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1. Introduction

In this note, we shall make improvements and supplementations to the result in
my paper [3].

Given —o0< 7,< 7,< 00, let I =[7,, 7:) be a compact interval and let C*(/) be the
space of twicely differentiable real functions on /. Denote by C“(/) the space of real
analytic functions on /. Suppose that a, b, ce C%(I), a=0 on I and a(r,)=0=
(=1)'8(r:) (i=0, 1). Then we are concerned with a diffusion operator L acting on
C*(I) with coefficients a, b, c:

2
L=a(x %g—+ b(x )7‘?'?+ clx).
For functions

tu=( A e (E Yoo (B)emn e osisksn)

F— F—1
set
An=max 2 |dal,
0=jan k=j
where || | denotes the supremum norm.

Further assume that a(x)>0 for x € I°=(7, 1) and both 7»; (i=0, 1) are simple
zeros of a(x). Then, in [3), it is proved that the resolvent {G,} for L has the
analyticity preserving property for A>A. (see [3, Theorem)). Furthermore, it is shown
that the condition on L is best possible. The proof of the theorem is based on the
result of Ethier (1) on the differentiability preserving property of the semigroup
associated with L.

In this note, it will be shown that the lower bound A: can be replaced by a
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constant |c*|, where c* is the positive part of the function c, that is, ¢*(x)=max(c(x),
0). The lower bound [c*| is best possible in the general scheme of the semigroup
theory. The proof is carried out by using the characterization of the infinitesimal
generator of the semigroup.

2. Preliminaries

Let C(I) be the space of continuous real functions on / and let
- d* d_
Lo—d(x}y-l-b(x)dx

Using probabilistic methods, Ethier (1] obtains the following result. An extension of L
acting on C*(I) generates a unique strongly continuous non-negative semigroup {7} on
C(I) (see (1, Proposition 1)). If it is further assumed that ¢>0 on /°, the infinitesimal
generator [ of {7} is precisely the restriction of L to Do:
Do={f e CUU)NC*(I°)NLs'C(I):exp(Bo)f’ vanishes at L,-regular
boundaries of I and Lof vanishes at Lo-exit boundaries of [},

where Bo(x)= f %%7 dy (rel®) (see (1, Proposition 2)).

In the paper (2], Norman gives a useful characterization of the boundary

classification with respect to the operator L.. From Theorem 2 in (2], it follows that
if >0 on I° and &'(7:)*0, then

:((?;,' )—0 (ie, b(r;)=0) iff »; is exit,
b(r:)

0< Zir )<1 iff #; is regular,

b(?f

20 )gl iff »:; is entrance.

3. Main result

From the probabilistic representation of the semigroup {7:} (see (1, Proposition
1)), it follows that || 7%|<exp(lc*|¢). Therefore the resolvent {G,} for the operator L,

ie., G,:'—"f:exp(—/lt)?‘zdt is defined for A>|c*|.

Before the result is stated, we shall summarize the assumption on the coefficients
of L.

Assumption. (1) @, b, c € C¥(I),
2) alx)>0 for x € I°,
3) a(ri)=0=(=1)b(r:) (i=0, 1),
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(4) both ». (i=0, 1) are simple zeros of a(x).

Tueorem. Under the assumption,

Ga: C¥I)—»C*(I) for A>|c*l
and consequently
(L=2)(C*(I))=C"(I) for A>el.

Proor. Let f be a fea] analytic function on 7. If A>|c*|, then u=G.f € Do (the
domain of ). Therefore u ¢ C*(I°) and (L—A)u=—f on I°. Hence u & C*(I°) (cf.
the proof of Theorem in (3)). Suppose that i=0. Since A# c(7.), using Lemma in (3],
we see that the equation (L—A)u=—f has a real analytic solution u%, in a
neighborhood of »,. Hence, for some 6 >0, u— uo is a C“-solution of the following
homogeneous equation in (7o, 7e+7):

(1)  (x—7) 0"+ (x—ro)P(x)0'+ Q(x)v=0,

where P(x)=(x—r0)b(x)/a(x) and Q(x)=(x—7)*{c(x)—A}/a(x). By the assumption,
P(7o)=b(r0)/a (ro)=0 and Q(7,)=0. Since the roots of the indicial equation p(p—1)
+ P(ro)o+ Q(7,)=0 for (3.1) relative to x= 7, are 0 and 1— P(7,), a fundamental system
of solutions {v:(x), v2(x)} of (3.1) is given in the following form:

(i) if ;;=1—P(r)=0 or 1, then

vi(x)=(x— ro)“"gnan(x —70)",

va(x)=Avi(x)loglx —ro)+ g}ubn(x— 70)",

where an, A, bn are real numbers, ao*0, and 2 a.(x —70)", 2bn(x—7,)" converge in a
neighborhood of 7o ;
(ii) if o1#0, 1, then

0i(x)=(x—7)" 3 an(x—1o)",

v2(x)= ,gocn(x— ro)",

where @, and ¢, are real numbers, @o#0, co#0, and Za.(x—ro)", Zcalx—r)"
converge in a neighborhood of 7.

Assume that § is sufficiently small. Then there exist constants k2, and k. such
that
(32)  wulx)—wox)=krivn(x)+keva(x)  (re<x<70+0).

In the case (i) with A=0, u(x) is real analytic at ». If A#0 and p1=0 (i.e.,
7o is entrance), then from (3.2)

kav2(x)= u(x)— uo(x)— krvn(x).

The right side is continuous on (7e, 7o+6); so that k,=0. Therefore u(x)= uo(x)

+kivi(x) is real analytic at »,. If A+0 and o,=1 (i.e.,, », is exit), then from (3.2)
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szdo(x— ro}log(x— ru}+k=Aa:(x T roiziog(x o ?’n)
=u(x)— { uo(x)+kyvi(x )+ k2 Alog(x — rn)ézan(x— ru)"“}.

Since the function in { } of the right side is a C*-function on [rs, 7o+48), it has an
extension w(x) of C*(/). On the other hand, CX(7)C %D, (see (1, Lemma 2)). Therefore
u(x)—w(x) belongs to Do ; so that the left side has an extension g(x) of Do. Since 7o
is exit, g(x) satisfies the boundary condition :

lifn,. Log(x)=k:Aaea’ (7,)=0.

Therefore k:=0; so that u(x) is real analytic at ro.
In the case (ii) with 0<p1<1, 7o is regular. From (3.2)
kiao(x—70) +Ekrai(x— 7o)

= u(x )_—{ uo(x)+sz(x )-{—klg]’an(x — ?’n)p””}_

The function in { } of the right side is a C*-function on (7o, 7o+6). Therefore, in the
same way as in the case (i) with A#0 and p,=1, the left side has an extension A(x)
of Do. Since 7o is regular, h(x) satisfies the boundary condition :

lim exp(Bo(x))R (x)=kiaoerexp(B(7))=0,

where B(x) is a continuous function on /. Therefore £ =0: so that u(x)= w(x)
+kav2(x) is real analytic at 7.

Finally, if o1<0, 7 is entrance. Then the right side of

kava(x)=2u(x)— wo(x)— kova(x)

is continunus on (7, 70+3J). Hence k:=0; so that u(x) is real analytic at 7.

The function u(x) is also real analytic at »;. Consequently, u= G.f e C*(I) for
A>|c*l. QED.

In (3), some examples are given to show that the conditions (2) and (4) are
necessary to the conclusion of Theorem. Concerning such examples, we give a remark.

ReMARK. Let L=x"(1—x)Lzz, I=(0, 1) and f(x)=x% Then G.f ¢ C*(I) for

dx
every A>0 (cf. (3, Example 1)). Moreover, from the proof of Theorem, it follows that
G.f is real analytic on (0, 1] for every A>0 and for A+m(m—1) (m=2, 3, - ) the

main singular part of G.f is x!20+1FD,

4. Appendix
The following proposition is used in [3). We give some addition to the proof.

ProrosiTioN. Suppose that a linear ordinary differential equation with analytic
data has a C®-solution in an interval. Then theve exists a formal power-series soluiton
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of the equation at each point of the interval. If it is further assumed that all the
singular points of the equation are regular, the C -solution is a C¥-solution in the
interval.

The proof of the first part is easy. The second part can be shown in the same
way as in the proof of Theorem in (3). However we need the following lemma for
higher order equations.

LemMma. Let Ax (k=1, 2, =+, n) be mutually distinct real numbers and let cx (k

=1, 2, =, n) be complex numbers. If lim 2 caexp(idat)=0 (i=v=T), then cx=0 for
k=1, 2, e, .
Proor. The function gc.!exp( idxt) of the real variable ¢ is a uniformly almost

periodic function. Therefore this lemma is proved by using the following property of
uniformly almost periodic functions: Let f(#) be a uniformly almost periodic function
with l;i-m f(t)=c. Then f({)=c.
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Note added in proof. Let I=[0, 1], and for a negative number b, set L=x (1-x) (d*/dx*) +b
(d/dx). Then C* (I) $Do, and we can show that G.: C* (I) 4 C* (I) for every A >0 and hence G.:
C*(I)+ C= (1) for every A>0. This show that the condition (3) of Assumption is also necessary to
the conclusion of Theorem,



