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ABSTRACT 

The adsorption and self-aggregation of anionic porphyrins were studied at the polarized 

water|1,2-dichloroethne (DCE) interface by polarization-modulation total internal reflection 

fluorescence (PM-TIRF) spectroscopy. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin diacid 

(H4TPPS2−) and protoporphyrin IX (H2PP2−) exhibited high surface activities at the interface. 

The selective excitation of interfacial species in PM-TIRF measurements elucidated the 

potential-induced aggregation mechanism of the porphyrins. The J-aggregates of H4TPPS2− were 

reversibly formed only at the water|DCE interface by applying appropriate potentials even when 

the porphyrins exist as monomers in the aqueous and organic solutions. In the H2PP2− system, 

the slow aggregation process was found in the negative potential region. The spectral 

characteristics and signal phase of PM-TIRF indicated that the H2PP2−monomers were adsorbed 

with relatively standing orientation and the long axis of the J-aggregates was nearly in plane of 

the interface. H2PP2− was also investigated at the biomimetic phospholipid-adsorbed water|DCE 

interface. The competitive adsorption of neutral glycerophospholipids effectively inhibited the 

potential-dependent adsorption and interfacial aggregation processes of H2PP2−. The results 

demonstrated that the aggregation state of charged species could reversibly be controlled at 

liquid|liquid interfaces as a function of externally applied potential. 

 

Keywords: polarization-modulation total internal reflection fluorescence (PM-TIRF) 

spectroscopy; interface between two immiscible electrolyte solutions (ITIES); water-soluble 

porphyrin; self-aggregation; biomimetic phospholipid-adsorbed interface 
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1. INTRODUCTION 

Charge transfer processes at an interface between two immiscible electrolyte solutions (ITIES) 

have been studied to understand mass-transfer mechanism and distribution equilibrium in 

separation sciences, nanomaterial formation, pharmacokinetic applications and so on. The 

transfer and partition of ionic species across ITIES are controlled as a function of the Galvani 

potential difference between two liquid phases.1, 2 The interfacial adsorption process is often 

involved in the ion transfer reaction. Direct characterization of molecules adsorbed at ITIES is 

essential to elucidate the heterogeneous reaction mechanism. The reactivity and characterization 

of interfacial species are generally evaluated by either electrochemical or spectrometric 

approach.3-5 Some specific features of interfacial species have been reported in terms of 

molecular assembly and solvation by means of surface-sensitive spectroscopy.6-8 It is known that 

various surface-active species tend to form their self-aggregates easily at liquid|liquid interfaces 

in comparison with homogeneous solution systems.9-11 It is however still difficult to characterize 

the interfacial species with high sensitivity and selectivity at such an interface buried in proximal 

two bulk solution phases. 

Potential-modulation inducing periodic modulation of spectroscopic signals from charged 

species is one of the most useful techniques to improve the sensitivity for the charge transfer 

reaction at ITIES.12 Indeed, potential-modulated fluorescence (PMF) spectroscopy provides us 

mechanistic insights of the potential-dependent charge transfer phenomena. The interfacial 

reactions of a variety of charged fluorescent species and their associates have been investigated 

by PMF spectroscopy.13-18 The characterization of the interfacial species has been achieved for 

meso-tetrakis(N-methylpyridyl)porphyrin (H2TMPyP4+) and meso-tetrakis(4-

sulfonatophenyl)porphyrin (H2TPPS4−) systems,19 where the PMF results demonstrated the 

specific solvation structure of interfacial species. Although the detailed PMF studies elucidate 

the dynamic behavior of monomeric ions such as ion transfer and adsorption processes, the 

characterization of interfacial species is available within limited experimental conditions since a 
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large change in molecular emission property caused by self-aggregation and ion-association 

complicates the signal analysis.20, 21 

 Recently, we have developed polarization-modulation total internal reflection fluorescence 

(PM-TIRF) spectroscopy and applied to study the potential-dependent adsorption behavior of 

meso-substituted water-soluble porphyrins at the water|1,2-dichloroethane (DCE) interface.22 In 

the PM-TIRF experiments, the fluorescence signal from the interfacial region is analyzed as a 

function of periodic modulation of linear-polarizations of an incident excitation beam. PM-TIRF 

spectroscopy can effectively extract the fluorescence responses of molecules oriented at the 

interface because of no PM-TIRF signal arising from randomly oriented species such as bulk 

solution species. The wavelength-dependence of PM-TIRF signal corresponds to a pure 

fluorescence spectrum of oriented species, which allows us to characterize interfacial species 

with high selectivity. The PM-TIRF analysis of the cationic H2TMPyP4+ oriented at the 

water|DCE interface has demonstrated that H2TMPyP4+ was adsorbed with a modification of the 

hydration structure depending on φw
oΔ . 

In the present study, the self-aggregation features of anionic water-soluble porphyrins, 

5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin diacid (H4TPPS2−) and protoporphyrin IX 

(H2PP2−), were investigated at the polarized water|DCE interface by PM-TIRF spectroscopy. The 

TPPS species preferably form self-aggregates in solutions,23-26 emulsions,27, 28 and at liquid 

interfaces,29-31 where the aggregation is significantly affected by the protonation of pyrrole 

nitrogens in a porphyrin ring, counter ions, electric field and so on. The effect of Galvani 

potential difference on the aggregation is, however, not elucidated at liquid|liquid interface. 

Protoporphyrin IX (H2PP2−) is one of the most important natural porphyrins and it has attracted 

much attention in supramolecular science, nanostructure assembly, energy and electron transfer 

systems on surfaces and at interfaces.32, 33 The binding behavior of H2PP2− to cell membranes is 

also crucial to understand its role as the photosensitizer in the photodynamic therapy because 

H2PP2− is endogenously generated and selectively accumulated in cancer cells.34, 35 While H2PP2− 

has been examined at the water|DCE interface by PMF spectroscopy,19 the interfacial mechanism 
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of H2PP2− was hardly elucidated in detail because of its high surface-activity which weakened 

potential-modulated signals. By using PM-TIRF spectroscopy, the interfacial aggregation 

mechanisms of H4TPPS2− and H2PP2− were successfully analyzed as a function of Galvani 

potential difference. Furthermore, we investigated the adsorption behavior of H2PP2− at the 

phospholipid-adsorbed water|DCE interface in order to evaluate its binding characteristics on cell 

membranes. 

 
2. EXPERIMENTAL SECTION 

2.1. Reagents. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4−) disulfuric acid 

tetrahydrate (Dojindo Laboratories) and protoporphyrin IX (H2PP2−) disodium salt (TCI, GR) 

were used as received. The compositions of the electrochemical cell are represented in Figure 1. 

The pH of the aqueous phase was controlled by the addition of 5.0 × 10−3 mol dm−3 H2SO4 in 

Cell I and 1.0 × 10−3 mol dm−3 LiH2PO4/LiOH buffer in Cell II. The free base H2TPPS4− (pKa1 = 

4.86, pKa2 = 4.9636, 37) initially added into the aqueous phase exists as the diacid form 

(H4TPPS2−) in Cell I (Figure S1, Supporting Information). The supporting electrolytes were 1.0 

× 10−2 mol dm−3 Li2SO4 (Cell I) or LiCl (Cell II) for the aqueous phase and 5.0 × 10−3 mol dm−3 

bis(triphenylphosphoranylidene)ammonium tetrakis(pentafluorophenyl)borate (BTPPATPFB) 

for the organic phase, respectively. BTPPATPFB was prepared by metathesis of 

bis(triphenylphosphoranylidene)ammonium chloride (BTPPACl) (Aldrich, >97%) and lithium 

tetrakis(pentafluorophenyl)borate ethyl ether complex (TCI, ≥70%).38 The aqueous solutions 

were prepared with purified water by a Milli-Q system (Millipore, Direct-Q3UV). 1,2-

Dichloroethane (DCE) of HPLC grade (Nacalai Tesque, >99.7%) and purified water saturated 

with each other were used as solvents in the electrochemical measurements. A neutral 

glycerophospholipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) (TCI, ≥97%) was 

initially dissolved in chloroform at 1.0 × 10−3 mol dm−3 and then added to the DCE phase for the 

biomimetic interface (Cell II). All other reagents were of analytical grade or higher. 
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2.2. Spectroelectrochemical Setup. The spectroelectrochemical cell was analogous to one 

reported previously.22 The water|DCE interface with a geometrical area of 0.50 cm2 was 

polarized by a four-electrode potentiostat (Hokuto Denko, HA-1010mM1A). Platinum wires 

were used as counter electrodes in both aqueous and organic phases. The Luggin capillaries were 

provided for the reference electrodes (Ag/AgCl or Ag/Ag2SO4) in both phases. The Galvani 

potential difference ( oww
oΔ φφφ −≡ ) was estimated by taking the formal transfer potential 

( 'φw
oΔ ) of tetramethylammonium ions as 0.160 V. 39  

In PM-TIRF measurement, the water|DCE interface was illuminated in total internal reflection 

(TIR) mode from organic phase by a cw laser diode at 404 nm (Coherent, CUBE 405-50C) or 

488 nm (Coherent, OBIS 488LS-60). The angle of incidence to the interface was set as ca. 75°. 

The laser radiation was attenuated to 25 mW in order to avoid the photobleaching of porphyrins. 

The fluorescence signal from the interfacial region was measured perpendicularly to the interface 

by an optical fiber and a monochromator equipped with a photomultiplier tube (Shimadzu, SPG-

120S). The linear polarization of incident excitation beam was periodically modulated between 

p- (parallel to the plane of incidence) and s-polarizations (perpendicular to the plane of 

incidence) at 13 Hz by a liquid crystal retarder (LCR) (Thorlabs, LCC1111T-A, LCC25/TC200). 

The polarization modulation efficiency (Pm) of LCR was defined as the fraction of the p- or s-

polarized component in the modulated-incident beam and measured through a Glan Thompson 

 

Figure 1. Schematic representation of the electrochemical cells. 
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prism (Sigma Koki, GTPC-10-33SN). The Pm values were obtained as 0.95 at 404 nm and 0.97 

at 488 nm, respectively, indicating that 5 and 3% of the s-polarized component remain in the p-

polarized incident beam or vice versa.22 The polarization-modulated fluorescence signal was 

analyzed by a digital lock-in amplifier (NF, LI5640) as a function of periodic modulation 

between the p- and s-polarized incident beams. All experiments were carried out in a 

thermostated room at 298 ± 2 K. 

2.3. Interfacial tension measurement. The electrocapillary curves at 298 ± 2 K were measured 

at the polarized water|DCE interface by quasi-elastic laser scattering (QELS). A cylindrical glass 

cell with a geometrical interfacial area of 15.9 cm2 was used in the interfacial tension 

measurements with the same cell composition displayed in Figure 1. The laser light beam 

passing through the interface perpendicularly was a cw laser at 660 nm (Coherent, CUBE 660-

60C). The diffraction grating with a line spacing of 0.320 mm was placed after the water|DCE 

interface. The optical beat of third-order diffraction spot was detected by a Si photodiode 

(Hamamatsu Photonics, S1133-01) with a wide bandwidth amplifier (Melles Griot, 13AMP005). 

The power spectra of the diffraction spot were obtained by using a fast-Fourier transform 

analyzer (Stanford Research Systems, SR770). The interfacial tension ( iγ ) was calculated from 

the frequency of maximum intensity associated with the mean frequency of the capillary waves. 

Further detail of optical setup and analytical procedure of QELS were described elsewhere.40, 41 

 

3. RESULTS AND DISCUSSION 

3.1. Electrochemical Responses of Anionic Porphyrins at the Water|DCE Interface. Cyclic 

voltammograms (CVs) and ac voltammograms measured for H4TPPS2− at pH 2.1 (Cell I) and 

H2PP2− at pH 7.3 (Cell II) are displayed in Figure 2. The distinct admittance responses were 

observed for H4TPPS2− around −0.25 V and a peak separation of ca. 16 mV in CVs corresponds 

to a diffusion-controlled transfer process of tetravalent ions (Figure 2a). These voltammetric 

responses thus associate with the ion transfer of H2TPPS4− across the interface. The ion transfer 

mechanism of H4TPPS2− has been reported in detail at the water|nitrobenzene interface, where 
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the deprotonated free base (H2TPPS4−) was dominant transferred species even under acidic 

conditions because of enhanced hydrophilicity of H4TPPS2−.42 A 50 mV negative shift of the 

transfer potential of H2TPPS4− (cf. ′
−∆ 4

2TPPSH
w
oφ  = −0.20 V19, 22) results from the protonation 

equilibrium in aqueous solution. In the H2PP2− system, a pair of positive and negative current 

peaks was observed at −0.13 V but the broad positive peaks were relatively small (Figure 2b, 

inset). These voltammetric features should be attributed to the ion transfer process of H2PP2− 

accompanied by the interfacial adsorption since the negative peak currents at −0.13 V were 

linearly proportional to the sweep rate in agreement with the previous report.19 The formal 

transfer potential of H2PP2− was evaluated at ′
−∆ 2

2PPH
w
oφ  = −0.13 V from ac voltammograms. 

 The adsorption of the porphyrins at the water|DCE interface can be confirmed by small 

increments of the admittance. In Figure 2, the real (Yre) and imaginary (Yim) components of the 

 

Figure 2. Ac voltammograms measured for (a) H4TPPS2− at pH 2.1 and (b) H2PP2− at pH 7.3. 

The red and black lines depict ac voltammograms in the presence and absence of the 

porphyrins. The solid and dashed lines denote the real and imaginary components of 

admittance. The potential sweep rate was 5 mV s−1. The potential modulation was 10 mV at 7 

Hz. (Inset) CVs measured at 10, 20, 50, 100 and 200 mV s−1. The concentrations of H4TPPS2− 

and H2PP2− in the aqueous phase were 2.0 × 10−5 mol dm−3 and 1.0 × 10−4 mol dm−3, 

respectively. 



 

9 

admittance increase prior to the transfer potential in both systems, indicating the specific 

adsorption of the anionic porphyrins at the interface. The adsorption responses of H4TPPS2− were 

obtained at φw
o∆  < 0.10 V, while those of H2PP2− appeared within the whole potential window. 

Indeed, the electrocapillary curves in Figure S2 (Supporting Information) showed that the iγ  

values were decreased at φw
o∆  < 0 V in the presence of H4TPPS2−. The interfacial tension 

lowering by adding H2PP2− was also measured over the potential window. These results could 

indicate that adsorption process of H2PP2− is less potential-dependent in comparison with 

H4TPPS2−. 

 

3.2. PM-TIRF Analysis of Adsorption and Aggregation of Porphyrins at the Water|DCE 

Interface. The PM-TIRF spectroscopy was employed to elucidate the potential-dependent 

adsorption behavior of the porphyrin at the water|DCE interface. The PM-TIRF signal ( s-pF∆ ) is 

defined as 

s
m

p
m

s-p FFF −=∆        (1) 

where p
mF  and s

mF  are the fluorescence intensities measured with p- and s-polarized excitation 

modes, respectively. In PM-TIRF spectroscopy, the fluorescence signal arising from bulk 

solution species with random orientation is effectively cancelled out. The wavelength-

dependence of PM-TIRF signal, i.e. PM-TIRF spectrum, was measured at given potentials. PM-

TIRF spectrum corresponds to the fluorescence spectrum of interfacial species oriented at the 

interface. The positive and negative s-pF∆  indicate relatively standing and lying orientations of 

the porphyrin ring with respect to the interface since the porphyrin molecule contains two 

perpendicular transition dipole moments within the porphyrin plane.43, 44 It should be noted that a 

zero s-pF∆  relates to random or specific orientation at the magic angle (54.7°).22 

 Figure 3 shows the PM-TIRF spectra measured for H4TPPS2− at pH 2.2 under potentiostatic 

control. The incident laser beams of 404 nm and 488 nm were employed for the excitation of the 
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monomer and aggregate species of H4TPPS2−, respectively. The formation of J-aggregates with 

red-shifted emission bands at the interface were clearly observed depending on φw
o∆ . It is known 

that H4TPPS2− tends to form J-aggregate under lower pH conditions through the coulomb 

interaction between its diprotonated porphyrin ring and anionic sulfonatophenyl groups. The J-

aggregates retain the structure in a suitable slipped face-to-face stacking.45, 46 The monomeric 

H4TPPS2− shows the Soret and Q bands around 434 nm and 645 nm in aqueous solution, while 

the J-aggregates of H4TPPS2− exhibit sharp and intense absorption bands around 491 nm and 707 

nm (Figure S1a, Supporting Information).47-49 In the PM-TIRF measurement, the s-pF∆  signals 

from the interfacial species should be associated with the orientations of the porphyrin ring of 

monomers or the long axis of aggregates.50, 51 The fluorescence maximum wavelengths of the 

PM-TIRF spectra are summarized in Table 1. In Figure 3a, the PM-TIRF spectra with a 

negative sign ( s-pF∆  < 0) exhibited similar features to the fluorescence spectra of the diacid 

form in aqueous solution, indicating that the H4TPPS2− monomers were adsorbed with relatively 

 

Figure 3. PM-TIRF spectra for H4TPPS2− at the water|DCE interface under the excitation at 

(a) 404 nm and (b) 488 nm. The pH of the aqueous phase was pH 2.2. The blue and black 

dotted lines refer to the normalized fluorescence spectra of J-aggregates at pH 1.3 and 

monomers at pH 2.3 in the aqueous solutions under the excitation at 488 nm. 
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lying orientation (54.7° < θ ≤ 90°) and its adsorption state was almost consistent with that in the 

bulk aqueous phase. The non-zero s-pF∆  associated with the adsorption of H4TPPS2− was also 

observed at −0.29 V, which is 0.04 V more negative potential than that of the ion transfer. The 

results show that the H4TPPS2− monomers accumulate at the aqueous side of the interface. In 

addition, the interfacial adsorption of the free base, H2TPPS4−, was not found under the present 

experimental conditions. 

 

 Under the excitation at 488 nm, the selective detection of J-aggregates of H4TPPS2− was 

achieved with negligible interference from the monomer species. As seen in Figure 3b, the 

intensity of negative PM-TIRF signals was highly dependent on φw
o∆  and a maximum 

wavelength of 714 nm clearly indicates the formation of the J-aggregates at the interface. The 

negative s-pF∆  also suggests that the long axis of the J-aggregates was lying nearly parallel to 

Table 1. Fluorescence maximum wavelengths of the porphyrins at the water|DCE 

interface and in solutions. 

 TPPS system  PP system 
  w

oφ∆ / V 404
maxem,λ / nmb 488

maxem,λ / nmb   w
oφ∆ / V 404

maxem,λ / nmb RF
c 

interface 
(PM-TIRF)a 

−0.09 676(−), 693(−) 713(−)    0.31 636(+), 702(+) 4.8 
−0.19 676(−), 691(−) 714(−)  −0.11 636(+), 693(−)  
−0.29 676(−), 688(−) 697(−)  −0.20 640(−), 698(−) 1.2 

aqueous phased  (pH 1.3) 671, 684 713   (pH 7.3) 620, 684 2.8 
  (pH 2.3) 671, 684 671, 684     

organic phased  651, 715 651, 715   633, 698 2.9 

aThe PM-TIRF spectra were taken at pH 2.2 for TPPS and pH 7.3 for PP systems. The parenthetic 

signs (+) and (−) denote the positive and negative PM-TIRF peaks, respectively. b 404
maxem,λ  and 

488
maxem,λ  denote the PM-TIRF maxima under the excitation at 404 nm and 488 nm, respectively. 

cThe peak intensity ratio of the first and second fluorescence peaks. dThe fluorescence maxima 

measured for the aqueous and organic solutions (cf. Figures S1 and S3, Supporting Information). 
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the interface. The PM-TIRF signals of H4TPPS2− monomer and its aggregates were recorded 

respectively at 680 nm and 713 nm in the quasi-equilibrium condition with a potential sweep rate 

of 1 mV s−1 (Figure 4). The potential dependence of s-pF∆  indicates that the J-aggregation takes 

place at less negative potentials than that of the transfer (see also Figures S4, Supporting 

 

Figure 4. Typical potential dependence of PM-TIRF responses ( s-pF∆ ) for H4TPPS2− at the 

water|DCE interface. The excitation and detection wavelengths were 404 nm and 680 nm 

(black line, left axis) and 488 nm and 713 nm (red line, right axis), respectively. The potential 

sweep rate was 1 mV s−1. The vertical dotted line depicts the transfer potential at pH 2.2, i.e., 

φw
o∆  = −0.25 V. The concentration of H2TPPS4− in the aqueous phase was 2.0 × 10−5 mol 

dm−3. 

 

Figure 5. Schematic representation of the aggregation and transfer of H4TPPS2− at the 

polarized water|DCE interface. 
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Information). The negative s-pF∆  magnitude of the monomer maximized around −0.07 V was 

decreased simultaneously with increasing negative s-pF∆  signals attributable to the aggregation 

at −0.25 V <  w
oφ∆  ≤ −0.15 V. At more negative potential, the magnitude of s-pF∆  at 713 nm 

was reduced eventually to almost zero. It is noteworthy that the conventional TIR fluorescence 

spectra indicate that the bulk aqueous and organic solution species were monomeric H4TPPS2− 

and H2TPPS4−, respectively (Figure S5, Supporting Information). Therefore, the J-aggregates of 

H4TPPS2− were formed only at the aqueous side of the interface (Figure 5). The J-aggregate 

were dissociated through the transfer of monomer species and simultaneous interfacial 

concentration lowering. Although the free base from, H2TPPS4−, exists in very low abundance 

under acidic conditions, H2TPPS4− should favorably be transferred at negative potentials in 

comparison with the diacid species, H4TPPS2− which is more hydrophilic but the lower net 

charge.42 

 The PM-TIRF spectra measured for H2PP2− showed complicated spectral features depending 

on φw
o∆  under neutral pH conditions (Figure 6), where the further protonation of the free base is 

negligible. The PM-TIRF experiments for H2PP2− were carried out under the excitation at 404 

nm. The fluorescence maximum wavelengths and peak intensity ratios of the first and second 

peaks (RF) of PM-TIRF spectra are summarized in Table 1. At positive potentials, the PM-TIRF 

spectra exhibited the positive PM-TIRF signals ( s-pF∆  > 0), suggesting that the H2PP2− 

monomers were adsorbed with standing orientation relative to the interface. The PM-TIRF 

maxima, 636 nm and 702 nm, observed at 0.31 V were consistent with fluorescence maxima of 

H2PP2− in the organic phase at 633 nm and 698 nm. These spectral features suggest that H2PP2− 

adsorbed at the interface has a solvation state similar to the bulk organic solution species, i.e., 

dehydration of the porphyrin fluorophore. Taking into account relatively standing orientations of 

H2PP2− under positively polarized conditions, the less hydrophilic porphyrin moiety of H2PP2− 

could penetrate into the organic side of the interface. In the negative potential region, the positive 

PM-TIRF responses at 636 nm were gradually weakened and then the negative PM-TIRF spectra 
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were obtained at φw
o∆  < ′

−∆ 2
2PPH

w
oφ . As a result, a red-shifted broad peak around 640 nm appeared 

in the PM-TIRF spectrum at −0.20 V. The similar red-shift has been observed for Fe(III) 

protoporphyrin IX at the water|DCE interface by surface second harmonic generation (SSHG), 

where the spectral shift was interpreted by the aggregation and specific polarity in the interfacial 

region.52 It has also been reported that the J-aggregation of H2PP2− and its derivatives in 

solutions causes a significant decrease of fluorescence intensities with a small spectral shift in 

 

Figure 6. (a) Typical PM-TIRF spectra for H2PP2− at the water|DCE interface. The blue and 

red dotted lines refer to the normalized fluorescence spectra measured in the aqueous and 

organic solutions. The concentration of H2PP2− in the aqueous phase at pH 7.3 was 1.0 × 10−4 

mol dm−3. The excitation wavelength was 404 nm. (b) Schematic representation of the 

aggregation and transfer of H2PP2− at the water|DCE interface. 
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fluorescence spectrum.53-55 In the same manner, the interfacial J-aggregation should be 

responsible for the relative red-shift in PM-TIRF spectra with s-pF∆ < 0. In the present pH 

condition, the J-aggregates consist of free base forms with the π-π interaction between porphyrin 

rings. Figure 6b illustrates the interfacial mechanism of H2PP2−. The J-aggregation occurs only 

at the negatively polarized interface, and the H2PP2− monomers transfer at −0.13 V as described 

in Section 3.1. The J-aggregation of H2PP2− was considerably slow process at the polarized 

water|DCE interface and it takes more than 20 minutes for the equilibrium (see Figure S6, 

Supporting Information). These specific interfacial behavior could be attributed to the high 

surface-activity and well-ordered molecular orientation of H2PP2− at the water|DCE interface. 

 The PM-TIRF results at various concentrations of H2PP2− demonstrated that the potential-

induced aggregation occurs even at dilute concentrations down to 2.0 × 10−5 mol dm−3 (Figure 

S7, Supporting Information). Figure 7 shows the concentration dependence of PM-TIRF spectra 

measured at −0.16 V, where the spectral features were changed from the red-shifted spectrum of 

 

Figure 7. The dependence of PM-TIRF spectra at V 16.0w
o −=∆ φ  on the H2PP2− 

concentration. The concentrations of H2PP2− were 2.0 × 10−5 (black), 1.0 × 10−4 (red) and 5.0 

× 10−4 mol dm−3 (blue). The blue and red dotted lines refer to normalized fluorescence spectra 

measured in the aqueous and organic solutions. 
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the J-aggregates with s-pF∆  < 0 to the monomeric shape with 0 < s-pF∆  at higher 

concentrations. It is known that the aggregation of porphyrins was induced by increasing the 

bulk concentration.55-57 The PM-TIRF spectrum at 5.0 × 10−4 mol dm−3, however, showed the 

sharp monomeric response with a positive sign at 636 nm (Figure S8, Supporting Information). 

The possible reason for the H2PP2− monomer as the dominant interfacial species is the limited 

interfacial area available for the adsorption since an upstanding molecular orientation of 

monomeric H2PP2− can reduce the occupied interfacial area per unit molecule in comparison with 

the aggregates flattened in the interfacial plane. 

 

3.3. Adsorption Behavior of H2PP2− at a Biomimetic Interface. The phospholipids with a high 

surface-activity are spontaneously adsorbed at liquid|liquid interfaces and their adsorption layers 

can be used as a model of biomembrane surface.58-60 In this study, the neutral 

glycerophospholipid, DMPC, was added into the organic phase (Cell II). Figure 8 shows the 

CVs and electrocapillary curves for H2PP2− at the DMPC-adsorbed water|DCE interface. The 

current increase at 0.20 V < φw
o∆  in the presence of 1.0 × 10−5 mol dm−3 DMPC is associated 

with the facilitated transfer of Li+ ions by the DMPC layer formed at the interface.61, 62 The 

voltammetric responses of H2PP2− around ′
−∆ 2

2PPH
w
oφ  = −0.13 V were significantly decreased with 

increasing DMPC concentration and almost vanished at a concentration of 1.0 × 10−5 mol dm−3. 

The voltammetric results demonstrated that the DMPC layer effectively inhibited the adsorption 

and transfer processes of H2PP2−. The surface-activity of both H2PP2− and DMPC manifested 

itself in the iγ  lowering in the electrocapillary curves in Figure 8b. The adsorption of DMPC 

caused a remarkable decrease in iγ  and the additional lowering effect was observed by the 

coexistence of H2PP2− at φw
o∆  < 0.2 V. These results imply that H2PP2− penetrates into the 

DMPC layer formed at the negatively polarized interface. 



 

17 

 The addition of DMPC also influenced the spectral shape and signal phase of PM-TIRF 

spectra measured at given potentials (Figure 9). At 0.31 V, the PM-TIRF response arising from 

H2PP2− monomers was considerably weakened by the competitive adsorption with DMPC. This 

result agrees with a lack of additional iγ  lowering at 0.2 V < φw
o∆  in the presence of DMPC and 

 
Figure 8. (a) CVs and (b) electrocapillary curves for H2PP2− at the DMPC-adsorbed 

water|DCE interface. The concentration of H2PP2− was 1.0 × 10−4 mol dm−3 and the aqueous 

phase was buffered at pH 7.2−7.3. (a) The concentrations of DMPC were 0 (black), 1.0 × 10−6 

(blue) and 1.0 × 10−5 mol dm−3 (red), respectively. The potential sweep rates were 50 mV s−1. 

(b) The electrocapillary curves were measured in the presence of H2PP2− (solid circle), 1.0 × 

10−5 mol dm−3 DMPC (open square) and H2PP2− + DMPC (solid square), respectively. The 

open circles depict the base electrolyte system.  
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H2PP2− (Figure 8b). On the other hand, the PM-TIRF spectra at −0.16 V in the presence of 1.0 × 

10−5 mol dm−3 DMPC showed the negative s-pF∆ signals and the PM-TIRF maximum around 

633 nm exhibited the similar spectral feature of the H2PP2− monomer in the organic solution (cf. 

Table 1). At the negatively polarized interface, the H2PP2− monomer penetrates into the DMPC 

layer and the spectral characteristics among neighboring alkyl chains should be analogous to 

those of the species in the organic phase. 

 

4. CONCLUSIONS 

The spectroelectrochemical analysis based on the PM-TIRF technique uncovered the potential-

dependent adsorption and aggregation mechanism of anionic porphyrins at the polarized 

water|DCE interface. In the H4TPPS2− system, the monomeric H4TPPS2− and its J-aggregates 

 

Figure 9. PM-TIRF spectra measured at the DMPC-adsorbed water|DCE interface. The 

concentrations of DMPC were 0 (black), 1.0 × 10−6 (blue) and 1.0 × 10−5 mol dm−3 (red), 

respectively. The concentration of H2PP2− was 1.0 × 10−4 mol dm−3. 
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oriented at the interface could be measured separately by selecting the appropriate excitation 

wavelength. The selective detection of the interfacial species achieved in multi-wavelength 

excited PM-TIRF experiments is useful to elucidate the complicated heterogeneous mechanism, 

which is composed of charge transfer processes of plural surface-active species. The negative 

PM-TIRF signals exhibited the relatively flat orientation of the meso-substituted H4TPPS2− 

monomer with four equivalent sulfonatophenyl groups, whereas the potential-induced J-

aggregation of H4TPPS2− proceeded only at the aqueous side of the interface. The slow 

aggregation process of H2PP2− was found in the negative potential region. The molecular 

orientation of H2PP2− was significantly affected by the J-aggregation at the interface, where the 

monomers were adsorbed with relatively standing orientation and the long axis of the J-

aggregates was nearly in plane of the interface. At the phospholipid-adsorbed water|DCE 

interface, the competitive adsorption of DMPC effectively inhibited the adsorption and 

aggregation processes of H2PP2−. The adsorption state of H2PP2− at the phospholipid-adsorbed 

interface was similar to the monomeric species in the organic phase. As the photoreactivity of 

porphyrins on cell membranes is drastically affected by the adsorption state, these findings could, 

for instance, contribute to the mechanistic analysis of the photodynamic therapy with 

endogenously generated H2PP2− in cancer tissues. The present study demonstrated that the 

interfacial aggregation of charged species can reversibly be controlled as a function of externally 

applied potential and it will enable a potential-induced self-assembly of 2D supramolecular 

structure or nanomaterial formation at ITIES. 

 

Supporting Information: UV-vis absorption and fluorescence spectra of the porphyrins in 

solutions, electrocapillary curves and PM-TIRF spectra measured under various conditions. 
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