Prevention and Reversal of Lipotoxicity-Induced Hepatic Insulin Resistance and Steatohepatitis in Mice by an Antioxidant Carotenoid, β - Cryptoxanthin

メタデータ	言語: en
	出版者:
	公開日: 2017-10-05
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属: 金沢大学
URL	http://hdl.handle.net/2297/44637
	This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 International License.

Paper Outline (論文要約)

The title of the main paper(主論文題名)

Prevention and Reversal of Lipotoxicity-Induced Hepatic Insulin Resistance and Steatohepatitis in Mice by an Antioxidant Carotenoid, β -Cryptoxanthin

Department(専攻部門・研究分野) Division of Environmental Science Name(氏名) Ni Yinhua (倪 銀華) (The head of a department(主任教員) Prof. Kaneko Shuichi)

Background & Aims: Excessive hepatic lipid accumulation promotes the activation of macrophages/Kupffer cells, resulting in exacerbation of insulin resistance and progression of non-alcoholic steatohepatitis (NASH). However, few promising treatment modalities target lipotoxicity-mediated hepatic activation/polarization of macrophages for NASH. Recent epidemiological surveys showed that serum β -cryptoxanthin, an antioxidant carotenoid, was inversely associated with the risks of insulin resistance and liver dysfunction. Here, we first examined the effect of β -cryptoxanthin on hepatic steatosis. Next, we investigated the preventative and therapeutic effects of β -cryptoxanthin using a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet ("CL diet"). Methods: C57BL/6 mice were fed a CL or CL diet with 0.003% of β -cryptoxanthin for 12 weeks. The liver histology, insulin sensitivity, and hepatic gene expression profile were examined. Next, we quantified intrahepatic immune cells by flow cytometry. **Results**: β -Cryptoxanthin administration ameliorated hepatic steatosis in high-fat diet-induced obese mice. After 12 weeks of CL diet feeding, β -cryptoxanthin administration attenuated insulin resistance and excessive hepatic lipid accumulation and peroxidation, with increases in M1-type macrophages/Kupffer cells and activated stellate cells, and fibrosis in CL diet-induced NASH. Comprehensive gene expression analysis showed that downregulated macrophage β -cryptoxanthin activation signal-related genes significantly without affecting most lipid metabolism-related genes in the liver. Importantly, flow cytometry analysis revealed that, on a CL diet, β -cryptoxanthin caused a predominance of M2 over M1 macrophage populations, in addition to reducing total hepatic macrophage and T cell contents. In parallel, β -cryptoxanthin decreased lipopolysaccharide-induced M1 marker mRNA expression in peritoneal macrophages, whereas it augmented IL-4-induced M2 marker mRNA expression, in a dose-dependent manner. Moreover, β -cryptoxanthin reversed steatosis, inflammation, and fibrosis progression in pre-existing NASH in mice. Conclusions: β -cryptoxanthin prevents and reverses insulin resistance and steatohepatitis, at least in part, through an M2-dominant shift in macrophages/Kupffer cells in a lipotoxic model of NASH. β -Cryptoxanthin could be a potential preventative or therapeutic agent for NASH.