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Summary 

 

An intravenous administration of a high-dose Ag can induce immune tolerance and 

suppress the immune response, but the mechanism remains unclear. We recently 

proved that a combined intravenous administration of OVA and IL-2-anti-IL-2 Ab 

immune complexes (IL-2 ICs) efficiently expands OVA-specific Treg cells in the 

thymus and induces their migration into peripheral blood, by using OVA-specific T-cell 

receptor Tg-expressing DO11.10 mice. Here, we demonstrate that the expanded 

OVA-specific Treg cells rapidly move into the air pouch after OVA injection in 

DO11.10 mice. The migration was inhibited by blocking the axis of a chemokine 

receptor, CCR2. Moreover, prior treatment with OVA and IL-2 ICs enhanced 

OVA-specific Treg-cell migration and inhibited OVA-induced delayed-type 

hypersensitivity (DTH) reactions in the skin of BM chimeric mice with 15 % of T cells 

expressing OVA-specific T-cell receptor. Blocking the CCR2 axis reversed this 

suppression of DTH in these mice. Furthermore, prior treatment with OVA and IL-2 

ICs effectively reduced DTH reactions even in WT mice possessing only a very small 

population of OVA-specific T cells. Thus, the treatment with Ag and IL-2 ICs can 

efficiently expand Ag-specific Treg cells with the capacity to migrate and reduce 

localized immune responses.  
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Introduction 

 

Recognition of a foreign substance initiates adaptive immunity, thereby generating 

Ag-specific T cells and Abs. The immune system can recognize autologous molecules 

as well as exogenous ones, but the immune reaction against an autologous Ag can 

cause a deleterious condition, the autoimmune response. The thymus has a crucial role 

in the prevention of autoimmune responses by educating a T-cell precursor, the 

thymocyte, to become unresponsive to autologous Ags. This process, called 

intrathymic education, consists of two processes, negative selection and differentiation 

of naturally occurring Treg (nTreg) cells. Negative selection eliminates thymocytes, 

which can recognize autologous Ags with high affinity, while nTreg can inhibit the 

effecter T (Teff) cell response to autologous Ags in an Ag-specific manner. 

The mode of immune response can differ depending on the dose of Ag, the route of 

administration, and the presence of adjuvant. Subcutaneous or dermal injection of a 

protein emulsified in adjuvant can activate T cells [1], whereas oral exposure to an Ag 

can induce tolerance [2]. Moreover, an intravenous injection of a high-dose Ag can 

induce Ag-specific immune tolerance [3-5] and can prevent autoimmune diseases in 

mice such as type 1 diabetes mellitus [6] or EAE [4]. Although intrathymic education 

is generally vital to induce immune tolerance, the role of the thymus in immune 

tolerance induced by an intravenous injection of a high-dose Ag needs further 

clarification. 

IL-2 is one of the most important cytokines for Treg-cell development and survival 

[7]. Moreover, Webster et. al. [8] observed that in vivo administration of IL-2 immune 

complexes (ICs) can induce a marked increase in Treg cells in many organs, including 

the liver and gut as well as the spleen and LNs, with a modest increase in Treg cells in 

the thymus. Furthermore, pre-treatment with IL-2 ICs rendered mice resistant to 

induction of EAE and induced tolerance to fully MHC-incompatible pancreatic 

transplants [8]. 
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We previously demonstrated that thymic CD11c+CD11b+CD8α-Sirpα+ conventional 

DCs (cDCs) are preferentially localized in an interlobular vascular-rich region and that 

they can selectively capture blood-circulating Ag and induce Ag-specific Treg-cell 

generation, thereby inducing immune tolerance in the thymus [9, 10]. We therefore 

postulated that the combined intravenous injection of an Ag and IL-2 ICs could expand 

Ag-specific Treg cells with a capacity to migrate to the Ag-containing site, thereby 

reducing Ag-specific immune responses. In order to prove this assumption, we 

examined the effects of combined intravenous injection of OVA and IL-2 ICs on an 

OVA-induced DTH reaction in the skin. We provide here definitive evidence indicating 

that the treatment generated Ag-specific Treg cells in thymus which could migrate 

preferentially to the DTH site in a CCR2-dependent manner, thereby dampening the 

DTH reaction. 
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Results 

 

Ag-specific Treg cells preferentially migrate to an Ag-containing site. 

We first examined whether Ag-specific Treg cells could migrate to the Ag injection site. 

In order to address this point, we repeated intravenous OVA injection to DO11.10 mice 

twice before OVA administration into air pouch (Figure 1A). This resulted in the rapid 

appearance of KJ1-26highFoxp3- Teff cells in the air pouch within 12 h after OVA 

administration (Figure 1B). Subsequently, KJ1-26highFoxp3+ Treg cells accumulated in 

the air pouch more than 24 h after OVA injection, comprising more than 20% of the 

total KJ1-26high cells (Figure 1B). The administration of BSA into the air pouch failed 

to induce KJ1-26highFoxp3+ Treg-cell accumulation (Figure 1C), suggesting that a 

localized Ag at the induced inflammatory site can attract Ag-specific Treg cells. In 

order to test this assumption, we collected lymphocytes from DO11.10 mice either 

immunized twice with OVA or non-immunized. These cells were labeled with 

carboxyfluorescein diacetate succinimidyl ester (CFSE) and administered to WT mice 

(Supporting Information Figure 1A). Subsequent administration of OVA into air pouch 

of such recipient mice induced the accumulation of CFSE-labeled immunized 

KJ1-26highFoxp3+ Treg cells but not non-immunized cells in the air pouch (Figure 1D). 

Furthermore, the in vivo primed Treg cells, in which CFSE signal was diluted by the 

cell division, mainly accumulated in the air pouch (Figure 1D). Consequently, 

Ag-specific Treg cells can migrate to the site containing the Ag. 

 

Intravenously administered Ag induces intrathymic Treg cells and their migration 

into the periphery 

We previously demonstrated that an intravenous injection of an Ag can induce 

differentiation of Ag-specific Treg cells in the thymus [10]. Untreated thymus 

contained a small number of both KJ1-26lowFoxp3+ and KJ1-26highFoxp3+ cells 

(Supporting Information Figure 2). Following intravenous OVA injection, 
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KJ1-26highFoxp3+ but not KJ1-26highFoxp3- thymocytes increased (Figure 2A, 

Supporting Information Figure 2, and 3). However, the KJ1-26highFoxp3+ thymocyte 

number decreased at 5 days after OVA injection (Figure 2A). Concomitantly, 

KJ1-26highFoxp3+ Treg cells appeared in peripheral blood 5 days after OVA injection 

(Figure 2B). The increase in KJ1-26highFoxp3+ Treg cells in peripheral blood was 

reduced by removal of the thymus but not spleen (Figure 2C). Moreover, intravenous 

OVA injection increased Helios+Foxp3+ Treg cells in the thymus, and to a lower extent, 

in the spleen (Figure 2D). Concomitantly, most Foxp3+ cells in peripheral blood 

expressed Helios (Figure 2E). Finally, we obtained lymphocytes from DO11.10 mice, 

either immunized with OVA or non-immunized, and transferred them into the air 

pouch-bearing WT mice (Supporting Information Figure 1B). WT mice, which 

received non-immunized DO11.10 lymphocytes, were subsequently immunized with 

OVA to induce Treg cells mainly in the periphery. OVA injection into the air pouch led 

to a higher proportion of Foxp3+ Treg cells among KJ1-26high cells at the air pouch, in 

the mice receiving the immunized lymphocytes than in the mice receiving 

unimmunized lymphocytes and subsequent intravenous OVA injection (Figure 2F). 

Thus, Ag-specific Treg cells, which were generated in the thymus, could migrate into 

the antigen site more efficiently than peripherally-induced Treg cells. 

 

Ag-specific Treg cells migrate to the air pouch in a CCR2-dependent manner 

The selective migration of Ag-specific Treg cells prompted us to investigate the 

contribution of chemokines, which can exhibit chemotactic activities on a selected set 

of leukocytes with their receptors [11-13]. Flow cytometry (FCM) analysis 

demonstrated an enhanced expression of several chemokine receptors including CCR2, 

CCR4, CCR5, and CXCR4 on Ag-specific Treg cells infiltrating in Ag-injected air 

pouch, compared with Teff cells (Figure 3A). Of particular interest is that most 

Ag-specific Treg cells in the OVA-injected air pouch expressed CCR2, and that the 

expression level was higher than that in the draining LN (dLN). These observations 
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suggested the involvement of the ligands for these receptors in the migration of 

Ag-specific Foxp3+ Treg cells into the air pouch. The administration of OVA into the 

air pouch consistently induced increases in the contents of CCL2, the ligand for CCR2, 

CCL17 and CCL22, the ligands for CCR4, and CCL5 (RANTES), the ligand for CCR5 

(Supporting Information Figure 4), but not CXCL12, the ligand for CXCR4 (data not 

shown). In order to prove the roles of these chemokines, we blocked the axes of these 

chemokines. Consistent with the previous report [14, 15], anti-CCL17 and anti-CCL22 

neutralizing Abs reduced the numbers of KJ1-26high Treg cells migrating into the 

OVA-injected air pouch with no effect on the proportion of KJ1-26high Treg cells in the 

draining lymph node (Supporting Information Figure 5). Accumulating evidence 

identifies truncated RANTES (tRANTES) as a potent antagonistic protein against 

CCR5 [16]. Moreover, in vivo transfection of tRANTES expression vector (Supporting 

Information Figure 6) can sustain serum tRANTES levels sufficient to block 

CCR5-mediated signals (our unpublished data). However, in vivo transfection of 

tRANTES-expressing vector failed to cause any significant changes in the number and 

proportion of KJ1-26high Treg cells, when compared with control vector (Supporting 

Information Figure 7). On the contrary, genetic ablation of CCR2 reduced the number 

and proportion of KJ1-26high Treg cells in the OVA-injected air pouch, but increased 

that of the dLN (Figure 3B). Because CCR2 is well-known as an essential factor for 

the monocyte and macrophage chemotaxis, it is possible that the reduced Treg-cell 

infiltration in CCR2-/- mice may be indirectly due to the less monocyte migration and 

reduction of infiltration. To exclude this possibility, lymphocytes from DO11.10 or 

DO11.10/CCR2-/- mice were transferred to WT mice bearing air pouch. OVA injection 

to the air pouch failed to attract the KJ1-26high Treg cells derived from 

DO11.10/CCR2-/- mice (Figure 3C). This proved that CCR2 expression on Treg cells is 

necessary for their migration to Ags. Thus, the expression of CCR2 can contribute to 

the preferential Ag-specific Treg-cell migration into the Ag-injected site. 
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Induced Ag-specific Treg cells migrate into DTH site and suppress an excessive 

reaction 

We next examined the function of intravenously administered Ag-induced Treg cells in 

more pathologically relevant condition. In order to examine the immune suppressive 

activities of these Ag-specific Treg cells in the experimental DTH model, we first 

injected OVA into the footpad of DO11.10 mice after subcutaneous immunization with 

OVA emulsified in CFA (Figure 4A). However, the intractable and marked DTH 

response ensued due to a massive infiltration of KJ1-26high Teff cells into the injected 

footpad (our unpublished data). In order to circumvent the intractable DTH, we 

prepared BM chimeric mice using WT and DO11.10 mice to obtain mice with about 10 

to 15 % of T cells expressing DO11.10 clonotypic TCR (Supporting Information 

Figure 8). The resultant BM chimeric mice still exhibited a considerable DTH reaction 

as evidenced by an abundant leukocyte infiltration and an enhanced paw thickness 

(Figure 4B and 4C). Because the intravenous administration of OVA induced 

KJ1-26high Treg cell expansion (Figure 2A and 2B), IL-2 ICs was additionally 

administrated in combination with the intravenous OVA injection (Figure 4A). 

Consistent with the previous report [8], IL-2 ICs alone induced the expansion of 

polyclonal Vα2+ Treg cells, but not KJ1-26high Treg cells in peripheral blood, whereas 

the combined treatment with OVA and IL-2 ICs succeeded in expansion of KJ1-26high 

CD25+Foxp3+ Treg cells as well as polyclonal Treg cells (Figure 4D and Supporting 

Information Figure 9). The combined treatment with OVA and IL-2 ICs, but not that 

with OVA or IL-2 ICs alone diminished the DTH reaction as evidenced by decreased 

leukocyte infiltration and reduced paw thickness (Figure 4B and 4C). Likewise, the 

combined treatment with OVA and IL-2 ICs, but not that with OVA or IL-2 ICs alone 

increased the proportion of Foxp3+ cells in the inflammatory site (Figure 4E). Thus, in 

collaboration with IL-2 ICs, a prior intravenous injection of an Ag can expand 

Ag-specific Treg cells in the thymus and can induce their migration to the 

inflammatory sites to suppress local inflammation. 
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Reversion of Ag-IL-2 ICs-mediated suppression of DTH reaction by blocking 

CCR2 

We next examined whether Ag-specific Treg cells migrated into the Ag injection site to 

dampen DTH response in a CCR2-dependent manner, as observed on the air pouch 

model. Histological examination demonstrated that leukocytes infiltrated to the 

Ag-injected site to similar extents irrespective of the absence or the presence of CCR2 

gene (Figure 5A). However, Ag-IL-2 ICs suppressed leukocyte infiltration and paw 

thickness only in the presence of CCR2 gene (Figure 5A and 5B). Similarly, Treg-cell 

infiltration was enhanced by Ag-IL-2 ICs treatment only in the presence of CCR2 gene 

(Figure 5C). Likewise, neutralization of CCR4 ligands did abrogate the effects of 

Ag-IL-2 ICs treatment on DTH (Supporting Information Figure 10). Thus, Ag-specific 

Treg cells can utilize CCR2 and/or CCR4 to migrate into the Ag-localized site, thereby 

suppressing immune-mediated DTH reaction. 

 

Successful immune control by combined treatment of IL-2 ICs and Ag in DTH 

Finally, we examined whether the combined treatment with an Ag and IL-2 ICs can 

dampen DTH reaction even in WT mice, which do not possess monoclonal or 

oligoclonal T cells. When OVA-immunized WT mice were challenged with a 

subcutaneous OVA injection, the mice exhibited DTH reaction as evidenced by 

subcutaneous leukocyte infiltration and enhanced paw thickness (Figure 6A and 6B), 

although the magnitude of the reaction was weaker than that of BM chimeric mice 

(compare between Figures 4C and 6A). The prior combined intravenous administration 

with OVA and IL-2 ICs, but not that with IL-2 ICs or OVA alone, markedly reduced 

leukocyte infiltration and paw thickness (Figure 6A and 6B). Thus, the combined 

intravenous injection of an Ag and IL-2 ICs can reduce local immune response 

probably by inducing intrathymic differentiation of Ag-specific Treg cells and their 

migration into the site of the immune response under the control of chemokine 
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receptors such as CCR2 and CCR4. 
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Discussion 

 

The administration of a high-dose Ag can induce immune tolerance by utilizing several 

mechanisms including depletion of Teff cells [4], induction of T-cell apoptosis in 

peripheral blood and thymus [5], suppression of Ig production [17], and expansion of 

Treg cells [18]. Here, we determined that an intravenous injection of a high-dose of Ag 

could efficiently expand Ag-specific Treg cells in a thymus-dependent manner and that 

the expansion could be further augmented by the additional administration of IL-2 ICs. 

Moreover, the expanded Ag-specific Treg cells preferentially migrated to the local 

injection site of Ag in a CCR2-dependent manner to prevent immune 

response-mediated DTH reactions. 

We previously demonstrated that thymic CD11c+CD11b+CD8-Sirpα+ cDCs are 

principally located in interlobular vascular-rich region of the thymic cortex and capture 

Ags from bloodstream [9] to induce Ag-specific Treg-cell generation [10]. Also under 

the present conditions, we observed that Ag-specific Treg cells appeared in the 

circulation after their transient intrathymic expansion. Evidence is accumulating to 

indicate that Treg cells can be generated in the spleen and LNs as well as the thymus. 

However, the removal of thymus but not spleen markedly reduced the increase in 

Ag-specific Treg-cell numbers in peripheral blood. Helios, a member of Ikaros 

transcription factor family, was once reported to be a marker of thymus-derived Treg 

cells. Intravenous Ag injection induced Helios expression on Ag-specific Treg cells in 

the thymus but not spleen. Thereafter, Ag-specific Treg cells in circulation started to 

express Helios. Several lines of evidence questioned the validity of Helios as a specific 

marker of thymus-derived Treg cells [19, 20]. However, intravenous Ag injection 

efficiently increased the Ag-specific Treg cells, which were generated in the thymus 

and to a lesser extent, ones converted in the periphery in the Ag containing site. Thus, 

it is probable that an intravenous Ag injection could induce Treg-cell generation in the 

thymus, although Treg-cell conversion from other T-cell populations in the periphery 
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can also contribute to a certain extent. 

Treg cells can be classified into two populations with distinct roles in immune 

tolerance, nTreg and induced Treg (iTreg) cells [21]. nTreg cells are generated in the 

thymus and can regulate mainly Th1 mediated-immune responses. On the contrary, 

iTreg cells are generated in the periphery outside the thymus and can control Th2 

mediated-response in mucosal tolerance [22]. We demonstrated that an intravenous Ag 

injection can induce Ag-specific Treg cells in the thymus. Thus, the intrathymically 

generated Treg cells can suppress DTH reaction, a typical Th1-mediated immune 

response upon reaching local Ag injection site. Several immunosuppressive maneuvers 

were developed by using iTreg cells, which were either expanded ex vivo [23] or 

differentiated in vitro [24]. On the contrary, we provided the first definitive evidence to 

indicate the immunosuppressive potential of intrathymic differentiated Ag-specific 

Treg cells, which are expanded independently of AIRE [25]. 

Treg cells can be an attractive target cell type for immune regulation. Webster et. al. 

demonstrated that the administration of IL-2 ICs selectively expanded Treg cells, and 

prevented the development of EAE and induced tolerance to MHC-incompatible 

pancreatic transplants [8]. We observed that treatment with IL-2 ICs alone expanded 

polyclonal Treg cells. However, the expansion of polyclonal Treg cells can cause 

generalized Ag-non-specific immune suppression [26-29]. Thus, the expansion of 

Ag-specific Treg cells is preferable to polyclonally expanded Treg cells to avoid 

generalized immune suppression. We showed that intravenous treatment with both an 

Ag and IL-2 ICs efficiently expanded Ag-specific Treg cells and subsequently 

suppressed DTH, whereas IL-2 ICs treatment alone could neither expand Ag-specific 

Treg cells nor suppress DTH. Thus, Ag-specific Treg cells can suppress specific 

immune responses such as DTH more efficiently than polyclonal Treg cells. 

Currently used immune-suppressive agents can inhibit immune reaction broadly and 

in an Ag-nonspecific manner. Thus, the use of Ag-specific Treg cells can be more 

effective and less harmful due to their selectivity. Moreover, the selectivity can be 
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further augmented by Ag-specific activation of Treg cells to exert their Ag-specific 

suppressive function in vivo [18]. Furthermore, once activated with an Ag, Ag-specific 

Treg cells can suppress additional immune reactions against other unrelated Ags in the 

organ exhibiting the specific Ag, resulting in organ-specific immune suppression 

against a broad range of Ags [30, 31].  We demonstrate that Ag-IL-2 ICs treatment 

can efficiently expand and activate Ag-specific Treg cells with the capacity to migrate 

to the organ containing a specific Ag. Thus, the present approach may be effective for 

organ-specific immune diseases, if pathogenic Ags or organ-specific Ags are 

definitively identified as in the case of contact dermatitis and GVHD. 

It is of interest that the expanded Ag-specific Treg cells preferentially migrated to 

the Ag injection site in the peripheral tissue, both in air pouch model and DTH reaction. 

Treg cells can migrate into various sites such as the tumor tissues, infected site and 

transplanted organs [15, 32-34], to suppress immune response to the tumor, infected 

tissues, or transplanted organs [27, 35]. Leukocyte migration is controlled by several 

factors and among them, chemokines have a crucial role. Leukocytes can migrate in 

response to the interaction between chemokine(s) expressed in the local site and the 

chemokine receptor(s) expressed by leukocytes [36-38]. Several lines of evidence 

indicate that Treg migration into the peripheral tissue is regulated by CD103, CCR2, 

CCR4 and CCR5 expression [15, 16, 34, 39, 40]. In particular, it is broadly known that 

CCR4 signaling plays an important role in Treg cells migration [15]. We demonstrated 

that most Ag-specific Treg cells expressed CCR2 as well as CCR4 and CCR5, and that 

Ag-injected air pouch contained abundant CCL2, the ligand for CCR2. These results 

suggest that CCR2 also have crucial roles in Treg cells migration. This notion is 

further supported by our present observation that blocking CCR2-mediated signaling 

reduced Ag-specific Treg cells migration into the Ag site. Moreover, blocking the 

receptors reversed Ag-IL-2 ICs-mediated suppression of DTH reactions. 

CCR2-mediated signals apparently have essential roles in Ag-specific Treg-cell 

migration into the Ag containing site in addition to CCR4-mediated signals. CCR2 



Hamano 14 
 

signal is known to have a main role in migration of macrophage and dendritic cells to 

initiate inflammation. But, on the other hand, CCR2 could also contribute to 

Ag-specific Treg-cell migration to suppress immune reaction. Thus, CCR2-mediated 

signals can supplement the use of Ag-specific Treg cells to control DTH-related 

immune responses.  
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Materials and Methods 

Mice 

Female Balb/c mice were obtained from Charles River Japan (Yokohama, Japan) and 

designated as WT mice. DO11.10 mice expressing a Tg TCR that recognizes the 

OVA323–339 peptide in the context of I-Ad were maintained as heterozygotes. 

DO11.10/CCR2-/- mice were generated by mating DO11.10 and CCR2-deficient mice 

as previously described [9]. All mice were maintained in the animal facility of the 

Kanazawa University under specific pathogen-free conditions. All animal experiments 

were approved and performed according to the Guideline for the Care and Use of 

Laboratory Animals of Kanazawa University 

 

Reagents and Abs 

Rat anti-mouse DO11.10 clonotypic TCR (KJ1-26), Foxp3 (MF23) and IL-2 

(JES6-1A12) Abs were obtained from BD Bioscience (San Jose, CA). Rat anti-mouse 

CD4 (RM5-5) and Foxp3 (FJK-16s) Abs were obtained from eBioscience (San Diego, 

CA). Rat anti-mouse CD25 (PC61) and CD184/CXCR4 (TG12/CXCR4) Abs, and 

hamster anti-mouse CD194/CCR4 (2G12), Helios (22F6), and CD195/CCR5 

(HMCCR5) Abs were obtained from BioLegend (San Diego, CA). Recombinant mouse 

IL-2, and rat anti-mouse CCL17/TARC (110904), CCL22/MDC (158132), and 

CD192/CCR2 (475301) Abs were obtained from R&D systems (Minneapolis, MN). 

OVA and BSA were obtained from Sigma Aldrich (St. Louis, MO). 

 

Air pouch model (Figure 1A) 

Subcutaneous air pouches were prepared as described with some modifications [41]. 

Briefly, 5 ml of air was subcutaneously injected to dorsal surface of WT or DO11.10 

mice. 2 mg of OVA dissolved in 200 μL of PBS was injected intravenously twice, one 

and two days after the air injection. 3 ml of air was additionally injected into the air 

pouch on Day 3. On Day 4, 100 μg of OVA in 1 ml of PBS was injected into the air 



Hamano 16 
 

pouch. At the indicated time points after the last OVA injection into the air pouch, the 

cells in the air pouch were recovered by washing the air pouch with 1 ml of cold PBS. 

The obtained fluid samples were centrifuged to obtain the supernatants and the cell 

suspensions. The supernatants were used for the determination of chemokines by 

ELISA while the cell suspensions were used for cell surface marker analysis by FCM 

after the determination of the cell number. In some experiments, lymphocytes were 

collected from LNs of DO11.10 or DO11.10/CCR2-/- mice, which were untreated or 

intravenously administered with OVA as described above. The obtained cells were 

stained with 2 μM of CFSE (Life Technologies Corporation, Carlsbad, CA), and were 

transferred to WT mice (Supporting Information Figure 1A and B). 

 

Cell preparation 

Thymus, LN, and spleen were collected from 4 to 8-week old mice to obtain single cell 

suspensions by mechanical digestion. PBMCs were isolated from whole blood by using 

Histopaque-1083 reagent (Sigma Aldrich). The cells in the air pouch were collected as 

described above. 

 

Spelenectomy and thymectomy 

The spleen was exposed by an oblique incision, in the left upper abdominal quadrant 

while the animal was kept under anesthesia with Avertin (2, 2, 2-Tribromoethanol) 

(Sigma Aldrich). After the splenic arteries and venous vessels were cauterized to 

minimize blood loss, the spleen was removed. The thymus was mechanically removed 

through an incision in the neck and thoracic wall extending to the level of the second 

rib, while mice were kept under anesthesia with Avertin. Sham-treated animals 

received identical manipulations without actual spleen and thymus removal prior to 

wound suturing. 

 

DTH 
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Mice were subcutaneously immunized with 200 μg of OVA protein in 200 μl of the 

emulsion consisting of an equal volume of PBS and complete Freund’s adjuvant (CFA) 

(Sigma Aldrich). Ten days after the immunization, 100 μg of heat aggregated OVA in 

50 μl of PBS was injected into the footpad. 24 h after the footpad injection, footpad 

thickness was measured and the intensity of inflammation was histologically 

evaluated. 

 

Preparation of BM chimeric mice 

BM cells were obtained from DO11.10 and WT mice, and the resultant cells were 

mixed at the indicated ratio. After WT recipient mice were lethally irradiated (8 Gy), 

they received 1×107 BM cells intravenously. The experiments were conducted on the 

obtained BM chimeric mice more than three weeks after transplantation. 

 

In vivo transfection of tRANTES 

cDNA encoding mouse tRANTES (its nucleotide sequence described in Supporting 

Information Figure 6) was subcloned into the pLIVE expression plasmid vector (Mirus, 

Madison, WI). 10 g of the resultant or empty pLIVE expression plasmid vector was 

injected into mice by using TransIT®-EE Delivery Solution (Mirus) according to the 

manufacturer’s instructions, because this gene delivery system can sustain serum 

tRNATES levels at higher than 1 ng/ml for 2 months after the injection (our 

unpublished data). 

 

Immunohistochemical analysis 

Mouse footpads were cut off and fixed in fixating agent, Yufix (Sakura Finetec Japan, 

Tokyo, Japan). After subsequent decalcification with formic acid (Nacalai Tesque, 

Kyoto, Japan), the samples were embedded with paraffin and sliced at 3 μm thickness. 

For Ag retrieval, the deparaffinized slides were autoclaved in 10 mmol/L citrate buffer 

(pH 6.0) for 10 min at 120 oC. After blocking with a protein block serum-free solution 
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(DAKO, Carpinteria, CA), anti-Foxp3 Ab (FJK-26s) was added to the tissue sections 

and incubated overnight in a humidified box at 4oC. Immune complexes were then 

detected using the CSA systems (DAKO) followed by staining with hematoxylin. 

 

Determination of chemokine concentrations 

Concentrations of MCP-1/CCL2, TARC/CCL17, MDC/CCL22, RANTES/CCL5 and 

SDF-1/CXCL12 in the air pouch fluid were determined by Quantikine ELISA kit 

(R&D systems) according to the manufacturer’s instructions. 

 

FCM 

Single cell suspensions were stained with various combinations of fluorescent 

dye-conjugated or non-conjugated specific Abs in magnetic-activated cell sorting 

buffer (PBS supplemented with 2 mM EDTA and 3 % FBS). For non-conjugated Abs, 

fluorescence-conjugated secondary Abs were used. Subsequently, the cells were fixed, 

permeabilized and stained with a Foxp3 staining set (eBioscience). Subsequently, the 

expression of each molecule was analyzed using FACSCanto II (BD Biosciences) with 

the help of FlowJo (TreeStar, Ashland, OR). 

 

Statistical analysis 

Data are represented as mean and SD. Statistical significance was determined by 

indicated method in each experiment. A value of p<0.05 was considered statistically 

significant. 
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Legends to Figures 

 

Figure 1. Preferential migration of Ag-specific Treg cells to the Ag-containing site 

(A) Schematic presentation of the experimental procedures of the air pouch model. (B) 

Infiltrating cells were collected from the air pouch at the indicated time points. After 

the cell numbers were determined, the cells were analyzed using FCM by gating on 

KJ1-26-high region. The absolute KJ1-26highFoxp3+ cell numbers as Treg-cell numbers 

(left), the absolute KJ1-26highFoxP3- cell numbers as Teff-cell numbers (middle), and 

the proportion of Foxp3+ and Foxp3- cells among KJ1-26high cells in the air pouch 

(right) are shown. Data are shown as mean +SD of 5 samples pooled from 2 

experiments. **p < 0.01, one-way ANOVA followed by Tukey-Kramer test. (C) 

DO11.10 mice were treated with the air pouch protocol and additionally, 100 μg of 

OVA or BSA in 1 ml of PBS was injected into the air pouch. 24 h after the injection, 

the cells were obtained from the air pouch. Air pouch-infiltrating cells were analyzed 

by gating on KJ1-26-high region, and data are shown as mean + SD of 5 samples 

pooled from 2 independent experiments. *p < 0.05, Student’s t-test. (D) Lymphocytes 

were obtained from DO11.10 mice, which were immunized or non-immunized with the 

protocol shown in Supporting Information Figure 1A. The resultant cells were labeled 

with CFSE and were transferred into WT mice. Thereafter, 100 μg of OVA in 1 ml of 

PBS was injected into the air pouch of WT mice. 72 h after the injection, the cells were 

obtained from air pouch or axillary LNs (dLN). The total cells in the air pouch and 

dLNs were analyzed on Foxp3 and CFSE by gating on KJ1-26-high region, and 

representative results from 3 independent experiments are shown. 

 

Figure 2. Intravenous OVA injection-induced Treg-cell expansion in thymus 

(A) OVA was intravenously injected twice on Day 0 and Day 1 into DO11.10 mice.  

Thymus was collected on Day 0, Day 3 and Day 5. After the cell numbers were 

determined, the resultant thymocytes were analyzed for the expression of KJ1-26 and 
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Foxp3 by using FCM and the absolute numbers of KJ1-26highFoxp3+ cells were 

calculated. The data are shown as mean + SD of 5 samples pooled from 2 independent 

experiments. **p < 0.01, one-way ANOVA followed by Tukey-Kramer test. (B) On Day 

5, PBMCs were obtained from DO11.10 mice, which were immunized twice with OVA. 

The total resultant cells were analyzed for the expression of CD25 and Foxp3 after 

gating on KJ1-26 high region by using FCM. As a control, PBMCs were obtained from 

untreated DO11.10 mice. The percentage of CD25highFoxp3+ or CD25lowFoxp3+ cells is 

shown in each panel. Representative results from 5 independent animals are shown. 

(C) Thymectomy, splenectomy or sham surgery was performed on DO11.10 mice. Two 

weeks after the operation, 2 mg of OVA was intravenously injected twice, on Day 0 

and Day 1. On Day 3, PBMCs were collected and analyzed by FCM. The fold change 

in Treg cells is shown as mean + SD of 4 samples pooled from 2 experiments. *p < 

0.05; N.S., not significant, Student’s t-test. (D) Total thymocytes or splenocytes 

collected on Day 0 or Day 3 were analyzed for Helios expression after gating on 

KJ1-26highFoxp3+ cells. Data are shown as mean + SD of 4 animals pooled from 2 

experiments. *p < 0.05; **p < 0.01, one-way ANOVA followed by Tukey-Kramer test. 

(E) Helios expression on KJ1-26highFoxp3+ cells (gray-filled histogram) or 

KJ1-26highFoxp3- cells (dashed-line histogram) from peripheral blood was analyzed by 

FCM, and representative results from 3 independent experiments are shown. The value 

shown indicates % positive cells among KJ1-26highFoxp3+ cells. (F) Peripheral 

lymphocytes, which were obtained from DO11.10 mice un-immunized or immunized 

with OVA, were administered to WT mice with air pouches. 2 mg of OVA was 

intravenously injected twice only into WT mice, which received unimmunized, naïve 

lymphocytes. Finally, 100 μg of OVA was further injected into the air pouch of WT 

mice receiving DO11.10 mouse-derived lymphocytes (Supporting Information Figure 

1B). The total cells in the air pouch were obtained to determine the proportion of 

Foxp3+ cells among KJ1-26high cells. Data are shown as mean + SD of 4 samples 

pooled from 3 independent experiments. *p < 0.05, Student’s t-test. 
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Figure 3. Ag-specific Treg-cell migration to the Ag-containing site in a CCR2- or 

CCR4-dependent manner 

(A) On Day 5 of the air pouch model, cells were obtained from the air pouch 

(gray-filled histograms) and the dLN (black line histograms) of DO11.10 mice. The 

cells were analyzed for the expression levels of chemokine receptors among 

KJ1-26highFoxp3+ Treg cells (top) and KJ1-26highFoxp3- Teff cells (bottom). Values 

shown indicate % positive cells among air pouch-infiltrating cells. Representative data 

from 5 independent experiments are shown. (B) DO11.10 or DO11.10/CCR2-/- mice 

were treated as shown in Figure 1A. The total cells were obtained on Day 5 from the 

air pouch and dLNs. The ratios of Foxp3+ cells among KJ1-26high cells (left), the 

absolute numbers of KJ1-26highFoxp3+ cells from air pouch (middle) and the ratio of 

KJ1-26highFoxp3+ cells from dLNs (right) were determined and shown as mean + SD of 

5 individual animals pooled from 2 experiments. *p < 0.05; **p < 0.01, Student’s t-test. 

(C) Lymphocytes were obtained from DO11.10 mice or DO11.10/CCR2-/-, which were 

immunized as shown in Supporting Information Figure 1A. The resultant cells were 

labeled with CFSE and were transferred into WT mice. Thereafter, 100 μg of OVA in 1 

ml of PBS was injected into the air pouch of WT mice. 72 h after the injection, the 

cells were obtained from air pouch or dLNs. The total cells in the air pouch and dLNs 

were analyzed for Foxp3 by gating on KJ1-26high and CFSE-positive region, and 

representative results from 3 independent experiments are shown. 

 

Figure 4. Combined administration of OVA and IL-2 ICs suppresses OVA-induced 

inflammation. 

(A) Schematic presentation of induction procedures of Ag-specific DTH reactions. (B) 

BM chimeric mice with about 15 % lymphocytes expressing KJ1-26 (Supporting 

Information Figure 8) were treated as in Figure 4A. Skin tissues were obtained on Day 

16 for histological evaluation using H&E staining. Representative results from 5 
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individual animals are shown; scale bar, 100 m. (C) Paw thickness was determined 

and the changes in thickness (Δmm) were calculated by subtracting the original 

thickness from the thickness of swollen paw. Data are shown as mean + SD of 5 

animals from a single experiment performed. **p < 0.01; N.S., not significant, one-way 

ANOVA followed by Tukey-Kramer test. (D) BM chimeric mice were immunized 

twice with 2 mg of OVA. Peripheral blood was obtained on Day 10 to determine the 

proportion of CD25highKJ1-26highFoxp3+ or CD25highV+Foxp3+ cells among 

lymphocytes, shown as mean ± SD of 5 animals from an experiment. Vα2 TCR was 

used as a marker of polyclonal Treg cells. **p < 0.01; N.S., not significant, Student’s 

t-test. (E) Skin tissues were obtained on Day 16. The tissues were stained with 

anti-Foxp3 Ab. The proportions of Foxp3+ cells among mononuclear cells were 

determined by using Image J and shown as mean +S D of 5 individual animals from a 

single experiment performed. **p < 0.01, one-way ANOVA followed by Tukey-Kramer 

test. 

 

Figure 5. Reversal of OVA and IL-2 ICs-induced suppression of DTH by blockade 

of CCR2. 

(A) DTH was elicited in BM chimeric mice, with 15% lymphocytes consisting of 

either DO11.10 or DO11.10/CCR2-/- lymphocytes. The tissues were obtained 1 day 

after OVA injection into the footpad and were processed to H&E staining. 

Representative results from 5 individual animals are shown; scale bar, 100 μm. (B) The 

changes in thickness (Δmm) were determined when the tissues were obtained shown in 

Figure 5A. Data are shown as mean + SD of 5 individual animals from a single 

experiment performed. (C) The same tissues used in Figure 5B were stained with 

anti-Foxp3 Ab. The proportions of Foxp3+ cells to mononuclear cells were determined 

by using Image J and shown as mean + SD of 5 individual animals from a single 

experiment performed. **p < 0.01; N.S., not significant, one-way ANOVA followed by 

Tukey-Kramer test. 
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Figure 6. Combined IL-2 ICs and Ag treatment inhibits the DTH by efficient 

expansion of Ag-specific Treg cells. 

WT mice were treated intravenously with either IL-2 ICs, OVA alone or the 

combination of OVA and IL-2 ICs. Thereafter, DTH was elicited in WT mice as shown 

in Figure 4A. (A) Skin tissues were obtained on Day 16 and were stained with H&E for 

histological analysis. Representative results from 5 individual animals are shown; scale 

bar, 100 m. (B) Paw thickness on Day 16 was determined and shown as mean + SD 

were calculated of 5 individual from a single experiment performed. **p < 0.01; N.S., 

not significant, one-way ANOVA followed by Tukey-Kramer test. 
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Legends to Supplemental Figures 

S1. Nucleotide sequence of tRANTES 

The inserted tRANTES nucleotide sequence is shown. Blue and red sequence encodes 

RANTES signal peptide and 9-68 RANTES (mature peptide), respectively. 

 

S2. Gating strategy of Tregs and Teffs 

Cells were stained by KJ1-26 and Foxp3. The cells were gated on FSC/SSC for 

lymphocyte and further gated on KJ1-26highFoxp3+ cells for Tregs and 

KJ1-26highFoxp3-cells for Teffs. 

  

S3. Schematics presentation of adoptive transfer experiment 

(A) Lymphocytes were obtained from DO11.10 mice, which were untreated or injected 

twice with 2 mg of OVA. The obtained cells were labeled with CFSE and transferred to 

wild-type mice bearing the air pouch. Three days after OVA injection to air pouch, the 

cells were collected from the air pouch for the analysis with FCM. (B) Lymphocytes 

were obtained from DO11.10 and were transduced into another DO11.10 mouse after 

CFSE labeling. OVA was injected into air pouch with or without prior repeated 

intravenous OVA injection. Air pouch infiltrating cells were collected and analyzed by 

using FCM. 

 

S4. Expression of Foxp3 and KJ1-26 in thymocytes after intravenous OVA 

injection 

OVA was intravenously injected twice on Day 0 and Day 1 into DO11.10 mice.  

Thymocytes were collected on Day 0 and Day 3 and were analyzed by using FCM. 

Numbers in quadrants indicate the percentage of cells in the designated gate. 

Representative results from 5 independent experiments are shown here. 

 

S5. Alteration of KJ1-26highFoxp3- thymocytes after intravenous OVA injection 
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OVA was intravenously injected twice on Day 0 and Day 1 into DO11.10 mice. 

Thymus was collected on Day 0 and Day 3. After the cell numbers were determined, 

the resultant thymocytes were analyzed for the expression of KJ1-26 and Foxp3 by 

using FCM and the absolute numbers of KJ1-26highFoxp3- cells were calculated. The 

mean and SD from 5 independent experiments are shown here. Student’s t-test was 

used for statistical analysis. N.S., not significant. 

 

S6. Alteration of chemokine expression in the air pouch after OVA injection 

DO11.10 mice were treated as shown in Figure 1A. The fluids in the air pouch were 

obtained at the indicated time intervals after OVA injection into the air pouch. The 

concentrations of CCL2, CCL5, CCL17, and CCL22 in the air pouch were determined 

on 5 individual animals by using ELISA. Mean and SD were calculated from 5 

individual animals. Significant difference to control group are shown here. One-way 

ANOVA followed by Tukey-Kramer test was used for statistical analysis. *, p < 0.05; *, 

p < 0.01. 

 

S7. Effects of CCR4-signal blockade on the mobilization of OVA-specific Tregs 

DO11.10 mice were immunized twice with 2 mg of OVA on Day 1 and 2. On Day 4, 

100 μg of anti-CCL17 or anti-CCL22 Ab was intravenously injected 1 hr before OVA 

injection into the air pouch (Figure 1A). As a control, rat control IgG was injected. The 

cells were obtained on Day 5 from the air pouch and the draining lymph node to 

determine the proportion of KJ1-26highFoxp3+ cells. Proportion of Foxp3+ cells to 

KJ1-26high cells (left), the number of KJ1-26highFoxp3+ cells from air pouch (middle) 

and the proportion of Foxp3+ cells to KJ1-26high cells in draining lymph node (right) 

are shown. Mean and SD were calculated from 5 individual animals and are shown 

here. One-way ANOVA followed by Tukey-Kramer test was used for statistical 

analysis. *, p < 0.05; **, p < 0.01; N.S., not significant. 
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S8. Effects of CCR5-signal blockade on the mobilization of OVA-specific Tregs 

Ten g of pLIVE-tRANTES vector was in vivo transfected 5 days before air pouch 

formation. As a control, control pLIVE vector was transfected. DO11.10 mice were 

immunized twice with 2 mg of OVA on Day 0 and Day 1. OVA was injected into the air 

pouch on Day 4 (Figure 1A). The cells were obtained on Day 5 from air pouch and the 

draining lymph node to determine the proportion of KJ1-26highFoxp3+ cells. Proportion 

of Foxp3+ cells to KJ1-26high cells (left), the number of KJ1-26highFoxp3+ cells from air 

pouch (middle) and the proportion of Foxp3+ cells to KJ1-26high cells in the draining 

lymph node (right) are shown. Mean and SD were calculated from 3 individual animals 

and are shown here. Student’s t-test was used for statistical analysis. N.S., not 

significant. 

 

S9. Chimerism of DO11.10 TCR expressing T cells in BM chimera 

Peripheral blood was obtained from BM chimera to determine the proportion of 

KJ1-26high cells to CD4+ cells. Percentage of CD4+KJ1-26high and CD4+KJ1-26negative to 

low cells are shown. 

 

S10. Expansion of polyclonal Tregs by IL-2 IC treatment 

BM chimeric mice were daily injected with IL-2 IC for 3 days. Three days after the last 

IL-2 IC injection, expression of CD25 and Foxp3 on Vα2+ (upper panels) and 

KJ1-26high cells (lower panels) were observed. Percentage of CD25highFoxp3+ and 

CD25lowFoxp3+ cells are shown in each panel. 

 

S11. Effects of CCR4 blockade on antigen-induced immune reaction in DTH 

BM chimeric mice were treated with the protocol shown in Figure 4A. Anti-CCL17 

was intravenously injected 1 hr before OVA injection to footpad. As a control, rat-IgG 

was injected. Paw thickness were determined on 5 individual animals. The changes in 

thickness (Δmm) were calculated by subtracting the original thickness from the 
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thickness of swollen paw. Mean and SD were calculated from 5 individual animals and 

are shown here. One-way ANOVA followed by Tukey-Kramer test was used for 

statistical analysis. *, p < 0.05; **, p < 0.01; N.S., not significant. 
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