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Convergence almost everywhere of Bochner-Riesz means

for radial functions

Yuichi KANJIN
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Abstract. Let (S}”?f)A(g):(l— | & 1}/R?)% (&) and S%f(¢) =sup 0<R<ow | SR 1. It is
shown that S% is bounded on radial functions in LA(R”) when 2#/(n+1+2a) (=p(a) )<p<2n/ (n—
1—2a) and 0< @ <(n—1)/2, and it implies that S%f(¢) converges to f(¢) almost everywhere for a
radial function f ()& L?R" if p(a)<p=2 and 0<a <(n—1)/2. Itis also proved that, for I1<p<
pla) and 0< @ <(n—1)/2, there exists a radial function f(¢) with compact support in L?(R") such
that S%f(¢) diverges almost everywhere.

Let 7(&) be the Fourier transform of a function f(t) on R™: £(&)=2z)"2/g. f ()~ #'dt.
Let

a — —n/2 _ | “;: lz a itg a — ’ a
S=Cm" [ (1-—fp) f@)e dg and - Sif()= sup | SEF()1.

Throughout this paper, we suppose #>1, and use the notation

2n
n—1—2a"

play=—22o and gla) =

For a>(n—1)/2, the covolution kernel of S% is in L'(R"), and thus S% is bounded on

LP(R" for 1=p=<oco. Herz [H] proved that, if S% is restricted to L?(R”) radial functions,

S} is bounded for p(0)<p<gq(0). By applying the complex interpolation theorem of E.

Stein to these results, Wellémd [W] obtained that | S3f 1,<C || f |, for radial f(¢) if p(a)<
p<gla) and 0<a <(n—1)/2. For the maximal 6perator S%, Stein proved that

2(n—1)
n—14+2a

Clfly v;rith a constant C not depending on f(¢).

2(n—1)
n—1—2a

A) [S, §5 O] If

<p< and 0<a=<(n—1)/2, then | Sif |,=

Carbery [C] showed that, if =2, then S% is bounded on L?(R") for p(a)<p < g(a) and 0<
o{<(n—1)/2. Restricting to LP(R") radial functions, we shall show the following :
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THEOREM. Let 0<a<(n—1)/2.

(i) Let f(t)'be radial. Then, for p(a)<p<qg(a), | Sif |,=C | f |» with a constant
C not depending on f(1).

(ii) S%f(2) converges to f(t) almost everywhere for a radzal SJunction f(t) in LAR") zf
pla)<p=2.

(ili) For 1=p<pla), there exists a radial function f(t) with compact support n LP(R7)
such that S}f(t) dwerges almost everywhere.

Hereafter, we let A =#/2—1. For a function g(x) on (0, o), we define the Hankel
transform g (y) of order A by g (9)=/7 g(x) ], (3x) () *x™*'dx, where J , (x) is the Bessel
function of the first kind of order 1. Let

T% g(x)=[F1—- +7 ),, Z ) -/(.lx(;‘)y) n+ gy

T%g(x)= sup | Tgg(x) |, and
0<R<w )

Li= { g(x) on (0, ); I g l1,=([7 | g(x) 1Px*+ dx)P< 0 },

For a radial function f(¢) on R", we define a function g(x) on (0, ) by g(1t)=f), te
R". Then, by Bochner’s formula, we have f(é;-‘)='§( | £1), £€€R” and thus S4f(f)=

%g(1t1) and Saf(t)=T2g(| ¢t | ); teR” The rélation g( | ¢ | )=£(t), tER™ -gives a
norm equivalent isomorphism of L3 onto LP(R") radial functions. Instead _of proving the
theorem, we shall prove the corresponding statements for the operators 7% and T% on
Lp,

PROOF OF (i). We obtain (i) by interpolating between (A) and the following
result :

(B) (K, COROLLARY 3] If p(0)<p < g(0), then | T +& 11=C ||l g |, for glx)=L; with
a constant C not depending on g(x).

The relation stated above between S% and T'% enables us to prove (i) by translating
the lines of [SW, p. 279, /. 134—p. 281, [. 28] into our situation, and we omit it.
PROOF OF (ii). By using routine method, we obtain (ii) from (i ).
. PROOF OF (iii). - The argument is similar to that used in Stanton and Tomas [ST]
to prove divergence of central Fourier series on compact Lie groups, or in Meaney [M]
to prove divergence of Jacobi polynomial series. See also [K] . We state two lemmas.
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LEMMA 1." Let1=p<pla). Define a sequence{@,}s-, of bounded linear functz’orials
of the space L0, 1)= {g€L};supp g0, 1)} by pul@)=[4"g () y*~*dy. Then the
norms || @, || of the functionals @, satisfy that lim,.. | @, | =0

LEMMA 2. Lot i t2—<p<2. If a function glx) in L} satisfies the condition

that T§g(x) converges on a set of positive measure, then limpg_, [ 8*%g (y) y*~=+12dy=0
uniformly in < h<1.

(iii) is a easy consequence of the lemmas. Let 1=p<p(a). We choose p’ so that

it — p<p’<pla). By LEMMA 1, there exists a function g(x) in L{(0, 1) such that

i

lim Sups-. | [5*1 2 () 2~ 2 2y | =

It follows from LEMMA 2 that T4 g(x) diverges almost everywhere in (0, o0) as R —oo.
Since the function g(x) belongs to L%, we have (iii).
Now we prove LEMMA 1. By Fubini’s theorem, we -have

P Gm)

o(g)= fo gx) {f (yx)*

A—a+l/2 a’y} x“.“dx
and thus
1 k41
Loule=| ff *(”") SR gy |t g 1Yy 4 1/g=1.

Let » be an arbitrary positive integer. By the asymptotic formula

(#) Ji@=CE)" cos (z=p)+ 0E™) @—e),  y=@A+Dald

we have
PR N,
|| @ ||q§f | f LAV ALy Amatlf2 gy |9 g2A41 gy
b 9
1 k+1

ng | / y7%c0s (yx—y) dy |xPA+I-A+1e g
7k k

1 . k+l
_Cf ' fy—l ady Iqx21+l (A +3/2)q dx
rlk k

=CA,— CB,, say.

In this proof, the letter C means positive costants not depending or » and &, and it may be
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different in each occurrence. The terms B, satisfy that B,<C »~*~*"%k*, where e = A-
a+1/2) g—2 (L +1). We shall estimate the terms A,. For £ satisfying 27z +vy+ /6= (k+
1)z/6, we put x, =27z +y—=/6)/k and x7=27z+y+=/6)/(k+1). Then, we notice that
—x,=7/(6k) and r/k<x<x,<1. Since cos (xy— =V 3 [2for,sx<xyand k<y<k+
1, it follows that o

AZ_Z_C (k-l—l)-“qffr' x2).+1—(/1+1/2)q dxgc ke r—e—aq—l.
Therefore, we have
I @ 192 Cr—s~ ="} 1—7'"9) k°

for k satisfying 27z +y+=/6< (k+1)z/6. Since £>0 and (1-7'"9>0 for large 7, it
follows that lims-o | @s | =20, which completes the proof of LEMMA 1.
Next, we prove LEMMA 2. Suppose that T%g(x) converges on a set FC(0, o0) of

positive measure. Then, by a theorem concerning typical means, we have that

R ’ .
J70) LB usigy=o(re) (Ro0)

for every x&F (cf. [HR, Ch. 5, THEOREM 22]). By Egorov’s theorem, we have a closed
set E of positive measure such that the above convergence is uniform in x&E. Without
loss of generality, we may assume that E C(g, b) with 0<a< b<oco. It follows from the
second mean value theorem that the integral

R+h

T s iy DY) eas1, e
UR—£g(y)7;—yWy” ty=* dy

converges to 0 as R—oo, uniformly in x&F and 0<2=<1. By asymptotic formula (%), we
have that, as R—oo,
(2 /7[)1/2 R+h

Ug=—"_1vz— £ 2 (9) cos (xy—7y) y*~ = dy

R+h .
+ £ 7 (®) O((x)™™") (xy) 9™ +1y™" dy

(2 z‘x/z
=—ﬁ,7—VR+ W g, say,

and thus | Ve | <C (1 Ug | + | Wg1). In the proof, the letter C means positive con-
stants depending only on ¢, b and 1, and it may be different in each occurrence. We have

R+h

| We | <C | [ Z(y) y dra+¥ynislgy
R
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R+k - R+h
éC (£ | g (y) lquH-l dy)uq . (‘1/; y—-p().+a+3/2)y21+1 dy)up

=0(l) (R—o),

uniformly in 0< k<1, since || g fl1,,<0c0 and (42 +2)/(21 +3+2a)=p=<2. Thus. we have
that V' converges uniformyly in x€FE and 0<A<1 as R—»co. We write V in the form

R+h
[ cos xy dp(y)+sin 1y dxa(9),
R

where dx(y)=(cos y) £ (¥ »*~**2 dy, and

dx.(y)= (sin y) g (y) y*~*+12 dy.

By ’the proof of [Z, Ch. XVI THEOREM (8.4)], which is a trigonometric integral analogue
of the Cantor-Lebesgue theorem, we have that [§** dy,(y)=0(1) (R—o0) uniformly in 0<
h<1 for j=1, 2, and thus

R+h_ R+h .
4 g) yr et dy= £ cos y dx:i(y) + sin y dy(y)=0(1)

(R—o0), uniformly in 0<A<1. This completes the proof of LEMMA 2.
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