Notes on vector fields and transverse fields on foliated Riemannian manifolds

Toshihiko AOKI1, Nobukazu MATSUOKA1 and Shinsuke YOROZU2)

(Received April 24, 1989)

0. Introduction

On a foliated Riemannian manifold with a bundle-like metric([9]), transverse Killing (conformal, affine) fields of the foliation have been studied by F.W. Kamber and Ph. Tondeur [2, 3, 4], P. Molino [5, 6], J.S. Pak and S. Yorozu [7] and others.

In this note, we investigate the properties of the transverse Killing field(t.K.f.) and the transverse conformal field(t.c.f.). Some of our results are as follows:

THEOREM A. Let (M, g_M, \mathfrak{F}) be a Riemannian manifold with a foliation \mathfrak{F} and a bundle-like metric g_M with respect to \mathfrak{F} . If $Y \in V(\mathfrak{F})$ is a conformal (resp. Killing) vector field on M, then $s = \pi(Y)$ is a t.c.f. (resp. t.K.f.) of \mathfrak{F} .

THEOREM B. Let (M, g_M, \mathfrak{T}) be as in Theorem A. If there exists a nonsingular t.K. f. s of \mathfrak{T} , then there exists a foliation \mathfrak{T}' generated by \mathfrak{T} and s such that $\mathfrak{T} \subset \mathfrak{T}'$, codim $\mathfrak{T}' = \operatorname{codim} \mathfrak{T} - 1$ and the metric g_M is bundle-like with respect to \mathfrak{T}' .

THEOREM C. Let $\rho:(M, g_M) \longrightarrow (B, g_B)$ be a Riemannian submersion with connected fibers and \mathfrak{F} be the foliation on M whose leaves are fibers of the submersion ρ . If there exists a nonsingular t.K.f. of \mathfrak{F} , then $Pont^{(r)}(TB) = 0$ for $r > \dim B - 1$.

We shall be in C^{∞} -category and deal only with connected and oriented manifold without boundary. We use the following convention on the range of indices: $1 \le i$, $j \le p$, $p+1 \le \alpha$, $\beta \le p+q$. The Einstein summation convention will be used.

1. Preliminaries

Let (M, g_M, \mathcal{F}) be a p+q dimensional Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_M with respect to \mathcal{F} ([9]). We denote by ∇ the Levi-Civita connection with respect to g_M . The foliation \mathcal{F} defines an integrable subbundle E of the tangent bundle E over E0, and let E1 be the normal bundle E3. Let

Department of Liberal Arts, Kanazawa Institute of Technology, Nonoich-machi 920, Japan.

Department of Mathematics, College of Liberal Arts, Kanazawa University, Kanazawa 920, Japan. This research was partially supported by Grant-in-Aid for Scientific Research (No. 63540024, 63540157), Ministry of Education, Science and Culture.

 σ be the splitting of the exact sequence:

$$0 \longrightarrow E \longrightarrow TM \xrightarrow{\pi} Q \longrightarrow 0$$

with $\sigma(Q) = E^{\perp}$, where E^{\perp} denotes the orthogonal complement bundle of E in TM with respect to $g_M([2])$. The metric g_M induces the metric g_Q on Q, that is,

$$g_O(s, t) = g_M(\sigma(s), \sigma(t))$$

for any s, $t \in \Gamma(Q)$. Here $\Gamma(Q)$ denotes the set of all sections of the bundle Q. The basic adapted (local) frame $\{X_i, X_{\alpha}\}$ of \mathcal{F} is given by

$$X_i = \partial/\partial x^i$$
, $X_\alpha = \partial/\partial x^\alpha - A_\alpha^j \partial/\partial x^j$

in a flat chart $U(x^i, x^{\alpha})$ with respect to \mathcal{G} , where A^i_{α} are functions on U satisfying $g_M(X_i, X_{\alpha}) = 0([9], [10])$.

Let D be the transversal Riemannian connection of $\mathcal F$, that is, $D:\Gamma(TM)\times\Gamma(Q)\longrightarrow\Gamma(Q)$ is given by

$$D_X s = \pi((X, Y_s)) \qquad \text{for any } X \in \Gamma(E)$$

$$\text{for any } s \in \Gamma(Q), \ \pi(Y_s) = s$$

$$D_X s = \pi(\nabla_X \sigma(s)) \qquad \text{for any } X \in \Gamma(E^\perp)$$

$$\text{for any } s \in \Gamma(Q)$$

([2], [3]). We notice that D is torsion-free and metrical with respect to g_Q . The curvature R_D of D and the Ricci operator ρ_D of $\mathcal F$ are defined as follows:

$$R_D(X, Y)s = D_X D_Y s - D_Y D_X s - D_{(X, Y)}s$$
 for any $X, Y \in \Gamma(TM)$
for any $s \in \Gamma(Q)$
 $\rho_D(s) = g^{\alpha\beta} R_D(\sigma(s), \pi(X_\alpha))\pi(X_\beta)$ for any $s \in \Gamma(Q)$

where $(g^{\alpha\beta})$ denotes the inverse matrix of $(g_{\alpha\beta})$ with $g_{\alpha\beta} = g_M(X_\alpha, X_\beta)$ ([2],[3],[7]). Let $V(\mathcal{F})$ be the set of all infinitesimal automorphisms of \mathcal{F} , that is, $V(\mathcal{F}) = \{Y \in \Gamma(TM) \mid [Y, Z] \in \Gamma(E) \text{ for any } Z \in \Gamma(E)\}$, and we set $\overline{V}(\mathcal{F}) = \{s \in \Gamma(Q) \mid s = \pi(Y) \text{ for any } Y \in V(\mathcal{F})\}$ ([2]). Then we have some operators ([2],[3],[5],[6],[7]):

- (i) the transverse Lie differentiation $\Theta(Y)$ with respect to $Y \in V(\mathcal{G})$, $\Theta(Y)s = \pi([Y, Y_s])$, where $\pi(Y_s) = s$,
 - (ii) the transverse divergence div_D , $\operatorname{div}_D s = g^{\alpha\beta} g_Q(D_X s, \pi(X_\beta))$,
 - (iii) the transverse gradient grad_D , $\operatorname{grad}_D f = g^{\alpha\beta} X_{\alpha}(f) \pi(X_{\beta})$,
 - (iv) the Laplacian $\Delta_D = d_D d_D^* + d_D^* d_D$.

The second fundamental form α of \mathcal{F} is given by

$$\alpha(X, Y) = -(D_X \pi)(Y)$$
 for any $X, Y \in \Gamma(TM)$,

and the tension field τ of \mathcal{F} is given by

$$\tau = g^{ji} \alpha(X_i, X_j) (= d_D^* \pi),$$

where (g^{ij}) denotes the inverse matrix of (g_{ij}) with $g_{ij} = g_M(X_i, X_j)$ ([2], [3]). The foliation \mathcal{F} is called harmonic if $\tau = 0$, and \mathcal{F} is called totally geodesic if $\alpha = 0$ ([2], [3]).

2. Transverse fields

Let (M, g_M, \mathcal{F}) be as in section 1. The definitions of Killing vector field, conformal vector field, and affine vector field on M are abbreviated. In order to give the definitions of geometric transverse fields of \mathcal{F} , we have to show the following lemma:

LEMMA 2.1. For any $X \in \Gamma(E)$, it holds that $\Theta(X)g_Q = 0$ and $\Theta(X)D = 0$.

This lemma'is proved by the direct calculation.

DEFINITION 2.2([2], [3], [5], [6], [7]). If $Y \in V(\mathcal{F})$ satisfies $\Theta(Y)g_Q = 0$, then $s = \pi(Y)$ is called a transverse Killing field (t.K.f.) of \mathcal{F} . If $Y \in V(\mathcal{F})$ satisfies $\Theta(Y)g_Q = 2f \cdot g_Q$ for some function f on M, then $s = \pi(Y)$ is called a transverse conformal field (t.c.f.) of \mathcal{F} , and $f_s = f$ is called the characteristic function of s. If $Y \in V(\mathcal{F})$ satisfies $\Theta(Y)D = 0$, then $s = \pi(Y)$ is called a transverse affine field (t.a.f.) of \mathcal{F} .

Then we have

THEOREM $2.3(\lceil 7 \rceil)$.

- (a) If s is a t.a.f. of \mathcal{F} , then $\Delta_D s = D_{\sigma(r)} s + \rho_D(s)$ and $\operatorname{div}_D s = const.$
- (b) If s is a t.K.f. of \mathcal{F} , then $\Delta_D s = D_{\sigma(r)} s + \rho_D(s)$ and $\operatorname{div}_D s = 0$.
- (b) If s is a t.c.f. of \mathcal{G} , then $\Delta_D s = D_{\sigma(r)} s + \rho_D(s) + (1 \frac{2}{q}) \operatorname{grad}_D \operatorname{div}_D s$ and $f_s = \frac{1}{q} \operatorname{div}_D s$. REMARK 2.4([7]). For any $s \in \overline{V}(\mathcal{G})$, $\operatorname{div}_D s$ is a foliated function on M.

We set

 $K(\mathfrak{F})$: the set of all transverse Killing fields of \mathfrak{F}

 $C(\mathcal{F})$: the set of all transverse conformal fields of \mathcal{F}

 $A(\mathfrak{T})$: the set of all transverse affine fields of \mathfrak{T} .

For any s, $t \in \overline{V}(\mathfrak{F})$, we define [s, t] by

$$[s, t] = \pi([Y_s, Y_t])$$

$$\pi(Y_s) = s \text{ with } Y_s \in V(\mathcal{G})$$

$$\pi(Y_t) = t \text{ with } Y_t \in V(\mathcal{G}).$$

Then we have

THEOREM 2.5. $K(\mathfrak{F})$, $C(\mathfrak{F})$ and $A(\mathfrak{F})$ are Lie algebras with respect to the bracket defined as above.

Now, we have

LEMMA 2.6. For any $Y \in V(\mathfrak{T})$, $u, v \in \Gamma(Q)$, it holds that $(\mathfrak{Q}(Y)g_Q)(u, v) = (\mathcal{L}(Y)g_M)$ $(\sigma(u), \sigma(v))$, where $\mathcal{L}(Y)$ denotes the Lie differentiation with respect to Y.

If f_Y is a characteristic function of a conformal vector field $Y \in V(\mathcal{G})$, then, by Lemma 2.6, f_Y is a foliated function on M. Thus we have

THEOREM 2.7. If $Y \in V(\mathfrak{T})$ is a conformal vector field on M, then $s = \pi(Y)$ is a t. c.f. of \mathfrak{T} whose characteristic function is one of Y.

COROLLARY 2.8. If $Y \in V(\mathfrak{T})$ is a Killing vector field on M, then $s = \pi(Y)$ is a t.K. f. of \mathfrak{T} .

We denote by Y_E (resp. $Y_{E^{\perp}}$) the E (resp. E^{\perp})—component of a vector field Y on M The following results are easily proved

PROPOSITION 2.9. Let $Y \in V(\mathfrak{T})$ be a conformal vector field on M. Then Y_E is a Killing vector field on M if and only if $Y_{E^{\perp}}$ is a conformal vector field on M whose characteristic function is one of Y.

PROPOSITION 2.10. Let $X \in \Gamma(E)$ be a Killing vector field on M and $Z \in V(\mathfrak{F}) \cap \Gamma(E^1)$ a conformal vector field on M. Then Y = X + Z is a conformal vector field on M whose characteristic function is one of Z.

Next, by Jacobi identity, we have that $(\Theta(Y)D)_X t = 0$ for any $Y \in V(\mathfrak{F})$, $X \in \Gamma(E)$, and $t \in \Gamma(Q)$. Moreover, we have

PROPOSITION 2.11. For any $Y \in V(\mathfrak{F}) \cap \Gamma(E^{\perp})$, $V \in \Gamma(E^{\perp})$, and $t \in \Gamma(Q)$, it holds that $(\Theta(Y)D)_V t = \pi((\mathcal{L}_Y \nabla)_V \sigma(t)) + \pi(\nabla_{\sigma(t)} (\mathcal{L}_Y V)_E + \nabla_V (\mathcal{L}_Y \sigma(t))_E)$.

The local expression of $\pi(\nabla_{\sigma(t)}(\mathcal{L}_Y V)_E)$ is given by $-\frac{1}{2}Y^{\alpha}V^{\beta}Z^{\tau}B^{k}_{\alpha\beta}B^{k}_{\epsilon\tau}g^{\gamma\epsilon}g_{kh}\pi(X_{\gamma})$, where $Y = Y^{\alpha}X_{\alpha}$, $V = V^{\beta}X_{\beta}$, $\sigma(t) = Z^{\tau}X_{\tau}$, and $[X_{\alpha}, X_{\beta}] = B^{k}_{\alpha\beta}X_{k}$. Thus we have

PROPOSITION 2.12. Suppose that E^{\perp} is an integrable subbundle of TM. If $Y \in V(\mathcal{G})$ $\cap \Gamma(E^{\perp})$ is an affine vector field on M, then $s = \pi(Y)$ is a t.a.f. of \mathcal{G}

REMARK 2.13. For a t.K.f. (resp. t.c.f., t.a.f.) s of \mathcal{F} , $\sigma(s)$ (or Y with $\pi(Y) = s$) is not always a Killing (resp. conformal, affine) vector field on M.

3. Nonsingular transverse Killing fields

Let (M, g_M, \mathcal{F}) be as in section 2. We consider a nonsingular t.K.f. s of \mathcal{F} with s $\pi(Y) \in \overline{V}(\mathcal{F})$. Let E' be a subbundle of TM generated by E and Y. Then E' is an integrable subbundle. Thus we have a new foliation \mathcal{F}' defined by E', and codim \mathcal{F}' q-1. For any $u, v \in \Gamma(Q)$, the equality $(\Theta(Y)g_Q)(u, v)=0$ implies $g_M(\nabla_{\sigma(u)}Y, \sigma(v)) \cdot g_M(\sigma(u), \nabla_{\sigma(v)}Y)=0$. And we easily have that $g_M(\nabla_{\sigma(u)}Y_E, \sigma(v))+g_M(\sigma(u), \nabla_{\sigma(v)}Y_E)=0$. Where Y_E denotes the E-component of Y. Thus we have that $g_M(\nabla_{\sigma(v)}\sigma(s), \sigma(v))+g_M(\sigma(u), \nabla_{\sigma(v)}\sigma(s))=0$. Here $\sigma(s)$ is the E^1 -component of Y. Therefore, by Theorem 3.1

in[10], we have

THEOREM 3.1([1]). Let (M, g_M, \mathfrak{F}) be as above. If there exists a nonsingular t.K.f. of \mathfrak{F} , then there exists a foliation \mathfrak{F}' such that $\mathfrak{F} \subset \mathfrak{F}'$ and codim $\mathfrak{F}' = \operatorname{codim} \mathfrak{F} - 1$, and the metric g_M is bundle-like with respect to \mathfrak{F}'

Let $\rho:(M, g_M) \longrightarrow (B, g_B)$ be a Riemannian submersion with connected fibers. Then we have a foliation $\mathcal F$ on M whose leaves are fibers $\rho^{-1}(b)$ with $b \in B$. If $s = \pi(Y) \in \overline{V}$ ($\mathcal F$) is a nonsingular t.K.f. of $\mathcal F$, then $\rho_*(Y)$ is a nonsingular Killing vector field on B and defines an integrable subbundle $\{\rho_*(Y)\}$ of the tangent bundle TB over B. Then, by Pasternack's theorem[8], we have

THEOREM 3.2([1]). Let $\rho:(M, g_M) \longrightarrow (B, g_B)$ be a Riemannian submersion with connected fibers and \mathfrak{F} be the foliation on M whose leaves are fibers of the submersion ρ . If there exists a nonsingular t.K.f. of \mathfrak{F} , then $\operatorname{Pont}^{(r)}(TB) = 0$ for $r > \dim B - 1$, where $\operatorname{Pont}^{(*)}(TB)$ denotes the characteristic ring generated by the real Pontryagin classes of TB.

PROOF. Let $s = \pi(Y) \in \overline{V}$ (\mathcal{F}) be a nonsingular t.K.f. of \mathcal{F} . Then $\rho_*(Y)$ defines an integrable subbundle $\{\rho_*(Y)\}$ of TB and a foliation \mathcal{F}_B on B. The codimension of \mathcal{F}_B is equal to dim B-1. Since $\rho_*(Y)$ is a Killing vector field on B, g_B is a bundle-like metric with respect to \mathcal{F}_B . Thus, by Pasternack's vanishing theorem, we have that $\operatorname{Pont}^{(r)}(TB) = 0$ for $r > \dim B - 1$.

4. Harmonic foliations and transverse Killing fields

Let (M, g_M, \mathcal{G}) be as in section 1. We have the following theorems:

THEOREM 4.1([7]). Suppose that M is compact and $\mathfrak F$ is harmonic. Then it holds that $\int_M \operatorname{div}_D s \ dM = 0$ for any $s \in \Gamma(Q)$.

THEOREM 4.2([7]). Let (M, g_M, \mathfrak{F}) be as in Theorem 4.1. If $s \in \overline{V}(\mathfrak{F})$ satisfies $\Delta_D s = \rho_D(s)$ and $\operatorname{div}_D s = 0$, then s is a t.K.f. of \mathfrak{F} .

Then we have

THEOREM 4.3([7]). Let (M, g_M, \mathfrak{F}) be as in Theorem 4.1. Then every t.a.f. of \mathfrak{F} is a t.K.f. of \mathfrak{F} .

THEOREM 4.4 Let (M, g_M, \mathfrak{F}) be as in Theorem 4.1. Suppose that \mathfrak{F} has dense leaves. Then every t.c.f. of \mathfrak{F} is a t.K.f. of \mathfrak{F} .

PROOF. Let s be a t.c.f. of \mathcal{G} . By Theorem 2.3 and Remark 2.4, $\operatorname{div}_D s = q \cdot f_s$ is a foliated function on M. Since \mathcal{G} has dense leaves, $\operatorname{div}_D s$ is a constant function on M. Thus, by Theorem 4.1, $\operatorname{div}_D s = 0$. Therefore, Theorem 4.2 implies that s is a t.K.f. of \mathcal{G} .

References

- [1] T. Aoki and N. Matsuoka, A non-singular transverse Killing field on a foliated Riemannian manifold, to appear in Mem. Kanazawa Inst. Tech. A 29 (1989).
- [2] F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), 525-538.
- [3] F. W. Kamber and Ph. Tondeur, Foliations and metrics, Differential Geometry, Progress in Math. 32 (1983), 103-152.
- [4] F. W. Kamber, Ph. Tondeur and G. Toth, Transversal Jacobi fields for harmonic foliations, Michigan Math. J. 34 (1987), 261-266.
- [5] P. Molino, Feuilletages riemanniens sur les variétés compactes; champs de Killing transverses, C. R. Acad. Sc. Paris 289 (1979), 421-423.
- [6] P. Molino, Géométrie globale des feuilletages riemanniens, Proc. Kon. Ned. Akad., Al, 85 (1982), 45-76.
- [7] J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds, J. Korean Math. Soc. 25 (1988), 83-92.
- [8] J. S. Pasternack, Foliations and compact Lie group actions, Comment. Math. Helv. 46 (1971), 467-477.
- [9] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
- [10] S. Yorozu, Behavior of geodesics in foliated manifolds with bundle-like metrics, J. Math. Soc. Japan 35 (1983), 251-272.