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§ 1. Integral formula for arcs of the unit circle within the closed convex

curve.

Let E, be a 2 — dimensional Euclidian space, C a unit circle and (x, y)
be the orthogonal cartesian coordinates of the center of the circle C.
Then two points P (x5, 1), Q (%. y;) which are on the circle C can be
expressed as follows :
% = % + cos &, %, = x + cos b,
ys = » + sin 6, ys = y + sin 6,

By differentiation we get
dx, = dx — sin 6, d6, dx, = dx — sin 6, do,
dyl = dy + cos 01 dﬁl dyg = dy + cos 02 dﬁz

3

We will use square brackets in order to indicate “exterior multiplication”.
By exterior multiplication
(dx, dy,) = (dx dy} + cos 6, (dx db,] + sin 8, (dy db,]
(dx, dy,) = (dx dy) + cos 6; (dx d6,) + sin 0, (dy db,)

From this we get
(dP dQ) = (dx dy, dx; dy:)
= cos 0, sin 8, (dx d8, dy db,)
4- sin 8, cos 8, (dy db, dx df,)
= sin (6, — 0,) (dx dy d6, do,)

'Now setting
w = 60, — 6, dc = (dx dy)

we obtain
(dP dQ) = sin @ (df; db, dc)

Let K be a convex domain in the plane E,, and P,, P, the intersection points of
the circle C with the circumference of K, and «, § (a<Cf) are the angles between
the lines CP;, CP, and the x — axis respectively. When two points P and Q are

in the convex domain K, we obtain
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Sz gi | sin (8, — 8,) | db; db,

= Si dﬁz{ﬁiz sin (6, — 6,) d6; + Si sin (6, — 8,) df, }
=Si{ 2 — cos (0, — @) — cos (B — 03) } db,

=2{(@F —a) —sin(f—-a)} =2 (o — sinoe)

Since there are two unit circles through the two points P and Q, we have
following ingegral formula :

[ P aQ =2 gi gi [ sin (6, — 8;) | d, db, dc
PQesK

=4§(m~sina>)do

where o stands for the length of the arc of the unit circle C in the domain K.
Consequently we have

F2=4§(w—sinw)dc

where F is the area of the domain K.

4§ 2. Density of hyperplane E,_;.

Many fine integral formulas have been given by W. Blaschke. The
following formula was stated in his “Vorlesungen iiber Integralgeometrie”.
Let E; be a 3 — dimensional Euclidean space, and let E be the plane which is
determined by the three points P,, P, and P; in the space Ej,.
‘Consider an orthogonal cartesian coordinates system
(O: E,, E,, E;) in this space E;
then the density for E can be expressed by the following formula

dE— dP; V) (dP} V) (dP; V)

where f is two times of the area of the triangle P; P; P,

and P1=_O>P,, P2=6P2 and P8=8P3 and V is a unit vector perpendicular to the
plane E, (dP; V) means scalar product of dP; and V. We try first to give a
proof of this formula and next to extend it to the case of n - dimensional
Euclidean space E,. '
Proof : We consider a orthogonal coordinates system (P;A; A;) which is fixed
on the plane E and let A, be a unit vector perpendicular to the plane E. i. e.
A =V.
Then vectors P; can be expressed as follows.

P, =P + r,cos0; A, + r;sin 6; 4, '

(G =1, 2. 8)eeemnmenmmrsiesnnisnienne (1)
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By differentiation we get
dP; = dP + (cos 6; A, + sin 6; A,) dr;
+ (— r;sin 6; A, + r; cos 6, A,) db;
+ r;cos 0; d4;, + r; sin 8; dA, (i=1. 2. 3).

Hence we have
dP; V) =(dP; Ag)
= (dP Ag) + r;cos 0; (dA; A3) + r; sin 0; (dA, Ay)

Now setting (dA; 4;) = do,* we obtain
(dP; A3) = (dP 4;) — r; cos 0; doy, + r; sin 8, do,.

Consequently
((dP, A45) (dP, A3) (dPy Ay))
’ 1 7y cos 6, 71 sin 64
=— 1 75 cos b, 7 Sin 0, ((dP A;) do,y doy]
’ 1 75 cos O 73 sin 04

Since dE = | ((dP, A;) do, do,) |

{ 1 7, cos 0 7y Sin 8
and absolute value of | 1 7, cos 8, 7 Sin 4,
1 73 cos b, rs sin O,

equals to two times of the area of triangle P, P, Py and dE will be taken
always in absolute value, finally we have the following formula :

ap— LGP V) (P V) (@P, V)

Next, we consider the case of n - dimensional Euclidian space E,, and let (O;
E, E,,-----,E,) be an orthogonal cartesian coordinates system in the space E,.
Let E,—; be the (n-1) - dimensional hyperplane which is determined by the n
points Py, Py,--- , P, in the space E,. We consider an orthogonal coordinates
system (P; A;, A, ,A,-1) which is fixed on the hyperplane E,_;, and let 4,
be a unit vector perpendicular to the hyperplane E._;.
Then n vectors P,, P,, ------ , P, can be expressed as follows:

P,=P + ry (I A + 1 45 + ... + liney Any)

Py, =P + 7y (Iyy Ay + Iy 45 + ..... + lpu—y An-1)

* See W. Blasche “Vorlesung tiber Integraj geometrie”.
§ 24.
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where r; is P P; and (i1, Ligeerers Lin)
are direction cosines of the lines P P; (i = 1. 2. 8. .... n).
By differentiation we get

dP,' = dP + (l,'l A1 + l,'g Az + e + l,’ n-1 Aﬂ—l) d]’,‘
+ 7 (dl,'l A1 + dl,'z Az + enee + dl, n—1 An—i)
+ 7r: (ln dA1 + l,‘g dAg +oeaee + l,‘ n—1 dAn—1)

Since (A4; 4;) = ¢;;

we get
dP; A4,) = AP A,) + ri ((U;1 dA; + [, dA; + ..... + I ey
dA. ) A.)
= (dP A,) + 7t (l;; doy + Iy dog + ... +1; wmy doay)
where (d4; A,) = do; (i = 1. 2. ..... n)

Finally we have the following formula
{(dP A, (dP A,) ..... dP, A,))

1 7 Iy 71 iz eene. 71l wmr
1 72 Lo 72 Loz eeee 72 Iz n-g
N ((dP A,) do, do,... dan]
1 7n Tn Lngoeee. T -~
=n!VdE,.,
where V is the volume of the simplex P, P, ..... P,.

Hence we have

dE.., — ((dP, 4.) (dP; 1‘413 ..... (dP, A.))
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