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1 Abstract

This dissertation is concerned with numerical simulation studies on the state-feedback
data-driven pole placement method. The data-driven pole placement method can
precisely identify the state space model and pole placement gain simultaneously
from a set of measurement data of the linear time-invariant system under certain
conditions. In this study, solutions of several difficulties of the method for practical
applications are investigated by numerical simulations.

First, the data-driven pole placement method is applied to a self-balancing robot
which is a nonlinear system. By numerical simulations with nonlinear differen-
tial equation of the self-balancing robot, it is shown that the linearized model can
be identified for the noisy case where the measurement noise exists together with
noiseless cases. In particular, it is revealed that the suitable linearized model and
pole placement gain can be identified by using the data sufficiently near the equilib-
rium.

Second, it is shown that the total least square and a prefilter are effective to the
data-driven pole placement method when the measurement data is contaminated by
noise. It is also shown that the random exciting signal is more suitable than the
chirp exciting signal.

Finally, the data-driven pole placement method is extended to online tuning,
real-time updating the closed loop system. Its capability is also investigated by
numerical simulations of the self-balancing robot. It is shown that the method can
update the state space model of the self-balancing robot and the pole placement gain
for noisy measurement.

2 Data-driven pole placement

Pole placement, also called pole assignment or eigenvalue assignment, is a standard
controller synthesis method in which the locations of the closed-loop poles can be
determined by setting a controller gain. The eigenvalues of the system correspond to
the pole locations and they affect the system response such as stability, convergence
rate, disturbance rejection and noise immunity. For stability issue, the poles of the
system should be inside the unit circle in the discrete time system or should be the
left-half plane in the continuous time system. Pole placement method works on
setting the desired pole location and then moving the poles of the system to these
desired pole locations by using the feedback gain to specify the desired system
response. For pole placement control design, all state variables are assumed to be
measurable and available for feedback and, the system is assumed to be completely
controllable. Various pole placement methods have broadly been developed.

In contrast to the standard pole placement approach that assumes the state-space
model is known and given, a different pole placement approach that does not use
such assumptions has recently been proposed. A salient feature of the approach is
that from a pair of state and input measurement we can simultaneously obtain the
state-space model and the pole placement gain. The basic principle of this approach
is based on unfalsified control, which is also known as data-driven control.
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Data-driven pole placement was proposed for the state feedback control of discrete-
time linear systems. Various control methods for the pole placement problem have
well-known for a long time. In state feedback pole placement problem, the state
feedback gain must be determined for a given system such that the closed-loop
poles coincide with the desired locations. This is also a well-known problem, and
various pole placement methods have been extensively discussed in many works of
literature [1, 2, 3, 15].

In standard pole placement methods, a state space model is assumed to be given
by a system identification technique using data from past experiments. Whereas
the traditional approach combines the identification of the state space model with
the standard pole placement method, an alternative approach called “data-driven
pole placement” has recently been proposed [5]. In this approach, the state space
model and pole placement feedback gain are identified simultaneously from the set
of state measurements and control input sequences. The method proposed in [5]
is based on the data-driven control framework ([17] and references therein) such
as unfalsified control [6], virtual reference feedback tuning (VRFT) [18, 19], or
fictitious reference iterative tuning (FRIT) [8, 20, 21, 22].

Consider the discrete-time linear time-invariant system and a static state feed-
back

x(k+ 1) = Ax(k) + Bu(k), (1)

u(k) = Fx(k) + v(k), (2)

whereA ∈ Rn×n, B ∈ Rn×m, x ∈ Rn is the state vector,u ∈ Rm is the input vector,
v ∈ Rm is the external input to the closed loop system, andF ∈ Rm×n is the feedback
gain.

The data-driven pole placement problem was formulated in [5] as follows.

Problem 1 We assume that the order of the plant n is known, pair (A, B) is con-
trollable but the exact value is unknown, and B is of full rank. LetΛ = {p1, . . . , pn}
be a self-conjugate set of n complex numbers in the unit circle. Given the input and
output measurement data sequence(x0(k),u0(k)) of (1), find a state feedback gain F
from the observed data(x0(k),u0(k)) such that{λi(A+ BF)} = Λ.

In a conventional approach, this problem is solved in two steps:A and B are
identified from x0(k),u0(k), then F is derived using the standard pole placement
algorithms. In contrast, the data-driven pole placement method solves the two
steps simultaneously. To achieve this, the method uses the equivalency between
the closed-loop system

x(k+ 1) = (A+ BF)x(k) + Bv(k) (3)

with the desired pole placement gainF and

xd(k+ 1) = Adxd(k) + Bdv(k), (4)

xd(k) = T x(k), (5)
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where (Ad, Bd) with λi(Ad) = pi is an appropriate controllable pair. This equivalency
requires the nonsingular matrixT to exist. We removev from (4) by using (2), to
obtain

xd(k+ 1) = Adxd(k) + Bdu(k) − BdFx(k). (6)

Then, using (5), we obtain

T x(k+ 1) = AdT x(k) + Bdu(k) − BdFx(k). (7)

If ( x0(k), u0(k)) (k = i, . . . , i + N) satisfies (7),

T X0P1 = AdT X0P2 + BdU0 − BdFX0, (8)

where

X0 =
[
x0(i) x0(i + 2) · · · x0(i + N)

]
, (9)

U0 =
[
u0(i) u0(i + 1) · · · u0(i + N − 1)

]
, (10)

P1 =

[
01×N

IN

]
, P2 =

[
IN

01×N

]
. (11)

In [5], (8) is cast into

S1

[
T
F

]
X0P1 + S2

[
T
F

]
X0P2 = BdU0 (12)

S1 =
[
In 0n×m

]
, S2 =

[
−Ad Bd

]
(13)

and

F =


f1
...
fm

 ∈ Rm×n, T =


t1
...
tn

 ∈ Rn×n. (14)

The system (4) can be interpreted as a reference model within VRFT (e.g., [18,
19]) and FRIT (e.g., [8, 20, 21, 22]). The idea of eliminatingv in (6) is also based
on FRIT. In [8, 21, 22], a similar state feedback control problem has been discussed
within the FRIT framework. To apply these FRIT techniques to the data-driven
pole placement problem, the desired transfer function must be specified fromu
to x, rather thanxd. When precise values for (A, B) are not available, it becomes
impossible to specify the zeros of the desired transfer function.

To obtain the datasets (9) by applying state feedback (2) to the system (1), the
initial feedback gainF should be based on (A, B). Hence, in Problem 1, the exact
value of (A, B) is assumed to be unknown.

When applying the property of Kronecker product vec(MDN) = (N⊤⊗M)vecD
(see for example Th.2.13 in [28] ) to the transpose of (12) to solve (12) forF and
T, a further linear equation is derived, as follows:

Xη = U, (15)
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Figure 1: Coordinates of the self-balancing robot.

where

η =
[
t1 · · · tn f1 · · · fm

]⊤
∈ R(n+m)n (16)

X = S1 ⊗ (X0P1)
⊤ + S2 ⊗ (X0P2)

⊤ ∈ RnN×(n+m)n, (17)

U =
(
Bd ⊗ UT

0

)
(vec Im) ∈ RnN. (18)

If T is nonsingular, the model coefficients can be obtained

A = T−1AdT − T−1BdF, B = T−1Bd. (19)

2.1 Main Numerical Simulation Results

We applied the data-driven pole placement method to the model of a 3D self-
balancing robot [9, 27] shown in Fig. 1.

We have shown the simulation results to see how noise takes effects on the per-
formance of data-driven pole placement method in [14, 16]. Although total least
square (TLS) method was declared as an effective method in [5], we can see that
dealing with noise in that method is still open. As every measurement of any physi-
cal quantity becomes uncertain because of it, we design FIR prefilter to deal with it
effectively. Then, we apply the least square and total least square in order to get the
best fit data together with the random exciting signal. We compare the results be-
fore and after applying the designed prefilter by numerical results and simulations.
Then, to evaluate the response when we apply the different exciting signal, we also
introduce the charp exciting signal and compare the results.

We finally compared the pole locations obtained, as shown in Fig. 2. As can be
seen, a better performance was achieved when using the random exciting signal.

3 Summary

In this study, we evaluated different approaches to reducing the effect of measure-
ment noise in data-driven pole placement methods for deriving a state space model
and pole placement state feedback. Using numerical simulations of a self-balancing
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Table 1: Comparison of errors.
(initial) (a) (b) (c) (d) (e)

noise - noiseless noisy noisy noisy noisy
method - LS LS TLS TLS+PF TLS+PF

exciting sig. - Random Random Random Random Chirp

δλ(Ad1) 0.2426 0.0007 0.4597 0.1367 0.0466 1.2530
∆A1 0.5317 0.0016 36.295 1.6678 1.8763 17.246
∆B1 0.0025 0.0000 0.3400 0.0481 0.0415 0.2932
δλ(A1) 0.0511 0.0000 0.3920 0.0194 0.0177 0.4695
∆G1 42.333 0.0082 629.67 44.718 29.324 106.04

δλ(Ad2) 0.0029 0.0000 0.0092 0.0024 0.0007 0.0017
∆A2 0.0001 0.0000 0.0288 0.0064 0.0005 0.0007
∆B2 0.0004 0.0000 0.0031 0.0002 0.0002 0.0002
δλ(A2) 0.0001 0.0000 0.0090 0.0012 0.0004 0.0001
∆G2 0.0036 0.0002 0.0525 0.0073 0.0019 0.0019

robot, which is a nonlinear system, we demonstrated the important role that pre-
filtering can play in reducing the interference caused by noise. Again using numer-
ical simulation, we compared the use of two exciting signals: a random signal and
a chirp signal. The use of a random exciting signal was found to be more effective
with our proposed method. Further developments are needed in the methods used
to cope with noise. A method such as that used in [19] may be appropriate for
use in practical applications where noise is present, and adaptive control based on
real-time updating [16] is a future promising approach.
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