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0. Introduction

On a foliated Riemannian manifold with a bundle-like metric([9]), transverse Killing
(conformal, affine) fields of the foliation have been studied by F.W. Kamber and Ph.
Tondeur (2, 3, 4], P. Molino [5, 6], J.S. Pak and S. Yorozu 7] and others.

In this note, we investigate the properties of the transverse Killing field(t.K.f.) and the
transverse conformal field(t.c.f.). Some of our results are as follows :

THE_OREM A.Let (M, gy, &) be a Riemannian manifold with a foliation F and a
bundle-like metric gy with respect to F . If YEV(F) is a conformal (vesp. Killing)
vector field on M, then s==z(Y) is a tc.f (vesp. tK.f) of F .

THEOREM B. Let (M, -&u, F ) be as in Theorem A. If there exists a nonsingular t K.
J.s of G, then there exists a foliation F ' generated by F and s such that F C F’, codim
F'=codim F —1 and the metric gy is bundle-like with respect to F *.

THEOREM C. Let p : (M, gy)— (B, g5) be a Riemannian submersion with connected
fibers and F be the foliation on M whose leaves are fibers of the submersion p. If there
exists a nonsingular tKf. of &F , then Pont"(TB)=0 for »>dim B—1.

We shall be in C”-category and deal only with connected and oriented manifold
without boundary. We use the following convention on the range of indices : 154, 7<p,
p+1Za, B<p+q. The Einstein summation convention will be used.

1. Preliminaries

Let (M, gy, F ) be a p+¢ dimensional Riemannian manifold with a foliation & of
codimension ¢ and a bundle-like metric g, with respect to F ([9]). We denote by V the
Levi-Civita connection with respect to gy. The foliation F defines an integrable subbun-
dle E of the tangent bundle TM over M, and let @ be the normal bundle TM /E of F. Let
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o be the splitting of the exact sequence :
-,
0—E—TM __ Q—0
with ¢(Q)=FE*, where E* denotes the orthogonal complement bundle of £ in TM with
respect to gx4([2]). The metric g, induces the metric g4 on @, that is, -

gols, N=gulo(s), o(t))
for any s, t€I'(Q). Here I'(Q) denotes the set of all sections of the bundle . The basic
adapted (local) frame {X;, X,} of & is given by ‘
X;=a/ax', X,=03/ox"—ALa/ax
in a flat chart U(x’, x*) with respect to F , where A/, are functions on U satisfying g (X,
X,)=0((9], [10]). |
Let D be the transversal Riemannian connection of & |, that is, D : T(TM) XI'(Q)—
I(Q) is given by '
Dys==((X, V) for any XET(EF)
for any s€T(Q), n(Y,)=s
Dys=n(Vxo(s)) for any XE€I(E™)
. for any s€I'(Q)
([2], [3]). We notice that D is torsion-free and metrical with respect to go. The
curvature Rp of D and the Ricci operator pp of & are defined as follows :

RD(X, Y)Sszp yS -D YDXS_D(X, Y)S for any X, YEF(TM)
‘ for any s€I(Q)
pols)=g%Rp(a(s), m(X )m(X ) for any sET(Q)

where (g*) denotes the inverse matrix of (g,4) With g,=gu(X., Xp) ([2],(3],[7]). Let
V(<) be the set of all iﬁfinitesimal automorphisms of &F , thatis, V(F)= {YET(TM) |
[Y, ZJET(E) for any ZET(E)} , and we set V(F)= {s€T(Q) | s==(Y)for any Y&
V(<)) ([2]). Then we have some operators ([2],(3],(5],(61.(7]) :

(i) the transverse Lie differentiation ®(Y) with respect to YEV(F), 8(Y)s
=z([Y, Y,]), where z(Y,)=s,

(ii) the transverse divergence divp, divps=g%go(D x5 (X)),

(iii) the transverse gradient gradp, gradpf =g*X ,(f)z(X 8),

(iv) the Laplacian Ap=dp dp*+dp* dp.

The second fundamentai form « of & is given by

a(X, Y)=—(Dx z)Y) for any X, YEINTM),

and the tension field = of & is given by

T?gjia(Xi, X)(=dp*n),
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where (g7) denotes the inverse matrix of (g;) with g;=g,(X;, X,) (2], [3]). The foliation
“ is called harmonic if 7=0, and & is called totally geodesic if «=0([2], [3]).

2. Transverse fields

Let (M, gu, F) be as in section 1. The definitions of Killing vector field, conformal
vector field, and affine vector field on M are abbreviated. In order to give the definitions
of geometric transverse fields of ¢ , we have to show the following lemma :

LEMMA 2.1. For any XET(E), it holds that ®(X)go=0 and ®(X)D =0.
This lemma'is proved by the direct calculation.

DEFINITION 2.2((2], 3], [5], [6], [7]). If YEV(ZF) satisfies ®(Y)go=0, then s=
z(Y) is called a transverse Killing field (tK.f) of F . If Y€ V() satisfies @(Y)go=2f"
go for some function f on M, then s=#(Y) is called a transverse conformal field (t.c.f.) of
_ &, and f,=f is called the characteristic function of s. If Y€ V(&) satisfies ®(Y)D =
0, then s=#(Y) is called a transverse affine field (t.a.f.) of & .

Then we have

THEOREM 2.3([7]). _

(@) If sisataf of F, then Aps=D ;s +pp(s).and divps = const.

(6) If sisa tKf of F , then Aps=D 4ys+ppls) and divps=0.

(b) If sisatcf of F, then ADs=D,(,,s+pD(s)+(1—%) gradpdivps and fs=%divps.
REMARK 2.4([7]). For any s€ V (&), divps is a foliated function on M.

We set
K(F ) : the set of all transverse Killing fields of &F
C(<) : the set of all transverse conformal fields of &F
A(F ) : the set of all transverse affine fields of & .
For any s, t€ V (F), we define(s, ¢]by
(s, ==Y, Y.]) (Y )=s with Y.€V(F)
z(Y )=t with Y, €V ().

Then we ﬁave

THEOREM 25. K(F), C(F) and A(F) are Lie algebras with respect to the bracket
defined as above.

Now, we have

LEMMA 2.6. For any YEV(F), u, vEL(Q), it holds that (B(Y)go)u, v)=(L(Y)gy)
(o(u),0(v)), where L (Y) denotes the Lie differentiation with respect to Y.
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If fy is a characteristic function of a conformal vector field Y€ V(< ), then, by
Lemma 2.6, fy is a foliated function on M. Thus we have

THEOREM 2.7. If YEV(F) is a conformal vector field on M, then s==(Y) is a ¢
cf. of F whose characteristic function is one of Y.

‘COROLLARY 28. If YEV(F) is a Killing vector field on M, then s==(Y) is a tK.
fof F.

We denote by Yz (resp. Y z+) the E (resp. E*)—component of a vector field ¥ on M.
The following results are easily proved

PROPOSITION 2.9. Let YEV(F) be a conformal vector field on M. Then Yy is «

Killing vector field on M if and only if Y g+ is a conformal vector field on M whose
characteristic function is one of Y.

PROPOSITION 2.10. Let XEI(E) be a Killing vector. field on M and Z& V(EF Yy
T(E*) a conformal vector field on M. Then Y=X+Z is a conformal vector field on M
whose characteristic function is one of Z.

Next, by Jacobi identity, we have that (8(Y)D)xt=0 for any Y€ V(g ), X EI(E), and
tET(Q). Moreover, we have ' )

PROPOSITION 2.11. For any YEV(F) NT(E*), VEDN(EY), and tET(Q), it holds
that (®(Y)D)yt=n(L yV)yo(t)+z(Veu(L y V)e+Vy(L yo(t)e).

The local expression of z(V(L v V)g) is given by—%— Y*V*Z* B4,B" grgy n(X,)
where Y=Y*X,, V=V*X, o(t)=2"X,, and[X,, X,)=B%X,. - Thus we have

PROPOSITION 2.12. Suppose that E* is an integrable subbundle of TM. If YEV(¥)
NT(E*) is an affine vector field on M, then s=z(Y) is a taf of F .

REMARK 2.13. For a t.K.1. (resp. t.cf, t.af)s of F, o(s) (or ¥ with z(¥Y)=s) is
not always a Killing (resp. conformal, affine) vector field on M.

3. Nonsingular transverse Killing fields

Let (M, gy, &) be as in section 2. We consider a nonsingular t K.f. s of F with s
z(Y)E V (F). Let E' be a subbundle of TM generated by E and Y. Then E’ is an
integrable subbundle. Thus we have a new foliation F * defined by E’, and codim &
¢—1. Forany %, v € I'(Q), the equality (B(Y)go)(u, v)=0 implies gy(V oY, o(¥)) -
gu(o(®), VounY)=0. And we easily have that Eu(Vow Y, 0(0)+gulo), VewmY )=
where Y; denotes the E-component of Y. Thus we have thét gV o0(8), oL,
+gulo(u), Vyuo(s)=0. Here o(s) is the E*-component of Y. Therefore, by Theorem 3.1
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in(10], we have

THEOREM 3.1([1]). Let (M, gy, F ) be as above. If therve exists a nonsingular tK.f.
of F , then there exists a foliation F * such that F CF ' and codim F '=codim F —1, and
the metric gy is bundle-like with vespect to F ' ’

Let p : (M, gy)—(B, gp) be a Riemannian subfnersion with connected fibers. Then
we have a foliation F on M whose leaves are fibers p "}(d) with bE€B. If s=z(Y)E
V (F ) is a nonsingular t K.f. of &F , then p,(Y) is a nonsingular Killing vector field on B
and defines an integrable subbundle {p«(Y)} of the tangent bundle 7B over B. Then,
by Pasternack’s theorem[8], we have

THEOREM 3.2((1]). Let p : (M, gu)—(B, gp) be a Riemannian submersion with
connected fibers and F be the foliation on M whose leaves ave fibers of the submersion p.
If there exists a nonsingular tK.f of F , then Pont”(TB)=0 for »r>dim B—1, where
Pont *XTB) denotes the characteristic ving generated by the real Pontryagin classes of TB.

PROOF. Let s=):( Y)YETV (F)bea nonsingular t.K.f. of F . Then p,(Y) defines an
integrable.subbundle {p4(Y)} of TB and a foliation & 5 on B. The codimension of & g
is equal to dim B—1. Since p«(Y) is a Killing vector field on B, g5 is a bundle-like metric
with respect to F 5. Thus, by Pasternack’s vanishing theorem, we have that
Pont™(TB)=0 for »>dimB —1.

4. Harmonic foliations and transverse Killing fields

Let (M, gy, & ) be as in section 1. We have the following theorems :

THEOREM 4.1([7]). Suppose that M is compact and F is harmonic. Then it holds
that fM divp s dM =0 for any s€T(Q).

THEOREM 4.2((7)). Let (M, gu, F ) be as in Theorem 4.1. If s€ V (F) satisfies
A ps=pp(s) and divps=0, then s is a tK.f of &F .
Then we have v

THEOREM 4.3([7]). Let (M, gy, F ) be as in Theorem 4.1. Then every taf. of F is
a tKf of F.

THEOREM 4.4 Let (M, gy, F ) be as in Theorem 4.1. Suppose that F has dense
leaves. Then every t.c.f of F is a tKf of F.

PROOF. Let s be'a tcf. of ¢ . By Theorem 2.3.and Remark 2.4, divp s=¢q-f,isa
foliated function on M. Since & has dense leaves, divp s is a constant function on M.
Thus, by Theorem 4.1, divp s=0. Therefore, Theorem 4.2 implies that s is a t.K.f. of & .
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