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Collective Motions in Nature

Syurei Iwao'®
(Received 1st, October, 1983)

Abstract

It is pointed out that the colletive motion plays the important role in the proper
account of the dynamical nature of the earth. In order to perform this program it is
nice to treat the kinematics of the dynamical motion in terms of the spherical
coordinate system. The method should at least be known by geophysicists. However,
it does not seem to be well discussed in the introductory text books of geology as far
as the present author looked at them.

The idea was developed by the stimulation from a recent discovery on the physics
of fundamental particles and fields on the one hand and the various diserstrous
phenomena appeared in the newspapers as a result of the landslips in rainy season in
Japan and those occuring in Mount Himaraja as an affect of the artificial destruction
of nature on the other.

As an example of the collective effect we present the unpublished analysis for the
spectroscopies of pion and charmonium families based on the U(6/2) dynamical
supersymmetry proposed by the author. As an additional example of the group
theoreeical approach we shall present the reult that the recently observed magnetic
moment of = -hyperon agrees with that predicted by the present author a few years
before.

In Appendix the computer program used for the baryon mass formula is given,
based on BASIC, for convenience.

1. Introduction
Grooptheoretically the collective motion may naturally be described by the one of
the continuous Lie group U(6). Here, the number 6 arises from the number of degrees

corresponding to the orbital motion with quantum numbers L=0 and L=2, viz., Z(2L+
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1)=6.

In the relms of nuclear physics and particle-fields it appeared as U(6/4)® and U(6/
2)® respectively. Here U(6/m) represents the group of the so-called supersymmetry
which realizes the boson and fermion degree of freedoms in one and the same group.
We shall not get into the detail of these groups and in stead borrow the ideas from
them. Actually these groups are the subgroups of the Poincaré group which realizes
locally the requirements of general relativity.® The theories of supersymmetry® and
supergravity” are now popular for the high-energy theoretical physicists. In the
category of the latter theory there is the model based on the ones by Kaluza® and
Klein™ which are proposed by the first author in order to unify the electromagnetism
and general relativity and developed further by the latter. The extended theory of
them plans to unify all the known fundamental interactions in nature.®

We shall mention only the scale of energy learnt from the study® of this theory and
its extension to nature. In what follows we shall state the energy scales for particle,
nuclear, atomic and earth physics in this introduction and then describe the approach in
the spherical coordinate system in the next section. All the mathematical methods on
the dynamical treatment of the earth science may be learnt from the appropriate text
books on quantum mechanics or from the classical text books written by Rayleigh.®
The interested scientists may find many more useful references by themselves so we
shall not cite other useful references for that purpose except for some particular ones
in later section.

The energy scale 1/a, learnt from the bound states of quarks (antiquarks) and
gluons are found to be

( ; ¥ ~mZ=(a few hundred MeVy: (1.1)
0.
in the relativistic notion.

The similar value in nuclear physics becomes

—1_ (e mﬁ: (a few ten keV) (1.2)

mnucl anucl
in the non-relativistic limit. Here mgyq and a,,, represent the mass and the radius of
the particular nucleus, respectively. The numerical value is estimated for the mass
number A = 200.

If we come to the atomic world it becomes

ni., e m? = (a few eV). (1.3)

Here m, and auom are the the mass of electron and atomic radius, respectively. Up to
here we have used the so-called natural unit, viz., i =c¢ = 1.
In the same unit the energy scale for the matter may become
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)? mg:{a local gravitational energy). (1.4)

Here mpmayer and amawer should be chosen appropriately. In such a choice one may find
a energy scale suitable to discuss the dynamics of the landslips, earthquakes etc., at
least qualitatively.

In the practical study one can estimate “a local gravitational energy” by making
use of the Newtonian constant, the radius from the center of earth and the density of
the mass at the point in which one is interested.

We have analysed already mass spectroscopy of the pion family once in HPICK-
0115. However, the quantum state specification for the excited states was not
appropriate there. The new result is much better than the one presented before. The
charmonium study is completely new.

The prediction of the magnetic moments of baryons in group theoretical approach
have been perfored by many authors. We have done it based on our predicted effective
quark masses and SU(3) symmetry group, by taking into account the quanching effect
for the identical bound quarks and the QCD enhancement phenomena.”® In this
prediction the magnetic moment of = -hyperon was largely different from the
theoretical result. The recently reported data"" indicate the validity of our approach.
These will be postponed to the final section.

In the’'next section we shall discuss the strategy to study various geology relevant
problems in large.

2. Approach for the Collective Behaviour on Earth

It may be convenient to use the spherical coordinates in order to specify the local
point in and on the earth. They are given by r,, 6 and ¢,.

In order to discuss the problem by Newtonian dynamics is is usual to assume that
they are the function of time."? One can get the equations of motion at each point and
a region sorrounding that point.

The region here may be specified conveniently in terms of manifold Ar;, A4, and
Ady. One can cover all the desired region of the study by the sets of these quantities.

Perhaps the best (modern) approach to the problem can be done in terms of the
classical field theory where the field variables are the function of continuous variables
r, 8, ¢ and t (or x, v, z and t in the Cartesian coordinate system). Here t is the time
variable.

We are quite sure that many diserstrous phenomena in nature on the earth certainly
be cooked by the approach suggested. However, it should be done in combination with
the real phenomena occuring in nature. This is far from the purpose of the present
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article.

What I can say is that Government should spend a certain amount of money in
order to invite the fundamental physicists so as to promote the joint study with the
geologists. Usually the good physicists are never interested in the global problem
which does not contain the fundamental meanings.

The approach suggested seems to be too abstract for the untrained geologists. The
work should also be done from various phases, so I shall quote some introductory texts
from the fluiddynamics.****! A partial answer on the subject may be found from these
references.

Usually the geologists study the crystal structure appearing in minerals and
artificial crystals intensively. Their group theoretical approach is confined, however,
solely to the discrete groups:point and space groups. If they want to explore the
dynamical problems they have to study the continuous groups.*® Before becoming
familiar with them the study of quantum mechanics through the standard texts will be
very useful.

3. Mass Spectra of Pion and Charmonium Families in U(6/2) Dynamical SUSY and the
Comment on =--Magnetic Moment
The quadratic mass difference for hadrons in U(6/2) dynamical supersymmetry up
to the quadratic Casimir invariants in subgroups may be given by

(quadratic mass difference) = b, [z [*(z | +37 — 7 i( +3)*] +% bx

[z :(‘r:+3)—{‘r;+3)] +c[J*J*+1)-JJ+D)], (3.1)
where 7, and ] are the one of the labels (7, 1) specifying the irreducible representation
of B, and that of A, embedded in the U(6/2), respectively, the starred quantities
represent those for the excited states, b,, b/6 and ¢ are the numerical parameters to be
determined experimentally.

The assignment of quantum numbers for two meson families are given in Table I.
The result of the analysis is presented in Table II. The parameters thus determined
are summarized in Table III

In the pion family case the factor 5 improved in chi-square compared to the
previous study even with the inclusion of the less well established states."® In spite of
the large chi-square the fit obtained for the charmonium family seems to be reasonable.
Here we included the the state”” which is not tabulated in ref."®

In conclusion the U(6/2) dynamical SUSY gives the boson-fermion symmetry

(supersymmetry) for the gluons and quarks at least in an approximate manner.
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Classification of pion and Charmonium Families in U(6/2)
Dynamical SUSY.
Pion Family

Chamonium Family

L | h States 71 I States

0 1- p(770) 0 1- J/4:(3100)
0- 7(138) 0- 7(2980)

1 3 (1690) iz Y(3770)
2- A.(1680) 3 1- ¥(3685)

2 3 p(2250) 0- 7c(3592)
& 7(2100) 1= ¥(4030)
1- p"(1250) 1- ¥(4160)

3 1- 0’ (1600) I ¥(4415)
0- 2(1300)

4 1- p(2150)

Table II. Mass Spectra for Pion and Charmonium Families in U(6/2)

Dynamical SUSY.

Pion Family Charmonium Family
7y = mtheor mexpt 7 1" mtheor meXpt
in units of MeV in units of MeV
0 1- 759 769+3 0 g 3097  3096.9+0.1
0- 138 138 0~ 2081 2981+6
1 3= 1708 169145 2 1" 3451 377043
2- 1115 1680430 3 1= 3686 3686.0+0.1
2 3 1785 22504200 0- 3589 3592+5
2" 1230 21004200 4 155 3932  4030+5
1- 630 12641125 1~ 4170  4159+20
3 = 1586 1600420 6 1- 4380 4415+6
0- 1399 13004100
4 1- 2827 21504200
Table Ill. Parameters in Eq.(3.1) in units of (MeV)?.
Family b, Ly c x
Pion 15710.2 —175082 278836 306
Charmonium —1235.76 244310 352496 10764
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We shall only refer the result on the prediction made on the magnetic moment of
Z"-hyperon. Notice also that our result depends mainly on the magnetic moments of
proton and neutron, since the original formula contains only two parameters except for
the effective quark masses determined by spectroscopy of hadrons.

# - (theor) = —0.963263uy (3.2)
will be comapred with the experimental value
Kos- (expt) = —1.00 + 0.12 yy (weighted average). (3.3)

The old experimental value was —1.41 + 0.25 uy

I wanted to indicate some examples as a success of the group theoretical approach
in this section.

The theoretical physicists are quite busy in pursuing the fundamental physics as
exemplified by refs*® 1 shall stop the paper here and recommend to read the
comments in Lack of Education in Japanese Universities, Studies in Humanities, Vol. 21
(1984) if one is interested.
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Appendix. BASIC Program for the Baryon Mass Formula

The program can be applied to meson case by an appropriate change.

The input data correspond to the earliest analysis. The lobic of the programming

is so simple that no additional explanation will be necessary.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

REM “BARYON”

REM “SUSY for BARYONS”

DIM T(20), J(20), M(20), DM(20), A(10, 10), C(10, 10), B(10), X(10)
MA = 939

MA = MA~2

MB = 1440

MB = MB~2

INPUT A

MO=A* MA+ (1—A)* MB
K=11

FOR I=1TO K
READ T(), J{@), M), DM(I)

NEXT
FORI1=1TO K
M() = M(I)"2
DM(I) = 2 * SQR(M(I))* DM(I) + DM(I)~2
NEXT

A1, D=0
Al,2)=0

A, 3)=0

A2, 2)=0

A2, 3)=0

A3, 3 =0
B1)=10

B(2)=10

B@3) =10

FORI1I=1TO K
F =T{*(Td) + 3) —1.75
FF = (T(I)* (TI) + 3))"2 — 3.0625
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300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
459
550
560
570
580
590
600
610
620
630
640
650
660
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G=JO*Jd +1)—.75

A(l, 1) = AQ, 1) + FF~2/DM(I)~2
A(l, 2) = A(1, 2) + FF * F/DM(1)"2
A(l, 3) = A(l, 3) + FF * G/DM(I)"2
A2, 2) = A@2, 2) + F~2/DM(I)"2

A2, 3) = A2, 3) + F * G/DM(I)"2
A3, 3) =A@, 3) + G™2/DM(I)"2

B(1) = B(1) + FF * (M(I) — MA)/DM(I)~2
B(2) = B(2) + F *(M(I) — MA)/DM(I)~2
B(3) = B(3) + G *(M(I) — MA)/DM(I)"2
NEXT

A2, 1) =AQ, 2

A3, 1) = A(L, 3)

A3, 2) = A2, 3)

N=3

FOR1=1 TO N

FOR J=1TO N

CL]) = ALY/AW))

NEXT ]

Cao =0

NEXT I

FOR I1=1TO N

XD =0

NEXT 1

L=1

FORI1I=1TO N

D=0

FOR J=1TO N

D =D + C(L])* X(J)

NEXT J

X(I( = (B()/AL)—D

PRINT X(I),

NEXT I

PRINT L;

FORI=1TON

NEXT I

PRINT



670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
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IF L = 300 THEN 810

L=L+1

GOTO 550

DATA 1.5, 2.5, 1680, 10

DATA 15, 1.5, 1232, 2

DATA 25, 4.5, 2220, 75

DATA 25, 3.5, 1950, 25

DATA 2.5, 2.5, 1905, 15

DATA 25, 1.5, 1720, 55

DATA 2.5, 5, 1710, 30

DATA 35, 5.5, 2420, 35

DATA 3.5, 3.5, 1990, 50

DATA 3.5, 1.5, 1920, 150

DATA 3.5,. 5, 1910, 50

KS=10

FOR1=1TO K
F=T{*(Td) +3) — 175

FF = (T(I)*(TI) + 3))"2 — 3.0625
G= JDO*JId +1)—.75

M =FF % X(1) + F * X(2) + G * X(3) + MA
PRINT T(); J@); SQRM); M; M(I); DM(I)
KS = KS + (M—M(I))*2/DM(I)~2
NEXT I

PRINT “CS ="KS; “A="A
FOR1=1TO N

PRINT “X(I) = "X(I)

NEXT
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