Development of economical air filters with high collection performance

メタデータ	言語: jpn
	出版者:
	公開日: 2017-11-16
	キーワード (Ja):
	キーワード (En):
	作成者: 江見, 準, Emi, Hitoshi
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00048953
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

省エネルギー型

超高性能エアフィルターの開発 (研究課題番号62470106)

平成元年度科学研究費補助金(一般研究(B))

研究成果報告書

平成2年3月

研究代表者 江見 準

(金沢大学工学部教授)

はしがき

精密加工技術の進歩と共に、製品歩留まりを維持するために、よ り高度な清浄空間が要求され、クリーンルームでは従来のHEPA (High Efficiency Particulate Air)フィルター(0.3 μmで捕集 効率99.97 %)よりさらに集塵性能の優れたULPA(Ultra Low Penetration Air)フィルター(0.1 μmで捕集効率99.9995 %以 上)がスーパークリーンルームに用いられるようになった。さらに、 半導体プロセスガス供給ラインには、上記フィルターより捕集効率 が数桁大きいメンプレンフィルターが使用されている。このように 捕集効率が現場の要求を満たすに十分な値に到達した現段階では、 集塵性能のもう一つの指標である圧力損失を如何に低くおさえれる かが、コストダウンの面から今後の重要課題である。

本研究では以上の観点から、捕集効率と圧力損失を同時に考慮に 入れた性能評価の指標を導入し、これに理論的考察を加え、省エネ ギー型超高性能フィルターが備えるべき内部構造について検討した。

さらに、将来、高効率低圧損フィルターとして実用化が期待され る帯電フィルターについても性能を評価した。

第	1	章		繊	維	層	フ	1	ル	g	_	Ø	集	廛	性	能	に	及	ぼ	す									
•					内	部	構	造	の	影	響							•	•	•	•	•	•	•	•	•	•	•	1
	1		1		フ	1	ル	Я	-	Ø	集	塵	評	価	の	指	標	•	•	•	•	•	•	•	•	•		•	1
	1		2		集	塵	性	能	に	及	ぼ	す	繊	維	径	Ø	影	響	•	÷	•	•	•	•	•	•	•	•	4
	1		3		集	塵	一件	能	に	及	ぼ	- के	繊	維	厨	向	 の	影	響	•	•	•		•		•			6
	-		4		集	塵	一件	能	に	ন্দ	ぼ	चे	バ	1	$\overline{\mathbf{v}}$	4	。 の	影	- 響	•	•		• '	•				1	0
	1		5		「高	一件	能	化	 ກ	~ t-	ж Ж	に	望	ŧ	1.	in	7	л» Х	ール	勾	_	構	诰	•		•		1	1
	•	•	Ŭ		0	مطسا								~	Ŭ	•	-			1		113	~=					•	•
笛	2	音		¥	$\mathbf{\nu}$	ブ	レ	ン	フ	1	ル	A	_	ഗ	隼	塵	炄	能	•	•	•	•	•	•		•		1	3
75	-				-	-	•	-	-	•	•	-			~~		la ha											•	0
	2		1		¥	ン	ブ	レ	ン	フ	x	ル	Ą	_	_ກ	内	部	構	诰	٤	쓔	鞱		•			•	1	3.
	2	•	2		么	種	۔ بر	、 ン	ブ	レ	・ ン	7	×	v	4	-	л С	州	能	評	価	•	•	•	•	•		1	6
	2	•	3		高	空空	間	菡	×	、 ン	ブ	レ	$\frac{1}{2}$	7	, ,	v	4	<u>ш</u>	ത	透	调	菡	推	定		•		1	9
	2	•	4		低低	空空	問	। इन्द्र	, ,	、 ン	ブ	レ	、 ン	7	י ג	n	ן א		- თ	法	温	া হায়	淮推	定定	•			2	1
	5	•	•	4		1	1111	Nu	c 1	e n	́ л г	Å	fi	1+	ч Аг	ை	, 法	溫	য়	•	•	•	•					2	1 5
		2	•	1	•	2		7	ച	品	ച	*	・ ン	ゴ	12	ッ ン	~	1	エル	Þ	_	ത	涹	溫	7			2	5
		2	•	T	•	2		C	•2	105	v		-	1	-	-		1				U	×24	ACL	-			2	U
篊	Q	呄		т	12	л	h	Ŀ		ĸ		,	112	Þ	_		隹	朣	枇	能		虖	숲	杜				Q	q
YJ	U	-42-			-	1	•	-		1	1	1	10	/		v	*	Æ	щ	HE	v	×		LT.				U	0
	3		1		初	期	描	隹	动	蒸	ത	理	謚	鼦	析			•	•			•	•	•				3	3
	3	•	2		初	加	描	不隹	动	, ক্ল	თ	宝	酚	的	榆	퐑		•	•		•	•						3	7
	Ŭ	3		2		1	3113	不実	驗	装	·/ 署	ハお	يم ب	н J 7 К	下方	沾法	•	•	•			•		•				3	, 7
		3	•	2	•	2		二事	験	ふ結	果	おお	2	び	之者	密	•	•	•		•	•	•	•				3	7
	3	-	3	-	. 隼	塵	性	化能	っ の	経	時	変変	化						•	•	•	. •	•	•				4	1
	Ū	3	υ.	3	~	1		温湿	唐	መ	影	媭	•	•			•			•	•	•						4	1
		3	•	3	•	2		堆	及積	影	ਡ⊻ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ല ഗ	影	鏗					•			•		•	•		•	1	• •
		0	•	3	•	2		۶Æ	-11 -1	4 1 45	L	~/	<i>3</i> 5⁄	Ē														T	J
結		言	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	·.	•	•	•	•	4	6

研究組織

研究代表者:	江見	準	(金沢大学工学部教授)
研究分担者:	金岡	千嘉男	(金沢大学工学部教授)
研究分担者:	大谷	吉生	(金沢大学工学部助手)

研究費用

昭和62年度	4	7	0	0千円
昭和63年度		5	0	0千円
平成元年度		5	0	0千円
計	5	7	0	0千円

研究発表

口頭発表

- 江見準,大谷吉生,金岡千嘉男,安藤伸治,山本卓也,森治 朔:「エアフィルターの集塵性能に及ぼす内部構造の影響」,第6回エア ロゾル科学・技術研究討論会,大阪,1988
- 2) 江見 準,金岡 千嘉男,大谷 吉生,林 敏昭:「エレクトレットフィ ルターの安定性」,第7回空気清浄とコンタミネーションコントロール研 究大会,東京,1988
- 3) H. Emi, C. Kanaoka, Y. Otani and T. Hayashi: "Stability of Charge in High Performance Electret Filters", Annual Meeting of American Association for Aerosol Research, Chapel Hill, USA, 1988
- 4)森 治朔,江見 準,大谷 吉生,安藤 伸治:「メンブレンフィルターの集塵性能に及ぼす内部構造の影響」,第7回エアロゾル科学・技術研究 討論会,群馬,1989
- 5) 森 治朔,江見 準,大谷 吉生:「メンプレンフィルターの集塵性能」 化学工学第22回秋季大会,東京,1989

第1章 繊維層フィルタ集塵性能 に及ぼす内部構造の影響

エアフィルターの集塵性能は、捕集効率だけでなく、圧力損失も 同時に考慮して評価する必要がある。筆者らは、フィルター性能評 価の指標として、透過効率Pの対数と圧力損失Δpの比I=lnP/ Δpを定義し、まず種々の繊維層フィルターの性能を評価した。

さらに、フィルター性能に及ぼすフィルター内部構造(繊維径、 繊維配向)、および、フィルター強度を持たせるために使用されて いるバインダの影響について検討した。

1.1性能評価の指標

フィルター性能を評価するにあたっては、捕集効率と圧力損失を 同時に考慮しなければならない。繊維層フィルターについては、粒 子透過率をPとすると、単一繊維捕集効率 n との間に次の対数透過 式が成り立つ。

 $\ln P = -\frac{4}{\pi} \frac{\alpha}{1-\alpha} \frac{L}{d_{t}} \eta \qquad (1-1)$

一方、圧力損失ΔPは、抵抗係数をC」とすると、

$$\Delta \mathbf{p} = \frac{4}{\pi} \quad \frac{\alpha}{1-\alpha} \quad \frac{\mathbf{L}}{\mathbf{d}_{\mathbf{f}}} \quad \frac{\rho \mathbf{u}^2}{2} \quad \mathbf{C}_{\mathbf{p}} \qquad (1-2)$$

Eqs. (1-1) 、 (1-2) より、

 $I = lnP / \Delta p = (\eta / C_{p}) (2 / \rho u^{2})$ (1-3) I を性能評価の指標 (Filter Index) と呼ぶ。

- 1 -

空間率の低い多孔状フィルターについては、通路モデルを適用す ると、繊維層と類似の関係式

I = ln P / Δ p = (V a*/f) (2 / p u²) (1-4) が成立する。ここで、αはフィルター充填率、Lはフィルター厚さ、 d + は繊維径、uは沪過速度、V a* = V a / uは無次元沈着速度、 f は通路摩擦係数である。Eq. (1-3)またはEq. (1-4)の I は、ln P -Δ p 座標上に、ある条件でのP と Δ p の実測値をプロットしたとき、

Fig.1-1 Relationship between particle penetration and pressure drop of various fibrous air filters.

その点と原点を結ぶ直線の勾配を表わしており、同じフィルターで 厚さLと充填率 a のみを変化させると、データ点は同じ直線上を移 動する。したがって、同じ捕集効率(または圧力損失)に対する二 つのフィルターの圧力損失(または捕集効率)の大小、つまり、性 能の良否は直線の勾配の大小で判断できる。Fig.1-1 は粗フィルタ ーから高性能フィルターに至る各種フィルターに関する実験結果を 示したもので、Eq.(1-3)からも分かるように、沪過速度 u を小さく すると性能が向上する。

Fig.1-2 Penetration through test filters composed of uniform-size fibers.

1.2 集塵性能に及ぼす繊維径の影響

Table 1-1 に示すような、比較的均一な繊維からなる3種類のフィルターを試作し、透過率を測定した結果をFig.1-2 に示す。

Eq. (1-3)で定義されるフィルターの集塵性能の指標は、2/ρu² が実験条件によって定まるので、結局単一捕集効率ηと、抵抗係数 C p によって決まる。Fig.1-2 に示した0.1 μ m の粒子に対する透 過率よりηを求め、η/C p を繊維径 d g に対しプロットしたのが Fig.1-3 である。同図では、Table 1-1 に示したように、SEMに

Fig.1-3 Comparison of ratio of single fiber efficiency to drag coefficienct with predicted one.

code	108B	104	102
packing density ()	0.0299	0.0415	0.0407
filter thickness(m m)	1.15	0.185	0.085
nominal fiber (µm) diameter	1.8	0.45	0.35
measured fiber (μm)	0.67	0.44	0.35
variance (—)	0.67	0.61	0.55
pressure drop (Pa)	225	478	328

Table 1-1 Physical properties of test filters with uniform fibers.

よる繊維径の測定値と、メーカー表示の繊維径には、大きな違いが あるので、両方の繊維径に対してデータをブロットしている。また、 図中の実線と破線は充填率α=0.04、0.03における理論線である⁹。 理論計算結果は、充填率によるη/C ^Dの差はほとんどなく、繊維 径が小さくなるとη/C ^Dの値が大きくなりフィルターの集塵性能 が向上することを示している。ところが、η/C ^Dの実験値は繊維 径が小さくなると大きくなる傾向を示しているものの、この図から は、繊維径の取り方によりブロット点が大きく異なるため、理論計 算結果の妥当性を検証されたとはいえない。電子顕微鏡による測定 では、倍率によって見える繊維と見えない繊維があり、また、フィ ルターの表と裏では平均繊維径が違い、フィルターの内部も観察す ることが困難なため正確な繊維径を求めることはかなり難しい。そ こで、平均繊維径を求めるもう一つの方法として、BETにより比 表面積を求め、比表面積より平均繊維径と繊維径分散oの関係を示 したのがFig.1-4 である。o一定の場合、コード番号が小さくなる と繊維径が小さくなるという傾向はメーカー表示および測定した繊 維径の傾向と一致しているが、平均繊維径、繊維分散のいずれかを 特定しないかぎり、この図よりd.を求めることはできない。

Fig.1-4 Relationship between average fiber diameter and variance of fiber diameter.

1.3 集塵性能に及ぼす繊維配向の影響

フィルターの沪過理論はすべての繊維が流れに対し垂直であると いう仮定のもとに組み立てられている。ところが、実際のフィルタ ーを観察すると、繊維は流れに対し垂直でないが繊維がかなり存在

÷

している。そこで、ここでは極端な例として、流れに対して繊維が 垂直なな場合と並行な場合についてフィルター性能を比較する。粒 子が拡散により捕集される場合、捕集効率は繊維の全表面積により 決定され繊維の配向にはあまり依存しないと考えられる。また、圧 力損失は繊維を並行に配列したほうがより小さいことは容易に推測 される。つまり、拡散域においては流れに繊維を並行に配列したほ うが集塵性能が優れていると予測される。そこで、並行配列の場合 について捕集効率と圧力損失を理論的に求め、垂直配列の場合¹¹と 比較したのがFig.1-5 である。Fig.1-5 を見ると、並行配列の場合

Fig.1-5 Comparison of calculated particle penetration through parallel-fiber filter with that through perpendicularfiber filter.

L (フィルターの厚み)が増加すると集塵性能が低下するものの、 計算範囲では、垂直配列よりも並行配列の方が性能がよくなってい るのがわかる。このことを実験的に確かめるため、繊維が一定の方 向性をもつフィルターを試作し、沪過実験を行った。試作フィルタ ーは、繊維径11.2μmのシガレットフィルターに用いられるアセテ ート繊維よりなり、並行配列の場合は厚さ、2.1cm、4.0cm、垂直

Fig.1-6 Experimental particle penetration through parallel and perpendicular fiber filters.

配列の場合は2.1cm である。また充填率もほぼ等しくした。透過率 の測定結果をFig.1-6 に示す。L=2.1cm のフィルターについて比 較すると、理論の場合とは反対に垂直配列の方が透過率は小さくな っている。これは、並行配列の方が充填の不均一による影響が大き いためと思われる。そこで、Fig.1-6 の結果から、粒径が0.06μm と0.1 μmの場合の透過率を圧力損失に対しプロットしたのがFig. 1-7 である。この図より、いずれの粒径においても、繊維を流れに 対し並行に配列したものの方が垂直に配列したものより、直線の傾

Fig.1-7 Influence of fiber orientation on filter performance.

きが大きく集塵性能が優れているのが確認できた。しかし、並行配 列の理論で見られたLが増加すると集塵性能が低下する傾向は見ら れなかった。これは、理論における繊維に沿った流れと実際の流れ の違いによると思われる。

1.4 集塵性能に及ぼすバインダの影響

市販されているHEPAフィルターをSEMで見ると、膜状に広 がった繊維をつなぎ止めているバインダが観察される。このバイン ダは繊維径を見掛け上大きくしフィルター性能を低下させていると 考えられる。

そこで、バインダのフィルター性能への影響を見るため、平均繊 維径が約0.6 μmでバインダの含有量が異なる4種類のフィルター を試作し、350 ℃で熱処理してバインダを揮散させる前後で、透過 率と圧力損失を測定した。その結果をFig.1-8 に示す。

Fig.1-8 より、バインダが初めから無かったものや、バインダを 揮散させた後、透過率、圧力損失がともに小さくなっていることか ら、バインダは捕集効率を下げ、圧力損失を増加させ、フィルター 性能を低下させていることがわかる。しかし、バインダをすべて取 り除けば、フィルター強度が低下し、また、繊維の飛散が起きるた め、必要最小限に留めておくことが望まれる。 1)繊維の微細化・・・・ I値を大きくするにはEq.(1-3)のη/Cp を大きくすればよい。η/CpはFig.1-3に示すようにd xが小さ いほど大きくなる。したがって、dx=0.5μm近辺の繊維を使用 している通常のHEPAフィルターの場合、0.1~0.2μmの繊維 の割合を増やせば I値を大きくできる。

Fig.1-8 Influence of binder on the collection performence of fibrous filter.

2) 繊維配向の三次元化 … … 現状の H E P A フィルターの繊維配 列は流れに垂直な面内でランダム配向をしている。主たる捕集機構 であるブラウン拡散による単一繊維捕集効率の繊維配向による依存 度は圧力損失の依存度に比べて小さいので、拡散支配域では、平行 配列繊維層の方が I 値が大きいことが分かる。したがって、現状の フィルター製造技術を改善し平行配列繊維の割合を増やした三次元 構造の繊維層にする必要がある。

3) バインダ含有量の低減と均一化…… H E P A フィルターの電 顕写真を注意深く観察すると、所々に繊維間にまたがるバインダ(樹脂) が形成されているのが分かる。この部分は、単一繊維の効率 を低下させるだけでなく圧力損失も増加させる。バインダは、フィ ルターの強度を維持するのに不可欠であるが、量を最小限に止めし かも均一に分布させることがフィルターの高性能化へつながる。

第2章 メンブレンフィルターの 集塵性能

メンブレンフィルターは、液沪過用のフィルターとして以前から 使用されているが、最近では、捕集効率が高くフィルターからの繊 維の飛散がないため、高圧プロセスガスのインラインフィルターと しての需要が高まってきている、メンブレンフィルターの構造は製 造法により大きく異なり、空間率も数%から90%を超えるものま で、多種多様なものがある.

本章では、多種多様なメンブレンフィルターの内部構造を走査型 電子顕微鏡で観察し、繊維状から多孔板状のものに五つのグループ に分類し、各グループを代表するフィルターの捕集効率と圧力損失 を測定し、第1章で提案したフィルター性能評価の指標を用いて、 フィルター性能と内部構造の関係について検討した。さらに、繊維 状フィルターについては、粒子が繊維の周りを通過する際に捕集さ れる(External flow model)を用いて透過率の推定を行い、また、 比較的空間率の小さいメンブレンフィルターに対しては、フィルタ ー内部の空隙を気流が通過する際に捕集される(Internal flow model)により透過率の推定を行った。

2.1 メンブレンフィルターの内部構造と分類。

メンブレンフィルターは、その素材、製法等により、表面・内部 構造は多種多様である.これらのフィルターを走査型電子顕微鏡で 観察すると、内部構造は短い繊維状のもの、網目状のもの、不均一

- 13 -

ers and their properties.	Density Porosity Fiber dia. of fiber (g/cm) $(\%)$ (μm)	2.20 90 0.125	2.20 - 0.105	2.19 87 0.225	2.19 88 0.52	1.55 83.2 -	1.50 83 * 2.72	1.50 81 -	1.50 75.1 * 0.41	58.4 * 1.03	- 39.1 *0.418
ification of various me	Vame Key poresiz (μm)	oretex1 🔶 5.0	oretex2 + 5.0	P-500 O 5.0	P-500 • 5.0	A500 😽 5.0	SSWP 🔲 3.0	RAWP 🔳 📕 1.2	AW03 🛆 –	.pore A 1.0	.pore 🔺 0.4
1 Classification of	re Name Ke	ike Goretex1 <	n) Goretex2 •	ike WP-500 C	FP-500	e A500 7	rates SSWP [RAWP	AW03 2	ike N.pore Z	N. pore
Table 2-	Structur	Fiberli		Fiberli	tion) tion)	3 Netlike	Agglomer		Ľ	Poreli	

Fig.2-1 Scanning electronmicrographs of various membrane filters

な凝集粒子状のもの, Nuclepore filterのように多孔板状のものな どがある. 筆者らは, これらを五つのグループに分類整理し, それ ぞれ次のような形状名を付けた.

① 放射状繊維 (Fiber-like in random direction)

②綾目状繊維 (Fiber-like in one direction)

③網目模様 (Net-like)

④凝集粒模様 (Aggromerates and porous)

⑤多孔板状 (Pore-like)

Table 2-1 に各グループの代表的なフィルターとその物性値を示し, Fig. 2-1 に内部構造の電子顕微鏡写真を示す.

2.2 各種メンブレンフィルターの性能評価

Table 2-1 に示した各グループを代表するフィルターについて、 繊維層フィルターと同様に粒子透過率と圧力損失を測定した. Fig. 2-2 は、沪過速度 5 cm/sにおける粒子透過率 P をエアロゾル粒子径 d, に対してプロットしたもので、いずれのフィルターの透過率も、 粒子径が約0.1 μmで最大透過率を持っており、繊維層フィルター と同様な上に凸の透過率曲線となっている. これは粒子径が小さい ところでは粒子は拡散により、また大きいところではさえぎりによ り捕集されているためである.

各フィルターの性能を比較するため,第1章で提案したフィルター ー性能評価の指標を導入する. Fig. 2-3 は,最大透過粒径0.1 μm における各フィルターの透過率をそれぞれのフィルターの圧力損失 に対してプロットしたものである.この図の各直線の勾配が性能評

Fig.2-2 Particle penetration through various membrane filters as a function of particle size.

Fig. 2-3 Relationship between particle penetration and pressure drop of various filters. Symbols used in this figure are given in Table 2-1.

価の指標 I に等しく、勾配の急なフィルターほど性能が良いフィル ターである.この図を見ると、各種メンブレンフィルターの性能は 繊維層フィルターである HEPAフィルターと Nuclepore filterの間に あり、Table 2-2 に示したグループ②、③、④と繊維層フィルター から多孔板状になるにつれて、直線の勾配は小さくなっており、繊 維状構造から離れるほどフィルター性能が悪くなるのが分かる.ま た、Goretex 1、2の勾配は、市販のHEPAフィルターの勾配よりもお おきく、性能が良くなっている.これは、グループ①の繊維径が 0.1~0.2 μmとHEPAフィルターの繊維径0.3~0.5 μmに比べて 細いためで、第1章で示したフィルター性能に及ぼす繊維径の理論 計算結果と一致している.

2.3 高空間率メンブレンフィルターの透過率推定

メンブレンフィルターの中でも、比較的繊維層フィルターの構造 に似た繊維状フィルターは、空間率も大きいため、これまで繊維層 フィルターに対して展開されてきた沪過理論が適用できるものと考 えられる。Fig. 2-4 は、Kirschらの提案した半実験式により透過率 を推定した結果と実験値を比較したものであるが、両者は一致して いるとは言い難い.これは、メンブレンフィルターの構造が、繊維 層フィルターに比べて不均一 (例えば、積層状のメンブレンフィル ターではフィルターの裏表で構造が大きく異なることなど)である ことに起因しており、今後、従来の沪過理論を繊維状のメンプレン フィルター適用するには、この不均一性を以下に考慮するかが重要 な課題と考えられる.

Fig.2-4 Comparison of experimental particle penetrations and predicted ones for fiber-like membrane filters.

2.4 低空間率メンブレンフィルターの透過率推定

空間率の小さいメンブレンフィル ターの内部は流路が複雑に入り組ん だ構造をしており,従来,繊維層フ ィルターに対して発展されてきた沪 過理論は適用できない.したがって, このようなメンブレンフィルターに 対しては,粒子が通路を通過する際 に捕集される流路モデル(Internal flow model)を適用するのが妥当と 考えられる.

Fig. 2-5 Collection unit for relatively high-packing density membrane filters.

いま、このような空間率の比較的低いフィルターの最小捕集単位 として、複雑な流路の分岐点から分岐点までの直円管(Fig.2-5 : このモデルでは、簡略化のため、捕集単位の外径と長さは等しいも のとしている)を考えると、沪過速度が小さく粒子径がサブミクロ ン以下の場合、粒子は表面および孔内部での拡散・さえぎりにより 捕集される.したがって、最小捕集単位の捕集効率ヵは次式により 与えることができる.

 $\eta = (\eta_{DR}) s + (1 - (\eta_{DR}) s) (\eta_{DR}) P$ (2-1) ここで、 η_{DR} は拡散・さえぎりによる捕集効率、孫字S、Pはそれ ぞれ捕集体表面、孔内部を表す、直円管のみからなる多孔板状フィ ルターのNuclepore filterでは、最小捕集単位の長さはフィルター の厚さしに等しく、Eq. (2-1) の η はフィルター全体の捕集効率E に等しい、また、多数個の最小捕集単位から構成されるフィルター

- 21 -

では,フィルター内部の微小体積での物質収支をとることにより, 最小捕集単位の捕集効率 η とフィルター全体の透過率 E は次式によ り関係づけられる.

 $l n P = -L \eta \neq \ell$ (2-2)

ここで, ℓはフィルターの孔径 d i と空間率 ε より次式で与えられ るものとする.

 $\ell = d_i / \varepsilon$ (2-3)

以上のことより、最小捕集単位の表面での捕集効率(η DR) s お よび孔内部の捕集効率(η DR) P を求めることができれば、 Eqs. (2-1),(2-2) によりフィルターの捕集効率が推定できる.

最小捕集単位表面での捕集効率(η DR) s

(η DR) s を理論的に求めるためには,孔に絞られる流れを用い て、さえぎりを考慮した境界条件の下で対流拡散方程式を解く必要 あるが、ここでは、拡散による捕集を無視し、さえぎりのみにより 粒子が孔入口部で捕集されるものとする. Fig. 2-6 は、クリーピン グ流れ (Re=0) と一様な流れの場合について、さえぎりによる 捕集効率 η R を示したもので、この図より、ざえぎりパラメータ R = d p / d i と空間率 ε の関数として η R を求めることができる. (2) 孔内部での捕集効率 (η DR) P

円管内を気流が充分発達した層流で流れる場合には, Gormley and Kennedy により次の解析解が与えられている²⁾

 $P = 0.8191 \exp(-3.657\beta) + 0.0975 \exp(-22.3\beta)$

+ 0.0325 exp(-57 β) + · · · for $\beta \ge 0.0312$ P = 1 - 2.56 $\beta^{2/3}$ + 1.2 β + 0.177 $\beta^{4/3}$ + · · ·

for
$$\beta < 0.0312$$
 (2-4)

Fig.2-6 Interceptional collection efficiency of the collection unit at the inlet of pore.

ここで、 β は円管内の拡散沈着に関する無次元パラメータで、 β = 4 D L / (d_i² u), D は拡散係数である.メンプレンフィルタ ーのように孔径の小さいフィルターでは、Eq. (2-4) に希薄流れの 影響、および粒子のさえぎりを考慮する必要があると考えられる. Fig. 2-7 は、希薄流れの影響 (Kn = 2 λ / d_i, λ :空気分子の平 均自由行程)と、粒子のさえぎり (R = d_p / d_i)の透過率への 影響を数値計算により求めたものである.図より、Knと R のいずれ が大きくなっても、透過率は大きくなっており、捕集効率が高くな るのが分かる.したがって、この図より、孔内部での拡散さえぎり 捕集効率 (η DR) p は、 β および Knと R の関数として与えることが できる.

Fig. 2-7 Influence of Knudsen number and interception parameter on the particle penetration through pore.

2.4.1 Nuclepore filterの透過率

Fig. 2-8 は、多孔板状フィルターであるNuclepore filter (ε = 0.03~0.15) の透過率を粒径に対してプロットしたものである. 孔 径が小さいほど透過率は低く、粒子は粒径が小さいところでは拡散 により、また大きいところではさえぎりにより捕集されるため、い ずれの孔径のフィルターも上に凸の曲線となっており、最大透過粒 径は0.1 µm近辺にある. この図に示した透過率の実測値、および Fig. 2-6 より求まる表面での捕集効率 (η DR) s を Bq. (2-1) に代 入して孔内部での捕集効率 (η DR) P を求め、 P P = 1 - (η DR) s を β に対してプロットしたのが、Fig. 2-9 である. 同図には、Gormley and Kennedy の式 (破線) およびFig. 2-7 より求めた推定線 (実線) も示している. 孔径が 0.4 µmの場合かなり推定線が実験 値を下まわっているが、推定線は実験値の傾向を良く表しており、 Nuclepore filterの透過率は、本モデルによりほぼ推定できると思 われる.

2.4.2 その他のメンブレンフィルターの透過率

Fig. 2-1 に示したメンブレンフィルターのうち, 網目状のフィル ター(e)A500, 凝集粒状のフィルター(f)SSWP などは, 空間率が75 %程度でかなり繊維が密に充塡されているため, 流路モデルが適用 できると考えられる. Fig. 2-10は, このような網目状, 凝集粒状の フィルターに分類できるメンブレンフィルターの透過率を示したも のである. Nuclepore filterの透過率と同様に, いずれのフィルタ ーも上に凸の透過率曲線となっており, 粒径の小さいところでは粒 子は拡散により, また大きいところではさえぎりにより捕集されて

Fig.2-8 Particle penetration through nuclepore filters with various pore sizes.

Fig.2-9 Comparison of experimental particle penetration through nuclepore filters with those predicted by the present model.

Fig.2-10 Particle penetration through relatively highpacking density membrane filters.

いる.同じ種類のフィルターでは,孔径 d i (メーカ表示による公称径)が小さいと透過率は低くなっているが,フィルターの種類が 異なると同じ孔径であっても透過率にはかなりの差があり,公称の 孔径だけではメンプレンフィルターの粒子透過率を規定できないこ とが分かる.

Fig. 2-11は、A500のフィルターの透過率を、前述のモデルにより 推定した結果(1 点鎖線)と比較したものである.公称径である d ip=5 μmを用いた場合の推定線は、粒径が大きいところでもさ えぎりが働かないため、粒径に対して単調に増加する曲線となって いる.さらに、推定線は、拡散が支配的と考えられる粒径が小さい ところのデータとも大きな隔たりがあり、孔径をさらに大きな7.8 μmと仮定しないと実験値と推定線が一致しないのが分かる.この 原因としては、Fig. 2-12に示すように、フィルター内部は複雑な構 造をしているため通路は一様な径でなく、粒子は、通路の狭くなっ ているところでさえぎりにより、また、大部分の表面積を占める公 称径よりも大きな通路で拡散により捕集されていることが考えられ る.

Fig.2-12 Collection unit for relatively highpacking density membrane filters.

- 29 -

Fig.2-11 Comparison of experimental particle penetration of A500 filter with predicted ones.

したがって、複雑な通路を持つメンブレンフィルターでは、さえぎ り捕集に有効な孔径と拡散捕集に有効な孔径とを別々に分けて考え る必要があると思われる。Fig. 2-12の右図は、このようなメンブレ ンフィルターの最小捕集単位として考えられるものうち、最も簡単 なものを示したもので、入口部の孔径の小さいところ(孔径 d is) で粒子はさえぎりにより、また孔径 d ipの円管内で拡散により捕集 されると考えたものである.この最小捕集単位の各部の寸法を d is

Fig.2-13 Comparison of experimental particle penetration through SMWP filter with predicted ones.

=1.6 µm, d_{ip}=7.8 µmとして透過率を推定したのが, Fig.2-11の実線である.推定線は,最大透過率付近で多少の実験値より高 くなっているが,かなり良く実験値の傾向を表現できている.また、 Fig.2-13は,凝集粒状のフィルターであるSMWPについて,透過率の 推定線と実験値を比較したものであるが,このフィルターでは,d is=1.6 µm, d_{ip}=6.9 µmと仮定することにより,推定線は実 験データをうまく表現できることがわかる.なお,これらFigs.2-11,13に示したフィルターの公称孔径はいずれも5 µmであり,拡 散捕集に有効な孔径 d_{ip}と比較的近い値となっている.公称の孔径 は,おもにバブリングテストと呼ばれる簡単な試験により決定され ているため,粒子の捕集に有効な径とは大きく異なっても不思議で はないと考えられるが,このように比較的近い値になったことは興 味深い.

第3章 エレクトレットフィルタ ーの安定性

エレクトレット繊維は、半永久的に分極した帯電繊維で、このよ うな繊維を充填して作られたエレクトレットフィルターは静電気力 を利用することにより、従来の機械的沪過では達成困難である低圧 損失、高捕集効率を目指したもので、省エネルギー型フィルターと して注目されている。しかし、エレクトレットフィルターは長時間 使用すると集塵性能が低下するといわれているが、これについて定 量的に詳しく述べた研究は少ない。そこで本研究では、まず初期集 塵性能を理論と実験の両面から求め比較検討したのち、長時間使用 した場合の湿度および堆積粒子による集塵性能の経時変化について 検討を行った。

3.1 初期捕集効率の理論解析

エレクトレットフィルター繊維の帯電量分布のモデルとして、Fig. 3-1 に示すものを用いた。直径d r、比誘電率 ε r、円柱表面の半 分は正、残り半分は負に分極しており、表面電荷密度は正、負の境 界で 0、境界から 9 0°で最大電荷密度 σ。となり最大電荷密度の 回転角から角度 φ での表面電荷密度をσ(φ) = σ。cos φ と表わす ことができると仮定する³⁾。この場合、平均表面電荷密度は、σ = 2 σ。/πとなる。気流の流れ方向と平行に円柱中心を原点として x 軸をとり、 x 軸からの最大電荷密度の回転角をr とすると、円柱 近傍の電界強度のr、 θ 方向成分は次式で表わすことができる。

Fig.3-1 Electrostatic charge distribution on an electret fiber.

$$E_{r} = \frac{\pi \sigma d_{f}^{2} \cos ((\vartheta - \gamma))}{8 \varepsilon_{0} (1 + \varepsilon_{f}) r^{2}}$$

$$E_{r} = \frac{\pi \sigma d_{f}^{2} \sin (\theta - \gamma)}{8 \varepsilon_{0} (1 + \varepsilon_{f}) r^{2}}$$
(3-1)

ここで、 ε 。は真空の誘電率である。繊維のみ帯電している場合 に働く誘起力、および繊維、粒子と共に帯電している場合に働くク ーロン力をそれぞれ求め、Eq. (3-2)で与えられる慣性項を無視した 粒子の運動方程式に代入し、 $r = 2 r / d_r$, u = u / u, v = v/ u, $t = 2 t u / d_r$ で無次元化すると、誘起力が働く場合の粒 子の無次元運動方程式はEq. (3-3)となる。

$$\mathbf{v} = \mathbf{u} + \mathbf{B} \mathbf{F} \tag{3-2}$$

$$\mathbf{v}_{\mathbf{r}} = \frac{\mathbf{d} \mathbf{r}}{\mathbf{d} \mathbf{t}} = \mathbf{u}_{\mathbf{r}} - \mathbf{K}_{\mathbf{I}\mathbf{n}} \frac{1}{r^{5}}, \quad \mathbf{v} = \mathbf{r} \frac{\mathbf{d} \theta}{\mathbf{d} \mathbf{t}} = \mathbf{u}$$
 (3-3)

$$K_{1n} = \frac{1}{6} \quad \frac{\varepsilon_{p} - 1}{\varepsilon_{p} + 2} \quad \frac{C_{c} \pi_{2} \sigma_{2} d_{p}^{2}}{\varepsilon_{0} (1 + \varepsilon_{f})^{2} \mu d_{f} u} \quad (3-4)$$

K inは誘起力と流体抗力の大きさの比を表わす無次元パラメータ で、誘起力パラメータと呼ばれる。円柱回りの流れに桑原流れを用 い、Eq. (3-3)を桑原セル境界上から出発点高さを種々に変えて逐次 積分して粒子軌跡を計算し、限界粒子軌跡を得ることにより単一繊 維捕集効率を求めた。クーロン力が働く場合の単一繊維捕集効率は、 Brown が行ったと同様、次式で表わされる粒子の流れ関数 ψ p を導 入し、流体の流れ関数 ψに桑原流れを用いて、Eq. (3-5)式から限界 粒子軌跡を得ることにより求めた。

$$\psi_{\mathbf{p}} = \psi - K_{\mathbf{c}} \frac{\sin (\theta - \gamma)}{\mathbf{r}}$$

$$K_{\mathbf{c}} = \frac{C_{\mathbf{c}} n_{\mathbf{p}} e \sigma}{6 \epsilon_{\mathbf{0}} (1 + \epsilon_{\mathbf{c}}) \mu d_{\mathbf{p}} u}$$

$$(3-5)$$

K 。クーロン力と流体抗力の大きさの比を表わす無次元パラメー タでクーロンカパラメータと呼ばれる。

Fig. 3-2 に粒子軌跡計算結果の一例を示す。(a)は誘起力が働 く場合であり、質点粒子の場合、限界粒子軌跡をとる粒子は後方淀 み点で捕集されることから粒子は円柱全面に沈着することがわかる。 (b)(c)はクーロン力が働く場合であり、粒子軌跡はγに大き く依存し、質点粒子は粒子のもつ電荷と反対極性の円柱表面全てに 沈着するのでは無く、捕集される範囲はγにより異なることがわか る。 αを変化させて計算を行った結果、粒子がほぼ質点と見なせる 場合誘起力による単一繊維捕集効率η inは次の近似式で表わすこと ができる。

Fig. 3-2 Examples of calculated particle trajectories.

 $\eta_{1n} = 1.48 K_{1n}^{0.93}$ $(10^{-4} < K_{1n} \le 10^{-2})$ $\eta_{1n} = 0.51 h_{\kappa}^{-0.35} K_{1n}^{0.73}$ $(10^{-2} < K_{1n} < 10^{0})$ (3-7) $\eta_{1n} = 0.38 h_{\kappa}^{-0.49} K_{1n}^{0.44}$ $(10^{0} < K_{1n} < 10^{2})$ ここで h_{\kappa} = -0.5 ln $\alpha + \alpha - 0.25 \alpha^{2} - 0.75 d 桑原の水力学因$ 子である。またクーロン力が働く場合は実際のフィルター内では γ $d = 2\sqrt{2} \Delta c$ あると考えられるので全面の η_{c} を平均化した単一繊 維捕集効率を η_{c} とすると、次の近似式で表わされる。 $\eta_{c} = 0.78 K_{c}$ $(10^{-3} < K_{c} < 10^{-1})$

 $\eta_{\rm c} = 0.59 h_{\rm k}^{-0.17} K_{\rm c}^{0.83} \qquad (10^{-3} < K_{\rm c} < 10^{-1})$ (3-8)

- 3.2 初期捕集効率の実験的検討
- 3.2.1 実験装置および方法

実験装置をFig.3-3 に示す。粒子発生装置より発生したセバシン 酸ジオクチル (DOS) 液体粒子をDMAで分級した後、粒子帯電数 を調整しフィルターテスト部へ送る。フィルターテスト部でフィル ター前後のエアロゾル濃度をCNCで測定し透過率Pを求める。実 験は構造が全く同じである無帯電フィルターとエレクトレットフィ ルターを用い、無帯電フィルターについては無帯電粒子、エレクト レットフィルターについては無帯電粒子および、帯電数が1および、 2の帯電粒子について透過率の測定を行った。

3.2.2 実験結果および考察

Fig. 3-4 に実験結果の一例として u = 30 cm/sでの P と d ・の関係 を示す。繊維、粒子ともに無帯電の場合と繊維のみ帯電している場

÷

Fig. 3-3 Experimental setup for the measurement of perticle penetration through electret filters.

合を比較すると、粒径が小さいところでは両者は一致しているが粒 径が大きくなるにつれて誘起力が働くため帯電繊維のデータが低く なっている。また、繊維、粒子ともに帯電している場合には、繊維 のみ帯電している場合のデータと比較すると、粒径が小さい領域で は、クーロン力が有効となるため帯電粒子を用いた場合の透過率は 著しく小さくなっているが、粒径が大きくなるにつれてクーロン力 が弱まるため両者は一致している。繊維、粒子ともに無帯電の場合 の透過率から求めた単一繊維捕集効率をヵょ、帯電繊維-無帯電粒

Fig.3-4 Effect of charges on fiber and particles on particle penetration.

子に対する透過率から求めた単一繊維捕集効率を フ inm 、繊維、粒子ともに帯電している場合の透過率から求めた単一繊維捕集効率を フ cinm、とし、誘起力およびクーロン力のみによる単一繊維捕集効率 フ in、 フ c はそれぞれ Eqs. (3-9)、 (3-10)で与えられると仮定す る。

η	$_{1n} = \eta _{1nM} -$	η м	(3-9)
η	$c = \eta c \ln M -$	η ілм	(3-10)

Eq. (3-9)より求めたη inとK inの関係をFig. 3-5 に、Eq. (3-10) より求めたη c とK c の関係をFig. 3-6 に示す。両図においてK in. K c を計算する際、σは未知であるのでσ=5.1 μC/m²と仮定した。 図中の実線は計算線である。図より、η in、η c は沪過速度や帯電 数によらず、それぞれK in、K c でまとまり、同じσの値で誘起力 の場合もクーロン力の場合も計算値と一致している。

Fig.3-5 Single fiber collection efficiency due to induced force as a function of induced force parameter.

Fig. 3-6 Single fiber collection efficiency due to Coulomb force as a function of Colombic force parameter.

3.3 集塵性能の経時変化

3.3.1 湿度の影響

エレクトレットフィルターに湿度を調整した清浄空気を長時間流 し続け、一定時間ごとにテストエアロゾルを一時的に流して透過率 を測定した結果をFig.3-7 に示す。相対湿度90%の清浄空気を約一 月間流した場合、透過率は経過時間に対してほとんど変化がなく一 定で、湿度20%の清浄空気を流した結果と一致していることから、 エレクトレット繊維の電荷は高湿度雰囲気の下でも非常に安定であ るといえる。

Fig.3-7 Influence of relative humidity on particle penetration through electret filter.

3.3.2 堆積粒子の影響

Fig. 3-3 に示す実験装置を用いてエレクトレットフィルターに無 帯電、あるいは1個帯電に調整したDOS液体粒子を長時間通して 定期的に透過率Pおよび圧力損失Δpを測定した結果をfig. 3-8 に 示す。図の横軸は実験開始直後からフィルターに流入した全粒子量 である。エレクトレットフィルターのPは無帯電粒子、帯電粒子い ずれの場合も流入粒子量の増加とともに上昇、つまり捕集効率は低 下していることからエレクトレットフィルターの性能は、沪過時間 とともに低下することがわかる。捕集効率が低下する原因として、 無帯電粒子の場合には繊維に捕集されたDOS粒子が繊維表面を覆 うためにエレクトレット繊維が作る電界を弱めることが考 を中和するためにエレクトレット繊維が作る電界を弱めることが考

Fig.3-8 Changes in particle penetration and pressure drop through electret filter with particle load.

えられる。そこで、次にエレクトレットフィルターの性能を低下さ せる二つの効果のうち、いずれが支配的かについて調べるためにFig. 3-8 のPを単一繊維捕集効率ηに換算し、フィルター単位体積あた りの粒子堆積量mに対してブロットした結果をFig.3-9 に示す。図 中の破線はエレクトレットフィルターと構造が同一である無帯電フ ィルターの初期単一繊維捕集効率である。無帯電粒子の場合のηと の差が誘起力による単一繊維捕集効率η inであると考えられるので、 Eq. (3-7)よりK inを求め、これによりエレクトレット繊維が電界を

Fig.3-9 Change in single fiber collection efficiency of electret filter as a function of captured droplets in the filter.

形成するのに有効なσを決定し、そのσを用いてK c を求め、 Eq. (3-8) からη c を計算し、無帯電粒子の場合の実験線に加えたもの が図中の一点鎖線である。つまり、一点鎖線はDOS粒子が繊維表 面を覆う効果のみを考慮して推定したものであり、帯電粒子のデー タに近い値を示していることから、液体粒子の場合には、先に述べ たエレクトレットフィルターの性能を低下させる二つの効果のうち 帯電粒子の電荷による繊維電荷の中和の効果はほとんど無視できる と考えられる。 最後に、固体粒子である鉄みょうばん {NH₄ (SO₄)₂·12H₂O } 粒子 を用いて行った透過率の経時変化を液体粒子のそれと比較してFig. 3-10に示す。液体粒子の場合と傾向が全く異なり、堆積粒子が効率 および圧力損失の上昇に寄与するため、効率の低下はなく、逆に圧 力損失の上昇は著しい。

Fig.3-10 Comparison of particle penetration and pressure drop of liquid particles with those of solid particles.

÷

結言

クリーンルームで使用される超高性能エアフィルターは、繊維径 が0.5 μm程度の極微細ガラス繊維層であり、厚みや充塡率を増す ことにより、希望の捕集効率を容易に達成することができるが、こ の場合、圧力損失も同時に増加する、本研究では、圧力損失を低く 抑えたまま、高い捕集効率を達成できるフィルターの開発を目指し、 このような省エネルギー型超高性能性能を評価するために、粒子透 過率、圧力損失を同時に考慮にいれたフィルター性能評価の指標を 導入した.この性能評価の指標に基づき、最適な繊維層フィルター の内部構造、さらにメンブレンフィルターの性能評価、静電気力の 粒子捕集への利用などについて検討を行った結果、次のような結論 が得られた.

まず、繊維層フィルターの高性能化に関して、(1)繊維径を細くする、(2)流れに平行な繊維の割合を増やす、(3)フィルターの強度を出すために使用されているバインダー量をを最小限に止める、などの工夫が必要であることが明らかになった。

また、多種多様なメンブレンフィルターを繊維状のフィルターか ら多孔板状のフィルターに分類して性能評価を行った結果、繊維状 から多孔板状にフィルターの内部構造が変化するにつれて、フィル ター性能は悪くなるが、極微細繊維からなるGore-Texフィルターは、 市販のHEPAフィルターよりも性能が優れていることが分かった. さ らに、高空間率の繊維状フィルターについては従来の繊維層フィル ターに対する沪過理論により、また、比較的空間率の低いフィルタ ーについては流路モデルを適用し、拡散捕集に有効な孔径とさえぎ り捕集に有効な孔径を別々に考えることにより,複雑なメンブレン フィルターの透過率もほぼ推定できることが分かった.

最後に, 粒子捕集への静電気の利用に関しては, 帯電フィルターの 初期性能は極めて良いが, 液体粒子が繊維に捕集されると電荷が失 われるため, 捕集効率が減少し性能は低下することが確かめられた. しかし, 帯電フィルターにより固体粒子を捕集する場合, 液体粒子 に対して見られる捕集効率の低下はなく, 圧力損失は増加するもの の, 帯電フィルターの電荷は高湿度雰囲気でも極めて安定であり, 高性能なフィルターであることが確認された.

References

- Kirsch, A.A., Stechkina, I.B. and Fuchs, N.A.: J. of Aerosol Sci., 5, 39 (1974)
- 2) Gormley, P.G. and Kennedy, M.: Proc. Roy. Irish Acad., 52-A, 163 (1949)
- 3) Brown, R.C.: J. of Aerosol Sci., 12, 349 (1981)