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In the present paper, computational efficiency of the hybrid Monte Carlo (HMC) method applied to the
multicanonical ensemble is studied; the HMC is an equation of motion guided Monte Carlo method. As in
the standard HMC for the canonical ensemble, the multicanonical HMC calculations with high acceptance
ratio show better efficiency; about 60 % acceptance yields the best performance for the system examined.
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1. Introduction

Molecular processes surmounting high potential energy barriers are widely known to be hard to
sufficiently sample configurations using the standard molecular simulation techniques. Phase tran-
sitions and chemical reactions fall into this type of category. Extended ensemble methods have
been developed to overcome this type of sampling problems by introducing artificial statistical
ensembles [1]; a multicanonical method is a promising extended ensemble method, which realizes
the random walk in the potential energy space. The multicanonical Monte Carlo (MC) method has
originally been developed by Berg and Neuhaus [2, 3]; then, the molecular dynamics (MD) [4, 5]
and hybrid Monte Carlo (HMC) [4] algorithms to generate the multicanonical ensemble have been
proposed. Compared to conventional MD and MC methods, the multicanonical MC and MD can
sample a broader range of potential energy landscape without having the system trapped in local
minima; even global minimum energy structures could be visited in a single calculation without
examining various structures as the initial input. Okumura and Okamoto have extended the mul-
ticanonical method to efficiently sample the volume space as well as the potential energy space,
which is referred to be the multibaric-multithermal ensemble [6]. Then, Mitsutake and Okamoto
have generalized the formulation for multidimensional multicanonical ensembles [7], which enables
us to perform a wider-range sampling in parameter spaces besides the potential energy and the vol-
ume. The multicanonical method and its generalization have been applied to basic Lennard-Jones
systems: solid–liquid phase transtion by the multicanonical method [8] and by the multibaric-
multithermal method [9], and gas–liquid interfacial tension [10]. Then, the extended ensemble
methods have been applied to address various challenging problems including protein folding [11],
residual entropy of ice [12], liquid–solid phase transition of water in finite system [13–15], aggre-
gation of polymers [16], hydration free energy change [17], and phase diagram of a fluid in porous
materials [18].
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In the present study, computational efficiency of the HMC method applied to the multicanonical
ensemble is examined. The HMC method is an equation of motion guided Monte Carlo method [19].
The equation of motion is used to generate trial configurations; the proposed trial configuration is
accepted according to a generalized Metropolis criterion. The hybrid Monte Carlo method has been
developed to solve sampling problems related with a non-ergodicity found in numerical simulations
of quantum field theory [20]. Then, the method has been extended to treat condensed matters such
as liquids [21] including quantum many-body systems [22–28]. In the present study, dense rare gas
fluid such as fluid argon is chosen to be a model system to examine the computational efficiency
of the multicanonical HMC method.

2. Method

In this section, we briefly review the multicanonical ensemble method. We consider the system
consisting of N particles whose coordinates and momenta are represented by {r1, . . . , rN} and
{p1, . . . ,pN}, respectively; the potential energy of the system is denoted to be E. In the canonical
ensemble for systems at a temperature T , the distribution function Pc(E, T ) is written by

Pc(E, T ) ∝ n(E)e−E/kBT (1)

where kB is the Boltzmann constant and n(E) is the density of potential energy state. The dis-
tribution function has a bell-type shape whose peak is located at the ensemble average ⟨E⟩. The
standard Monte Carlo and molecular dynamics methods primarily sample configurations around
the peak. Low energy configurations apart from the peak, for example, are hardly visited by the
standard methods. To overcome this type of sampling problems, the multicanonical method has
been developed. The distribution function of the multicanonical ensemble Pmc(E) is given by

Pmc(E) ∝ n(E)e−W (E) = constant (2)

where W (E) is a weight function to realize the constant distribution regarding the potential energy.
The following function clearly generates the constant distribution:

W (E) = lnn(E). (3)

Since the function n(E) is not known a priori, we must first numerically evaluate the weight
function W (E); the method will be described in the Results section.

The normalization constant of the distribution function Pmc(E) is given using Eq. (2),

Zmc =

∫
dEn(E)e−W (E) (4)

=

∫
dr1 · · · drNe−W (E({ri}))

where n(E) =
∫
dr1 · · · drNδ (E − E({ri})). As is evident from the above expression, the mul-

ticanonical density in the configuration space is given by e−W (E({ri})). The Metropolis Monte
Carlo method can be applied to the multicanonical ensemble; the Metropolis criterion is given by
min(1, e−∆W ) where ∆W is the change in the function W after the trial move.

To devise the molecular dynamics and hybrid Monte Carlo methods, we regard the multicanon-
ical distribution to be an artificial canonical distribution at a temperature T0 using the following
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effective potential Emc(E):

Emc(E({ri})) = kBT0W (E({ri})). (5)

Then, the multicanonical density can be written by e−Emc/kBT0 . We can use the canonical molecular
dynamics and hybrid Monte Carlo methods [19] to generate the artificial canonical distribution.
To this end, we define the following Hamiltonian Hmc:

Hmc =

N∑
i=1

p2
i

2mi
+ Emc (6)

where mi is the mass of an i-th particle. Then, we obtain the following equations of motion:

dri
dt

=
∂Hmc

∂pi

=
pi

mi
(7)

dpi

dt
= −∂Hmc

∂ri
= −∂Emc

∂E

∂E

∂ri
.

To introduce the multicanonical molecular dynamics method, we attach the thermostat to the
physical system as in the canonical molecular dynamics. The hybrid Monte Carlo is an another
method to generate the canonical distribution. The hybrid Monte Carlo (HMC) [20–22] is a method
that combines molecular dynamics (MD) and Monte Carlo (MC) techniques. Unlike the standard
MC, whole system coordinates are simultaneously updated by equations of motion. The trial con-
figuration is then accepted or rejected by an appropriate Metropolis criterion as in MC. The HMC
algorithm has been proved to yield the canonical distribution as long as a time-reversible and
volume-preserving numerical integration algorithm is employed to solve the equations of motion;
this condition is needed to guarantee the microscopic detailed balance [21]. To construct the HMC
method for the multicanonical ensemble, the above Hamiltonian Hmc is used to introduce the equa-
tions of motion. The hybrid Monte Carlo method is outlined as follows. We start with an initial
state of the system ({ri}, {pi}) and re-sample momenta {pi} from Maxwell distribution at the
temperature T0. Molecular dynamics based on Eq. (7) is then used to move the whole system for
time increment of nMD×∆t, where ∆t is the time increment of the MD calculation and nMD is the
number of MD steps in one HMC cycle. The trial configuration is then accepted by the probability
PA,

PA = min{1, e−∆Hmc/kBT0} (8)

where ∆Hmc is the change in the total Hamiltonian Hmc after the move of nMD steps.
Here, we comment on advantages of HMC over MD. It is possible to get better computational

efficiency than MD using suitably chosen HMC parameters nMD and ∆t. Usually, larger ∆t than
that of MD can be used in HMC calculations, biases introduced by the resulting Hamiltonian error
are removed by the Metropolis criterion Eq. (8). Optimized HMC parameters and comparison on
the computational efficiency can be found, for example, for standard Lennard-Jones fluids [21] and
quantum many-body systems described by the path integral method [23, 28].

3. Computational details

In the present study, fluid argon is chosen to be a model system. The system is composed of
N = 108 particles interacting with the Lennard-Jones potential. The following potential parameters
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are adopted: σ = 3.41 Å and ϵ/kB = 120 K. Density of the system is set to be ρ = 0.02237 Å
−3

,
corresponding to high density states near the triple point and the temperature T0 = 180 K for the
artificial canonical ensemble with the multicanonical effective potential Emc Eq. (5). To calculate
the force appeared in Eq. (7), the coefficient ∂Emc/∂E is numerically evaluated using Lagrangian
cubic interpolation technique. For each multicanonical HMC run, 1.0 × 106 molecular dynamics
steps are carried out.

4. Results

We first show the multicanonical distribution function. The multicanonical weight function W (E)
can be evaluated using the canonical distribution at a temperature T0:

W (E) = lnn(E) =
E

kBT0
+ lnPc(E, T0) (9)

where energy independent terms are omitted. Since usually the numerical canonical simulation for
the temperature T0 does not cover a sufficiently large E range, we must refine the function W (E)
iteratively using the following relation:

W (n+1)(E) = W (n)(E) + lnP (n)
mc (E) (10)

where the n-th multicanonical distribution P
(n)
mc (E) is obtained by the weight function W (n)(E).

Detailed description on the method of the refinement can be found in Ref. [29]. The distribution by
the refined W (E) is presented in Fig. 1. In the energy range [−648ϵ,−540ϵ], a flat distribution is
found to be obtained. Outside the range, the system is designed to obey the canonical distribution.
This weight function W (E) is used to perform HMC calculations for examining the computational
efficiency.

We next discuss the computational efficiency of the multicanonical HMC method. We exam-
ine the sampling efficiency of the multicanonical HMC method by a quantity called a statistical
inefficiency [30, 31]. This quantity expresses the number of correlated steps needed to obtain in-
dependent sampling for a physical quantity. We calculate the statistical inefficiency in units of
the number of molecular dynamics steps, which means the number of the correlated HMC steps
multiplied by nMD. The parameter nMD is first fixed to be 10. In Fig. 2, we show the time step
∆t dependence of the statistical inefficiency for the potential energy together with the associated
acceptance ratio; the acceptance ratio is found to decrease with increasing ∆t, because large ∆t
causes the large Hamiltonian error when integrating the equations of motion. If the equations of
motion are accurately integrated, corresponding to the high acceptance ratio, the movement in the
phase space is small; this results in the long correlation. On the other hand, if we adopt large ∆t
corresponding to low acceptance ratio, the system moves widely in phase space; however, many
of the trial configurations are rejected due to the large Hamiltonian error, resulting in the long
correlation again. Thus, the statistical inefficiency has a minimum value between high and low
acceptance ratio. For the present system, minimum correlation is found to be given by ∆t = 30
fs. Corresponding acceptance ratio is 64 %. In Fig. 3, the statistical inefficiency and the associated
acceptance ratio is presented for various nMD with ∆t = 30 fs. We find the case of nMD = 10 yields
minimum number of correlated steps. The trend is similar with that found for dense LJ fluids
under the canonical ensemble [21]; slightly smaller acceptance ratio gives better efficiency for the
multicanonical ensemble. This is partly due to the fact that ∆t giving the good efficiency depends
on the energy range. Indeed, the canonical HMC calculation for the system at 180 K is found to
show best efficiency for ∆t = 25 ∼ 30 fs, while the system at 100 K for ∆t = 40 fs.

After multicanonical HMC calculations have been performed, we can estimate the canonical
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average for any temperature. The canonical distribution is represented by the multicanonical dis-
tribution:

Pc(E, T ) ∝ Pmc(E)eW (E)−E/kBT . (11)

Then, the canonical average of a physical quantity A(E) is estimated by

⟨A(E)⟩ =
∫
dEA(E)Pmc(E)eW (E)−E/kBT∫

dEPmc(E)eW (E)−E/kBT
. (12)

In Fig. 4, the average potential energy as a function of temperature is presented for thermodynamic
states covering from near the triple point to the supercritical condition. The averaged potential
energy evaluated by the above reweighting technique is found to be in very good agreement with
the canonical HMC results.

5. Concluding remarks

In the present paper, the computational efficiency of the hybrid Monte Carlo method is examined
to generate the multicanonical ensemble. Dense Lennard-Jones fluid is chosen to be a model system.
As in the standard HMC method for the canonical distribution, higher acceptance ratio around 60
% is found to be computationally efficient. In a HMC step, several molecular dynamics steps are
needed to achieve efficient sampling; for the system examined, 10 molecular dynamics steps are
found to yield best efficiency.
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Figure 1. Unnormalized distribution function for the multicanonical ensemble is plotted, together with the canonical result

at T = 180 K for comparison. While inside dotted vertical lines the distribution is tuned to be flat, outside the range the
distribution is designed to obey the canonical distribution.
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Figure 2. The statistical inefficiency s for the potential energy is presented as a function of ∆t; nMD is fixed to be 10. The

statistical inefficiency is calculated in units of molecular dynamics step. The acceptance ratio is also presented as a function of

∆t.
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Figure 3. The statistical inefficiency s for the potential energy is presented as a function of nMD; ∆t is fixed to be 30 fs. The

statistical inefficiency is calculated in units of molecular dynamics step. The acceptance ratio is also presented as a function of
nMD.
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Figure 4. The average potential energy as a function of the temperature is presented. Blue curve is obtained by the multi-

canonical HMC calculation with the reweighting technique. Red crosses are the results of separately performed canonical HMC
calculations. Error bars for the canonical HMC results are smaller than the size of the cross symbols.
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