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The transcription factor SALL4 regulates stemness of
EpCAM-positive hepatocellular carcinoma
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Background & Aims: Recent evidence suggests that hepatocellu-
lar carcinoma can be classified into certain molecular subtypes
with distinct prognoses based on the stem/maturational status
of the tumor. We investigated the transcription program deregu-
lated in hepatocellular carcinomas with stem cell features.
Methods: Gene and protein expression profiles were obtained
from 238 (analyzed by microarray), 144 (analyzed by immuno-
histochemistry), and 61 (analyzed by qRT-PCR) hepatocellular
carcinoma cases. Activation/suppression of an identified tran-
scription factor was used to evaluate its role in cell lines. The rela-
tionship of the transcription factor and prognosis was statistically
examined.
Results: The transcription factor SALL4, known to regulate stem-
ness in embryonic and hematopoietic stem cells, was found to be
activated in a hepatocellular carcinoma subtype with stem cell
features. SALL4-positive hepatocellular carcinoma patients were
associated with high values of serum alpha fetoprotein, high fre-
quency of hepatitis B virus infection, and poor prognosis after
surgery compared with SALL4-negative patients. Activation of
SALL4 enhanced spheroid formation and invasion capacities,
key characteristics of cancer stem cells, and up-regulated the
hepatic stem cell markers KRT19, EPCAM, and CD44 in cell lines.
Knockdown of SALL4 resulted in the down-regulation of these
stem cell markers, together with attenuation of the invasion
capacity. The SALL4 expression status was associated with
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histone deacetylase activity in cell lines, and the histone deace-
tylase inhibitor successfully suppressed proliferation of SALL4-
positive hepatocellular carcinoma cells.
Conclusions: SALL4 is a valuable biomarker and therapeutic tar-
get for the diagnosis and treatment of hepatocellular carcinoma
with stem cell features.
� 2013 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Cancer is a heterogeneous disease in terms of morphology and
clinical behavior. This heterogeneity has traditionally been
explained by the clonal evolution of cancer cells and the accumu-
lation of serial stochastic genetic/epigenetic changes [1]. The
alteration of the microenvironment by tumor stromal cells is also
considered to contribute to the development of the heteroge-
neous nature of the tumor through the activation of various sig-
naling pathways in cancer cells, including epithelial
mesenchymal transition programs [2].

Recent evidence suggests that a subset of tumor cells with
stem cell features, known as cancer stem cells (CSCs), are capable
of self-renewal and can give rise to relatively differentiated cells,
thereby forming heterogeneous tumor cell populations [3]. CSCs
were also found to generate tumors more efficiently in immuno-
deficient mice than non-cancer stem cells in various solid tumors
as well as hematological malignancies [4]. CSCs are also more
metastatic and chemo/radiation-resistant than non-CSCs and
are therefore considered to be a pivotal target for tumor eradica-
tion [5,6].

Hepatocellular carcinoma (HCC) is a leading cause of cancer
death worldwide [7]. Recently, we proposed a novel HCC classifi-
cation system based on the expression status of the hepatic stem/
progenitor markers epithelial cell adhesion molecule (EpCAM)
and alpha fetoprotein (AFP) [8]. EpCAM-positive (+) AFP+ HCC
(hepatic stem cell-like HCC; HpSC-HCC) is characterized by an
onset of disease at younger ages, activation of Wnt/b-catenin
signaling, a high frequency of portal vein invasion and poor
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prognosis after radical resection, compared with EpCAM� AFP�

HCC (mature hepatocyte-like HCC; MH-HCC) [9]. EPCAM is a tar-
get gene of Wnt/b-catenin signaling, and EpCAM+ HCC cells iso-
lated from primary HCC and cell lines show CSC features
including tumorigenicity, invasiveness, and resistance to fluoro-
uracil [9,10]. Thus, EpCAM appears to be a potentially useful mar-
ker for the isolation of liver CSCs in HpSC-HCC. However, key
transcriptional programs responsible for the maintenance of
EpCAM+ CSCs are still unclear.

In this study, we aimed to clarify the transcriptional programs
deregulated in HpSC-HCC using a gene expression profiling
approach. We found that the SALL4 gene encoding Sal-like 4 (Dro-
sophila) (SALL4), a zinc finger transcriptional activator and verte-
brate orthologue of the Drosophila gene spalt (sal) [11], was up-
regulated in HpSC-HCC. In adults, SALL4 is known to be expressed
in hematopoietic stem cells and their malignancies, but its role in
HCC has not yet been fully elucidated [12–14]. We therefore
investigated the role of SALL4 in the regulation and maintenance
of EpCAM+ HCC.
Materials and methods

Clinical HCC specimens

A total of 144 HCC tissues and adjacent non-cancerous liver tissues were obtained
from patients who underwent hepatectomy for HCC treatment from 2002 to 2010
at Kanazawa University Hospital, Kanazawa, Japan. These samples were formalin-
fixed and paraffin-embedded, and used for immunohistochemistry (IHC). A fur-
ther 61 HCC samples were obtained from patients who underwent hepatectomy
from 2008 to 2011; these were freshly snap-frozen in liquid nitrogen and used for
RNA analysis. Of these 61 HCCs, 8 and 36 cases were defined as HpSC-HCC and
MH-HCC, respectively, according to previously described criteria [8].

27 HCC cases were included in both the IHC cohort (n = 144) and quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) cohort (n = 61), and
SALL4 gene and protein expression were compared between these cases. An addi-
tional fresh HpSC-HCC sample was obtained from a surgically resected specimen
and immediately used for preparation of a single-cell suspension. All experimen-
tal and tissue acquisition procedures were approved by the Ethics Committee and
the Institutional Review Board of Kanazawa University Hospital. All patients pro-
vided written informed consent.

Microarray analysis

Detailed information on microarray analysis is available in the Supplementary
Materials and methods.

Cell culture and reagents

Human liver cancer cell lines HuH1, HuH7, HLE, and HLF were obtained from the
Japanese Collection of Research Bioresources (JCRB), and Hep3B and SK-Hep-1
were obtained from the American Type Culture Collection (ATCC). Single-cell sus-
pensions of primary HCC tissue were prepared as described previously [15].
Detailed information is available in the Supplementary Materials and methods.
The histone deacetylase (HDAC) inhibitor suberic bis-hydroxamic acid (SBHA)
and suberoylanilide hydroxamic acid (SAHA) were obtained from Cayman Chem-
ical (Ann Arbor, MI). Plasmid constructs pCMV6-SALL4 (encoding SALL4A),
pCMV6-SALL4-GFP, and 29mer shRNA constructs against human SALL4 (No.
7412) were obtained from OriGene Technologies, Inc. (Rockville, MD). These con-
structs were transfected using Lipofectamine 2000 (Life Technologies, Carlsbad,
CA) according to the manufacturer’s protocol.

Western blotting

Whole cell lysates were prepared using RIPA lysis buffer. Nuclear and cytoplasmic
proteins were extracted using NE-PER Nuclear and Cytoplasmic Extraction
Reagents (Pierce Biotechnology Inc., Rockford, IL). Mouse monoclonal antibody
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to human Sall4 clone 6E3 (Abnova, Walnut, CA), rabbit polyclonal antibodies to
human Lamin B1 (Cell Signaling Technology Inc., Danvers, MA), and mouse mono-
clonal anti-b-actin antibody (Sigma-Aldrich, St. Louis, MO) were used. Immune
complexes were visualized by enhanced chemiluminescence (Amersham Biosci-
ences Corp., Piscataway, NJ) as described previously [15,16].

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

Detailed information on qRT-PCR is available in the Supplementary Materials and
methods.

IHC and immunofluorescence (IF) analyses

IHC was performed using an Envision+ kit (Dako, Carpinteria, CA) according to the
manufacturer’s instructions. Anti-SALL4 monoclonal antibody 6E3 (Abnova, Wal-
nut, CA), anti-EpCAM monoclonal antibody VU-1D9 (Oncogene Research Prod-
ucts, San Diego, CA), and anti-CK19 monoclonal antibody RCK108 (Dako Japan,
Tokyo, Japan) were used for detecting SALL4, EpCAM, and CK19, respectively.
Anti-Sall4 rabbit polyclonal antibodies (ab29112) (Abnova) and vector red (Vec-
tor Laboratories Inc., Burlingame, CA) were used for double color IHC analysis.
Samples with >5% positive staining in a given area were considered to be positive
for a particular antibody. For IF analyses, Alexa 488 fluorescein isothiocyanate
(FITC)-conjugated anti-mouse immunoglobulin G (IgG) (Life Technologies) was
used as a secondary antibody.

Cell proliferation, spheroid formation, invasion, and HDAC activity assay

Detailed information on this topic is available in the Supplementary Materials
and methods.

Statistical analyses

Student’s t tests were performed with GraphPad Prism software 5.0 (GraphPad
Software, San Diego, CA) to compare various test groups assayed by cell prolifer-
ation assays and qRT-PCR analysis. Spearman’s correlation analysis and Kaplan-
Meier survival analysis were also performed with GraphPad Prism software 5.0
(GraphPad Software).
Results

Activation of SALL4 in HpSC-HCC

To elucidate the transcriptional programs deregulated in HpSC-
HCC, we performed class-comparison analyses and identified
793 genes showing significant differences in differential expres-
sion between HpSC-HCC (n = 60) and MH-HCC (n = 96)
(p <0.001), as previously described [9]. Of them, 455 genes were
specifically up-regulated in HpSC-HCC, and we performed tran-
scription factor analysis using this gene set to identify their tran-
scriptional regulators by MetaCore software. We identified four
transcription factor genes, SALL4, NFYA, TP53, and SP1, that were
potentially activated in HpSC-HCC (Fig. 1A). Involvement of
TP53 and SP1 in the stemness of HCC has previously been
described [17,18], but the roles of SALL4 and NFYA were unclear.

We investigated the interaction networks affected by SALL4
and NFYA using the MetaCore dataset. We showed that SALL4
might be a regulator of Akt signaling (SP1), Wnt signaling
(TCF7L2), and epigenetic modification (JARID2, DMRT1, DNMT3B)
[19], and could potentially regulate two other transcriptional reg-
ulators, SP1 and NFYA, through Akt and Myb signaling pathways
(Fig. 1B). As a recent study indicated that SALL4 is a direct target
of the Wnt signaling pathway [20], which is dominantly activated
in HpSC-HCC [9], we focused on the expression of SALL4 in HpSC-
HCC, and confirmed its up-regulation in HpSC-HCC compared
regulates stemness of EpCAM-positive hepatocellular carcinoma. J He-

3 vol. xxx j xxx–xxx

http://dx.doi.org/10.1016/j.jhep.2013.08.024


A B

FE

0.01

0.1

1

10

100

1000

C

D

S
A

LL
4

S
A

LL
4

0.01

0.1

1

10

100

1000

S
A

LL
4

 p <0.0001
r = 0.70

p  <0.0001
r = 0.66

p  = 0.0002
r = 0.31

p  <0.0001
r = 0.31

Transcription factors p value z-score
SALL4 0.0005708 3.958
NFYA 0.002483 3.267
TP53 3.923E-05 4.25
SP1 2.917E-11 6.942

 p <0.0001

T/
N

 ra
tio

0.0

0.5

1.0

1.5

HpSC-HCC
(n = 60)

MH-HCC
(n = 96)

 p = 0.0009

100

0

200

300

HpSC-HCC
(n = 8)

MH-HCC
(n = 36)

G
en

e 
ex

pr
es

si
on

10

10 10100 100 1000 10,000

1

1 1
0.1

0.1 0.10.01 0.01
EPCAM EPCAM

10 100 1000 10,00010.10.01
AFP

S
A

LL
4

10

10 100

1

1
0.1

0.1
AFP

SALL4

ABL1

TCF7L2

SP1

PTEN

CTNNB1

JARID2

DNMT3B

DMRT1

MYBL2

NFYA

Fig. 1. Transcription factors potentially activated in HpSC-HCC. (A) Transcription factor analysis. Transcription factors regulating genes up-regulated in HpSC-HCC are
listed with their p values and z-scores as calculated by MetaCore software. (B) Interaction network analysis. Seven genes (ABL1, DMRT1, DNMT3B, JARID2, NFYA, SP1, and
TCF7L2, indicated in orange) shown to be up-regulated in HpSC-HCC were identified as potential target genes regulated by SALL4 (indicated in red). (C) SALL4 gene
expression evaluated by microarray analysis. Tumor/non-tumor (T/N) ratios of microarray data in HpSC-HCC (n = 60) and MH-HCC (n = 96). (D) SALL4 gene expression
evaluated by qRT-PCR. Gene expression of SALL4 in HpSC-HCC (n = 8) and MH-HCC (n = 36) samples. (E) Scatter plot analysis. Gene expression levels of EPCAM (upper panel)
and AFP (lower panel) were positively correlated with those of SALL4 in microarray data (n = 238, T/N ratios), as shown by Spearman’s correlation coefficients. (F) Scatter
plot analysis. Gene expression levels of EPCAM (upper panel) and AFP (lower panel) were positively correlated with those of SALL4 in qRT-PCR data (n = 61), as shown by
Spearman’s correlation coefficients.
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with MH-HCC as evaluated by microarray data (Fig. 1C). We val-
idated this using an independent HCC cohort evaluated by qRT-
PCR (Fig. 1D). We further examined the expression of SALL4,
EPCAM, and AFP using microarray data of 238 HCC cases
(Fig. 1E) and qRT-PCR data of 61 HCC cases (Fig. 1F). For the
tumor/non-tumor ratios, we identified a weak positive correla-
tion between SALL4 and EPCAM (r = 0.31, p <0.0001) and between
SALL4 and AFP (r = 0.31, p = 0.0003) in the microarray cohort. We
further evaluated expression of these genes in HCC tissues by
qRT-PCR, and we validated the strong positive correlation
between SALL4 and EPCAM (r = 0.70, p <0.0001) and between
SALL4 and AFP (r = 0.66, p <0.0001) in the independent cohort.
Please cite this article in press as: Zeng SS et al. The transcription factor SALL4
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Next we performed IHC analysis of 144 HCC cases surgically
resected at Kanazawa University Hospital. We first confirmed
the nuclear accumulation of SALL4 stained by an anti-human
SALL4 antibody (Fig. 2A). We further confirmed the concordance
of SALL4 protein expression evaluated by IHC, and SALL4 gene
expression evaluated by qRT-PCR using the same samples
(Fig. 2B). We detected the nuclear expression of SALL4 in 43 of
144 HCC cases (Table 1). After evaluating the clinicopathological
characteristics of SALL4-positive and -negative HCC cases, we
identified that SALL4-positive HCCs were associated with a signif-
icantly high frequency of hepatitis B virus (HBV) infection and
significantly high serum AFP values. We further identified that
regulates stemness of EpCAM-positive hepatocellular carcinoma. J He-
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Fig. 2. SALL4 expression in human primary HCCs and cell lines. (A) Representative images of SALL4-positive and -negative HCC immunostaining (scale bar, 100 lm). (B)
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SALL4-positive HCCs were associated with expression of the
hepatic stem cell markers EpCAM and CK19. Co-expression of
SALL4, EpCAM, and CK19 was confirmed by double color IHC
analysis (Fig. 2C). Evaluation of the survival outcome of these sur-
gically resected HCC cases by Kaplan-Meier survival analysis
indicated that SALL4-positive HCCs were associated with signifi-
cantly lower recurrence-free survival outcomes within one year
compared with SALL4-negative HCCs (p = 0.0049) (Fig. 2D).

Because SALL4 expression was positively correlated with
EpCAM and AFP expression in primary HCC cases, we evaluated
the expression of SALL4 in EpCAM+ AFP+ and EpCAM� AFP�

HCC cell lines. Consistent with the primary HCC data, two of three
EpCAM+ AFP+ HCC cell lines (Hep3B and HuH7) abundantly
expressed SALL4, as shown by qRT-PCR (Fig. 2E) and Western
blotting (Fig. 2F). We identified the expression of two isoforms
of SALL4 proteins with molecular weights of 165 kDa (SALL4A)
Please cite this article in press as: Zeng SS et al. The transcription factor SALL4
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and 115 kDa (SALL4B), and SALL4B was found to be the dominant
endogenous isoform in HCC cell lines. All EpCAM� AFP� HCC cell
lines (SK-Hep-1, HLE, and HLF) and one EpCAM+ AFP+ cell line
(HuH1) did not express SALL4. Nuclear accumulation of SALL4
in Hep3B and HuH7 cells was confirmed by IHC using subcutane-
ous tumors developed in xenotransplanted NOD/SCID mice
(Fig. 2G). We further evaluated the expression of EPCAM and
SALL4 using single cell suspensions derived from a surgically
resected primary HCC. EpCAM+ and EpCAM� cells were separated
by magnetic beads, and we revealed a strong spheroid formation
capacity of sorted EpCAM+ cells compared with EpCAM� cells
(Fig. 2H, left panel). Interestingly, when comparing the expres-
sion of SALL4 in these sorted cells, we identified a high expression
of SALL4 in sorted EpCAM+ cells compared with EpCAM� cells
(Fig. 2H, right panel), indicating that SALL4 is activated in
EpCAM+ liver CSCs.
regulates stemness of EpCAM-positive hepatocellular carcinoma. J He-
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Table 1. Clinicopathological characteristics of SALL4-positive and -negative HCC cases used for IHC analyses.

Parameters SALL4-positive
(n = 43)

SALL4-negative
(n = 101)

p value*

Age (yr, mean ± SE) 60.8 ± 1.8 64.6 ± 1.0 0.13
Sex (male/female) 27/16 70/18 0.06
Etiology (HBV/HCV/B + C/other) 21/14/0/8 20/63/3/15 0.0014
Liver cirrhosis (yes/no) 21/22 61/40 0.27
AFP (ng/ml, mean ± SE) 13,701 ± 9292 175.5 ± 55.0 <0.0001
Histological grade**

I-II 3 18
II-III 33 68
III-IV 7 15 0.24

Tumor size (<3 cm/>3 cm) 17/26 57/44 0.071
EpCAM (positive/negative) 27/16 29/72 0.0002
CK19 (positive/negative) 12/31 12/89 0.027

⁄Mann-Whitney U-test or v2 test.
⁄⁄Edmondson-Steiner.
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SALL4 regulates stemness of HpSC-HCC

To explore the role of SALL4 in HpSC-HCC, we evaluated the effect
of its overexpression in HuH1 cells which showed little expres-
sion of SALL4 irrespective of EpCAM+ and AFP+ HpSC-HCC pheno-
type. We transfected plasmid constructs encoding SALL4
(pCMV6-SALL4) or control (pCMV7), and we similarly identified
the expression of two isoforms by using this construct (Fig. 3A).
Evaluation of the subcellular localization of GFP-tagged SALL4
(pCMV6-SALL4-GFP) showed that it could be detected in both
the cytoplasm and nucleus (Fig. 3B). We observed strong up-reg-
ulation of the hepatic stem cell marker KRT19, modest up-regula-
tion of EPCAM and CD44, and down-regulation of the mature
hepatocyte marker ALB in HuH1 cells transfected with pCMV6-
SALL4 compared with the control (Fig. 3C). Up-regulation of
CK19 by SALL4 overexpression was also confirmed at the protein
level by IF analysis (Fig. 3D). Phenotypically, SALL4 overexpres-
sion in HuH1 cells resulted in the significant activation of spher-
oid formation and invasion capacities with activation of SNAI1,
which induces epithelial-mesenchymal transition, compared
with the control (Fig. 3E and F, Supplementary Fig. 1A).

We further investigated the effect of SALL4 knockdown in
HuH7 cells, which intrinsically expressed high levels of SALL4.
Expression of SALL4 was decreased to 50% in HuH7 cells transfec-
ted with SALL4 sh-RNA compared with the control when evalu-
ated by qRT-PCR (Fig. 4A). However, the reduction of SALL4
protein was more evident when evaluated by Western blotting,
suggesting that this sh-RNA construct might work at the transla-
tional as well as the transcriptional level (Fig. 4B). Knock down of
SALL4 resulted in a compromised invasion capacity and spheroid
formation capacity with decreased expression of EPCAM and
CD44 in HuH7 cells (Fig. 4C and D, Supplementary Fig. 1B and C).

SALL4 and HDAC activity in HpSC-HCC

The above data suggested that SALL4 is a good target and bio-
marker for the diagnosis and treatment of HpSC-HCCs. However,
it is difficult to directly target SALL4 as no studies have investi-
gated the inhibition of its transcription using chemical or other
approaches [21]. We therefore re-investigated the interaction
networks associated with SALL4, and found that SALL4 activation
Please cite this article in press as: Zeng SS et al. The transcription factor SALL4
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appeared to induce epigenetic modification (Fig. 1B). In particu-
lar, a recent study suggested that SALL4 forms a nucleosome
remodeling and deacetylase (NuRD) complex with HDACs and
potentially regulates HDAC activity [22]. We therefore confirmed
that SALL4 knock down resulted in the reduced activity of total
HDAC in HuH7 cells (Fig. 4E). We also evaluated the effect of
the overexpression of SALL4 in HuH1 and HLE cells, which do
not express SALL4 endogenously, and SALL4 overexpression was
found to result in a modest increase of HDAC activity and mild
enhancement of chemosensitivity to an HDAC inhibitor SBHA in
both cell lines (Supplementary Fig. 2A and B). We further inves-
tigated HDAC activity in two SALL4-positive (Hep3B, HuH7) and
two SALL4-negative (HLE, HLF) HCC cell lines. Interestingly, high
HDAC activities were detected in SALL4-positive compared with
SALL4-negative HCC cell lines (Fig. 4F). The HDAC inhibitor SBHA
was found to inhibit proliferation of SALL4-positive HCC cell lines
at a concentration of 10 lM. By contrast, SBHA had little effect on
the proliferation of SALL4-negative HCC cell lines at this concen-
tration (Fig. 4G). SBHA treatment suppressed the expression of
SALL4 gene/protein expression in SALL4-positive HuH7 and
Hep3B cell lines (Supplementary Fig. 3A and B). We further inves-
tigated the effect of SAHA, an additional HDAC inhibitor, in these
HCC cell lines, and SAHA was found to more efficiently suppress
the cell proliferation of SALL4-positive cell lines compared with
SALL4-negative cell lines (Supplementary Fig. 3C).

Taken together, our data suggest a pivotal role for the tran-
scription factor SALL4 in regulating the stemness of HpSC-HCC.
SALL4 was detected in HpSC-HCCs with poor prognosis, and inac-
tivation of SALL4 resulted in a reduced invasion/spheroid forma-
tion capacity and decreased expression of hepatic stem cell
markers. The HDAC inhibitors inhibited proliferation of SALL4-
positive HCC cell lines with a reduction of SALL4 gene/protein
expression, suggesting their potential in the treatment of
SALL4-positive HpSC-HCC.
Discussion

Stemness traits in cancer cells are currently of great interest
because they may explain the clinical outcome of patients
according to the malignant nature of their tumor. Recently, we
regulates stemness of EpCAM-positive hepatocellular carcinoma. J He-
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proposed an HCC classification system based on the stem/matu-
ration status of the tumor by EpCAM and AFP expression status
[8]. These HCC subtypes showed distinct gene expression pat-
terns with features resembling particular stages of liver lineages.
Among them, HpSC-HCC was characterized by a highly invasive
nature, chemoresistance to fluorouracil, and poor prognosis after
radical resection, warranting the development of a novel thera-
peutic approach against this HCC subtype [9].

In this study, we showed that the transcription factor SALL4
was activated in HpSC-HCC and that SALL4 might regulate HCC
stemness, as characterized by the activation of EpCAM, CK19,
and CD44 with highly tumorigenic and invasive natures. Further-
more, we identified that SALL4-positive HCC cell lines tended to
Please cite this article in press as: Zeng SS et al. The transcription factor SALL4
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show high HDAC activity and chemosensitivity to the HDAC
inhibitors SBHA and SAHA. This study reveals for the first time
the utility of SBHA for the treatment of HCC with stem cell
features.

SALL4 is a zinc finger transcription factor originally cloned
based on sequence homology to Drosophila sal [11]. SALL4 muta-
tions are associated with the Okihiro syndrome, a human disease
involving multiple organ defects [23,24]. SALL4 plays a funda-
mental role in the maintenance of embryonic stem cells, poten-
tially through interaction with Oct4, Sox2, and Nanog [25–30].
Furthermore, knockdown of SALL4 significantly reduces the effi-
ciency of induced pluripotent stem cell generation [31]. SALL4
is also expressed in hematopoietic stem cells and leukemia cells,
where it regulates their maintenance [14,32]. SALL4 is known to
encode two isoforms (SALL4A and SALL4B), and a recent study
regulates stemness of EpCAM-positive hepatocellular carcinoma. J He-
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suggested the important role of SALL4B on maintaining the stem-
ness of embryonic stem cells [25]. Interestingly, our data indi-
cated that SALL4B is also a dominant form in HpSC-HCC cell
lines. It is unclear how SALL4 isoform expression is regulated in
cancer, and future studies are required to explore the mecha-
nisms of SALL4 isoform regulation.

In the liver, SALL4 is expressed in fetal hepatic stem/progen-
itors but not in adult hepatocytes, and a mouse study demon-
strated that inhibition of SALL4 in hepatic stem/progenitors
contributes to their differentiation [33]. Interestingly, recent
studies indicated that AFP-producing gastric cancer expresses
SALL4, suggesting that SALL4 might play a role in the hepatoid
differentiation of gastric cancer [34]. Consistently, our data indi-
cated a positive correlation between SALL4, AFP, and EPCAM
expression in two independent HCC cohorts. Strikingly, SALL4
was recently shown to be expressed in a subset of human liver
cancers with poor prognoses, while modification of SALL4
expression resulted in the alteration of cell proliferation
in vitro and tumor growth in vivo, consistent with our current
study [35]. A recent study reported the expression of SALL4 in
46% of HCC cases, which is almost comparable to our present
study [36]. Furthermore, a very recent study of two indepen-
dent large cohorts demonstrated that SALL4 is a marker for a
progenitor subclass of HCC with an aggressive phenotype [37].
It is still unclear how SALL4 expression is regulated and which
target genes are directly activated by SALL4 binding. Future
studies using next generation sequencing are required to fully
understand the mechanisms of SALL4 regulation of HCC
stemness.

In this study, we demonstrated that SALL4-positive HCC cell
lines have high HDAC activity and chemosensitivity against the
HDAC inhibitors SBHA and SAHA compared with SALL4-negative
HCC cell lines. SALL4 was recently found to directly connect with
the epigenetic modulator NuRD complex [22], thereby possibly
affecting the histone modification associated with stemness.
The NuRD complex is a multiunit chromatin remodeling complex
containing chromodomain-helicase-DNA-binding proteins and
HDACs that regulate histone deacetylation [38]. Its role in cancer
is still controversial, while its function in HCC has not yet been
determined.

Our data suggest that SALL4 plays a role in controlling HDAC
activity and contributing to the maintenance of HCC with stem
cell features. Consistently, HDAC inhibitors might be useful for
the eradication of SALL4-positive HCC cells through their inhibi-
tory effects on histone deacetylation by NuRD [39]. Encourag-
ingly, a recent study demonstrated the utility of a SALL4-
binding peptide to inhibit its binding to phosphatase and tensin
homolog deleted on chromosome 10 (PTEN) through interaction
with HDAC, thereby targeting leukemia cells [21]. Further studies
are required to understand the relationship between SALL4, the
NuRD complex, and the maintenance of stemness in HCC.
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