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1. INTRODUCTION

Let P € X be a germ of a 3-dimensional terminal singularity defined
over C. A projective birational morphism f: Y — X is called a divisorial
contraction if

(i) —Ky is f-ample,
(ii) Y has only terminal singularities, and
(iii) the exceptional locus F of f is an irreducible divisor.
In this situation, we write Ky = f*Kx + a(E, X)E with a(F, X) € Q. The
coefficient a(F, X) is called the discrepancy of E over X. When f(E) = P,
ie, fing: Y\ B — X\ {P} is an isomorphism, we write f: (Y D E) —
(X > P).

It is a fundamental problem in 3-dimensional birational geometry to find
all divisorial contractions f: (Y D F) — (X > P). In this dissertation, I
finished the classification of 3-dimensional divisorial contraction which con-
tracts an irreducible divisor to a ¢DV point, and therefore we classified all
3-dimensional divisorial contractions to a point. Classification of all divi-
sorial contractions to a point tells us that they are obtained as weighted
blow-ups.

Theorem 1.1. Let f: Y — X be a 3-dimensional divisorial contraction
whose exceptional divisor E contracts to a point P. Then f is a weighted
blow-up of the singularity P € X embedded into a cyclic quotient 5-fold.

Detail version of our main results in Theorem 1.1 shall be given in Sec-
tion 2, and the detailed list of all divisorial contractions to a ¢DV point
shall be given in Section 5. Classification of all divisorial contractions to a
non-Gorenstein point P € X in Theorem 1.1 has been already settled by
2], [3], [4], [11], [12], and [14]. If P € X is a Gorenstein point, that is, cDV
point, several cases of divisorial contractions to P were already classified.
Kawakita showed that f is obtained as a suitable weighted blow-up in the
case of non-singular point P in [8], and he classified divisorial contractions
to cA; point in [9]. He also classified all divisorial contractions to a point
into two types, one is ordinary type, and the other is exceptional type in
[11]. We know that all divisorial contractions of ordinary type are classified
by [11, Theorem 1.2]. I pointed out that his paper [10] has a few mistakes,
and he sent me the erratum [13]. The erratum gives us that there is a possi-
bility of divisorial contractions to a cAs point with discrepancy 4 which are
of type el. Hayakawa classified divisorial contractions to points of type cD,
cE with discrepancy 1 in [5], [6].

As a result, the remaining cases in Theorem 1.1 are divisorial contractions
of exceptional type with discrepancy greater than 1, which are listed in
Table 1. The main aim in this paper is to finish classification of all divisorial
contractions listed in Table 1.

Chen, Hayakawa, and Kawakita found several examples of exceptional
type listed in Table 1. There are several examples of type el, €2, e3, and €9



TABLE 1. divisorial contraction of exceptional type

E3 | non-Gorenstein terminal on Y

type | terminal P a
el [cAy*Y, eD 4] 1/r | 1(1,-1,8); 7 = £3 (mod 8)*V)
cD 2| 2/r | 1(1,-1,4)
e2 | cD, cEgr 2| 1/r | cA/r or ¢D/3 deforming to

2 x 1(1,-1,2); ¢D/3 for cEg 7
e3 | cAg, cD, cEg | 3| 1/4 | cAx/4 deforming to

$(1,1,1), £(1,3,3)

e5 | cEr 2| 1/7 | (1,6,6)

€9 | cErg 2 1/15 | £(1,2,2) and £(1,4,4)

which are weighted blow-ups by [11]. Chen has examples of type el with P
of type ¢D and discrepancy 4, and there is an example of type €5 in [1].

Since we finished the classification of 3-dimensional divisorial contrac-
tions to a point, it is possible to classify birational Mori fiber structures
of 3-dimensional Q-Fano varieties with terminal singularities which are not
quotient. T. Okada told me that he had classify the birational Mori fiber
structures of general members of 3-dimensional anticanonically embedded
Q-Fano weighted complete intersection of codimension 2 by using the clas-
sification of 3-dimensional divisorial contractions.

In this article, we describe divisorial contractions to a Gorenstein point
and we show that every divisorial contraction listed in Table 1 is obtained
as a weighted blow-up if it exists. Our method of the classification is to
study the structure of the graded ring @, f.O(—jE)/f.O(—(j + 1)E). We
find local coordinates at P to meet this structure and verify that f should
be a certain weighted blow-up. In certain cases, there are some choices of
local coordinates unlike the non-Gorenstein cases. So we should compute
weighted blow-up in detail, and in several cases, there is no suitable local
coordinate. There is no divisorial contraction of type el with P of type cAs
and discrepancy 4, type e2 with type cFr, and type e3 with type cFg.

We shall give the results in Section 2, and their proofs shall be given in
Section 4. We explain terminal singularity, weighted blow-up, and singular
Riemann-Roch theorem in Section 3. In Section 5, we give the detailed list
of all divisorial contractions to a ¢cDV point.

Acknowledgments. 1 was motivated to write this dissertation by some ques-
tions of Professor T. Hayakawa. I am grateful to him for his useful advise
and helpful comments. I would like to thank Professor M. Kawakita for
answering to my question earnestly and sending the erratum [13] to me.

*UThe new case and the condition given by the erratum [13].



2. MAIN RESULTS

We consider divisorial contractions f: (Y D E) — (X > P) listed in
Table 1. Our main results show that such contractions are obtained as
weighted blow-ups embedded into C* or C? if they exist. The following is a
detailed version of our main results. Proofs shall be given in Section 4.

Theorem 2.1. There is no divisorial contraction of type el which contracts
to a cAsy point with discrepancy 4.

Theorem 2.2. Suppose that f is a divisorial contraction of type el which
contracts to a cD point with discrepancy 4. Then f is the weighted blow-up
with wt(x1, e, T3, Ty, T5) = (%‘1,%,4,1,7“) with r > 7, r = £3 (mod 8)
after an identification

2% 4+ Azoxh + w45 + p(as, x4) = 0, )

) cC
x5 + 2x1q1 (73, 24) + q2(23,74) + 25 =0

T1X2X32425 "

PEX’;-’OE(

Moreover the equations defining X satisfy the following conditions:
(i) xeC, k> %, wtp >r+1, wtqp = %, wtge =r —1, and q1,
q2 are weighted homogeneous for the weights distributed above.

(ii) g2 is not square if 1 = 0.
r+1

(iii) If r = 3 (mod 8) (resp. r = —3 (mod 8)), then z3* € p (resp.
r—1

3t € ).
Theorem 2.3. Suppose that f is a divisorial contraction of type el which
contracts to a cD point with discrepancy 2. Then f is the weighted blow-up
with wt(x1, T2, X3, T4, X5) = (%, 7;—1,2, 1,7) with r > 5 after an identifica-
tion

cC?

T1X2X3T4X5°

PeXN()E( o} + Azoah + w475 + p(a3, 74) = 0, )

a3 + 221q1 (23, 74) + g2(w3, 24) + 25 = 0
Moreover the equations defining X satisfy the following conditions:
(i) xeC, k> %, wtp>r+1, wtqp = %, wtge =r —1, and q1,
q2 are weighted homogeneous for the weights distributed above.
(i) g2 is not square if g1 = 0.
r+1
(iii) z4° €p.
Theorem 2.4. Suppose that f is a divisorial contraction of type e2 which
contracts to a cD point with discrepancy 2. Then one of the following holds:
(i) f is the weighted blow-up with wt(x1,x9,x3,24) = (r,7,2,1) after an
identification of P € X with

o€ (:13% + 2374 + 22074p(73, T4) + )\xga:’?f + q(x3,24) = 0) C (Cim%u.

Moreover the equation defining X satisfies the following conditions:
(1) A€ C, k> 5, wtq > 2r, and p is weighted homogeneous of weight
r — 1 for the weights distributed above.



(2) p#0 or qui=2r # 0, and qwi=2r is not square if p = 0.
(3) z5 €q.
The non-Gorenstein singularity of Y is of type cA/r.
(ii) f is the weighted blow-up with wt(z1,x2,x3,x4) = (3,3,1,2) after an
identification of P € X with

o€ (m% + x%m + 2xoxgp(x3,4) + :Ugac% + q(x3,4) = O) - Cim%u.

Moreover the equation defining X satisfies the following conditions:

(1) wtq > 6, and p is weighted homogeneous of weight 2 for the weights
distributed above.
(2) 23 €q.
The non-Gorenstein singularity of Y is of type ¢cD /3, and P is of type cDj.

Theorem 2.5. Suppose that f is a divisorial contraction of type e2 which
contracts to a cEg point with discrepancy 2. Then f is the weighted blow-up
with wt(x1, x9, x3,24) = (3,3,2,1) after an identification of P € X with

o€ (m% + {xo — p(azg,x4)}3 + x9g(ws, z4) + h(x3,24) = O) C Cimx:ﬁm.

Moreover the equation defining X satisfies the following conditions:
(i) wtg > 3, wth > 6, and p is weighted homogeneous of weight 2 for
the weights distributed above.
(ii) degg > 3 and degh > 4.
(iii) 23 € p and z3 € g.
There is no divisorial contraction of type e2 which contracts to a cE7 point
with discrepancy 2.

Theorem 2.6. Suppose that f is a divisorial contraction of type e3 which
contracts to a cAsg point with discrepancy 3. Then f is the weighted blow-up
with wt(x1,x9, x3,24) = (4,3,2,1) after an identification of P € X with

<:L'% + m% + 2cxy29 + 2x1p(23, T4) >
o c

5 cct
+ 2cxopwi—3 (3, x4) + x5 + g(x3,24) =0

T1X2T3X4"

Moreover the equation defining X satisfies the following conditions:

(i) ¢ # £1, wt g > 6, and p contains only monomials with weight 2 and
3 for the weights distributed above.
(ii) 22 € p and deg g(x3,1) < 2.

Theorem 2.7. Suppose that f is a divisorial contraction of type e3 which
contracts to a cDy4 point with discrepancy 3. Then f is the weighted blow-up
with wt(z1, x2, 3, x4) = (3,4,2,1) after an identification of P € X with
o€ (x% + w%m + 2zoxgp(x3,24) + /\:):gxlgf + q(x3,4) = 0) C Ci1x2x3x4~
Moreover the equation defining X satisfies the following conditions:

(i) AeC, k> 2, wtq > 6, and p contains only monomials with weight
< 3 for the weights distributed above.



(ii) 24 € p and 23 € q.

For any n > 5, there is no divisorial contraction of type e3 which contracts
to a cD, point with discrepancy 3.

Theorem 2.8. There is no divisorial contraction of type e3 which contracts
to a cEg point with discrepancy 3.

Theorem 2.9. Suppose that f is a divisorial contraction of type e5 which
contracts to a cEr point with discrepancy 2. Then f is the weighted blow-up
with wt(z1, x2, 3, x4, 25) = (5,3,2,2,7) after an identification

cC

T1T2T3X47T5°

PeXmoc <x§+w2x5 + p(x3, 74) :07)

23+ q(z3,24) + 25 =0

Moreover the equations defining X satisfy the following conditions:

(i) wtp > 10, wtq > 6 for the weights distributed above.
(ii) ged(ps,gs) = 1.

Theorem 2.10. Suppose that f is a divisorial contraction of type €9 which
contracts to a cE7 g point with discrepancy 2. Then f is the weighted blow-up
with wt(x1, x2, 3, x4) = (7,5,3,2) after an identification of P € X with

o€ (x% + :cg + Ax%xi + zog(xs3, x4) + h(zs, 24) = O) C Cingsu'

Moreover the equation defining X satisfies the following conditions:

(i) Ae C and wtg > 9, wt h > 14 for the weights distributed above.
(ii) If P is of type cE7 (resp. cEg), then x5 € g (resp. x3 or xixy € h).
(iii) «7 € h.

We can show that every 3-dimensional divisorial contraction to a Goren-
stein point is obtained as a weighted blow-up by [4], [5], [6], [8], [9], [10],
and the above theorems. Therefore we can prove Theorem 1.1 by [12].

Proofs of these theorems shall be given in Section 4, and the list of all
divisorial contractions to a ¢DV point shall be given in Section 5.

Notation. (i) We denote C" with coordinates x1,...,z, by C} . .
(ii) We define the action of a cyclic group fi,, of order m on C} . by
(xlv s 7$n) = (Calxb s Canxn)v

where ¢ is a primitive m-th root of unity. The quotient space
is denoted by C7 /E(a1,...,an), C"/L(ay,...,ay) or simply

T1...Tn
%(al,...,an). '

(iii) For wt(zs,z4) = (a,b) and g(x3,74) = Y pixiry € Clas, x4}, we
define

wt(g(x3,z4)) = inf{ai + bj | p;; # 0}.



For a positive integer n, we define

Gwt=n x33$4 Z ng$3x4
ai+bj=n
and gwt>n zs3, $4 Z Pz]$3$4-
ai+bj>n
(iv) Let C{x1,...,zpn} be the ring of convergent power series in variable
x1, -+, Tp. For f € C{xy,...,z,}, we denote by f,, the homoge-

neous part of degree m of f.

(v) We say that “a monomial, e.g. ", appears in a power series f” or “f
contains z"” if there exists a monomial 2™ with non-zero coefficient
in the power series expansion of f, and denote it by 2" € f.

3. PRELIMINARIES

3.1. Classification of terminal singularities. It is known that a 3-
dimensional Gorenstein terminal singularity is an isolated ¢DV hypersurface
singularity, i.e., a singularity with local equation of the form

f(x1, 20, 23) + 5649(951,3?2,373,374) =0

for some f(x1,x2,z3) defining a Du Val (equivalently rational double point)
singularity. If P € X is a 3-dimensional Gorenstein terminal singularity,
then according to the type of f(z1,x2,x3), we have that P € X ~o € (¢ =
0) C C* for some ¢ belongs to one of the following:
(i) type cA: (v122 + g(x3,74) = 0) C C* with g(z3,74) € m?.
(ii) type c¢D: (2% + z3zy + Awozh + g(z3,24) = 0) C C* with A € C, [ > 2,
g(x3,24) € M.
(iii) type cE: (22 + 23 + xog(w3, 24) + h(z3,74) = 0) C C* with g(z3,74) €
m3, h(xg,ac4) € m4,
where m denotes the maximal ideal of 0 € C*. In the cE case, it is of type
cEg (resp. cE7, cEg) if hy # 0 (resp. hy = 0 and g3 # 0, hy = g3 = 0 and
hs #0).
To prove Theorem 2.1 and Theorem 2.6, we need to construct a standard
identification.

Lemma 3.1. Let P € X be a germ of a 3-dimensional Gorenstein terminal
singularity. If P is of type cAa, then there is an identification

PeX~o¢€ (acl:rg + x% + g(x3,24) = 0) - Cillél’sle
~ o€ (2] + a3+ 235 + g(x3,24) = 0) C Ch 4rznzys

where deg g(x3,1) < 2.

Proof. By definition, there is an identification

Pe X ~o¢ (27 + 25+ 23 + 24F (21,29, 73, 74) = 0) C C

T1T2T3T4
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for some F(z1,x2,3,24) € m?. By using Weierstrass preparation theorem
and completing a square, we may assume that

Pe X ~o¢€ (23 425+ 23 + 24 F' (23, 74) = 0)

for F'(x3,24) € m®>. We may assume that deg F’(z3,1) < 2 by Weierstrass
preparation for x3. Thus we get the desired forms by the automorphism
T1 4 ixo — z1 and x1 — 9Ty — xo if necessary. U

Mori classified that a 3-dimensional terminal singularity P € X with index
r > 1 is isomorphic to a cyclic quotient of an isolated ¢DV singularity (see
[16]), and Kolldr and Shepherd-Barron showed that these isolated ¢DV’s
quotient are terminal singularities in [15].

Theorem 3.2. There exists an identification
P € X ~oe€ (QO = 0) C Ci1x2£3$4//‘l’r7

where u, denotes the cyclic group of order r and x1, T2, T3, T4, @ are
ur-semi-invariant. Furthermore, @ and the action of u,. have one of the
following forms:
(i) type cA/r: (z122 + g(ak,z4) = 0) C (C4/%(a, —a,1,0) with g(x3,x4) €
m?, ged(a,r) = 1.
(i) ty?g)oe cAz/2: (23 +23+g(xs,24) = 0) C C*/3(0,1,1,1) with g(zs, 34) €

m°.
(iii) ty?g))e cAz/4: (23 +a3+g(xs, 24) = 0) C C*/1(1,3,1,2) with g(xs, z4) €
m°.
(iv) type cD/3: (¢ =0) C C*/£(0,2,1,1), where ¢ has one of the following
forms:

(1) 2% + 23 + 23 + 23.
(2) o2 + 23 + 2324 + 22g(73, 74) + h(T3,24) With g € m*, h € mE.
(3) @2 + a3 + 23 + z29(73, v4) + h(z3,74) With g € m*, h € mS.
(v) ;ype ¢D/2: (p =0) C C*/3(1,0,1,1), where ¢ has one of the following
orms:
(1) 22 + 23 + zow3wy + g(73, 74) With g € m?.
(2) 22 + wow3zy + 25 + g(3,74) With n < 4, g € m*.
(3) o2 + 2922 + 2% + g(3,74) withn < 3, g € m*.
(vi) type cE/2: (mj + 23 4 z29(23,24) + h(z3,24) = 0) C C*/3(1,0,1,1)
with g, h € m*, hy # 0.

Conversely, if ¢ as above defines an isolated singularity and the action of
wr on @ =0 is free outside the origin, then P is a terminal singularity.

3.2. Weighted blow-up. We recall the construction of weighted blow-ups
by using the toric language.

Let N = Z% be a free abelian group, called lattice, of rank d with standard
basis {ej,...,eq}. Let M be the dual lattice of N. Let o be the cone in
N ® R generated by the standard basis eq,...,eq and A be the fan which



consists of o and all the faces of 0. We consider

Tn(A) := SpecClo¥ N M] = C%.

Let v = (ai,...,aq) be a primitive vector in N, i.e., the vector which
has no element in N between 0 and v. We assume that a; € Z>¢ and
ged(ay,...,aq) = 1. For any i with a; > 0, let 0; be the cone generated
by {e1,...,€i-1,v,€it1,...,eq} and A(v) be the fan consisting of all o; and

their all faces. A(v) is called the star shaped decomposition for v. Then
Tn(A(v)) = Uai>0 Spec CloY N M].

If a; > 0 for all 4, the natural map m: Tn(A(v)) = Tn(A) is called the
weighted blow-up over o € Ti(A) with weight v = (ai,...,aq). In each
affine chart U; := Spec C[o;” N M], the natural map U; — T (A) is given by

xj mj:):?j, if j # 4;
T — Tt
The exceptional divisor £ of 7 is isomorphic to P(ay, ..., aq).
Let X := (p(z1,...,24) =0) C Tny(A) be a hypersurface, and Y be
the birational transform on T (A(v)) of X. We also call the induced map

7Y — X the weighted blow-up of X with weight v. The affine chart
U; :=U; NY can be expressed as

a1 ) a;—1 _a; ) a1 ag\,..—wte _ .
(gp(:z:la:i e Tl Xy X T Tt = 0> C U;

for each i. The exceptional divisor of 7’ is denoted by F :=&NY. If F is
irreducible and reduced, and we have dim(7Tx(A(v))NY) < 1, then we have
the adjunction formula

Ky =n"Kx + (>;a; —wtp — 1)E.

We define weighted blow-ups of the complete intersection similarly.

3.3. The singular Riemann-Roch formula. As we shall use the method
in [11] and [12], we recall the singular Riemann-Roch formula.

Theorem 3.3 ([17, Theorem 10.2]). Let X be a projective 3-fold with canon-
ical singularities and D a divisor on X such that D ~ epKx with ep € Z
at each P € X.

(i) There is a formula of the form

X(Ox (D)) = x(Ox) + 75D(D ~ Kx)(2D ~ Kx)

1
+ED . CQ(X) + ZCP(D),
P
where the summation takes place over the singularities on X , and

cp(D) € Q is a contribution due to the singularity at P, depending
only on the local analytic type of P and Ox (D).
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(ii) If P € X is a terminal cyclic quotient singularity of type %(1, —1,bp),
then
ip—1 75— ST
Ibp(rp — b
N Z p(rp — lbp)

2rp

2
—rs—1
cp(D) = —ip ]}_327“]3

)

=1

where i = i — L#er denotes the residue of i modulo rp (the sum

Efl . . o
21 is zero by convention if ip =0 or 1).

(iii) For an arbitrary terminal singularity P,

cp(D) = cq(Dg)
Q

where {(Q, Dq)} is a flat deformation of (P, D) to the basket of termi-
nal cyclic quotient singularities Q).

4. PROOFS OF MAIN RESULTS

In this section we prove the main theorem by using the method in [11]
and [12]. Our strategy for the classification is to determine the exceptional
divisor in the sense of valuation by applying Lemma 4.1 or Lemma 4.2 (see
[10, Lemma 6.1], [11, Lemma 6.1]).

Lemma 4.1. Let f: (Y D E) — (X > P) be a germ of a 3-dimensional
divisorial contraction to a ¢cDV point P. We identify P € X with

PeX~oe(p=0)cCcX:=C!

T1T2T3%4°
Let a denote the discrepancy of f and m; denote the multiplicity of x; along
E, that is, the largest integer such that x; € f.Oy(—m;FE). Suppose that
(m1,ma, m3, my) is primitive in Z*. Let d denote the weighted order of ¢
with respect to weights wt(z1, xa, x3,x4) = (M1, M2, m3g, mys), and decompose
© as
¥ = Spd(wlv Z2, X3, 1’4) + 90>d($17 Z2, X3, $4)7
where @q is the weighted homogeneous part of weight d and ©~q is the part
of weight greater than d. Set ¢ :=mj+mg+mg+mq—1—d. Let g: (Z D
F) — (X > o) be the weighted blow-up with weights wt(x1, 2,3, 14) =
(m1,ma, m3,my), F its exceptional divisor. Let Z denote the birational
transform on Z of X and g: Z — X the induced morphism. If we have four
conditions:
(i) FNZ defines an irreducible and reduced 2-cycle F,
(ii) Z is smooth at the generic point of F,
(iii) dim(SingZ N Z) <1, and
(iv) ¢ =a,

then we have f ~ g over X.

We shall apply the following extension of Lemma 4.1 to several cases.
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Lemma 4.2. Let f: (Y D E) — (X > P) be a germ of a 3-dimensional
divisorial contraction to a cDV point P. We identify P € X with

PeX~oe€ (:Z - 8) cX:= Ci1x2x3x4:1:5.

Let a denote the discrepancy of f and m; denote the multiplicity of x;
along E. Suppose that (my,ma,m3, my,ms) is primitive in Z°. Let d
(resp. €) denote the weighted order of ¢ (resp. 1) with respect to weights
wt(z1, T2, T3, T4, T5) = (M1, ma, ms, my, ms), and decompose ¢ and v as
¢ = pa(r1, L2, 23, 4, T5) + P>a(T1, T2, T3, T4, T5),
Y = Ye(T1, T2, 23, T4, T5) + Yse(T1, T2, T3, T4, T5),
where g (resp. e) is the weighted homogeneous part of weight d (resp.
e) and psq (resp. ¥s.) is the part of weight greater than d (resp. e). Set
ci=mi+ma+mg+myt+ms—1—d—e. Letg: (Z D F)— (X 2 o0) be the
weighted blow-up with weights wt(x1, z2, 3, 4, 5) = (M1, M2, M3, Mg, M5),
F its exceptional divisor. Let Z denote the birational transform on Z of X
and g: Z — X the induced morphism. If we have four conditions:
(i) FNZ defines an irreducible and reduced 2-cycle F,
(ii) Z is smooth at the generic point of F,
(iii) dim(SingZ N Z) <1, and
(iv) ¢ =a,
then we have f ~ g over X.

Now we study 3-dimensional divisorial contractions to ¢DV points. We

let
f:(YDE)—> (X>P)

be a germ of a 3-dimensional divisorial contraction whose exceptional divisor
E contracts to a singular point P of index 1, and a denote its discrepancy.
Let Iy := {Q, of type(1/rg)(1,—1,bg)} denote the basket of fictitious sin-
gularities on Y, and let eg for ) € Ip be the smallest positive integer such
that £ ~ egKy at Q. By replacing by with rg — bg if necessary, we may
assume that vg = egbg < 7 /2, where ~ denotes the residue modulo rQ.
We set I :={Q € I | vg # 0} and J := {(rQ,vq)}ger- We can compute J
for each case in Table 1, and we give its results in Table 2.

TABLE 2
type J type J
el | (r2) eb | (7,3)

e2 | (r,1), (r,1) | €9 |(5,2),(3,1)
e3 |(2,1), (4,1)

We shall prove the main results as follows:
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Stepl. For an integer j, we compute the dimension of the vector space
Vj =[Oy (—jE)/f:Oy (= + DE).
This space is regarded as the space of functions on X vanishing with mul-
tiplicity j along E. For a function h on X, we let multg A denote the

multiplicity of h along E.
Step2. We find basis of V; starting with an arbitrary identification

(1) PeX~oc(p=0)cCl

123,47

and we compute the favorite weights wt(z1, 2, z3, z4).
Step3. In order to apply Lemma 4.1 or Lemma 4.2, we follow these
procedures:

(i) Determine wt(xy, z2,x3,x4), and rewrite .

(ii) Let f': Z — X be the weighted blow-up with wt z; = mult ;. Find
the condition that the exceptional locus of f’ is irreducible and
reduced.

(iii) Verify the assumption of Lemma 4.1, and find the condition that
every singular point in Z is terminal.

Step4. Then we can apply Lemma 4.1 or Lemma 4.2, and show that f
coincide with f’.

We note that dim V; and basis of V; are dependent only of the type of f
but not of the type of P. So we shall show the main theorems according to
the type of f.

We compute dim V; by using the singular Riemann-Roch formula. For
each j, there is a natural exact sequence

0= Oy(—(j+1)E) - Oy(—jE) —» Op(—jE|g) — 0.
So we have a long exact sequence
0= Oy (—(j + VE) = f.Oy(—jE) = [,Op(—jE|p)
— R'f.Oy(—(j + 1)E) = R f.Oy(—jE) = R' f.Op(—jE|g)
...

Since P is terminal, we have R’ f,Oy (—(j+1)E) = 0 and Rif*Oy(—jE) =0
for any i > 1, j by Kawamata-Viehweg theorem and R'f.Op(—jE|g) =
H'(E,Op(—jE|g)) for any i, j. Then

dime V; = dime £.0p(—jE|g)
= dim¢ H(B, Op(—jE|g)) = X(Op(—jE|p))
= X(Oy(=jE)) = x(Oy(=(j + 1)E)).
Applying the singular Riemann-Roch formula, we have

(+) dimij%(Gj(j-i-a—i-1)+(a+1)(a+2))E3

1
+ EE . CQ(Y) + A]‘ - Aj+1-
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Here the contribution term A; is given by A; := > 5 ; Ag(—jeq), where

3 =1 A Tho(ro — 1bg)
Ag(k) = —k—=2 AL
() o(k) 12rg +; 2rg

For 7 < 0, we have V; = 0. Now we compute dim Vj explicitly and show that
f is a weighted blow-up in each case. Since we shall use similar procedures
in each case, we start with easy cases and proceed to complicated cases.

4.1. Case €9 with discrepancy 2. In this subsection, we suppose that
f: (Y DE)— (X > P) is of type €9, and its discrepancy a is 2. In this
case Y has two non-Gorenstein singular points. One point @) is of type

1(1,2,2) and another point @ is of type £(1,4,4). Set N; := {(l1,l2,13,14) €
Zio | T+ 5l +3ls3+2ly =73, 11 < 1}

Lemma 4.3. dimV; = #N;.

Proof. By Table 1 and Table 2, we see that (rq,,b9,,vq,) = (3,2,1),
(1095 b05,v0,) = (5,4,2) and E3 = 1/15. We also have eg, = 2, eg, = 3.
So

1 1
dimVj = 30 (]+3)+ﬁ+ E ca(Y)

j+1-1

j—1 57 57
(j_]+1 Z Z 2l(36—2l)
=1

371 2(j+1) -

—(Z’—W’)%Jr Z Z 41(5154”'

Here ~ denotes the residue modulo 3 and =/ the residue modulo 5. Since
dim Vy = 1, we have

1 1 17
Now we consider
2_
dimV; —dim V; 5 =2(j = 1) = 5 -2/ +1+7+2)
j—1  JHI-1 j42-1\ &5 =
1(3—2I
+ -2 - ( 5 )
=1 =1 =1
for any j > 5. We have
j/3 if k=0 (mod 3)

dimV; —dimVj_5 =< (j—1)/3 ifk=1 (mod 3)
(j—2)/3 ifk=2 (mod 3).
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On the other hand, we have a decomposition

N; = {(11,0,13,14) € N;} U{l'+(0,1,0,0) | '€ N;_5}.

Hence for any j > 5,

#N;j — #N;j_5 = #{(11,0,13,14) € N;}.

So we have

j/3 if k=0 (mod 3)
#Nj —#Nj5=4(—1)/3 ifk=1 (mod 3)
(j—2)/3 ifk=2 (mod 3).

Therefore we have dimV; — dim V;_5 = #N; — #N,_5 for any j > 5. We
can compute dim V; = #N; for j < 4. Then we have dim V; = #N; for any

VE

O

Lemma 4.4.

(i)

(i)

(iii)

(iv)

(v)
(vi)

There exists some 1 < k, | < 4 with multg x = 2 and multg x; = 3.
By permutation, we may assume that xi = x4, r; = x3. Moreover
multgxi >4 for k=1, 2.

If j < 5, the monomials méfxif for (0,0,03,l4) € N; form a ba-
sis of Vj. In particular, for k =1, 2, multg Z > 5 for T, := x1, +
> ck1314:pl33xif with some cyq1, € C and summation over (0,0,13,14) €
Uj<sNj.

There exists some k =1, 2 with multg T = 5 such that the mono-
mials Ty and :Eé?’mff for (0,0,l3,l4) € N5 form a basis of V5. By
permutation, we may assume that Ty = To.

The monomials Elfmé?’xff for (0,12,13,14) € Ng form a basis of Vg,
and we have mult &, > 7 for 1 : =21+ 012l354fl22$é3xi4 with some
Clyisly, € C and summation over (0,12,13,14) € Ng.

We have multg 21 = 7, and for j < 14, the monomials :%lfa_clfx?aci‘*
for (l1,12,13,14) € Nj form a basis of V.

Set Nj = {(l1,l9,13,10) € Z4,|7l + 5lg + 3l3 + 2ly = j}. The
monomials ﬁ:llla?l;m?xif for (l1,12,13,14) € N14 have one non-trivial
relation, say ¥, in Vig. The natural exact sequence

0-Cy—~ P Cafaiafal - Vi -0
(l1712’l37l4)€N14
15 exact.

Proof. We have dimV; = 0, dimVs = dimV3 = 1 by Lemma 4.3. This
implies (i). By permutation, we may assume that multg z4 = 2, multg x3 =
3. To prove (ii), we shall show that the monomials 5z’ for (0,0,13,14) € N;
are linearly independent in V; for any j. Suppose

I3, .0
0= Z crsas €V, (cg, € C).
(0,0,l3,l4)EN;
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We shall show that c;,;, = 0 for any (0,0,13,l4) € N;. We set j = 6k + «,
where 0 < k € Z and 0 < a < 5. We study the case j = 6k for 0 < k € Z.
So we can write

k
I3 1 21, 3(k=1)
E Clgly T34 = E QLT3 T
(0,0,[3,[4)€N]’ =0

for ¢; € C. Since C is an algebraically closed field, we factorize
k k

sttt = ) (it

=0 =1
for cg, di, dy € C. Hence we have ¢; = 0 for all 0 <[ < k by induction on
k. We can show that ¢,;, = 0 for any other case similarly. We set W (j) :=
<az§xﬁf‘(0, 0,13,14) € Nj> C V; for each j. Then dim W (j) = #N; for j < 5,
and thus we obtain (ii) by Lemma 4.3. Since dim V5 = dim W (5) + 1 by
Lemma 4.3, we obtain (iii). By permutation, we may assume that zo forms
a basis of Vs/W (5) ~ C. Since the monomials z5z% for (0,0,13,14) € N; are
linearly independent in Vj for any j, and dim V7 = W(7) +2 by Lemma 4.3,
we obtain (iv) and multg Z; = 7. For any j < 14, we have dim V; = #N; by
Lemma 4.3. This implies (v). Since dim Vi4 = #N14 = #N14 — 1, we have a
non trivial relation, say ¢ in Vi4, and we obtain the natural exact sequence
in (vi). O

Corollary 4.5. We distribute weights wt(Z1, Ta, x3,24) = (7,5,3,2) to the
coordinates T1,To2,r3,x4 obtained in Lemma 4.4. Then ¢ is of form

@ = + p>14(21, T2, 3, T4)

with ¢ € C and a function =14 of weighted order > 14, where ¢ in (1) is
the one in Lemma 4.4(vi).

Proof. Decompose ¢ = ¢<14 + p>14 into the part p<14 of weighted order <
14 and ¢~14 of weighted order > 14. Then multg <14 = multg =14 > 14,
S0 <14 is mapped to zero by the natural homomorphism

D Ciftzpalalt — Ox/f.O0y(~15E),
(h,l2,3,14)EU; <14 Nj

whose kernel is C¢) by Lemma 4.4(v), (vi). O

Proof of Theorem 2.10. The cE7g point P € X has an identification such
that

¢ = o3 + a3 + wag(w3,24) + h(w3,74) = 0,

where g € m® and h € m*. If P is of type cE; (resp. cEg), then g3 # 0
(resp. g3 =0, hs # 0).
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(i) We shall show that we distribute weight wt(z1, 22, z3,24) = (7,5, 3,2),
and that ¢ can write

¢ = 1 + 25 + \rda] + 22g(w3, 14) + h(xs, 24),

with A € C, g € m?, and h € m*.
By Corollary 4.5, we have wt¢ = 14. So we can show that we distrib-
ute weight wt(xy,x9,x3,24) = (7,5,3,2) easily. We obtain a quartuple
(Z1,Z2,x3,24) by &1 = x1+cTo+p(x3,24), To = T2+ q(x3,24), Where ¢ € C,
p, and ¢ as in Lemma 4.4, that is, p (resp. ¢) contains only monomials with
weight < 6 (resp. < 4).

Then we rewrite ¢ as

o= (21— cta—p)* + (T2 —@)* + (@2 — q)g + h
= 32 — 2piy — 2¢i1 Ty + T + (2 — 3¢) T3

+ (2ep + 34> + 9)T2 + (p2 - qg+h).

Since wt ¢ = 14, we can show that ¢ = p = 0, wtq = 4, wt(3¢*> + g) > 9,
and wt(—q> — gg + h) > 14. We also have ¢ = Az with A € C. Moreover if
P is of type cE7 (resp. cEg), then we have 23 € g (resp. x3 or x3xy € h).
Replacing 3¢? + ¢ with g and —¢> — qg + h with h, and replacing variables,
we have the desired expression in (i).

(ii) Let f: Z — X be the weighted blow-up with wtz; = multg x;. If P
is of type cE7, it is obvious that the exceptional locus F of f’ is irreducible
and reduced. If P is of type cEs, we need the condition that w3z € g or
a:Z € hif A=0 and $§x4 ¢ h, which is equivalent that F' is irreducible and
reduced.

(iii) We shall show that ¢ has the condition z] € h if and only if every
singular point in Z is terminal.

The z4-chart Uy of the weighted blow-up f’ can be expressed as

2 13,/ 2
o 2Bl + A

1
U, = 1 1 /7 1717171 .
4 + a5 (b, 2f) + —rph(ahad, o) = 0 o )
4 4

If the origin o is contained in Uy, then this point is not terminal since this
equation has only even degree terms. So we need the condition o ¢ Uy,
which is equivalent to the condition JJZ € h. Hence Z is covered by Uy, Us,
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and Us. We study Us and Us.

1
12 / /2 13 .1 21
1oy + Axy + ,99(952 T3, T Ty)

1
U, = 2 /54.3.1,4),
+ $/14h($/23$§a$/22$21) 0
2

1
13 1 12 .12 13 02, ./
xl + afal + M52l + o, ,gg(:c3 , T Ty)

Us = 1 8 /%(1727272)

+ —h(2f, 2F2l) = 0
T3

The origin of Uy is of type L(1,4,4) and the origin of Us is of type 5 1(1,2,2).

We shall check that Us has only isolated singularities. Every Slngular point

in Us lies only on the hyperplane (z§ = 0) since F' is contracted to P by f’.

So it is enough to study terms of degree < 1 with respect to zf.

terms of degree 0: 2 4 2hgwi—o (1, 2}) + hwi=14(1, }).

terms of degree 1: 25 + 2hgwi=10(1, 25) + hwi=15(1, ).

Therefore we can check that Us has only isolated singularities. Similarly we
can check that U; and Us have only isolated singularities. Thus the proof
of (iii) is finished.

Therefore we can apply Lemma 4.1, and f should coincide with f’. The
proof of Theorem 2.10 is completed. (|

4.2. Case €2 with discrepancy 2. In this subsection, we suppose that
f: (Y DE)— (X > P) is of type €2, and its discrepancy a is 2. In this
case, Y has one non-Gorenstein singular point. This point deforms to two
points @1 and @2 which are of type %(1, —1,2). Set N; := {(l1,l2,13,l4) €
Zio | 7ly + 7o + 2l3 + 1y = j, l1lo = 0}.

Lemma 4.6. dimV; = #N;.

Proof. By Table 1 and Table 2, we see that (rq,,bq,,vq,) = (r,2,1) for
i=1,2and E* =1/r. We also have eg, = (r +1)/2. So

1 1 1
dimV; = o JjG+3)+ - +12E ca(Y)

r—1 . r—1\r2—1 Ay 21(r — 2I)
_<]T_(‘7+1) 2 ) 12r (Z Z )T

Here " denotes the residue modulo r. Since dim Vj = 1, we have

r—1

1 r—1 r2—1 3= 2i(r—2I)
- E-cy(Y)=1- : =4
+12 e2(Y) 5 T12r IZ; o
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Now we can compute

1 TS )
for any j > 2. We can show dim V; —dim V;_s = #N; — #N;_» as Lemma
4.3. O

Lemma 4.7.

(i) There exists some 1 < k, | < 4 withmultg zx = 1 and multg x; = 2.
By permutation, we may assume that xi = x4, r; = x3. Moreover
multgx, > 3 for k=1, 2.

(ii) If 5 < r, the monomials x:lfa:if for (0,0,03,14) € N; form a ba-
sis of Vj. In particular, for k =1, 2, multgp Z), > r for Ty = x, +
> cklghxé"’xﬁf with some cyq1, € C and summation over (0,0,13,14) €
UJ<7-N]

(ili) We have multg T = r for k =1, 2, and if j < 2r, the monomials
:Z‘lfilfxégxif for (li,12,13,14) € Nj form a basis of V.

(iV) Set Nj = {(ll,lg,l3,l4) € Zé() ‘ rly + rlyg + 2l3 + 1y = j} The
monomials a’rllla’?lgz’xg?’xif for (l1,12,13,14) € N, have one non-trivial
relation, say 1, in Va,.. The natural exact sequence

0—+Cy— @ Czl! :Z"lfmé‘"’:vi‘* — Vor =0
(I1,02,l3,l4) €Ny

18 exact.

Proof. We follow the proof of Lemma 4.4, with using the computation of
Lemma 4.6. (i) follows from dimV; = 1 and dim V5 = 2. By permutation,
we may assume that multgp x4 = 1, multg xzs = 2. To prove (ii), we shall
show that the monomials m?:vif for (0,0,13,14) € Nj are linearly independent
in Vj for any j. Suppose 0 = 2(0707137&)6]\%_ 65314£Cé3$i14 e Vj, (cy, € C). We
shall show that ¢y, = 0 for any (0,0,13,l4) € N;. We study the case j = 2k
for 0 < k € Z. So we can write

k
Is 1 1 2(k=1)
E e = E G5
(0,0,13,l4)€NJ’ =0

for ¢; € C. We factorize

k k

S ey = (diws + dpad) (Ol tad )

=0 =1
for c;, di, do € C. Hence we have ¢ = 0 for all 0 < [ < k by induction
on k. We can show that ¢;;, = 0 for the case j is odd similarly. We
set W(j) := <xég:1cﬁf‘(0,0,l3,l4) € Nj> C Vj for each j. Then dimW(j) =
#N; for j < r, and thus we obtain (ii). Since dimV, = dim W (r) + 2, by
permutation, we may assume that Z and #; forms a basis of V,./W (r) ~ C2,
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and we have multg Z; = multg Zo = r. Since the monomials xéf’a:if for
(0,0,13,14) € Nj are linearly independent in V; for any j, and we have
dimV; = dim W (j) + 2#Nj_r = #Nj for any j < 2r. This implies (iii).
Since dim Vo, = # Ny = #Na. — 1, we have a non trivial relation, say 1 in
Vo, and we obtain the natural exact sequence in (iv). O

Corollary 4.8. We distribute weights wt(Z1, o, x3,24) = (r,7,2,1) to the
coordinates T1,To,rs3,x4 obtained in Lemma 4.7. Then ¢ is of form

© = ) + Psor(T1, T2, 23, 24)

with ¢ € C and a function psa, of weighted order > 2r, where ¢ in (1) is
the one in Lemma 4.7(iv). O

Proof of Theorem 2.4. The ¢D point P € X has an identification such that
¢ = a7 + 3wy + Argah + glws, x4) =0,

where g e m®, A € C, and k > 2.

(i) By Corollary 4.8, we have wt ¢ = 2r. So we have wt z1, wtxe = r. We
obtain a quartuple (Z1, T2, 3, 24) by Z1 = 21 +p(23,74), T2 = 22 +q(73,24),
where p, ¢ as in Lemma 4.7. Then we rewrite ¢ as

o= (T1—p)? + (T2 — q)?xs + A\(T2 — q)zk + ¢
= (T1 — p)* + Towa — 2Towaq + )\szﬂﬁg + (¢*wq — /\ql‘]?f +g).

Since wt ¢ = 2r, we can show that p = 0, wt(q?z4 — A\gzh + g) > 2r, and
g contains only monomial with weight » — 2 and r — 1. So by replacing
variables, we can rewrite ¢ as

p= Jﬁ% + 96%364 + 2xowyp(w3, 24) + )\96296]33 + q(x3,24),

with A € C, k > 2, wtq > 2r, and p contains only monomial with weight
r—2andr—1.

e Suppose that wt(z1, z2, x3,24) = (r,7,2,1).
In this case, we have k > r/2, and p is weighted homogeneous of weight r —1
for the weights distributed above. Let f’: Z — X be the weighted blow-up
with wt(x1, e, x3, 4) = (r,7,2,1).

(ii) We have two conditions below if and only if the exceptional locus F
of f’ is irreducible and reduced.
(1) p 7& 0or qwt=2r 7£ 0.
(2) gwt=2r is not square if p = 0.
If 2% € g, then either (1) or (2) holds. (iii) We shall show that ¢ has the

condition z% € ¢ if and only if every singular point in Z is terminal.
The z3-chart Us of the weighted blow-up f’ can be expressed as

1 1
(1'/12 + x?wéxﬁl + 2xhalhp + /\xlgxg%_r + $,2Tq(:vg2, xhal) = 0)/5(17 1,1,1).
3

If the origin o is contained in Us, then this point is not terminal since this
equation has only even degree terms. So we need the condition o ¢ Us,
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which is equivalent to the condition z% € gq. Hence Z is covered by Uy, Us,
and Uy. The origin of Us is of type cA/r. We can check that Z has only
isolated singularities as the proof of Theorem 2.10.

Therefore we can apply Lemma 4.1, and f should coincide with f’.

e Suppose that wt(z1, z2, x3,24) = (1,7, 1,2).
In this case, we have k > r. Let f': Z — X be the weighted blow-up with
wt(z1, 2, x3,24) = (r,7,1,2).

We shall show that » =3, A # 0 and k& = 3. The xs-chart Uy of weighted
blow-up f’ can be expressed as

1
12 12 1 / ! ! 12 1
Ty +xy Ty + 29547,7"_2}7(%5”3, T3 T))

2 JH0.5h 5k ).

1 r
tk—r 1k I 12 1\
+ Ay e + —x,%q(xzzcg),xz ) =0
2

It is impossible that the origin of Us is of type cA/r. So it is necessary that
the origin is of type ¢D/3, and we need r = 3, A # 0 and k = 3. Moreover
we have wtp = 2.

Replacing variables, we can rewrite ¢ as

¢ = a7 + 2574 + 20224p(T3, T4) + T275 + q(T3,74),

where wt g > 6 and p is weighted homogeneous of weight 2.

(ii") The exceptional locus F of f’ is irreducible and reduced if and only
if qwt=¢ is not square.

(iii’) We shall show that ¢ has the condition zj € ¢ if and only if every
singular point in Z is terminal.
The x4-chart Uy of the weighted blow-up f’ can be expressed as

o2+ B+ 20— p(l o) 1
1 , /=(1,1,1,1).
+ méx? + f,ﬁq(xé:zﬁl, x’2) =0 2
Ly
If the origin o is contained in Uy, then this point is not terminal since this
equation has only even degree terms. So we have the condition o ¢ Uy,
which is equivalent to the condition a:f’l € q. Hence Z is covered by Uj, Us,
and Us. The origin of Us is of type ¢D/3. We can check that Z has only
isolated singularities as the proof of Theorem 2.10.

Therefore we can apply Lemma 4.1, and f should coincide with f’. The
proof of Theorem 2.4 is completed. O

Proof of Theorem 2.5. The cEg7 point P € X has an identification such
that

¥ = x% + 37% + zog(xs, x4) + h(xsg,24) = 0,

where g € m® and h € m*. If P is of type cEg (resp. cE7), then hy # 0
(resp. hy =0, g3 # 0).
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(i) We shall show that we distribute weight wt(z1, 22, z3,24) = (3,3,2, 1),
and that ¢ can be written as

¢ =]+ {z2 — p(x3,24)}* + 229(23, 24) + h(x3, 24),

where g € m3, h € m*, and p is weighted homogeneous of weight 2 for the
weights distributed above.
By Table 1, Y has ¢D/3 at which F is not Cartier, so we have r = 3. By
Corollary 4.8, we have wtp =6. So we can distribute weight
wt(z1, 22, 23,24) = (3,3,2,1). We obtain a quartuple (Z1,Z2,x3,x4) by
T1 = x1 + p(xs,x4), To = x2 + q(x3,24), where p and ¢ as in Lemma 4.7.
Then we rewrite ¢ as

¢ = (11— p)* + (T2 — ¢)° + (T2 — Q)g(3, 24) + h(w3,24)

= (21— p)* + (T2 — @)* + Zag + (—qg + h).

Since wt ¢ = 6, we can show that p =0, wtg > 3, wt(—gg + h) > 6, and ¢
is weighted homogeneous of weight 2. Replacing Z1, T2, ¢, and h, we have
the desired expression in (i).

(ii) Let f': Z — X be the weighted blow-up with wtz; = multg z;. We
can show that the exceptional locus F' of f’ is irreducible and reduced in
(ii).

(iii) We shall show that ¢ has the condition =} € g and x3 € p if and only
if every singular point in Z is terminal.

The xo-chart Us of the weighted blow-up f’ can be expressed as
o2 + {a — plab, 2}’ 1
/5(0, 1,1,2).

1 1
+ —ggl(aiah, ahrl) + —sh(aFay, aha)) =0

) )
It is necessary that the origin is of type ¢D/3. So we need z3 € g. Moreover
we show that the exceptional locus F of f’ is irreducible and reduced. The

x3-chart Us of the weighted blow-up f’ can be expressed as

o + {ahay — p(1, )

1
. 1 —(1,1,1,1).
-7 o, ahal) + e h(a a0 | 200D
L3 L3

If the origin o is contained in Us, then this point is not terminal since this
equation has only even degree terms. So we have the condition o ¢ Us,
which is equivalent to the condition x3 € p. We can check that Z has only
isolated singularities as the proof of Theorem 2.10.

Therefore we can apply Lemma 4.1, and f should coincide with f’.

Let o = 9 — p. Then we have

¢ =27 + T3 + Tag(xs, 74) + (p(23,74) (73, 74) + b3, 74)).

If P is of type cE7, then h should contain z3z} since x3 € p and z3 € g.

This is a contradiction to wt h > 6. So P is of type cEg. Therefore the proof
of Theorem 2.5 is completed. U
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4.3. Case eb5 with discrepancy 2. In this subsection, we suppose that
f: (Y DE)— (X > P)isof type eb, and its discrepancy a is 2. In this case,
Y has one non-Gorenstein singular point. This point @ is of type (1 6,6).
Set Nj := {(l1,l2,13,14,15) € Z3 | 5ly + 32 + 213 + 214 + Tl5 = j, ll,lg <1}

Lemma 4.9. dimV; = #Nj;.

Proof. By Table 1 and Table 2, we see that (rg,bg,vg) = (7,3,6) and
E3 =1/7. We also have eg = 4. So

. 1 1
dunV]——4 (j+3)+7+ 12E e (Y)

31 3(j+1)-

(3]—3j+ (Z Z) 7 6l

Here ™ denotes the residue modulo 7. Since dim Vjy = 1, we have

11 3
7 iple®=2

Now we consider
dimV; —dimV,_7 = j — 2

for any j > 7. We can show dim V; —dim V;_7 = #N; — #N;_7 as Lemma
4.3. O

Lemma 4.10.

(i) There exists some 1 < k, | < 4 with multg x;, = multgx; = 2. By
permutation, we may assume that x = x4, T; = x3. Moreover there
exists some k = 1, 2 with multg xp = 3. By permutation, we may
assume that xp = Ts.

(i) If j < 5, the monomials x?aréf’xif for (0,12,13,14,0) € N; form a ba-
sis of Vj. In particular, multg 1 > 5 for Z1 := x1+) c1213l4x122xé3mif
with some cp,1,1, € C and summation over (0,12,13,14,0) € Uj<5N;.

(iii) multg &1 = 5, and the monomials azlfxlfxg xyt for (I1,12,13,14,0) €
N5 form a baszs of Vs.

(IV) SetN' = {(ll,lg,lg,l4,l5) S ZSZO | 51 4+3lo+ 23+ 204+ T7l5 = ]} The
monomials :vlllxl;mé?’xif for (l1,12,13,14,0) € Ng have one non-trivial

relation, say v, in V. The natural exact sequence
0—Cy— @ (C:Ulllxlfw?xﬁf —Ve—=0
(I1,02,13,14,0)€Ng

1s exact.
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(v) We have multg ) = 7. The natural exact sequences
0= Czzyp ® Caap — @ Czllalalaliyl - V% -0,
(I1,12,13,14,l5)ENg
0 — Cxotp — @ Cilf:nlfmé‘?’xifi/)lt‘ —-Vo—0
(I1,l2,13,la,l5)ENg

are exact.

Proof. We follow the proof of Lemma 4.4, with using the computation of
Lemma 4.9. (i) follows from dimV; = 0 and dimV, = 2. Now (ii) to
(iv) follow from the same argument as in Lemma 4.4. Since ¢y = 0 in
Vs = [rOy (—6FE)/f.Oy(—TE), we have multg ¢ = 7. We also obtain the
sequences in (v), which are exact possibly except for the middle. Their
exactness is verified by comparing dimensions. (I

Corollary 4.11. We distribute weights wt(Z1, x2, x3,24) = (5,3,2,2) to the
coordinates T1,r9,x3,x4 obtained in Lemma 4.10. Then ¢ is of form
P = cx2y + P>9(Z1, T2, T3, T4)
with ¢ € C and a function ¢=g of weighted order > 9, where ¥ in (1) is the
one in Lemma 4.10(iv). O
Proof of Theorem 2.9. The cE7 point P € X has an identification such that
¥ = 33% + .fl?% + $29($3,$4) + h(ng, 'T4) = 05

where g € m®, h € m%, and g3 # 0.
(i) We shall show that we distribute weight wt(z1, x2, z3,24) = (5,3, 2,2),
and that ¢ and ¢ can write

= x% + x% + zog(xs3, x4) + h(xs, 24),
Y = 23 + gwi—e(T3, 74),

where wt g > 6 and wt h > 10.

By Corollary 4.11, we have wt ¢ = 9. So we show that we distribute weight
wt(z1, z2,23,24) = (5,3,2,2). We obtain a quartuple (Z1,z2,x3,24) by
Z1 = x1 + cxg + p(xs, z4), where ¢ € C and p as in Lemma 4.10. Then we
rewrite ¢ as

¢ = (T1 — cxa — p)® + 25 + 229 + .

Since wt ¢ = 9, we can show that c = p =0, wtg > 6, and wth > 10. By
Corollary 4.11, we have 1 = 2% + gwi—¢(73,74). Replacing Z; with z1, we
have the desired expression in (i).

By setting x5 := — (9 + gwt>7) and replacing zo — —x3, we rewrite ¢ as

@ = a3 + xows + pa3, 1) = 0
23+ (23, 4) + 25 = 0,
with wt p > 10 and wt g > 6.
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(ii) Let f': Z — X be the weighted blow-up with wt(z1, 22, 3,24, 25) =
(5,3,2,2,7). It is obvious that the exceptional locus F of f’ is irreducible
and reduced.

(iii) We shall show that we have the condition that ged(ps, ¢3) = 1 if and
only if every singular point in Z is terminal.

The z3-chart Us of the weighted blow-up f’ can be expressed as

(x'f T ol + op(a, afal) = °’> /2
-

(A) & ~(1,1,1,0,1).

o+ da(e, ) +ahat =0 ) 2
the origin o is contained in Uj, then this point is not terminal since Us is
not embedded in 4-dimensional quotient space. So we need the condition
o ¢ Us, which is equivalent to the condition a:g € por :zg € q. Moreover
the action on equations (A) is free outside the points (0,0, 0,27, 0), which
satisfy the equations

(B) {pwtzm(l,xﬁl) =0

gwi=6(1,2}) = 0.

Since such points are of type %(1, 1,1,1), there is no solution on (B). Sim-
ilarly we have the condition 2] € p or #3 € ¢, and there is no solution

on

(C) {Pwtm(xg, 1)=0

QWt:G(wga 1) =0.
It is easy to show that these four conditions:

e 2} Eporalcg,

e there is no solution on (B),

° xiGporxiEq,and

e there is no solution on (C),
are equivalent to the condition ged(ps,q3) = 1. We can check that Z has
only isolated singularities by using Jacobian criterion. Thus the proof of
(iii) is finished.

Therefore we can apply Lemma 4.2, and f should coincide with f’. The

proof of Theorem 2.9 is completed. O

4.4. Case el with discrepancy 2. In this subsection, we suppose that
f+ (Y DFE)— (X 3 P)isof type el, and its discrepancy a is 2. In this case,
Y has one non-Gorenstein singular point. This point @ is of type %(1, —1,4).
Set Nj :={(l1, 12,13, ls,15) € Z2 | "l + "5 lo+2l3+1y+rls = j, 11,1 < 1}
and Mj = {(ll,lg,l3,l4) € Zéo ’ i +2lLb+1l3+1ls=17, 1o < 1}.

Lemma 4.12. dimV; = ;
#M; if r=3.
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Proof. By Table 1 and Table 2, we see that (rg,bg,vg) = (r,4,2) and
E3 =2/r. We also have eg = (r +1)/2. So

1 2 1
mV; = =§(j S EeY
dim V rj(‘7+3)+7“+ b ca(Y)

jTgl—l (j_,’_l)r;l_l .

r—1 . r—1.r2—1 Al (r — 4l
~G— e e (X - ; )10,

=1

Here " denotes the residue modulo r. Since dim Vy = 1, we have

r—1

11— _
2 1 r—1 r2—1 = 4l(r —4)
4L E.co(Y)=1- . — -~ =/
“ 5B a) TR TraD Dl

If r > 5, we consider

2(j + )(r —2(j + 1)) — 2j(r — 25)
2r
for any j > 2. We can show dim V; —dim V;_s = #N; — #N;_» as Lemma
4.3. If r = 3, we consider
dimV; —dimV;_3 = 2j

for any j > 3. We can show dim V; —dim V;_3 = #M; — #M;_3 as Lemma
4.3. O

2
dimV; —dimV;_5 = =(2j + 1) +
T

Lemma 4.13. Ifr > 5, then we have the following condition:
(i) There exists some 1 < k, | < 4 with multg z; = 1, multg z; = 2.
By permutation, we may assume that xp = x4, ;] = X3.
(i) If j < %, the monomials J:éf’xﬁf for (0,0,13,14,0) € N; form
a basis of Vj. In particular for k = 1, 2, multpZ;, > ’";21 for
Tp =T+, ckl3l4xé3a:ff with some cyy1, € C and summation over
(0,0,l3,l4,0) € Uj<%1Nj.
(iii) There exists some k = 1, 2 with multg Ty = “5* such that the mono-
mials Ty, and l‘?l‘if for (0,0,13,14) € Nr—1 form a basis of Vi—1. By
2 2

permutation, we may assume that T = To, then mult £; > # for
T1 =11+ 201213l4fl22xé3x£14 with some cp,151, € C and summation
over (0,l2,13,14) € Ny—1.

2

(iv) We havemultg 31 = "5, and if j < r—1, the monomials :i:lllsilfxé?’xi“

for (I1,12,13,14) € Nj form a basis of V.

(V) Set Nj = {(ll,lg,l3,l4,l5) S 2520 | %ll + %lg 4+ 23+ 1y +7ls =
j}. The monomials ilf:i?xé?’xi“ for (l1,12,13,14,0) € N,y have one
non-trivial relation, say ¥, in Vi._1. The natural exact sequence

0-Cy— P Citapafal 5V =0
(I1,l2,l3,14,0)EN, 1

1s exact.
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(vi) multg ¢ = r. The natural exact sequence

0= Cop—» @ Cafafaaliyh -V, 50
(l1,l2,03,14,l5) €N

15 exact.

Proof. We follow the proof of Lemma 4.10, with using the computation of
Lemma 4.12. (i) follows from dimV; = 1 and dim V2 = 2. Now (ii) to (vi)
follow from the same argument as in Lemma 4.10. O

Corollary 4.14. We distribute weights wt(Z1, Ta, x3,T4) = (%, T;21,2, 1)
to the coordinates T1,%T2,x3,24 obtained in Lemma 4.13. Then ¢ is of form

Y= C$4¢ + s0>7“(§317j25 X3, 1:4)

with ¢ € C and a function o=, of weighted order > r, where ¢ in (1) is the
one in Lemma 4.13(v). O

Lemma 4.15. Ifr = 3, then we have the following condition.

(i) There exists some 1 < k, | < 4 with multg xx, = multgx; = 1. By
permutation, we may assume that x = x4, T} = x3. Moreover there
exists some k = 1, 2 with multg x; = 2. By permutation, we may
assume that Ty, = Ts.

(ii) The monomials zl;xéfxif for (0,12,13,14,0) € No form a basis of Vs.
In particular, multg z; > 3 for T1 := z1 + ch2lSl4x122xlg3wif with
some 151, € C and summation over (0,12,13,14,0) € Uj<aNj.

(iii) multg &1 = 3, and the monomials i‘lfxl;x?xff‘ for (l1,12,13,14,0) €
N3 form a basis of V3.

(IV) Set Nj = {(ll,lg,l37l4) € Zio | 3l + 2l + 13+ 1y = ]} The

monomials flllxl;x?xff for (l1,l2,13,14) € N4 have one non-trivial

relation, say v, in V4. The natural exact sequence
0—Cy — @ Czllalalalt vy =0
(I1,l2,13,l4)ENy

18 exact. O

Corollary 4.16. We distribute weights wt(Z1, x2, x3,24) = (4,3,2,1) to the
coordinates T1,ro,xr3,x4 obtained in Lemma 4.15. Then ¢ is of form

o = c + @4(T1, 72,23, 74)

with ¢ € C and a function ¢~y of weighted order > 4, where ¥ in (1) is the
one in Lemma 4.15(iv). O

Proof of Theorem 2.3. The ¢D point P € X has an identification such that
© = 22 + 23wy + Mvoxh + g(3,24) = 0,

where g e m®, A € C, and k > 2.
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We shall show that » > 5. Suppose r = 3. By Corollary 4.16, we have
wt ¢ = 4. So it is possible to distribute weight wt(z1, z2, z3,24) = (3,2,1, 1),
(3,1,1,2), (2,3,1,1), or (2,1,1,3).

We suppose wt(z1, ze, 3, 24) = (3,2,1,1). Then We obtain a quartuple
(Z1,x2,x3,24) by T1 = o1+ cxo + p(x3,24), where ¢ € C and p as in Lemma
4.15. Thus we rewrite ¢ as

0 = (Zy — cxo — p)* + 2324 + )\.%'2(1315 +g.

We replace 77 with z1. Let f': Z — X be the weighted blow-up with
wt(z1, 22, 23, 24) = (3,2,1,1). The xi-chart Uy of the weighted blow-up f’
can be expressed as

1 2

/ / /W /o /o120
(2] —cay — ﬁp(%xs;%%)) + T1Ty Ty
1

1
, /5(1,1,2,2).
+ \aF 2yl lk ﬁg(mﬁx’g, i) =0
1
It is necessary that o € U; is of type %(1, 1,—1), but it is impossible. So
we have a contradiction. Similarly we have a contraction in any other case.
Therefore we have r > 5.
(i) We shall show that we distribute wt(z1,x2, 23, 24) = (”‘51, %,2, 1),
and that ¢ can write

p= x% + )\xlegf + x49 + p(x3,24),
Y = a3 + 271q1 (23, T4) + q2(73, 74),

where A € C, k > %, wtp>r+1, wtgy = %, wtge =7 — 1, and q1, ¢o
are weighted homogeneous for the weights distributed above.

By Corollary 4.14, we have wtyp = 7. So we can distribute weight
wt(z1, T2, T3, 24) = (H;,%,Q,l). We obtain a quartuple (&1, T2, x3,x4)
by &1 = x1 + cTo + p(x3,x4), T2 = x2 + q(v3,24), where ¢ € C, p, and q as
in Lemma 4.13. Then we rewrite ¢ as

p = (&1 — cz — p)® + (T2 — q)°xg + A(@2 — )2k + g.
Since wt o = r, we can show that ¢ = 0, k > %, q=0, wt(p?> +g) > r,
and p is weighted homogeneous of weight % So by replacing variables, we
can rewrite ¢ as

¢ = 2% + 2x1p(x3, 24) + 2374 + Av2zh + g(z3,74),

where A € C, k£ > %, wtg > r, and p is weighted homogeneous of weight
”;21. We can write v as

1 1
Q;Z) = 1:% + 21:17])(5533564) + 7gwt:r(3337$4)-
24 24

Therefore we have the desired expression in (i).
(ii) Set x5 = ¢. Let f': Z — X be the weighted blow-up with wtz; =
mult ;. We have the condition that g2 is not square if g; = 0, which is
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equivalent to the condition that the exceptional locus F' of f’ is irreducible
and reduced. .

(iii) We shall show that ¢ has the condition x5 € p if and only if every
singular point in Z is terminal.

The z3-chart Us of the weighted blow-up f’ can be expressed as

12k — L3
o+ Axhrs

!l 1 12 0 o
T Tys + @P(iﬂg yasey) =0,) 1 r—5

/5 (=% % L1
o+ 220 (1, 2) + g2 (1, 2)) + 2hal =0

the origin o is contained in Uj, then this point is not terminal since Us is

not embedded in 4-dimensional quotient space. So we need the condition
r+1

o ¢ Us, which is equivalent to the condition x4 € p. Hence Z is covered
by Ui, Us, Uy, and Us. The origin of Us is of type %(1, —1,4). We can check
that Z has only isolated singularities as the proof of Theorem 2.9.
Therefore we can apply Lemma 4.2, and f should coincide with f’. The
proof of Theorem 2.3 is completed. O

4.5. Case el with discrepancy 4. In this subsection, we suppose that
f: (Y D E) = (X 3 P)is of type el, and its discrepancy a is 4. In
this case, Y has one non-Gorenstein singular point. This point @ is of type
%(1, —1,8). Set Nj = {(ll,lg,l3,l4,l5) S Zgo | i2111+%12+413+l4+7’l5 =
7, ll,lg < 1}, Mj = {(ll,lg,lg,l4) € Zio ’ 5l1 + 3l + 2I3 + Iy = 7, Iy < 1},

and L; := {(l1,12,13) € Z:;O |3l + 1o+ 13 =7}

Lemma 4.17.
#N; if r > 5,
dimV; = ¢ #M; ifr =5,
#L; ifr=23.

Proof. By Table 1 and Table 2, we see that (rg,bg,vg) = (r,8,2) and
E3 = 1/r. We also have e = (r + 1)/4 (vesp. eg = (3r +1)/4) if r = 3
(mod 8) (resp. r = —3 (mod 8)). So

1 5 1
dimV; =—(j 2L E.oe(Y
im V; 2T](]+5)+2T+12 ca(Y)

g2 art TUberlig g
-G g (X - X )T

Here~denotes the residue modulo . Since dim Vy = 1, we have
“er—1 — _
r2 1 ZeQ 81(r — 8l)

=1



29

If r > 5, we consider

2
dimV; —dimV;_4 = ;(2] +1)

~ (TFeq - =G+ Deg - =G~ Deq + G~ eq) + 3 %1

for any j > 4. We can show dim V; —dim V;_4 = #N; — #N;_4 as Lemma
4.3. If r =5 (resp. r = 3), we consider

dimVj —dim Vj_5 = j (resp. dimV; —dimV;_3 = j + 1)
for any j > 5 (resp. j > 3). We can show dim V; = #M; (resp. dimV; =
#L;) as Lemma 4.3. O

Lemma 4.18. Ifr > 5, then we have the following condition:

(i) There exists some 1 < k, | < 4 with multg z; = 1, multg z; = 4.
By permutation, we may assume that xp = x4, ;] = 3.

(ii) If j < %, the monomials xé?’:vif for (0,0,13,14,0) € Nj form
a basis of Vj. In particular for k = 1, 2, multp 2 > %1 for
Tpi=xp+ Y. ck1314xé3xff with some cy1, € C and summation over
(0,0,13,14,0) € Uj<%1Nj-

(ili) There exists some k = 1, 2 with multp Tj, = 5> such that the mono-
mials Ty, and xéf’xif for (0,0,13,14) € N% form a basis of V%l. By
permutation, we may assume that T = To, then mult £; > 7”5—1 for
T1 =21+ 2012131457122:6%33724 with some ¢4, € C and summation
over (0, lo,ls, l4) S N%

(iv) We havemultg 21 = =5, and if j < r—1, the monomials Fhalals b
for (l1,12,13,14) € N;j form a basis of V.

(V) Set Nj = {(ll,lg,lg,l4,l5) € Z5>0 ’ %ll + %lg +4ls+ 1y +7rls =
j}. The monomials :Ellla’;lfxé?’xif for (l1,12,13,14,0) € Ny_1 have one
non-trivial relation, say ¥, in Vi._1. The natural exact sequence

0—Cy — @ Cibzlabalt = Vioy =0
(I1,l2,13,14,0)ENy 1
18 exact.
(vi) We have multg ¢ =r. The natural exact sequence
0 — Caqtp — & Cilralalaliyl -V, -0
(I1,l2,l3,la,l5) ENy.

15 exact. O

Corollary 4.19. We distribute weights wt(Z1, To, x3,x4) = (%, %,4, 1)
to the coordinates T1,%a,x3,x4 obtained in Lemma 4.18. Then ¢ is of form

SO - C'CC41/} + ¢>T(i.17 jQu x37 'CC4)
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with ¢ € C and a function ¢, of weighted order > r, where ¥ in (1) is the
one in Lemma 4.18(v). O

Lemma 4.20. Ifr =5, then we have the following condition.

(i)

(i)

(iii)
(iv)

There exists some 1 < k, | < 4 with multg x; = 1 and multg x; = 2.
By permutation, we may assume that rp = x4, x; = x3. the mono-
maals az?asz for (0,0,13,14) € My form a basis of Va. In particular,
fork =1, 2, multg Ty > 3 for T ==z + > cklsl4xé?’xi4 with some
ksl € C and summation over (0,0,13,14) € Uj<3M;.

There exists some k =1, 2 with multg T = 3 such that the mono-
mials :ifx?acif for (0,12,13,14) € M; form a basis of V; if j < 5.
By permutation, we assume that T = XTo. Then multz; > 5 for
T1 =21+ 2012131451221'%3.%'24 with some ¢4, € C and summation
over (0, la,l3,14) € Uj<5M;.

multg £1 = 5, and the monomials ;%1115312%%33324 for (l1,12,13,14) € Ms
Jorm a basis of V.

Set Mj = {(ll,lz,lg,l4) S Zio ’ 51 + 3ls + 2I3 + 14 = ]} The

monomials #7222 for (11, 12,13,14) € Mg have one non-trivial

relation, say v, in Vg. The natural exact sequence
0—Cy — @ Cibzhalpalt — Vs — 0.
(11,2,l3,l4) € Mg

15 exact. O

Corollary 4.21. We distribute weights wt(&1, T2, x3,24) = (5,3,2,1) to the
coordinates I1,To,x3,x4 obtained in Lemma 4.20. Then ¢ is of form

Y = Cw + Q0>6(§71,.i'2,$3,$4)

with ¢ € C and a function p~¢ of weighted order > 6, where ¢ in (1) is the
one in Lemma 4.20(iv). O

If r = 3, we have the following condition.

(i)

(i)

There exists some 1 < k, | < 4 with multg z; = multg z; = 1. By
permutation, we may assume that x = x3, ; = x3. the monomials
1‘1221'? for (0,13,13) € Lo form a basis of V5. In particular, for & = 1,
4, multg T > 3 for Ty := zp + chlzlgxl;xé? with some cgy, € C
and summation over (0,l2,13) € Uj<3L;.

There exists some k = 1, 4 with multg Z; = 3 such that the mono-
mials 5:213;122:1:@3 for (I1,12,13) € L;j form a basis of V; for any j. By
permutation, we assume that Zp = Z.

IS B S

So we have @(ll,ZQ,l:;)GLJ‘ Czl'zgxy ~ Vj for any j. This means that ¢ €

C{z1,2z2,z3}. This is a contradiction that P is ¢DV. Therefore we have

r > 5.
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Proof of Theorem 2.1. The cAs point P € X has an identification such that
(2) © = a2 + a3 + x5 + g(x3,x4) = 0 or
(3) p = 2129 + 25 + g(w3,24) = 0,

where g € m? and deg g(x3,1) < 2. We shall show that there is no suitable
weight wt(x1, z2, x3,x4) in each cases.

Case (2). If r = 5, we can show that wt(x1,ze,23,24) = (5,3,2,1) by
Corollary 4.21. We obtain a quartuple (Z1,Z2,x3,24) by &1 = x1 + cZTo +
p(xs3,x4), To = 29+ q(x3,24), where ¢ € C, p and ¢ as in Lemma 4.20. Then
we rewrite ¢ as

= (&1 —co2 = p)* + (22— q)* + 2§ + gla3, 24).
By replacing variables, we rewrite ¢ as
© = 22 + 2cx1x0 + (2 + 1)23
+ 2z1p(w3, 14) + 2cw2p(w3, T4) + 75 + q(T3, 24),

where ¢ € C, wt ¢ > 6, and p contains only monomials with weight 3 and 4.
Let f': Z — X be the weighted blow-up with wt z; = multg z;. Then the
x1-chart Uy of the weighted blow-up f’ can be expressed as
o+ 2eafaly + (¢ + 1)af + 2y plafal, o)
o /1(17_3737_1)
0 5

/
T 1
2 12 1 ! ! 13 12 1 !
+ QCEP(% T3, T17y) + T3 + ﬁQ(xl T3, T)Ty) =
1 1

The origin is a non-hidden singularity which is not of type %(1, -1,3). It is
a contradiction by Table 1.

If r > 5, there is no suitable weight wt(xz1, z2, 3, 24) by Corollary 4.19.

Case (3). If r = 5, we can distribute weights wt(x1, x2, 23, 24) = (5,2, 3,1),
(5,3,2,1). Let f': Z — X be the weighted blow-up with wtx; = multg x;.
As the proof of case (2), The origin of the z1-chart U; of the weighted blow-
up f’ is not a non-hidden singularity which is not of type %(1, -1,3). Tt is
a contradiction.

If r > 5, by Lemma 4.18, we show that r = 11 and wt(x1, 2, x3,24) =
(6,5,4,1). However since wt(xijxe) = 11, it is impossible that ¢ forms as
Corollary 4.19.

Therefore there is no divisorial contraction of type el which contracts to
a cAs point with discrepancy 4. The proof of Theorem 2.1 is completed. [J

Proof of Theorem 2.2. The ¢D point P € X has an identification such that
¢ = 23 + xdxy + Avoxh + g(w3,24) = 0,

where g e m?, A € C, and k > 2.
We can show that r # 5 as the proof of Theorem 2.3.
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(i) As the proof of Theorem 2.3, we can show that wt(x1,xe,x3,14) =
(7«4571, ";21,4, 1), and that ¢ can write

@ = 27 + Avoa + 24t + p(xs, 24),
¥ = 23+ 20101 (23, 74) + q2(23, 74),

where A € C, k > ”3, wtp>r+1, wtq = %, wtge =7 — 1, and ¢1, ¢o
are weighted homogeneous for the weights distributed above.

(ii) Set x5 = — and replace x4 with —x4. Let f': Z — X be the weighted
blow-up with wt x; = mult z;. We have the condition that g2 is not square
if ¢3 = 0, which is equivalent to the condition that the exceptional locus F
of f’ is irreducible and reduced.

(iii) We shall show that the condition below if and only if every singular

point in Z is terminal:
r4+1
e ;' cpifr=3 (mod 8),
r—1

o z3* € qoif r=-3 (mod 8).
The x3-chart Us of the weighted blow-up f’ can be expressed as

r43

2 ,, JAk—=

x] +)\x2x3 * 4 zhxp+ ,T+1p(x3,x3x4 / (T=r
4\ 27

95r.1,3,4-r).
o5 + 221 q1(1, 7)) + g2 (1, 554) + x5 =0

If o € Us, the origin is not terminal since Us is not embedded in 4-dimensional

quotient space. So we have the condition o ¢ Us, which is equivalent to the
r+1 r—1

condition x3* € p (resp. x5! € ¢o) if r = 3 (mod 8) (resp. 7 = 5
(mod 8)). Hence Z is covered by Uy, Us, Uy, and Us. The origin of Us is of
type %(1, —1,8). We can check that Z has only isolated singularities as the
proof of Theorem 2.9.

Therefore we can apply Lemma 4.2, and f should coincide with f’. The
proof of Theorem 2.2 is completed. O

4.6. Case e3 with discrepancy 3. In this subsection, we suppose that
f: (Y DE)— (X > P)isof type €3, and its discrepancy a is 3. In this case,
Y has one non-Gorenstein singular point. This point deforms to two points
Q1 of type 3(1,1,1) and Q2 of type 1(1,3,3). Set N; := {(l1,la,13,14) €
Z4, | 4l + 3y + 2l3 + Iy = j, lil3 = 0}.

Lemma 4.22. dimV; = #Nj.
Proof. By Table 1 and Table 2, we can see that (rg,,bg,,vq,) = (2,1,1),
(7035 b0s,v0,) = (4,3,1), and E3 = 1/4. We also have eg, = 1, eg, = 3. So

1 5 1
imV; ==j(j +4)+ — + —FE - co(Y
dim V; 8](]+ )+12+12 ca(Y)

=/
]_

1
(J—J+1)§—(J—]+1 (Z Z) - 3”.
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Here ~ denotes the residue modulo 2 and =’ the residue modulo 4. Since
dim Vy = 1, we have

5 1 9

—+ —F (YY) = —.

Tl e =1
Now we consider

3 1
dimV; — dimVj_5 =2 (2j +1) = (G- T+1)

5 =/ e - ﬁl(zl - Q,)
— G -2 +1 2 SRS
T R R RS R B
for any j > 3. We can show dimV; —dim V;_3 = #N; — #N;_3 as Lemma
4.3. O

Lemma 4.23.

(i) There exists some 1 < k, | < 4 with multp z; = 1 and multg z; = 2.
By permutation, we may assume that tp = x4, x; = T3. the mono-
mials a:éf’xff for (0,0,13,14) € Ny form a basis of Va. In particular,
for k=1, 2, multg Ty > 3 for Ty == xp + ) Ck13l4$é31?i4 with some
ckisl, € C and summation over (0,0,13,14) € Uj<aN;.

(ii) There exists some k =1, 2 with multg T, = 3 such that the mono-
mials Ty, and x?asz for (0,0,13,14) € N3 form a basis of V3. By per-
mutation, Ty = To. Thenmult &y > 4 for &y := 21+ 0121314i‘12233?3324
with some cpyi41, € C and summation over (0,l2,13,14) € Ny.

(iii) We have multg &1 = 4. If j < 6, the monomials a?lllil;x?xff for
(I1,12,13,14) € N;j form a basis of V.

(iv) Set Nj = {(l1,l2,13,1a) € ZLy | 4l + 3lo + 2l3 + Iy = j}. The
monomials illlil;x?xff for (l1,12,13,14) € Ng have one non-trivial
relation, say v, in Vg. The natural exact sequence

0—Cy — @ Cilalalalt 5 V5 =0
(I1,l2,l3,l4)ENG
18 exact. O

Corollary 4.24. We distribute weights wt(&1, T2, x3,24) = (4,3,2,1) to the
coordinates I1,To,x3,x4 obtained in Lemma 4.23. Then ¢ is of form

Y = Cw + ‘P>6(-@17~9§271‘371p4)

with ¢ € C and a function p=¢ of weighted order > 6, where v in (1) is the
one in Lemma 4.23(iv). O

Proof of Theorem 2.6. The cAs point P € X has an identification such that
p =i + a3 + 25+ g(v3,74) =0,

where g € m? and deg g(z3,1) < 2.
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(i) We shall show that we distribute weight wt(z1, 22, z3,24) = (4,3,2,1),
and that ¢ can write

o= x% + x% + 2cr1x9 + 221p(23, T4)
+ 2cxopwi—3(r3, x4) + 96‘% + g(x3,24) =0,

where ¢ # +1, 2 < wtp < 3, wtg > 6, and degg(xs3,1) < 2.
By Corollary 4.24, we can distribute weight wt(x1, e, 3, z4) = (4,3,2,1).
We obtain a quartuple (21, %2, x3,24) by &1 = z1 + cTa + p(x3,24), To =
x9 + q(x3,x4), where ¢ € C, p, and ¢ as in Lemma 4.23. Then we rewrite ¢
as

p= (&1 —cx2 —p)* + (T2 —q)* + 25 +g.
Since wt ¢ = 6, we have cpywi<2 = —¢, and p contains only monomials with
weight 2 and 3. Moreover since P € X is of type cAs, we have ¢ + 1 # 0.
So by replacing variables, we have the desired expression in (i).

(ii) Let f': Z — X be the weighted blow-up with wtx; = multg z;. We
have the condition that g is not square if pyt—o = 0, which is equivalent to
the condition that the exceptional locus F' of f’ is irreducible and reduced.

(iii) We shall show that ¢ needs the condition x3 € p, and that every
singular point in Z is terminal.

The z1-chart U; of the weighted blow-up f’ can be expressed as

1
12 12 ! 12 1 )
Ty +ay + 2exyah + 25 p(at @y, 27y
X

1 . /3(1,1,2,3).
+ 2eahpuics(ah, a%) + o + g(afah atal) = 0
1

It is necessary that the origin is of type cAz/4. So we have the condition
x7 € p. We can check that Z has only isolated singularities as the proof of
Theorem 2.10.

Therefore we can apply Lemma 4.1, and f should coincide with f’. The
proof of Theorem 2.6 is completed. ([

Proof of Theorem 2.7. The ¢D point P € X has an identification such that
¢ = o} + 1324 + Avoxh + (23, 74) = 0,

where g € m3, A € C, and k > 2. Since wt ¢ = 6, we can distribute weight
wt(@1, 20, 23, 24) = (4,3,2,1), (4,3,1,2), (4,2,1,3), (3,4,2,1), (3,4,1,2),
(3,2,1,4), or (3,1,2,4).

e At first, we suppose wt(z1,x2,z3,z4) = (3,4,2,1).

(i) We shall show that ¢ can write

Y= l‘% + x%x4+2x2x4p(x3, x4) + 0233%$4 + )\xga:§
+ c(2z12224 + 221 24p(23, T4) + )\xlxlg) +g(z3,24) =0,

where ¢, A € C, k > 2, wt g > 6, and p contains only monomials with weight
<3.
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We obtain quartuple (Z1,Z2,x3,24) by &1 = x1 + p(x3,24), T2 = 2 +
cZ1 + q(z3, z4), where ¢ € C, p and ¢ as in Lemma 4.23. Then we rewrite ¢
as

¢ = (T1 — q)> + (T2 — T1 — p)2xs + N2 — cZ1 — p)xh + g(x3, 24).

Since wt ¢ = 6, we can assume ¢ = 0. Moreover we have wt(p?zy — )\pxlg +
g) > 6 and p contains only monomials with weight < 3. So replacing vari-
ables, we have the desired expression in (i).

(ii) Let f': Z — X be the weighted blow-up with wtx; = multg z;. We
have the condition that g is not square if pyt—1 = 0, which is equivalent to
the condition that the exceptional locus F of f’ is irreducible and reduced.
If x4 € p, then F' is irreducible and reduced.

(iii) We shall show that ¢ has the conditions ¢ = 0, 24 € p, and x% €y
if and only if every singular point in Z is terminal and Z has a non-hidden
terminal of type cAx/4.

The zo-chart Us of the weighted blow-up f’ can be expressed as

/
13,1 Ly 12 1 2, 02 1,1
o2+ aBa) + 2x—,p(x2 xy, wHxy) + aahr)

2

1
—|—c<2m1x xy + 22 2l ,2p(;1:2 Zus, whay) + i a3 ) /4 (1,1,2,3).
+ \x ’% 2z zl k4 l6g($’22xg,x2$4) =0

The origin of Uj is of type cAxz/4. So we have the conditions z4 € p and

= 0. Moreover since the equation is free outside the origin, we have
gwt=6(z3,0) # 0, which is equivalent to the condition x% € g. Thus ¢ can
be written as

¢ = 2% + 231y + 20m4p(x3, 74) + Axaxh + g(3, 24),

and P is of type ¢Dy. We can check that Z has only isolated singularities
as the proof of Theorem 2.10.

Therefore we can apply Lemma 4.1, and f should coincide with f if
P e X is cDy.

e Next, we shall show that there is no weighted blow-up of type e3 which
contracts to a ¢D point with wtx, = 4.

We select wt(x1,x2,x3,24) = (4,3,2,1). We obtain quartuple
(%1, T2, 23, 74) by 21 = 21+ T2 +p(r3,24), T2 = T2 +q(23,24), Where c € C,
p and g as in Lemma 4.23. Then we rewrite ¢ as

¢ = (21— cy—p)* + (T2 — ¢)°ms + N(T2 — Q)ﬂflg + g(x3, 24).

We replace &1 — x1 and Ty — x9. Let f': Z — X be the weighted blow-up
with wt z; = multg x;. Then the x;-chart Uy of the weighted blow-up f’ can
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be expressed as

1 2
r 2
(5’31 cTy /3p(x1 x3,x1$4))
L1
/ 1 12 /1 ! ! 2 ! !
+ 902—@@(1'1 T3, T17y) ) 11T 1
11 /Z(l) 1,2a3)'
+A(ah = —ga(aRa, atay) a2l
1

L,
2./ /]
+ ﬁg(ml zy, 17)) =0
1

It is necessary that the origin is of type cAx/4. So we have 2% € p, and
moreover ¢ = 0. Now the wo-chart Us of the weighted blow-up f’ can be
expressed as

’ o 1 2,0 0 2
(901952 - Ep(xz Z3; 952904))
2
1 12 1 /) 2 /)
+ (1 - EQ(% T3, x2x4)) Loy 1
2 /§(2,1,1,2).
FA(1 - patafah, b o
2

1 /
2./ W
+ ﬁg(‘% Ty, 9xy) =0
2

The origin is a non-hidden singularity. It is a contradiction by Table 1.
Similarly We have a contradiction in any other case. Therefore there is no
weighted blow-up of type e2 which contracts to a ¢D point with wtx; = 4.

e Finally, we shall show that there is no weighted blow-up of type e3
which contracts to a ¢D,, point with wtx; = 3 for any n > 5.

We can show that P is of type ¢Dy with the weight wt(z1, z2, z3,24) =
(3,4,1,2) as the proof with the weight wt(z1,z2,23,24) = (3,4,2,1). We
select wt(x1,x9,x3,24) = (3,2,1,4), or (3,1,2,4). We obtain quartuple
(Z1,22,23,24) by &4 = x4 + cZ1 + p(x2,23), T1 = 21 + q(x2,x3), where
c € C, pand q as in Lemma 4.23. Then we rewrite ¢ as

¢ = (71— q)* + 25(24 — c@1 — p) + Av2zh + g(as, &4 — cz1 — p).
Replacing variable, we can rewrite ¢ as
Y= x% + :L‘% (x4 + cxy1 + p(ze, xg)) + )\a:Qxl?f + g(x1, 29, 23, 24),

where ¢ € C, kK > 2 wtg > 6, and p contains only monomials with weight
< 3. Let f': Z — X be the weighted blow-up with wt z; = multg z;.
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If wt(z1, 22, 23, 24) = (3,2,1,4), the z4-chart Uy of the weighted blow-up
f' can be expressed as

1
12 12 12 ! ! ! 12 /AW
ry + 25 (T + cryxy + ﬁp(l’z% , T3Ty))

L /%(1,2,3,1).
ol b (el e, adal ) = 0
4

It is necessary that the origin is of type cAz/4. So we have the condition
x§x4 € g. This means that P is of type cDj.

If wt(z1, 22,23, 24) = (3,1,2,4), we have ¢ = 0, and we can assume p = 0
by replacing g if necessary. The x3-chart Us of the weighted blow-up f’ can
be expressed as

_ 1 1

(x'f + aal + AhaPR 0 ﬁg(x'le,x’gxg, o2, ahtal) =0 )/5(1, 1,1,0).
3

We need the condition o ¢ Us, which is equivalent to the condition x% €g.

Then P is of type c¢D4. Therefore there is no divisorial contraction of type

e3 which contracts ¢D,, point with discrepancy 3 for any n > 5. The proof

of Theorem 2.7 is completed. U
Proof of Theorem 2.8. The cEg point P € X has an identification such that
@ = a7 + x5 + zog(w3, 24) + h(ws, 24) =0,
where ¢ € m3, h € m*, and hy # 0. By Corollary 4.24, we have wtp =
6. So we can distribute weights wt(x1,ze,z3,24) = (4,3,2,1), (4,2,3,1),
(3,4,2,1), or (3,2,4,1). Suppose wt(z1, 2, x3,24) = (4,3,2,1). Then we
obtain a quartuple (Z1,Za,x3,24) by &1 = x1 + cTo + p(x3,24), To = T2 +

q(z3,x4), where c € C, p, and ¢ as in Lemma 4.23. We rewrite ¢ as

o= (&1 —cta = p)* + (T2 — q)° + (T2 — 9)g + h.
We replace 1 with z1 and Zo with z2. Since wt ¢ = 6, we can rewrite ¢ as
@ = af + 23 + p(as, 14) 75 + 2c12
+2q(x3, 4)x1 + 229(23, T4) + h(T3,74) = 0
where ¢ € m®, h € m* hy # 0, ¢ € C, and p (resp. ¢) contains only
monomials with weight 1 and 2 (resp. 2 and 3).
Let f': Z — X be the weighted blow-up with wtz; = multg z;. The

x1-chart Uy of the weighted blow-up f’ can be expressed as

12 13 13 12 1 ! 12
oy +a7rs + p(ryay, v7y)7s

1 2
+ Zemhay + 2op (@i, ol /i1.2.9).
1 1
+ gt 24 + —oh(ePat, #ha) = 0
1 1
It is necessary that the origin is of type cAx/4. So we need z € ¢ and

x3 ¢ q. Moreover we need that the action is free outside the origin, which is
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equivalent to the condition that 3 € h. This is a contradiction. Similarly
we have a contradiction in any other case. Therefore there is no divisorial
contraction of type e3 which contracts to a cEg point with discrepancy 3.
The proof of Theorem 2.8 is completed. U

5. APPENDIX

In this section, We give the detailed list of all 3-dimensional divisorial
contractions to cDV points.

Theorem 5.1. Let f: Y — X be a 3-dimensional divisorial contraction
whose exceptional divisor E contracts to a cDV point P. Then one of the
following holds:
1. The case P is non-singular

(1) f is the weighted blow-up with wt(x1, x2, x3) = (1,a,b) where (z1, x2, x3)
1s local coordinates at P, and where a and b are coprime positive integers.
II. The case P is of type cA

e Ordinary and minimal discrepancy case
(1) f is the weighted blow-up with wt(z1,z2,23,24) = (11,72,0,1) after
an identification

PeX~o€ (xlxg + g(x3,24) = 0) - Cimrgu.

Moreover there are following conditions:
(i) a| (r1 +1r2), ged(a,r1) =1, and ged(a,ry) = 1.
r1+re
(i) wtg=r1+7m2 and x5 © €g.

e Exceptional case
(2) f is the weighted blow-up with wt(x1,xe,x3,24) = (5,1,3,2) after an
identification

PGX:o€<x1m2+x§—|—xi:0) cct

T1X2T3T4 "
P € X is of type cA;.

(3) f is the weighted blow-up with wt(z1,x2,x3,24) = (4,3,2,1) after an
identification of P € X with

(m% + 23 + 2cx172 + 271p(23, 74) )
o€

5 cct
+ 2cxopwi=3(r3, x4) + 25 + g(x3,24) = 0

T1X2Tx3T4 "
Moreover the equation defining X satisfies the following conditions:

(i) ¢ # £1, wtg > 6, and p contains only monomials with weight 2 and
3 for the weights distributed above.
(i) 22 € p and degg(z3,1) < 2.
P e X is of type cAs.
III. The case P is of type cD

e Minimal discrepancy case
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(1) f is the weighted blow-up with wt(z1,z2,x3,24) = (r + 1,7,1,2) with
r=min{k — 1, | 32|} — 1 after an identification

T1X2T3%4 "

PeX~oc (m% + 2324 + Azozh + g(33,74) = O) c Ci

Moreover the equation defining X satisfies the conditions A € C, k > 3, and
wtg > 4.

(2) f is the weighted blow-up with wt(x1,xe,xs,x4) = (r,7,1,1) with r =
min{k,l} after an identification of P € X with

o€ (m% + a;%m + 2xoxgp(x3,x4) + )\ajga:’g +q(x3,24) = 0) - Cilmmm.

Moreover the equation defining X satisfies the following conditions:
(i) AeC,k>2, wtp=1-1,wtq > 2l, and p is weighted homogeneous
for the weights distributed above.
(ii) qwt=21 is not square if p = 0.
(iii) Either (a) I >k, (b) k=1+1, 23" or x%l_lm € q, and x%lﬂ € q,
or(c) k>1+12>2, gy=o #0, and xé_l € p.
(3) f is the weighted blow-up with wt(z1, 2, T3, T4, 25) = (%, %, 1,1,7)
with v > 3 after an identification
cCs

T1T2T3T4T5 "

PeXmoe ( 22 + Avoxh + xaws + p(x3,24) = 0, )

3 + 2211 (23, 1) + g2(23, 24) + 25 = 0
Moreover the equations defining X satisfy the following conditions:
(1> A€ (C; k> %; Pwt=r+1 5& 07 wtp > 1+ 17 wtq = d; wtge =

2
r—1, and q1, g2 are weighted homogeneous for the weights distributed
above.

(ii) qo is not square if ¢ = 0.

r—3
(iii) Either (a) k = %, :UQH or Thxs € p, a:§+2 € p, and x3*> € q1, or

(b) 25 or 2% %24 € go.
(4) f is the weighted blow-up with wt(x1,z2,x3,24) = (r+ 1,7,1,1) after
an identification of P € X with

o€ (x% + 2z1p(3, T4) + T374 + )\ach]?f + q(x3,4) = 0) C Ci1$2x314‘

Moreover the equation defining X satisfies the following conditions:
() ANeC,k>r+1, gui—2r+1 #0, wtp =71, wtq > 2r+1, and p is
weighted homogeneous for the weights distributed above.
(ii) If k = r+ 1, then p # 0 or there is no s(xs,x4) which satisfies
Qwt=2r+1 = )\xgﬂs — x48%. Otherwise x5 €p or x%rﬂ €q.
(5) f is the weighted blow-up with wt(z1,z2,x3,z4,25) = (r+ 1,7,1,1,
r 4 2) after an identification

r} + zows + p(x3, 24) = 0, ) c o

r+1 T1T2T3T4T5 "

PeX~oe€
xoy + Axy " + 2x4q(v3,24) + 25 =0
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Moreover the equations defining X satisfy the following conditions:

(i) Ae C, wtp > 2r+2, wtqg =r, and q is weighted homogeneous for
the weights distributed above.

e Ordinary case
(6) f is the weighted blow-up with wt(x1, x2,x3,x4) = (r+1,7,a,1) after
an identification of P € X with

o€ (a:% + 2x1p(xs3, T4) + 33%:134 + )\ZL‘QZL’% + ,u:xg + q(x9, x3,4) = 0) - (Cilmxgm.

Moreover there are following conditions:

(i) a|(2r+1), a#2r+1, and a is odd.
(i) \, p €C, wtp>r, wtq>2r+1, and g € m*.
(iii) The weighted homogeneous part of weight 2r + 1 is irreducible, and
Pwt=r 7 0 unless p = 0.
(7) [ is the weighted blow-up with wt(x1, 29, x3,x4,25) = (r + 1,7,a,1,
r 4 2) after an identification

2
7 + xoxs + p(x2, x3,4) = 0,
PGX:OE( ! T-QHS Plw2, @3, 74) ) 5

r+1 T1T2X3T4T5 "
Loy + x5 + 2w4q(x3,24) + 25 =0

Moreover there are following conditions:
(i) a|(r+1) anda#r+1.
(i) p e m*, wtp > 2r +2, wtq =, and q is weighted homogeneous for
the weights distributed above.

e Fxceptional case
(8) f is the weighted blow-up with wt(xy, x2, 23, x4, T5) = (5=, =1 4.1,7)
with r > 7, r = 43 (mod 8) after an identification

ce?

T1T2T3T4T5 "

PeXmoc ( x%+)\m2:c’§+:1:4w5+p(x3,x4):0, )

23 + 2x1q1 (w3, 24) + q2(x3,24) + 25 = 0

Moreover the equations defining X satisfy the following conditions:
(i) A eC, k> %, wtp>r+1, wtqy = %, wtqe =1 —1, and qq,
q2 are weighted homogeneous for the weights distributed above.
(ii) g2 is not square if ¢ = 0.
r+1

(iii) If = 3 (mod 8) (resp. r = —3 (mod 8)), then xz3* € p (resp.
r—1

37 € ).
(9) f is the weighted blow-up with wt(z1, x2, T3, T4, 25) = (%, %, 2,1,7)
with v > 5 after an identification

cC

T1X2X3T4T5 "

PeX~o€ 25’3% + Azoxh 4+ waws + pas, w4) =0,
T3+ 2e1q1 (23, 24) + q2(x3,24) + 25 = 0

Moreover the equations defining X satisfy the following conditions:
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(i) AeC, k> rj—l, wtp > r+1, wtqy = %, wtqe =1 — 1, and q1,
q2 are weighted homogeneous for the weights distributed above.

(ii) g2 is not square if ¢ = 0.
r+1

(ili) 23 €p.
(10) f is the weighted blow-up with wt(x1,x2,x3,x4) = (r,7,2,1) after an
identification of P € X with

o€ (:13% + 2324 + 2204p(T3, T4) + )\xgx’g + q(x3,4) = 0) - (Cilxzxgu.

Moreover the equation defining X satisfies the following conditions:
(i) A€ C, k> 5, wtq > 2r, and p is weighted homogeneous of weight
r — 1 for the weights distributed above.
(ii) p # 0 or qui=2r # 0, and gwi=2, s not square if p = 0.
(iii) % € q.
(11) f is the weighted blow-up with wt(z1,x2,x3,x4) = (3,3,1,2) after an
identification of P € X with

o€ <x% + 2374 + 220m4p(73, T4) + asgxg + q(x3,24) = 0) C Cim%m.

Moreover the equation defining X satisfies the following conditions:
(i) wtq > 6, and p is weighted homogeneous of weight 2 for the weights
distributed above.
(ii) =3 € q.
P is of type cDy.
(12) f is the weighted blow-up with wt(x1, e, 3, z4) = (3,4,2,1) after an
identification of P € X with

o€ (a:% + a:%u + 2xoxyp(x3, 24) + Aajgx’g + q(x3,24) = 0) cc?

T1T2XT3T4"
Moreover the equation defining X satisfies the following conditions:

(i) AeC, k> 2, wtq > 6, and p contains only monomials with weight

< 3 for the weights distributed above.

(ii) x4 € p and 73 € q.
P is of type c¢Dy.
IV. The case P is of type cE
e Minimal discrepancy case

(1) f is the weighted blow-up with wt(x1,xe,x3,24) = (2,2,1,1) after an

identification

PeX~o€ (:L‘% + :n% + x9g(ws, x4) + h(x3,24) = 0) C Cilxﬂgu.

Moreover the equation defining X satisfies the following conditions:
(i) hwi=4 # 0 is not square, and wt g > 3 and wt h > 4 for the weights
distributed above.
(ii) There is no linear form l(x3,z4) which satisfies [? | hyi=4, | | Gwi=3,
and 1 | hyt=5.
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P is of type cEg.
(2) f is the weighted blow-up with wt(z1, 2, x3,24) = (3,2,1,1) after an
identification of P € X with

o€ (1:% + 2x1p(xs, r4) + :L‘g + xog(ws, x4) + h(x3,24) = 0) - Cilmxsm.

Moreover the equation defining X satisfies the following conditions:

(i) wtp = 2, wtg > 3, wth > 5, and p is weighted homogeneous for

the weights distributed above.

(i) ged(p, Gwt=3, hwt=5) = 1.

P is of type cEg or cEr.
(3) f is the weighted blow-up with wt(z1, 2, x3,24) = (3,2,2,1) after an

identification

PeX~oe€e (:L‘% + 23 + wog(w3, 24) + W23, 24) = 0) ccl

T1X2Xx3T4"

Moreover the equation defining X satisfies the following conditions:

(i) wtg >4 and wth > 6 for the weights distributed above.
(ii) 2% | ha, 3| g3, and x3 | hs.
(iii) There is no p € C which satisfies

T + Togwtea + hwies = (z2 — pzi)* (v + 2ux?),
and pa3 gwi—s + hwi=r = 0.

(4) f is the weighted blow-up with wt(x1,xe,x3,24) = (4,3,2,1) after an
identification of P € X with

o€ <:1;% + :z:% + 3)@:%:@21 + x2g(w3, x4) + h(x3,24) = 0) C C;L?1932$3z4‘

Moreover the equation defining X satisfies the following conditions:

(i) Ae C, wtg > 5, and wt h > 8 for the weights distributed above.
(ii) 23 | ha, 22 | g3, and 23 | hs.
(iii) 3Ar32% + Togwi=s + hwi=s s not square.
(5) f is the weighted blow-up with wt(x1,x2,z3,24) = (5,3,2,1) after an
identification of P € X with

0c (:E% + 21‘110(3527 xs3, :E4) + l‘% + ng(:E:Sa 5[34) + h(l‘37 1'4) = O) - Ci1x2x3x4‘

Moreover the equation defining X satisfies the following conditions:

(i) wtp =4, wtg > 6, wth > 9, and p is weighted homogeneous for
the weights distributed above.
(ii) p # 0 or 3 + Tagwt—6 + hwt—g is irreducible.
(iii) IJ;P is of type cEg (resp. cEz, cEg), then x3 € p (resp. 3 | g3,
3 | hs).
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(iv) zozg € p or there is no p € C which satisfies

(w3 — pz3)? | p,
(w3 — paf)" | gwrms—i fori=1, 2,
and (v3 — pa3)’ | hyt=12—; for j =1, 2, 3.

(6) f is the weighted blow-up with wt(z1,x2,x3,24) = (5,4,2,1) after an
identification of P € X with

o€ (:c% + x% + 3x§p(x3, x4) + x2g(xs, x4) + h(xs,24) = O) C (Cilm%u.

Moreover the equation defining X satisfies the following conditions:

(i) wtp =3, wtg > 6, wth > 10, and p is weighted homogeneous for
the weights distributed above.
(ii) If P is of type cEy (resp. cEs), then 3 € g (resp. x3 € h).
(iii) There is no p € C which satisfies

(3 — pd) | p,
(23 — pz2)’ | gwies_i fori=1, 2,
and (x5 — pa3)’ | hyt=12—j for j =1, 2.
P is of type cE; or cEsg.

(7) f is the weighted blow-up with wt(x1,x2,z3,24) = (6,4,3,1) after an
identification

T1X2T3%4°

PeX~oe€ (x% + o3 + z2g(w3, 24) + h(z3,74) = 0) c Ci

Moreover the equation defining X satisfies the following conditions:
(i) wtg > 8 and wth > 12 for the weights distributed above.
(ii) If P is of type cEg (resp. cEz, cEg), then x3 € h (resp. z3 € g,
(iii) There is no s(x3,x4) which satisfies
T3 + Tagwi=s + hwi=12 = (z2 — )% (w2 + 25),
and SOwt=9 + hwt=13 =0.

(8) f is the weighted blow-up with wt(x1,x2,3,24) = (7,5,3,1) after an
identification of P € X with

(XS ((E% + IE% + Smgp(xg, 1’4) -+ l’gg((ﬁg, .I4) =+ h(ajg, .754) = 0) C Ci1$2$3$4'

Moreover the equation defining X satisfies the following conditions:

i) wtp =4, wtg > 9, wth > 14, and p is weighted homogeneous for
(i) wtp g p 9 g

the weights distributed above.
(ii) If P is of type cE7 (resp. cEs), then z3 € g (resp. x3 € h).
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(iii) p # 0 or there is no u € C which satisfies
(23 — pad)’ | gwi—12—q fori=1, 2, 3,
and (v3 — p3)? | hyr1s—j for j =1, 2, 3, 4.
P is of type cE; or cEsg.

(9) f is the weighted blow-up with wt(x1,x2,z3,24) = (8,5,3,1) after an
identification of P € X with

o€ (93% + 2z124p(22, T3, Ta) + T3 + T2g(23, 24) + h(23, 24) = 0) - Ci1$2$31‘4'

Moreover the equation defining X satisfies the following conditions:
(i) wtp =6, wtg > 10, wt h > 15, and p is weighted homogeneous for
the weights distributed above.
(ii) 23 € h.
(iii) xoxa € p or there is no u € C which satisfies
(3 — pxf)? | p,
(x?) - /*’Lx?l)l | Jwt=12—i fOT”i = 17 27
and (v3 — pad)? | hyt—1s—; for j =1, 2, 3.
P is of type cEg.
(10) f is the weighted blow-up with wt(z1,x2,x3,z4) = (9,6,4,1) after an
identification

PcX~oc (az% + 23 + zog(w3, 74) + h(3,74) = 0) cc?

T1T2T3T4"
Moreover the equation defining X satisfies the following conditions:

(i) wtg > 12 and wt h > 18 for the weights distributed above.

(ii) If P is of type cEy (resp. cEs), then z3 € g (resp. a3 € h).

(iii) There is no s(xs,x4) which satisfies

T3 + Tagwi—12 + hwi—1s = (x2 — 8)* (22 + 25),
and sgwt=13 + hwi=19 = 0.
P is of type cEr or cEg.
(11) f is the weighted blow-up with wt(x1,x2,x3,24) = (10,7,4,1) after

an identification of P € X with

o€ (x% + 23 + 323p(x3, 14) + 229(3, 74) + (23, 74) = O) C Cilmxsm.

Moreover the equation defining X satisfies the following conditions:
(i) wtp =6, wtg > 13, wth > 20, and p is weighted homogeneous for
the weights distributed above.
(ii) 23 € h.
(iii) p # 0 or there is no u € C which satisfies
(fL’g - ,LL'IZLL)Z ’ gwt=16—i fOT i1=1,2,3,

and (zg — ,u:ci)j | hwt=2a—j forj =1, 2,3, 4.
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P is of type cEg.
(12) f is the weighted blow-up with wt(x1,x2,x3,24) = (12,8,5,1) after
an identification

PeX~o€ (az% + 23 + zog(w3, 24) + h(3,74) = 0) c Ci

T1T2T3T4"

Moreover the equation defining X satisfies the following conditions:
(i) wtg > 16 and wt h > 24 for the weights distributed above.
(ii) 23 € h.
(iii) There is no p € C which satisfies
(.’L’g - /in)l ‘ Gwt=20—i f07" L= 17 T 747
and (z3 — pa})’ | hywt=30—5 for j =1,---,6.
P is of type cEg.

(13) f is the weighted blow-up with wt(x1,x2,x3,24) = (15,10,6,1) after
an identification

PcX~oc (I% + 23 + zog(w3, 24) + h(z3,74) = 0) cc?

T1X2T3%4°

Moreover the equation defining X satisfies the following conditions:
(i) wtg > 20 and wth > 30 for the weights distributed above.
(ii) 23 € h.
P is of type cEg.
(14) f is the weighted blow-up with wt(z1,x9,x3,z4,25) = (3,2,1,1,5)
after an identification of P € X with

23 + 23 + x5p(3, 24) + T29(73, T4) + h(23,74) = 0, 5
0 c _ C Coimomsmans
221q1 (23, 24) + 22q2(73, 4) + q3(23,74) + 25 = 0

Moreover the equations defining X satisfy the following conditions:

(i) wtp=1,wtg >4, wth >6,wtq =1, wtqy =2, wt g3 = 4, and p,
q1, g2, and g3 are weighted homogeneous for the weights distributed
above.

(i) ged(qr, g2, q3) = 1.

P is of type cEg or cEr.
(15) f is the weighted blow-up with wt(z1,x9, 3, x4) = (4,2,1,1) after an
identification of P € X with

. (m% + 2x1{zop(x3, 24) + q(23,24)} )

X cct
+ 25 + x2g(x3, x4) + h(x3,24) =0

T1X2T3%4 "

Moreover the equation defining X satisfies the following conditions:

(i) wtp=1, wtq > 2, wtg >4, wth > 6, and p is weighted homoge-
neous for the weights distributed above.
(ii) 23 € h.
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(iil) Either (a) gwt=2 1S not square, or (b) qwt=2 = a:§ and there is no
€ C which satisfies

5 + 22gwi=1 + hwi=s = (22 — pa})?(za + 2pa?),
,ux?;gwt=5 + hwt=7 = 0,
and paip + gwi—s = 0.
P is of type cEg.

(16) f is the weighted blow-up with wt(x1,x2,x3, x4, 25) = (3,2,1,1,4)
after an identification of P € X with

cC

T1X2T3TAT5 "

oc o3 + o3 + ws5p(3, x4) + 2g(23, T4) + h(23,74) =0,
x2q1 (23, 24) + q2(23,24) + 5 =0

Moreover the equations defining X satisfy the following conditions:
(i) wtp =2, wtg >4, wth > 6, wtqy = 1, wtge = 3, and p, ¢1 and
q2 are weighted homogeneous for the weights distributed above.
(ii) Either (a) p is not square, or (b) p = 3 and there is no u € C
which satisfies

3+ T2gui=a + huizs = (22 — paf)? (22 + 2u3),
,Ux?;gwt:5 + hwt=7 = 0,
and paiq + g2 = 0.
P is of type cEr.

(17) f is the weighted blow-up with wt(z1,x2, 3, x4) = (3,3,1,1) after an
identification of P € X with

o€ (90% + 23 + 323p(x3, 14) + T2g(x3, T4) + (T3, 74) = 0) C Cilmmm-

Moreover the equation defining X satisfies the following conditions:
(i) wtp = 2, wtg > 3, wth > 6, and p is weighted homogeneous for
the weights distributed above.
(ii) There is no linear form I(x3,x4) which satisfies I? | gwi=3,
l2 | hwt=6, l | Gwt=4, and | | hwt:?-
P is of type cE7.
(18) f is the weighted blow-up with wt(x1,x2,x3,x4,25) = (5,3,2,1,7)
after an identification of P € X with

cC

T1T2T3T4X5 "

o€ CC% + zox5 + .I'Qg(il,‘g, a;4) + h(x37x4) =0,
23 + 3xop(x3,4) + q(23,24) + 75 = 0

Moreover the equations defining X satisfy the following conditions:

(i) wtg > 7, wth > 10, wtp = 3, wtq = 6, and p and q are weighted
homogeneous for the weights distributed above.
(i) @3 + 3zap + q is irreducible.
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(iii) There is no p € C which satisfies
T3 — [HTy) | Gwt=7, (T3 — Uy wt=10, (L3 — HT4 wt=11,
( 1| ( D7 h ( D1 h
(w3 — pal) | p, and (x5 — pa3)? | q.
P is of type cE; or cEs.
o Fxceptional case

(19) f is the weighted blow-up with wt(z1,x2,x3,x4) = (3,3,2,1) after an
identification of P € X with

o€ (l’% + {:L? - p(l’3,1'4)}3 + 1’2g($3,l‘4) + h(fL‘g, 1}4) = 0> C Ci1x2x314'
Moreover the equation defining X satisfies the following conditions:
(i) wtg > 3, wth > 6, and p is weighted homogeneous of weight 2 for
the weights distributed above.
(ii) degg > 3 and degh > 4.
(iii) 23 € p and z3 € g.
P is of type cEg.
(20) f is the weighted blow-up with wt(z1,x9,x3,z4,25) = (5,3,2,2,7)
after an identification
cC’

T1X2T3T4X5"

PEXQOG $%;‘l’2$5+p($3,l‘4):07
a:2+q(3:3,a:4)+a:5 =0

Moreover the equations defining X satisfy the following conditions:
(i) wtp > 10, wtq > 6 for the weights distributed above.
(i) ged(ps,g3) = 1.

P is of type cE7.

(21) f is the weighted blow-up with wt(z1,x2,x3,x4) = (7,5,3,2) after an
identification of P € X with

o€ (m% + x% + Ax%xi + zog(x3, x4) + h(zs, 24) = O) C (Ci1$2$3$4'

Moreover the equation defining X satisfies the following conditions:
(i) Ae C and wtg > 9, wt h > 14 for the weights distributed above.
(ii) If P is of type cE7 (resp. cEg), then x5 € g (resp. x3 or xixy € h).
(iii) «7 € h.
P is of type cE7 or cEg.
Conversely, weighted blow-ups of cDV points as above are divisorial con-
tractions.

We tabulate the divisorial contractions f: (Y D E) — (X € P) in Theo-
rem 5.1, its dicrepancy, and the non-Gorenstein singularities on Y.

type | terminal | discrepancy | non-Gorenstein terminal on Y
(I-1) | smooth a+b 1(1,-1,a-1), $(1,-1,b—a)
(I11-1) cA a +(1,—1,a), =(1,-1,a)
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type | terminal | discrepancy | non-Gorenstein terminal on Y
(11-2) cAq 4 1(1,4,3)
(11-3) cAs 3 cAz /4 deforming to 3(1,1,1), 1(1,3,3)
cAx/2,
(ITI-1) 1(1,-1,1), { cA/2, or
2 x 3(1,1,1)
(I11-2) 1 cA/r deforming to 2 x 1(1,-1,1)
(I11-3) 1(1,-1,2)
(I11-4) cD =(1,-1,1), == (1,-1,1)
(111_5) %(17_171)7 H%(la_lvl)
(111'6) a %(17_17(1)7 %(17_1760
(I11-7) +(1,-1,a), =5(1,—1,0a)
(I11-8) 4 1(1,-1,8)
(I11-9) 1(1,-1,4)
(ITI-10) 2 cA/r deforming to 2 x 1(1,-1,2)
(ITI-11) | ¢Dy4 ¢D/3 deforming to 2 x £(1,2,2)
(IT1-12) 3 cAz /4 deforming to 1(1,1,1), £(1,3,3)
(IV-1) cEg cAz /2 deforming to 2 x 3(1,1,1)
(IV-2) | cEs7 3(1,1,1), £(1,2,2)
cEs cA/2
(IV-3) cEr ¢D/2 deforming to 3 x £(1,1,1)
CEg CE/2
cEs $(1,2,2),2 x 3(1,1,1)
(IV-4) cE; 3(1,2,2),cA/2
cEg $(1,2,2), “cA/2 or cAz/2”
(IV—5) cE %(17171% %(17472)
E 1(1,1,1), cAx/4
(IV‘6) CLr 1 2( )+ )’C ‘/L‘/
cEy cAx/4
deforming to 2 x 3(1,1,1), £(1,3,3)
CEG %(17171)72 X é(1>272)
(IV-7) cE; $(1,1,1),cA/3
cEy 3(1,1,1),“cA/3 or ¢D/3”
(IV-8) | cErs 5(1,2,2), £(1,4,2)
(IV-9) cEy $(1,7,3)
1 1 1
(IV—lO) 657 5(17 1711():[ 32(12’)27 2‘;’ jila 3, 3)
cLig 3\ 4 , CAT
(IV-11) | cEg $(1,1,1), 1(1,6,2)
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type | terminal | discrepancy | non-Gorenstein terminal on Y
(IV-12) | cEg 1(1,3,3), £(1,4,2)
(IV-13) cEy 3(1,1,1), £(1,2,2), £(1,4,1)
(IV-14) | cEg7 1(1,4,2)
(IV-15) cEg 1 cAx /4 deforming to %(1, 1,1), %(17 3,3)
(IV-16) cEy cAz /4 deforming to 3(1,1,1), 3(1,3,3)
(IV-17) |  cEx ¢D/3 deforming to 2 x £(1,2,2)
(IV-18) | cErg 1(1,6,3)
(IV-19) cEg ¢D/3 deforming to 2 x £(1,2,2)
(IV-20) | cEx 2 1(1,6,6)
(IV-21) | cErg £(1,2,2), £(1,4,4)
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