208 

Sub-cloning genotyping results: Among the 27 strains, only two, JPH5 and JPH17, 209 

showed mixed sequencing profiles (sequence heterozygosity at some nucleotide positions) of 210 

their 18S rRNA gene sequences. Specifically, among 7 clones isolated from JPH5, 4 and 3 211 

clones were identified as JPH5A (U07408) and JPH5B (AY173000), respectively, whereas 212 

among 7 clones isolated from JPH17, 3 and 4 clones were identified as JPH17A (U07415) 213 

and JPH17B (U07403), respectively (Table 2; Fig. 2). 214 

Estimation of average evolutionary divergence of T4 genotypes: The numbers of base 215 

substitutions per site from averaging over all sequence pairs of the 18S rRNA gene and 16S 216 

rRNA gene were analyzed as described in “Materials and Methods”. The confirmed average 217 

evolutionary divergences and standard errors of 18S rRNA gene and 16S rRNA gene were 218 

0.010 ± 0.003 and 0.013 ± 0.003, respectively. 219 

 220 

DISCUSSION 221 
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The increased risk of AK has been widely recognized worldwide, as well as in Japan. A 222 

recent survey conducted by the Japan Contact Lens Society and the Japanese Association for 223 

Ocular Infection in 224 facilities all over Japan from April 2007 to March 2009 revealed the 224 

high prevalence of AK in Japan. Specifically, among 350 patients who were diagnosed with 225 

contact lens-associated microbial keratitis, Acanthamoeba spp. was identified in 85 (24.3%) 226 

cases [24]. To date, the data regarding the distribution of various genotypes in Japan are still 227 

quite limited. Edagawa et al. has reported T4 isolates in tap-water samples [25], and multiple 228 

clinical T4 cases and one T11 case [26-27] have been reported so far. 229 

In this study, 27 Acanthamoeba strains that caused AK in Japan were classified into 3 230 

genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain) (Table 2; Figs. 2, 3), consistent 231 

with previous findings that both T3 and T4 genotypes were prevalent among AK patients 232 

around the world (Tables 4, 5). On the other hand, the T5 genotype was mostly detected in 233 

the environment [13, 19, 21, 25], and the reports of the T5 genotype in AK patients [28-29] 234 

or human nasal mucosa [4, 13] were very rare.  235 

It seems interestingly, most of the haplotypes identified in this study showed 100% 236 

identity to the reference sequences available in the database. In the 18S rRNA gene analysis, 237 

only 5 were newly recognized haplotypes, and the rest of 22 haplotypes (including sub-238 

cloned ones) had 13 homologous references; on the other hand, in the 16S rRNA gene 239 

analysis, 14 were newly identified, and the rest of 13 haplotypes had 3 references (Tables 4, 240 

5). The places where the references were originally isolated include many areas all over the 241 

world, such as Africa, Argentina, France, Germany, India, Israel, Japan, Korea, Pakistan, 242 

Slovakia, Thailand, the United Kingdom, and the United States. Therefore, these 243 

Acanthamoeba haplotypes might have been distributing around the world and maintaining 244 

individual haplotypes independently, despite their geographically dispersed conditions. A 245 
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robust feature of these haplotypes could be a confidential base for the molecular classification 246 

of Acanthamoeba spp. 247 

 The results of 18S and 16S rRNA genotyping were found to match perfectly with each 248 

other, and no contraindication depending on these loci was observed; however, the haplotype 249 

diversity of AK-related strains was clearly different between the two analyses (Figs. 2, 3). 250 

For example, while JPH3, 12, 17B, and 20 were identified as the same haplotype (U07403) 251 

by the 18S rRNA gene analysis, 9 strains (JPH1, 3, 4, 8, 9, 12, 15, 20, and 26) were identified 252 

as the same haplotype (AF479533) by the 16S rRNA gene analysis. Notably, JPH3, 12, and 253 

20 were included in both analyses, but not other haplotypes. It is noteworthy that the 254 

genotyping assessments were conducted using gene segments of partial 18S rRNA (517–570 255 

bp) and partial 16S rRNA (1520–1540 bp). That is, even with the use of longer nucleotide 256 

sequences, one third (9/27) of the strains were classified as one specific haplotype 257 

(AF479533) by the 16S rRNA gene analysis. Although the differences was not statistically 258 

significant, moreover the average evolutionary divergence of all T4 samples confirmed in this 259 

study indicated higher value among 16S rRNA gene haplotypes (0.013 ± 0.003) than 18S 260 

rRNA gene haplotypes (0.010 ± 0.003), may consistent with a previous notion of the 261 

comparatively low divergence in the 18S rRNA gene locus [13, 20, 30-32]. While further 262 

research is required before a conclusive hypothesis can be drawn, we speculate that a part of 263 

T4 genotypes may be a dominant haplotype as a causal agent of AK and that the 16S rRNA 264 

gene analysis is useful for the evaluation. 265 

Since the sub-genotype classification of the T4 cluster seems to be useful for higher-266 

resolution molecular analyses [20-21, 32], 8 sub-clusters (T4a–T4h) have been proposed 267 

[21]. In this study, the T4 sub-genotype analysis using the 16S rRNA gene locus reveals a 268 

clear sub-conformation within the T4 genotype and also leads to the recognition of a new 269 

sub-genotype, T4i, as the ninth sub-genotype in the T4 cluster (Fig. 3). We show that the two 270 
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newly identified sequences from JPH2 and JPH8 belong to T4i, with statistically significant 271 

bootstrap values. Nevertheless, the number of genetic references for the 16S rRNA gene 272 

locus does not seem to be sufficient for completing the precise identification of all sub-273 

genotypes. In the phylogenetic reconstruction (Fig. 3), some haplotypes, for example, 274 

AF479553 in T4a and AF479507 in T4b, were positioned as out-groups of the main cluster. 275 

These out-group haplotypes might be members of yet-to-be identified sub-clusters and could 276 

be categorized into novel clusters as the number of the reference sequences increases in the 277 

future. 278 

The differences were observed between nuclear and mitochondrial genetic characteristics; 279 

that is, the mixed haplotype profiles from two individual strains, JPH5 and JPH17, were 280 

detected only in the nuclear gene analysis, but not in the mitochondrial gene analysis (Table 281 

3; Figs. 2, 3). The formation of JPH5A/5B in the JPH5 strain and JPH17A/17B in the JPH17 282 

strain seemed to be stable. To evaluate the contamination risk with other strains, we tried one 283 

trophozoite PCR after years of cultivation and got the same results for both strains (data not 284 

shown). The contamination might also be ruled out by the result of the 16S rRNA gene 285 

analysis, which showed only one single genotype for each strain. Taken these results 286 

together, these strains are considered to possess heterozygous nuclear 18S rRNA genes and 287 

homozygous mitochondrial 16S rRNA genes. The polyploid genome conformation of 288 

Acanthamoeba spp. has been suggested [33]; therefore, an accumulation of allelic sequence 289 

heterogeneity in polyploid genomes within a single cell might be a possible explanation for 290 

the mixed haplotype profile. However, such a possibility may be ruled out in our case, since 291 

all haplotypes identified in the sub-cloning analysis had their respective homologous 292 

haplotypes as individual strains. Specifically, JPH5A, 5B, 17A, and 17B were found to be 293 

identical to previous reported reference strains 82-12-324 (U07408), KA/MSS8-1 294 

(AY173000), JAC/S2 (U07415), and V042 (U07403), respectively. Currently, there is no 295 
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clear evidence for the meiotic or sexual process in the Acanthamoeba life cycle, even though 296 

the species apparently possesses a gene (Spo11) required for the meiotic recombination [34]. 297 

Whereas, the presence of heterozygous nuclear haplotypes in single strain, observed in this 298 

study, suggesting a possibility of the genetic hybridization between different strains of 299 

Acanthamoeba. Therefore, detailed evaluations of the presence of such mixed haplotypes in 300 

the population of Acanthamoeba spp. are considered to be required for the precise molecular 301 

taxonomy. 302 

The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba 303 

spp. possess different unique characteristics usable for the genotyping analyses, and those 304 

specific features could contribute to the establishment of molecular taxonomy for the species 305 

complex of Acanthamoeba. 306 
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FIGURE LEGENDS 441 

Figure 1. Representative image of culture-isolated Acanthamoeba spp. from an AK case 442 

(JPH9).  443 

Nomarski interference contrast micrograph of cysts showing double-layered walls and a 444 

trophozoite showing spike-like pseudopodia (acanthopodia). Scale bar: 10 µm. 445 

 446 

Figure 2. NJ tree reconstructed with the 18S rDNA sequences of Acanthamoeba.  447 

The evolutionary history was inferred using the neighbor-joining method as described in 448 

“Materials and Methods”. Isolates from Acanthamoeba keratitis are shown in boldface text, 449 

mixed infection with underlining, and with new or reference accession numbers. All 450 

reference sequences are shown with the accession numbers and the genotypes. The 451 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap 452 

value (1000 replicates) are shown next to the branches. The evolutionary distances are shown 453 

in the units of the number of base substitutions per site. 454 

 455 

Figure 3. NJ tree reconstructed with the 16S rDNA sequences of Acanthamoeba.  456 

Isolates from Acanthamoeba keratitis are shown in boldface text, mixed infection with 457 

underlining, and with new or reference accession numbers. All reference sequences are 458 

shown with the accession numbers and the genotypes. Representative NJ tree with bootstrap 459 

value (1000 replicates) for NJ, MP and ML methods, conducted as described in “Materials 460 

and Methods”, are shown. The analysis involved 55 nucleotide sequences. An asterisk 461 

indicates a value of less than 50% or if a position of the node is differ according to each 462 

analysis method. The evolutionary distances are shown in the units of the number of base 463 

substitutions per site. 464 

 465 
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Table 1. Primers used in this study 466 

Primer ID Sequences (5′ to 3′) and locations on genes ⃰ Product Size 
(bp) 

For 18S rRNA gene 
YKF2 
JDP2 

 1CCTCCTTCTGGATTCCCGTTC21 

560TCTCACAAGCTGCTAGGGGAGTCA537 
 560 

For 16S rRNA gene 
FP16 1TTGTATAAACAATCGTTGGGTTTTATT27 1533 
RP16 1533GTCCAGCAGCAGGTTCCCCTACCGCTA1507 

 ⃰ Base pair positions are according to A. castellanii Neff strain on 18S rRNA gene 467 

(U07416) [35] and on 16S rRNA gene (AF479560) [36]. 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

483 
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Table 2. Comparison of genotyping results assessed in this study 484 

Sample 
name 

Target loci for genotyping 

18S rRNA gene 16S rRNA gene 

JPH1 T4 (U07415) T4 (AF479533) 
JPH2 T4 (GU936484) T4 (AB795705) 
JPH3 T4 (U07403) T4 (AF479533) 
JPH4 T4 (U07413) T4 (AF479533) 
JPH5A* T4 (U07408) 

T4 (AB795706) 
JPH5B* T4 (AY173000) 
JPH6 T3 (S81337) T3 (AB795707) 
JPH7 T5 (AB741044) T5 (AB795708) 
JPH8 T4 (AB741046) T4 (AF479533) 
JPH9 T4 (U07415) T4 (AF479533) 
JPH10 T4 (U07410) T4 (AB795709) 
JPH11 T4 (GU808328) T4 (AF479524) 
JPH12 T4 (U07403) T4 (AF479533) 
JPH13 T4 (AB741047) T4 (AF479534) 
JPH14 T4 (GU936484) T4 (AB795710) 
JPH15 T4 (U07403) T4 (AF479533) 
JPH16 T4 (U07410) T4 (AF479534) 
JPH17A* T4 (U07415) 

T4 (AB795711) 
JPH17B* T4 (U07403) 
JPH18 T4 (AB795719) T4 (AB795712) 
JPH19 T4 (U07408) T4 (AB795713) 
JPH20 T4 (U07403) T4 (AF479533) 
JPH21 T4 (U07410) T4 (AF479534) 
JPH22 T4 (AY173000) T4 (AB795714) 
JPH23 T3 (GQ397466) T3 (AB795715) 
JPH24 T4 (AB741045) T4 (AB795716) 
JPH25 T3 (GQ905499) T3 (AB795717) 
JPH26 T4 (AY703004) T4 (AF479533) 
JPH27 T4 (AY148954) T4 (AB795718) 

*Mixed haplotype profiles of T4 sub-genotypes observed in 18S rRNA gene were analyzed 485 

using the sub-cloning procedure described in “Materials and Methods”. JPH5 and JPH17 486 

samples, which were consisted of two sub-genotypes: JPH5 (JPH5A and JPH5B) and JPH17 487 

(JPH17A and JPH17B). 488 
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Table 3. Sequence heterogeneities observed of 2 genotypes in 18S rRNA nucleotide 489 

sequences by using genotype T4 isolated from a single strain. 490 

From the two strains, JPH5 and JPH17, each strain consists of 2 sub-genotypes: (A) JPH5A 491 

(U07408) and JPH5B (AY173000), and (B) JPH17A (U07415) and JPH17B (U07403) were 492 

identified according to the reference accession number in parenthesis. Only the substituted 493 

positions are showing with each nucleotide position number. Hyphen indicates an 494 

insertion/deletion mutation. 495 

(A) JPH5 496 

Nucleotide 

positions* 

89
0 

 89
1 

90
2 

89
3 

89
4 

90
0 

90
1 

90
6 

90
8 

12
95

 

13
19

 

13
20

 

13
24

 

13
25

 

13
26

 

13
27

 

13
44

 

JPH5A T G C G G C A C T − C C A C G G T 

JPH5B − − − A T G C G − T − − − − − − C 

*Nucleotide positions are shown according to the reference sequence (U07408). 497 

(B) JPH17 498 

Nucleotide 

positions* 

87
4 

88
8 

88
9 

89
4 

89
5 

89
7 

90
9 

12
83

 

13
02

 

13
03

 

13
04

 

13
05

 

13
12

 

13
13

 

13
14

 

13
15

 

13
18

 

13
25

 

JPH17A A A − − T C T T T C G G C C G G T A 

JPH17B G G T A C G C C G G T C G G C C C G 

*Nucleotide positions are shown according to the reference sequence (U07415).  499 

500 
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Table 4: 18S rRNA gene sequences used in this study 501 

Isolate name Accession  
No. 

Genotype Isolation/Place of origin Reference 

V006 U07400 T1 GAE, Brain, Georgia, USA [32] 

Reich  U07411 T2 Soil, Israel [32] 

H37 S81337 T3 Keratitis, UK [37] 

S-7 U07412 T3 Shallow beach, New London, CT, 
USA 

[32] 

AcaVN04 GQ397466 T3 Air conditioner scrape, Slovakia [38] 

AcaVNAK05 GQ905499 T3 Keratitis, Slovakia [38] 

V042 U07403 T4 Keratitis, Illinois, USA [32] 

Castellani U07413 T4 Yeast culture, London, UK [32] 

Neff U07416 T4 Soil, USA [32] 

JAC/S2 U07415 T4 Soil, Japan [32] 

U/Oft1 AY026248 T4 Brazil Direct 
submission 

M3 GU936484 T4 Cooling towers water, France [39] 

82-12-324 U07408 T4 Keratitis, Houston, TX, USA [32] 

KA/MSS8-1 AY173000 T4 Marine sediment, Korea Direct 
submission 

88-2-37 U07410 T4 Keratitis, Houston, TX, USA [32] 

KA/MSG15 AY173007 T4 Marine sediment, Korea Direct 
submission 

V390 AY703004 T4 Skin, Atlanta, GA, USA [40] 

KA/E5 AY148954 T4 Keratitis, Korea Direct 
submission 

Ac_PCN18c GU808328 T4 Keratitis, Thailand [18] 

407-3a U94734 T5 Acid waste dump, Atlantic Ocean, 
USA 

[13] 

25/1 U94740 T5 Nasal mucosa, Germany [13] 

2802 AF019063 T6 Swimming pool, France [13] 

Ray & Hayes AF019064 T7 Lab water, Washington, USA [13] 

OC-15C AF019065 T8 Freshwater, Maryland, USA [13] 

Comandon & 
de Fonbrune 

AF019066 T9 Soil, France [13] 

Lilly A-1 AF019067 T10 Human cell culture, Indiana, USA [13] 

BH-2 AF019068 T11 Brackish water, Maryland, USA [13] 

V013 AF019070 T12 GAE, brain, Barbados, BWI [13] 

UWC9 AF132134 T13 Keratitis, MN, USA [41] 
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Isolate name Accession  
No. 

Genotype Isolation/Place of origin Reference 

PN15 AF333607 T14 Human cell culture, Pakistan [42] 

AC005 AY262360 T15 Marine source, USA [43] 

JPH7 AB741044 T5 Keratitis, Kanazawa, Japan This study 

JPH8 AB741046 T4 Keratitis, Kanazawa, Japan This study 

JPH13 AB741047 T4 Keratitis, Kanazawa, Japan This study 

JPH18 AB795719 T4 Keratitis, Kanazawa, Japan This study 

JPH24 AB741045 T4 Keratitis, Kanazawa, Japan This study 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

517 
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Table 5: 16S rRNA gene sequence used in this study 518 
Isolate name Accession 

No. 
Genotype Isolation/Place of origin Reference 

CDC V006 AF479547 T1 GAE, Brain, Georgia, USA [21] 

Reich  AF479563 T2 Soil, Israel [21] 

Panola Mtn. AF479535 T3 Soil, Georgia, USA [21] 

S-7 AF479562 T3 Beach bottom, Connecticut, USA [21] 

Ma AF479533 T4 Keratitis, New York, USA [21] 

JAC E2 AF479497 T4 Keratitis, Japan [21] 

Neff AF479560 T4 Soil, California, USA [21] 

CDC V014 AF479550 T4 Keratitis, India [21] 

AA2 EU515178 T4 Soil, Morocco [44] 

1652 EU515180 T4 Soil, Mauritania [21] 

SAWL 93/1 AF479512 T4 Keratitis, South Africa [21] 

AA1 EU515179 T4 Soil, France [44] 

CCAP,  

1501-3D AF479537 T4 Keratitis, UK [21] 

CDC V029 AF479526 T4 Keratitis, Massachusetts, USA [21] 

CEI 73-01-16 AF479557 T4 Keratitis, Texas, USA [21] 

CEI 85-6116 AF479553 T4 Keratitis, Texas, USA [21] 

Singh EU515177 T4 Soil, UK [21] 

Oak Ridge AF479559 T4 Human tissue culture [21] 

SH621 EU515183 T4 Human feces, France 
Direct 
submission 

CEI 88-2-27 AF479558 T4 Keratitis, Texas, USA [21] 

CDC V125 AF479524 T4 Keratitis, California, USA [21] 

CDC V383 AF479534 T4 Keratitis, Argentina [21] 

CDC V168 AF479525 T4 Skin infection, USA [21] 

KA/E9 EU515181 T4 Keratitis, Korea 
Direct 
submission 

KA/E17 EU572722 T4 Keratitis, Korea 
Direct 
submission 

KA/E23 EU515182 T4 Keratitis, Korea 
Direct 
submission 

LVPEI 402/97 AF479506 T4 Keratitis, India [21] 

LVPEI 773/96 AF479507 T4 Keratitis, India [21] 

LVPEI 1035/99 AF479508 T4 Keratitis, India [21] 

LVPEI 98/00 AF479509 T4 Keratitis, India [21] 

LVPEI 1060/96  AF479549 T4 Keratitis, India [21] 
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Isolate name Accession 
No. 

Genotype Isolation/Place of origin Reference 

LVPEI 1002/99 AF479551 T4 Keratitis, India [21] 

LVPEI 749/98 AF479552 T4 Keratitis, India [21] 

SAWS 87/1 AF479538 T5 Sewage sludge, South Africa [21] 

PD2S AF479541 T5 Swimming pool, France [21] 

Ray & Hayes AF479546 T7 Lab water, Washington, USA [21] 

NMFS  

OC-15C AF479545 T8 Freshwater, Maryland, USA [21] 

AIP AF479544 T9 Soil, France [21] 

CDC 409 AF479542 T10 Horse brain, USA [21] 

OHSU M001 AF479536 T11 Keratitis, Oregon, USA [21] 

CDC V013 AF479548 T12 GAE, brain, British West Indies [21] 

JPH2 AB795705 T4 Keratitis, Kanazawa, Japan This study 

JPH5 AB795706 T4 Keratitis, Kanazawa, Japan This study 

JPH6 AB795707 T3 Keratitis, Kanazawa, Japan This study 

JPH7 AB795708 T5 Keratitis, Kanazawa, Japan This study 

JPH10 AB795709 T4 Keratitis, Kanazawa, Japan This study 

JPH14 AB795710 T4 Keratitis, Kanazawa, Japan This study 

JPH17 AB795711 T4 Keratitis, Kanazawa, Japan This study 

JPH18 AB795712 T4 Keratitis, Kanazawa, Japan This study 

JPH19 AB795713 T4 Keratitis, Kanazawa, Japan This study 

JPH22 AB795714 T4 Keratitis, Kanazawa, Japan This study 

JPH23 AB795715 T3 Keratitis, Kanazawa, Japan This study 

JPH24 AB795716 T4 Keratitis, Kanazawa, Japan This study 

JPH25 AB795717 T3 Keratitis, Kanazawa, Japan This study 

JPH27 AB795718 T4 Keratitis, Kanazawa, Japan This study 
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Figures 533 
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