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Let Fn(8)=31c;e™™°, where 0< 7 < #2< ... <nn, N 22 and |c,121, and let |Ful,
=J2"|Fx(0)|d6. In the study of rearrangements of - Fourier coefficients, Littlewood
conjectured that C(log N) is the lower bound for the norm ||Ful:. P.J. Cohen [2] proved
that C(log N/log log N)'® is a lower bound, and the terminology “Cohen type
inequality” comes from his contribution to this conjecture. Recently, O.C. McGehee, L.
Pigno and B.P. Smith [9] and S.V. Konjagin [6] solved independently the Littlewood
conjecture. Cohen type inequalities has been established in various other contexts, e.g.,
for Fourier expansions on compact groups or for Jacobi, Laguerre and Hermite
expansions. See, S. Giulini, P.M. Soardi and G. Travaglini [5], B. Dreseler and P.M.
Soardi [3], [4], and C. Markett [8]. . ,

In this note, we will establish a Cohen type inequality for disk polynomial
expansions according to Dreseler and Soardi.

1. Disk polynomials and a Cohen type inequality

Let @ be a positive real number. For nonnegative integers m, n, disk polynomials

R®.(z) are defined by
R (2)=RGalr—(272—1)e ™ M0ym7,

where z=7¢*, mAn=min {m, n} and R{®"(x) is the Jacobi polynomial of degree 7
"and of order (@, 8) normalized so that R¥#(1)=1.

Disk polynomials have the following properties:

(i) R$.(z) is a polynomial of degree m+n in x and y, where z=x+1y.

(i) Let D be the closed unit disk in the complex plane and m. the positive
measure of total mass one on D defined by '
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dma(z)=—a-;—1(1—xz—y’)“dxdy.
Then {R%€%}an-0 is a complete orthogonal system in LD, ma), that is,
[ SR (2)RENZ dmal 2)= HE O msdm,

and f(m, n)=0 for all m, »n implies f=0, where

e — (m+n+a+)(m+a+1)[(n+a+1)
mn=" @+ VD) (@ +1P T (m+1)(n+1)

Z=x—1y, Ome is Kronecker’s symbol and
 Fm, m)= [ f(2)RENRYdma(2).
(ifl) REh(z)=az™Z+bz™ 2"+ ... +dgm mmgn

where a, b and d are constants.

(iv) |RE%(z)=1 on D.

(v) If @=1, 2, 3, ..., then disk polynomials R®.(z) are the spherical functions on
the sphere S2%** considered as the homogeneous space U (@+2)/U(a+1).

There are several papers concerned with disk polynomials. For example, see T.H.
Koornwinder [7] that provides more references. v
Let 1=p=co and put Li=L?(D, ma). For f in Li define the disk polynomial
expansion of f to be V
f2)~ 3 Fm, n)hSuRH(z).
The space L% has a positive convolution structure such that for a=1, 2, 3, .., this
convolution corresponds to one for functions on U (@+2) which are biinvariant by U(a
+1) (cf.[1]). Denotevby % this convolution product in Lk Then it follows that (f*
&) (m, n)=F(m, n)g(m, n) for f and g in Lz For k in LL let T:L5-> L% be the
convolutor defined by f—-k%* f for f in L% and put
Il &lllo.a =ﬁ) I TA o,

b.a =

where |||l denote the norm in L%, that is,

WAva={ [l Pama2)}

for fin L% ,
Put n=(m, »n), 1=(1, 1) and kn+&'n'=(km+k'm’, En+kn') for n=(m, n), n'=
(m’, ') and B, ¥'=0, 1, 2, .... In the following we use the notation R(z)=R%h(2),

R =hig, and 7(n)= F(m, n), and use the letter Cp. for a positive constant depending

only on p, @, which may be different at each occurence.

Theorem. Let F(z) be a finite sum of disk polynomials of the form
Encnh(n")R(,.")(z)’
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where cn are complex numbers with |c.|=1. Denote by no=(mo, n0) an n satisfying the
following; n appears in 3o and all n+1=(m+1, n+1), =1, 2, 3, ... do not appear
n 2n. Then

(Mo 100 )~ 2@+ VIPHEH12( g0 [y mo=nOVZ fr %<1) <o

(1m0 A 720 JEEHDIP=@HID( g0 [ Yimo=RON2 _‘%Z_j'_é)_>p =1,

’

lFNe.az Cr.a

where moV no=max {mo, 7o}.

Let {/An}3-1 be an increasing sequence of finite subsets Ax of {(m, n);, m, n=0, 1,
2, ..}. If Us<iAn={(m, n); m, n=0, 1, 2, ...}, then {An} is called a grouping. The
partial sum operator S with respect to a grouping {Ay} is defined by

Snf= 62/1 f (R)R@RE(2)
for f in L5 By Theorem we have

Corollary. Let 1=p<4la+1)/(2a+3) or 4la+1)/(2a+1)<p=co. Then for
every grouping {An)i-1 there exists a function f in L& such that
lim sup ||Snflpa=c°.

2. Proof of Theorem

Let 4(a+1)/ (2a+1)<p<. For f in Lj with |flp.=<1 we have

IFllsa 2l floaz sup_| [ F * f(2)g(z)dma(z),

gllga=1
where 1/p+1/g=1. Suppose that
@ F(n)=0 for n€{no+11:1=0, 1, 2, ...}

Then we have

[F* £(2)e(@)dmalz)=cah) T (mo) [ R (2)e(2)dma(z),

and thus
() 1Pzl 7 (R AENRE -
We will estimate |R)p« from below. Let % be the least integer such that 22=p.
Then (R{)* has the following form by (iii);
(R = aohf@)RIE+ a1 )1 RS -1+ a2 hig)-a RIS -+

coet QrimamSE) — komn an RIE — km A mi1.

- Put

D™= RigRYE)+ his) 1R+ M- RIS -+

e B kmAann RIE) _ mann
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Then we have (R{)** D@=(R'@)* By the inequality of Cauchy-Schwarz we have
(RS Hleoa <N Dlzll (RE) 2.0
Since |[(R@)4s.<|R@IZE PR3 and Ri(1)=1, we have
IR b2 | DlZE".
On the other hand; ~
I D@2 a= hia)+ HS@ 1+ hiE-a+ ... + R kmAnn
< Cpamind(mo+ 70)(mo A no)
since h@~m*n*(m+n) as m, n—>o0, and thus
(H##) ||R£n‘:)“p.a2 Coa{m&n&(mo + n0)(moAmo)} 2.
Put B=|mo—no| and denote by s the smallest odd integer such that s=2a+1 and
s=B+1. Define f{@ in Lz by

fi(z)=e'™ " cos® ""“’-Q sin®~ ‘2"”’¢ sin ¢,

K2
2

“Then we have |f&lpa<|f & «a<1 and
J? )( )__ a+1)f2ﬂf f(a)(cOS io)R%a)(Cos .% eiO) sin2a+l % d¢d0
(a+1)

where I=s+moAno and z2=cos — e%, 0<¢=m, 0=0<2rm.

"sin I$p sin®¢ R'E)cos ¢)do

if m—n=mo—no, and =0 if m—n+*mo—mno. The functions fi@’ are essentially
introduced by Dreseler and.Soardi, who showed that

[Tsin 16 sin® ¢ Riticos ¢)ds
_ (a+1)(=1)y"""(mo A o+ @ 70— 71| + Do
23-1-!(22)3 1+Z(mq/\no)(a+1)mmm
for n=no, and =0 for n=no—#1, k=1, 2, 3, ..., Mo\ o (see the proof of Lemma 3 in
[4]), where (a)n=a(a+1) ... (a+n—1). Thus we have ‘

- I'(mo+no+a+1)
(####) Ifslo)(no)lzCa2mo+ﬂop(mo_(;_d+1)['(no+a+1)'

Since f@ satisfies (#) and /@ lse=1, it follows from (), () and (H##H) that

. I'(mo+ no+1)
Mmoo (mo+ 1) (no+1)"

By Stirling’s formula and duality we have the theorem.

I Fllp.e = (m20720)~ % (o + 70 )~ (1m0 A 120) ™7
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