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Abstract 

 

Background & Aims 

Gene expression profiling of hepatocellular carcinoma (HCC) and background liver has 

been studied extensively; however, the relationship between the gene expression 

profiles of different lesions has not been assessed. 

Methods 

We examined the expression profiles of 34 HCC specimens (17 hepatitis B virus 

[HBV]-related and 17 hepatitis C virus [HCV]-related) and 71 non-tumor liver specimens 

(36 chronic hepatitis B [CH-B] and 35 chronic hepatitis C [CH-C]) using an in-house 

cDNA microarray consisting of liver-predominant genes. Graphical Gaussian modeling 

(GGM) was applied to elucidate the interactions of gene clusters among the HCC and 

non-tumor lesions. 

Results 

In CH-B-related HCC, the expression of vascular endothelial growth factor-family 

signaling and regulation of T cell differentiation, apoptosis, and survival, as well as 

development-related genes was up-regulated. In CH-C-related HCC, the expression of 

ectodermal development and cell proliferation, wnt receptor signaling, cell adhesion, 

and defense response genes was also up-regulated. Many of the metabolism-related 

genes were down-regulated in both CH-B- and CH-C-related HCC. GGM analysis of the 

HCC and non-tumor lesions revealed that DNA damage response genes were 

associated with AP1 signaling in non-tumor lesions, which mediates the expression of 

many genes in CH-B-related HCC. In contrast, signal transducer and activator of 

transcription 1 and phosphatase and tensin homolog were associated with early growth 

response protein 1 signaling in non-tumor lesions, which potentially promotes 

angiogenesis, fibrogenesis, and tumorigenesis in CH-C-related HCC. 
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Conclusions 

Gene expression profiling of HCC and non-tumor lesions revealed the predisposing 

changes of gene expression in HCC. This approach has potential for the early diagnosis 

and possible prevention of HCC. 

 

Keywords: Hepatitis B virus, Hepatitis C virus, Hepatocellular carcinoma, Gene 

expression 
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1. Introduction 

Hepatocellular carcinoma (HCC) is one of the most common malignancies 

worldwide with a particularly poor patient outcome [1]. It often develops as a result of 

chronic liver disease associated with hepatitis B (HBV) or hepatitis C virus (HCV) 

infection or with other etiologies such as long-term alcohol abuse, autoimmunity, and 

hemochromatosis [2]. HBV and HCV infection are the leading cause of HCC in the world 

[3]. In Japan, approximately 85% of patients with HCC are positive for the HBV surface 

antigen or anti-HCV antibody. Approximately 7% of patients with HCV-related liver 

cirrhosis develop HCC [4] and 3% of patients with HBV-related liver cirrhosis develop 

HCC [5]. 

Gene expression analysis of HCC has revealed from previous work, the 

activation of the wnt/β-catenin, pRb, p53, transforming growth factor-β, 

mitogen-activated protein kinase, and Janus kinase/signal transducer and activator of 

transcription pathways, stress response signaling, and epidermal growth factor receptor 

[6-8]. In addition, we have previously reported that the gene expression profiles in the 

livers of patients with chronic hepatitis B (CH-B) and chronic hepatitis C (CH-C) were 

different. Pro-apoptotic and DNA repair responses were predominant in CH-B, while 

inflammatory and anti-apoptotic phenotypes were predominant in CH-C [9, 10]. 

Furthermore, we optimized the laser capture microdissection (LCM) method to isolate 

cells in liver lobules (CLL) and cells in the portal area (CPA) for detailed gene 

expression analysis [10, 11]. However, it is still unknown how cancer signaling pathways 

are activated in HCC. As HCC frequently develops from a cirrhotic liver, analyzing the 

relationship of signaling pathways between HCC and non-cancerous liver tissue might 

be a useful approach for revealing the mechanism that ultimately leads to the 

development of HCC. 
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Graphical Gaussian modeling (GGM) is utilized widely to infer or test the 

relationships between multiple variables [12-14]. Previously, we developed a method 

that combines cluster analysis with GGM to infer a genetic network on the basis of 

expression profile data. Analysis of the expression profile of Saccharomyces cerevisiae 

revealed a model of its genetic network, and the accuracy of the inferred network was 

confirmed by its agreement with the cumulative results of experimental studies [15]. 

Therefore, GGM has the potential to be a useful analytical tool to identify the 

relationship between the gene expression profiles of HCC and non-cancerous liver 

tissue. 

In the present study, we extended the analysis of gene expression in HCC and 

applied GGM analysis [15, 16]. Indeed, our procedure inferred the relationships 

between gene groups defined by clustering, and its application enabled us to elucidate 

the framework of the gene clusters in relation to the hepatocellular carcinogenesis of 

CH-B and CH-C. 

 

2. Results 

2.1 Expressed genes in CH-B-related HCC  

The gene expression profiles of whole liver biopsy specimens and surgically 

resected liver were obtained from 36 patients with CH-B, 17 with CH-B-related HCC, 35 

with CH-C, and 17 with CH-C-related HCC. The clinical characteristics of the patients 

are shown in Supplemental Tables A and B. We categorized the F1 and F2 fibrosis 

stages as early fibrosis (EF; n = 13 for CH-B and n = 12 for CH-C) and the F3 and F4 

fibrosis stages as late fibrosis (LF; n = 22 for CH-B and n = 23 for CH-C).  

The 783 differentially expressed genes in CH-B-related HCC were identified 

across 20 clusters, of which 4 (No. 8, 9, 11, and 20) were up-regulated and 12 (No. 1–7, 

12–14, 16, and 17) were down-regulated (Figure 1 and Supplemental Table C). The 
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up-regulated clusters were comprised angiogenesis, cell cycle, apoptosis, and 

survival-related genes. Placental growth factor, vascular endothelial growth factor 

(VEGF)-related protein, SUMO-activating enzyme subunit 2, cyclin E1, and baculoviral 

IAP repeat-containing 5 were up-regulated (No. 8, 9, and 11). In addition, 

oncogene-related proteins, such as v-myc myelocytomatosis viral-related oncogene (No. 

9), telomerase-associated protein 1, and stathmin 1/oncoprotein 18 (No. 8), tumor 

marker genes, such glypican 3, and growth factors, such as midkine (No. 9), were also 

up-regulated. In cluster No. 20, the proliferation and invasiveness-related gene and 

protein tyrosine kinase 2 were up-regulated.  

Down-regulation was prominent in many metabolism-related genes including 

ornithine aminotransferase, insulin receptor substrate 1, glutamate dehydrogenase 2, 

acyl-coenzyme A oxidase 2, and acetyl-coenzyme A acyltransferase 2, as well as many 

cytochrome P450 family genes, suggesting impaired xenobiotic, amino acid, and lipid 

metabolism (No. 6, 7, 12, 13, 16, and 17). The characteristic genes expressed in 

CH-B-related HCC are shown in Table 1.  

 

2.2 Expressed genes in CH-C-related HCC 

The 668 differentially expressed genes in CH-C-related HCC were identified 

across 18 genetic clusters, of which 5 (No. 10, 12, 14, 15, and 18) were up-regulated 

and 11 (No. 1–7, 11, 13, 16, and 17) were down-regulated (Figure 2 and Supplemental 

Table D). Cluster No. 12 comprised immune defense response genes, such as 

chemokine (the C-C motif) ligand 19, natural killer cell transcript 4, major 

histocompatibility complex class I B, major histocompatibility complex class II DQ beta 1, 

and ubiquitin-specific protease 8. Cluster No. 14 comprised cytoskeleton-associated, 

cell cycle, mitosis-related, and MAPKKK cascade-related genes, such as tubulin, src 

homology 2 domain containing (SHC) transforming protein 1, sterile alpha motif domain 
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containing 9, S100 calcium binding protein A10, annexin A2, cyclin B1, 

platelet-activating factor acetylhydrolase, isoform Ib, and vimentin. In cluster No. 15, 

glypican 3, aldo-keto reductase family 1, member B10, ATP citrate lyase, farnesyl 

diphosphate synthase, serine protease inhibitor, and Kazal type 1 were up-regulated. 

Cluster No. 15 included many candidate tumor markers of HCC. Interestingly, LCM 

analysis revealed that many of the up-regulated genes in clusters No. 12, 14, and 15 

were preferentially expressed in CPA. Cluster No. 18 comprised regulation of G1/S 

checkpoint, signal transduction, and ectoderm development-related genes, such as 

bone morphogenetic protein 4, cyclin-dependent kinase inhibitor 2A, fibroblast growth 

factor 9, and ornithine decarboxylase 1. Similar to CH-B-related HCC, many of the 

metabolism-related genes, including glucose, lipid, and amino acid genes, were 

down-regulated. The unique feature of lipid metabolism in CH-C-related HCC was the 

up-regulation of cholesterol and fatty acid synthesis genes and down-regulation of 

cholesterol metabolism and β oxidation genes. It was characterized by the up-regulation 

of stearoyl-CoA desaturase, farnesyl diphosphate synthase (No. 14), and ATP citrate 

lyase (No. 15), and down-regulation of acetyl-coenzyme A acetyltransferase 1. The 

characteristic genes expressed in CH-C-related HCC are shown in Table 2. 

Representative gene expression levels confirmed by TaqMan PCR are shown in 

Supplemental Figure C1.  

Pathway analysis of the combined up- and down-regulated clusters is shown in 

Supplemental Figure D and Supplemental Table E. In CH-C-related HCC, immune 

response- and cytoskeleton-related genes, such as actin, tubulin, and vimentin, were 

up-regulated, while in CH-B-related HCC, cell matrix interaction genes, such as 

collagen IV and matrix metalloproteinase, were up-regulated. Immune-related genes 

were shown to be down-regulated in both CH-C- and CH-B-related HCC by MetaCoreTM 

database analysis (Thomson Reuters, New York, NY) (Supplemental Figure D). Gene 
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annotation by DAVID Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/) [17] 

showed that oxidative phosphorylation and ATP synthesis coupled electron transport 

were up-regulated more in CH-C-related HCC than in CH-B-related HCC (Supplemental 

Table E). 

 

2.3 Expressed genes in CH-B and CH-C 

Differentially expressed genes in CH-B or CH-C were identified by backward 

selection, which did not include genes that were differentially expressed in CH-B- or 

CH-C-related HCC. As HCC frequently develops in the LF stage of liver disease, gene 

expression was evaluated in this stage. A total of 352 genes were differentially 

expressed in the LF stage of CH-B and classified into 21 clusters, of which 7 (No. 2, 3, 9, 

10, 15, 16, and 18) were up-regulated and 11 (No. 5–7, 8, 11–14, 17, 20, and 21) were 

down-regulated (Supplemental Figure B and Supplemental Table F).  

In the CH-B fibrotic liver, genes involved in apoptosis, survival, and response to 

stress, as well as chemokine- and cytokine-related genes and wnt beta-catenin and 

angiogenesis-related genes, were up-regulated. Interestingly, these genes were already 

up-regulated in the EF stage of CH-B. In contrast, metabolism-related genes, such as 

those for pyruvate, cholesterol, and retinol metabolism and the mitochondrial 

tricarboxylic acid (TCA) cycle, were down-regulated.  

In total, 214 genes were differentially expressed in the LF stage of CH-C and 

classified into 7 gene clusters, of which 1 was up-regulated (No. 1) and 3 were 

down-regulated (No. 3, 5, and 6) (Supplemental Figure B and Supplemental Table G). In 

CH-C, genes involved in the interferon signaling pathway, leukocyte chemotaxis, and 

immune response were preferentially up-regulated. These genes were expressed at a 

significantly higher level in CPA than in CLL in the liver (No. 1). Conversely, many 

metabolism and liver function-related genes were down-regulated (No. 3, 5, and 6). 

http://david.abcc.ncifcrf.gov/
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These genes were expressed at significantly higher levels in CLL compared to CPA in 

the liver.  

 

2.4 Framework of gene clusters in relation to hepatocarcinogenesis of CH-B 

using GGM 

We used GGM to examine the relationship between non-cancerous and HCC 

gene clusters. The partial correlation coefficient matrix (PCCM) generated by GGM is 

shown in Supplemental Tables H and I. The frame networks of genetic clusters are 

shown in Figure 3. The blue lines indicate a negative partial correlation and the black 

lines indicate a positive partial correlation. Multiple correlations were observed within 

the non-cancerous and HCC clusters. In addition, some interesting correlations 

between non-cancerous and HCC clusters were noted. In CH-B (Figure 3A), 

non-cancerous cluster No. 3 was up-regulated and correlated with HCC clusters No. 8 

and 18. Non-cancerous cluster No. 3 was composed of wnt signaling and oxidative 

stress-related genes, HCC cluster No. 8 was composed of VEGF family 

signaling-related genes, and HCC cluster No. 18 was composed of estrogen receptor 1 

(ESR1) regulation of G1/S transition-related genes. Moreover, non-cancerous cluster 

No. 16 correlated positively with HCC cluster No. 11 and negatively with HCC cluster No. 

18. Non-cancerous cluster No. 16 was composed of cytokine production and 

apoptosis-related genes, while HCC cluster No. 11 was composed of apoptosis and 

survival-related genes. The down-regulated non-cancerous cluster No. 13 in CH-B 

correlated negatively with HCC cluster No. 8. Non-cancerous cluster No. 13 was 

composed of hepatic functional genes, such as those related to cholesterol metabolism 

and the TCA cycle.  

The correlations between these clusters were further confirmed by examining 

individual gene interactions with reference to the MetaCore database (Figure 4A). Eight 
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genes in non-cancerous clusters No. 3 and 16 were directly associated with AP1 in 

HCC cluster No. 18. These genes are related to development and the DNA damage 

response. In HCC cluster No. 18, many of the cell cycle, development, immune system, 

and metabolism-related genes were regulated by AP1 [18-20]. In addition, it is 

interesting to note that the HBV transcript clustered in HCC cluster No. 18 (Figure 1). 

The up-regulated HCC cluster No. 11 was associated with AP1 [21]. In addition, the 

down-regulated HCC cluster No. 13, which included many liver function-related genes, 

was also associated with AP1 [22, 23]. Thus, in CH-B, the DNA damage response might 

trigger the signaling pathway of HCC, while AP1 in HCC is likely the key regulator of 

HBV-related HCC. 

 

2.5 Framework of genetic clusters in relation to hepatocarcinogenesis of CH-C 

using GGM 

 In CH-C (Figure 3B), the up-regulated non-cancerous cluster No. 1 correlated 

negatively with HCC cluster No. 9 and positively with HCC cluster No. 2. Non-cancerous 

cluster No. 1 was composed of interferon alpha/beta signaling pathway and leukocyte 

chemotaxis genes. HCC cluster No. 9 was composed of signal transduction and 

regulation of cell proliferation genes and associated directly with HCC cluster No. 18. 

HCC clusters No. 15 and 18 were composed of development process and wnt signaling 

pathway genes. HCC clusters No. 12 and 14 were composed of immune development, 

cell adhesion, and defense response genes. These clusters were directly and indirectly 

associated with HCC cluster No.9. HCC cluster No. 2 was composed of liver function 

genes, including those for lipid metabolism and iron ion transport. Non-cancerous 

cluster No. 7, which was composed of immune response, G-protein signaling, and 

regulation of lipid metabolism genes, correlated positively with HCC cluster No. 18.  
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 Analysis of the individual gene interactions (Figure 4B) showed that a key 

regulator gene of non-cancerous cluster No. 1, signal transducer and activator of 

transcription 1 (STAT1), negatively regulated early growth response protein 1 (EGR1) in 

HCC cluster No. 9 [24]. EGR1 was a key regulator of angiogenesis and 

fibrogenesis-inducing genes, such as PAI-1 (No. 9), COL1A1, and FAK1 (No. 18) 

[25-27]. In addition, EGR1 negatively regulated a key regulator of gluconeogenesis, 

PEPCK (No. 2) [28]. Thus, EGR1 regulated the tissue repair response as well as the 

metabolic process. In addition to STAT1, phosphatase and tensin homolog (PTEN), in 

non-cancerous cluster No. 7, negatively regulated FAK1 in HCC cluster No. 18 [29]. 

FAK1 regulated oncogene SHC (No. 14) and might be involved in the cancer signaling 

pathway [30, 31]. Interestingly, PTEN was associated with Oct-3/4, a regulator of liver 

differentiation through its target gene C/EBP alpha (No. 3); C/EBP alpha regulated 

CYP27A1 and CYP3A5 (No. 5). Thus, in CH-C, two antitumor genes, STAT1 and PTEN, 

were associated with the expression of EGR1 and FAK1, which promote angiogenesis, 

fibrogenesis, and tumorigenesis in cancerous lesions. Interestingly, the expression of 

PTEN was related to the metabolic process of CH-C.  

 

2.6 Serial gene expression in non-cancerous gene clusters and the occurrence of 

HCC 

 Analysis of the framework of gene clusters in relation to hepatocarcinogenesis 

by GGM and individual gene interactions revealed several key genes that were 

associated with hepatocarcinogenesis in non-cancerous clusters. We focused on 

STAT1 and PTEN in non-cancerous clusters in CH-C and evaluated serial changes of 

their expression at 2 time points (tumor free and tumor present) in additional 11 patients. 

The clinical characteristics of these patients at both time points are shown in 

Supplemental Table J. The expression of STAT1 and its related genes significantly 
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decreased at the time of HCC development compared with the tumor-free time. Similarly, 

the expression of PTEN significantly decreased when HCC developed compared with 

the tumor-free time (Supplemental Figure C2, 3). 

 

3. Discussion 

 HCC frequently develops in the advanced stage of liver fibrosis. Although gene 

expression profiling of HCC and the background liver has been studied extensively 

[32-35], the relationship between the gene expression profiles of different lesions has 

not been elucidated. In the present study, we utilized GGM [15, 16] to analyze the 

relationship between gene expression in HCC and non-cancerous liver. GGM is widely 

utilized to study gene association networks [12-14].  

We first performed gene expression profiling in CH-B- and CH-C-related HCC. 

The up- and down-regulated genes were identified by a comparison with a single 

reference sample of normal liver. There may be some variations in gene expression 

among normal livers; however, the identified genes were characteristic of HCC and 

were consistent with previous reports [33, 34]. Differences in the signaling pathways 

between CH-B- and CH-C-related HCC are clearly shown in Figures 1 and 2 and 

Supplemental Figure D. In CH-C-related HCC, immune response- and 

cytoskeleton-related genes, such as actin, tubulin, and vimentin, were up-regulated, 

while in CH-B-related HCC, cell matrix interaction genes, such as collagen IV and matrix 

metalloproteinase, were up-regulated. HBV-X protein reportedly promotes HCC 

metastasis by the up-regulation of matrix metalloproteinases [36]. The differences in the 

gene expression profiles between CH-C- and CH-B-related HCC were concordant with 

those reported previously [34, 37].  

In the present study, GGM analysis also revealed the interactions of each 

cluster within HCC as well as within non-cancerous lesions. GGM analysis in 
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CH-B-related HCC showed that 3 up-regulated clusters and 6 down-regulated clusters 

were associated with each other. In CH-C-related HCC, 4 up-regulated gene clusters 

and 5 down-regulated gene clusters were associated with each other (Figure 3). 

Interestingly, the up-regulated gene clusters were preferentially expressed in CPA in the 

liver. This prompted us to consider the origin of the HCC cells. Recent reports of 

immunohistochemical staining of liver tissue using stem cell markers, such as EpCAM 

and CD133, have suggested the presence of hepatic stem cells in the periportal area 

[38]. In contrast, many of the down-regulated genes were liver function and 

metabolism-related genes that were preferentially expressed in CLL in the liver.  

GGM analysis between the HCC and non-cancerous liver revealed the unique 

interactions of 2 lesions in this study. In CH-B, up-regulated clusters No. 3 and 16, 

development and DNA damage response gene clusters, regulated HCC clusters No. 8, 

11, and 18, VEGF-family signaling, apoptosis and survival-related, and ESR1 regulation 

of G1/S transition-related gene clusters. Down-regulated cluster No. 13, a 

metabolism-related gene cluster, negatively regulated the up-regulated HCC cluster No. 

8. These results suggest that the metabolic status of non-cancerous liver influences the 

gene expression of HCC. Individual gene interactions with reference to the MetaCore 

database showed that 8 genes in non-cancerous clusters No. 3 and 16 were directly 

associated with AP1 in HCC cluster No. 18, which regulated the expression of many 

HCC genes (Figure 4) [18-23]. Interestingly, the HBV transcript was clustered in HCC 

cluster No. 18. It has been reported that the HBV transcript enhances AP-1 activation 

[39, 40]. The results suggest a role for the HBV transcript in CH-B-related HCC. 

Recently, a next generation sequencing approach revealed the frequent integration of 

HBV in HCC (86.4%), where the putative cancer-related human telomerase reverse 

transcriptase (hTERT), mixed-lineage leukemia 4, and cyclin E1 genes were located 

[41]. Although, we could not find the up-regulation of these genes in CH-B-related HCC, 
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HBV genome integration should have important roles for HBV-related 

hepatocarcinogenesis. A previous report demonstrated that HBx retained the ability to 

overcome active oncogene RAS-induced senescence by using hTERT, which was 

introduced into human immortalized primary cells [42].  

In CH-C, STAT1 and PTEN signaling in clusters No. 1 and 7, respectively, were 

associated with HCC clusters No. 9, 18, and 2, EGR1 signaling, ectodermal 

development and cell proliferation, lipid metabolism, and iron transport gene clusters. 

Individual gene interactions with reference to the MetaCore database showed that 

EGR1 regulates multiple genes in HCC cluster No. 9 as well as genes in up-regulated 

HCC cluster No. 18 and down-regulated HCC cluster No. 2 (Figure 4). STAT1 and 

PTEN in non-cancerous clusters No. 1 and 7 exhibited an anti-tumor effect.  

STAT1 negatively regulated EGR1 [24] and, interestingly, the expression of PTEN was 

associated with metabolic-related genes in non-cancerous clusters No. 3 and 5 (Figure 

4). PTEN reportedly promotes oxidative phosphorylation, decreases glycolysis, and 

prevents the metabolic reprogramming of cancer cells [43].  

The reduced expression of these antitumor genes in CH-C might increase the 

expression of EGR1 and FAK1, which promote angiogenesis, fibrogenesis, and 

tumorigenesis in HCC (Figure 4). EGR-1 promotes hepatocellular mitotic progression 

[44], while p53 and PTEN are downstream targets of EGR1. EGR1 might be involved in 

a negative feedback mechanism of cell cycle progression by inducing p53 and PTEN 

[45]. Recent reports described the tumorigenic role of EGR1 in the presence of p53 and 

PTEN mutations [46, 47]. Thus, interferon signaling evoked by an innate immune 

response and the PTEN expression-associated metabolic process (No. 3 and 5) will 

likely regulate the gene expression profile of HCC through EGR1. 

It is reported that HBV X protein represses the expression of PTEN by inhibiting 

the function of p53 [48] and c-Jun promotes cellular survival by suppression of PTEN 
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[49]. In this study, the expression of PTEN was repressed in CH-B (Supplemental Figure 

B, CH-B, cluster 21). Possible involvement of HBx, AP-1 and PTEN signaling in 

HBV-related hepatocarcinogenesis should be explored furthermore.  

 Recently, Hoshida et al. reported that gene expression profiling of the 

background liver of patients with HCC predicts their outcome [35]. In their report, gene 

sets, which correlated with good survival, included many metabolic process genes, such 

as those of fatty acid, amino acid, and glucose metabolism. In accordance with their 

results, our findings showed that the possible involvement of metabolic process genes 

in the background liver might influence gene expression in HCC. In addition, our study 

revealed the predisposing changes of gene expression in non-cancerous liver that 

precede the changes of gene expression in HCC. Interestingly, we found that the 

expression of the anti-tumor genes STAT1 and PTEN was decreased significantly at the 

onset of HCC compared with the tumor-free time. Therefore, serial analysis of the 

expression of these genes might be useful for predicting the development of HCC. 

Several reports have shown that the decreased expression of some chemokines, such 

as CXCL10, CCL2, and CCL5, is associated with the poor prognosis of resectable HCC 

[50, 51]. In this study, the expression of CXCL10, CXCL6, CXCL9, and macrophage 

migration inhibitory factor was decreased at the onset of HCC compared with the 

tumor-free time (Supplemental Figure C). It would be worthwhile to examine the 

expression of these genes in serum samples to predict the development of HCC. 

 In summary, using a bioinformatics approach, we performed gene expression 

profiling of HCC and non-cancerous liver, which revealed the predisposing changes of 

gene expression in HCC. This approach will be useful for the early diagnosis of HCC. 

Further studies with a larger sample population are needed to confirm our data and to 

determine possible means for preventing the development of HCC. 
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4. Materials and methods 

4.1 Patients and tissue samples 

HCC and non-cancerous liver specimens were obtained from 17 patients with 

HCV-related HCC and 17 with HBV-related HCC who underwent surgical resection of 

the liver (Supplemental Tables A and B). For the control normal liver, a surgically 

obtained tissue sample from a patient who showed no clinical signs of hepatitis was 

used as described previously [9, 10]. The liver tissue was histologically normal, and the 

patient tested negative for all hepatitis virus markers and had normal levels of serum 

aminotransferase. HCC and non-cancerous liver tissues were enucleated from resected 

specimens and frozen immediately in liquid nitrogen for RNA isolation [10]. In a previous 

study, expression profiling of the liver of 19 patients with CH-B and 18 with CH-C was 

performed (Table 2) [10]. The other experimental procedures are described in the 

Supplemental Materials and Methods. 

 

4.2 Microarray analysis 

 cDNA microarray slides (Liver chip 10k) were used as described previously [10]. 

For the selection of genes, we utilized data from the cDNA microarray and hepatic 

SAGE libraries derived from normal liver, CH-C, CH-C-related HCC, CH-B, and 

CH-B-related HCC, including 52,149 unique tags. We selected 9614 non-redundant 

genes that are expressed in diseased and normal liver. The detailed procedures for the 

preparation of the cDNA microarray slides are described in the Supplemental Material 

and Methods. RNA isolation, amplification of antisense RNA, labeling, and hybridization 

were performed according to the protocols described previously [10]. Quantitative 

assessment of the signals on the slides was performed by scanning on a ScanArray 

5000 (General Scanning, Watertown, MA) followed by image analysis using GenePix 
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Pro 4.1 (Axon Instruments, Union City, CA) as described previously [10]. The microarray 

data have been submitted to the Gene Expression Omnibus (GEO) public database at 

NCBI (Accession No. GSE41804). The details are also described in the Supplemental 

Material and Methods. 

 

4.3 Graphical Gaussian modeling data processing 

GGM [15, 16] enabled us to reveal the gene cluster framework in relation to 

hepatocellular carcinogenesis of CH-B and CH-C. The procedure included: 1) gene 

clustering; 2) construction of the PCCM by GGM algorithms; and 3) visualization of the 

cluster pathway (Supplemental Figure A). 

 

4.4 Gene selection 

To utilize a variety of tissue samples, we first calculated the ratio of gene 

expression in non-cancerous tissue (36 with CH-B and 35 with CH-C) to that in normal 

tissue and the ratio of gene expression in HCC tissue (17 with CH-B related HCC and 

17 with CH-C related HCC) to that in normal tissue. Then, the expression ratios of 

non-cancerous and HCC tissues in individual samples were standardized in the two 

tissues, respectively, by transformation to the Z score (each value was subtracted by the 

average value and divided by the standard deviation (SD)) such that the mean 

expression value was 0 and the SD was 1. A gene was regarded as differentially 

expressed if the Z score was >1 or <-1 (1 > |AV ± SD|). Although the criterion for a 

differentially expressed gene is usually |AV ± 2SD|, the selection procedure described 

above is simply designed to gather as many differentially expressed genes as possible, 

and is suitable for determining the macroscopic relationships between gene systems 

estimated by cluster analysis. Gene selection from non-HCC samples was performed 

similarly by avoiding the selected genes in HCC (backward selection). Therefore, a 
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correlation between HCC and non-HCC genes could be obtained as there was no 

overlap between the genes. 

 

4.5 Clustering with automatic determination of cluster number 

In gene profile clustering, the Euclidian distance between Pearson’s correlation 

coefficient of profiles and the unweighted pair group method using the arithmetic 

average (UPGMA or group average method) were adopted as the metric and the 

technique, respectively, with reference to previous GGM analysis [15, 16]. Note that the 

present metric and technique were selected to estimate robustly the clusters against the 

noise of gene expression measurements [15]. In cluster number estimation, the 

variance inflation factor was adopted as a stopping rule for the hierarchical clustering of 

expression profiles [15], and the popular cutoff value of 10.0 [52] was adopted as the 

threshold.  

 

4.6 Graphical Gaussian modeling 

The average expression profiles were calculated for the members of each 

cluster, and the average correlation coefficient matrix between the clusters was 

calculated. The average correlation coefficient matrix between the clusters was then 

subjected to GGM as described previously [15, 16]. The correlation coefficient can 

return a false value in the presence of confounding factors. Partial correlation enables 

replacement of a false-positive correlation with the actual correlation. The PCCM was 

calculated using GGM (Supplemental Figure A). All calculations for clustering analysis 

and GGM were performed via the ASIAN web site 

(http://eureka.cbrc.jp/asian/index_j.html) [53] and “Auto Net Finder,” a commercial 

desktop version of ASIAN (Infocom Corporation, Shibuya, Tokyo, Japan, 

http://www.infocom.co.jp/bio/download/). 

http://www.infocom.co.jp/bio/download/


20 

 

 

4.7 Rearrangement of the inferred network 

Since the magnitude of the partial correlation coefficient indicates the strength 

of the association between clusters, the intact network can be rearranged according to 

the partial correlation coefficient to interpret the association between clusters. The 

strength of the association can be assigned by a standard test for the partial correlation 

coefficient. In the present study, the significance level in the t-test was 1% 

(Supplemental Figure A). 

 

4.8 Gene ontology of cluster members 

Functional ontology enrichment analysis was performed to examine the gene 

ontology process distribution of each cluster gene using MetaCoreTM (Thomson Reuters, 

New York, NY). Gene ontology was also confirmed by DAVID Bioinformatics Resources 

6.7 (http://david.abcc.ncifcrf.gov/) [17].  
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Figure legends 

Fig. 1. One way hierarchical clustering of 783 differentially expressed genes in 

CH-B-related HCC 

A total of 783 genes were differentially expressed in CH-B-related HCC. Up-regulated 

genes are shown in red, down-regulated genes are shown in green, and unchanged 

genes are shown in white (Figure 1). 

 

Fig. 2. One way hierarchical clustering of 668 differentially expressed genes in 

CH-B-related HCC 

A total of 668 genes were differentially expressed in CH-C-related HCC. Up-regulated 

genes are shown in red, down-regulated genes are shown in green, and unchanged 

genes are shown in white (Figure 2). 

 

Fig. 3. GGM analysis of each cluster in HCC and non-cancerous lesions 

Each cluster in the HCC and non-cancerous lesions was connected according to partial 

correlation coefficient matrix (PCCM) by GGM algorithms (Supplemental Tables H and I). 

The blue lines indicate a negative partial correlation and the black lines indicate a 

positive partial correlation. The size of each cluster reflects the number of clustered 

genes. The red circles are up-regulated gene clusters, while the green circles are 

down-regulated gene clusters. Within each cluster, the blue area indicates the 

proportion of genes that are over-expressed in CPA, while the deep purple area 

indicates the proportion of genes that are over-expressed in CLL.  

A; interactions of HBV related clusters 

B; interactions of HCV related clusters 
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Fig. 4. Individual gene interactions between gene clusters in HCC and 

non-cancerous lesions 

Direct interactions of individual genes among each cluster were confirmed by reference 

to the MetaCore database. The blue arrows indicate negative regulation, while the black 

arrows indicate positive regulation. Unspecified interactions are shown with black lines. 

The red squares are up-regulated gene clusters, while the green squares are 

down-regulated gene clusters. 

A; direct interactions of genes in HBV related clusters 

B; direct interactions of genes in HCV related clusters 
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