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Abstract 

 

Post-translational modification is one way of expanding genetic coding capacity to generate 

diversity in the corresponding proteomes. One of the most common post-translational modifications 

is phosphorylation. It is the process of adding a phosphate group to a target residue, which are Serine, 

Threonine, or Tyrosine. 

Phosphorylation plays an important role in eukaryotic cell activities, such as cell cycle, 

signaling cell growth, and intracellular signal transduction. Research in the past has commonly 

conducted phosphorylation site identification using an experimental approach. One common 

experimental approach for identifying phosphorylation sites is by using mass spectrometry. By 

recording and measuring the mass of the ion sample, we can accurately identify phosphorylation sites. 

However, there are disadvantages in implementing mass spectrometry. (i) It requires an expensive 

machine. (ii) It also requires supporting tools and materials to conduct the experiment. (iii) Preparing 

the sample and analyzing it are both time consuming and labor intensive. (iv) Adequate skills are 

required to operate the machinery and analyze the results.  

Another way to identify phosphorylation sites is the computational approach. A lot of research 

implements this approach because of improvements in computer technology and machine learning. 

In general, there are two different methods of the computational approach. The first method is kinase-

specific phosphorylation site prediction. It requires information about the protein kinase, which 

catalyzes the process, as well as information about phosphorylated protein sites. However, 

information about kinase proteins for phosphorylation is often not available publicly. The second 

method is the non-kinase-specific phosphorylation site prediction. This method only requires the 

information of the phosphorylated protein to conduct a prediction. 

In this research, we conducted a non-kinase-specific phosphorylation site prediction by 

proposing new combinations of features. Feature selection was implemented to improve the 

classification result. There are two types of data sets we used to implement the method. The first data 

set is the P.ELM data set, which contains human and several animal phosphorylation sites. The 

second one is the PPA data set, which we used as an independent data set. This data set contains 

phosphorylation site information from plants. For each data set, we classified the phosphorylation in 

three different residues, Serine, Threonine, and Tyrosine. We implemented grid search to search the 

best number of features to achieve the highest classification performance.  

Based on our experiment, creating new combinations of new features with features from 

previous research, and implementing feature selection can improve classification performance. 

Comparing our results with the results of previous research, we can see an improvement of 

performance in phosphorylation site classification for Serine and Threonine residue. 

Keyword: phosphorylation site, feature selection, grid search, classification 
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1. Introduction 

1.1 Background 

1.1.1 Protein translation. 

Protein translation is the process by which a ribosome synthesizes a polypeptide string using 

the information from mRNA. Every three nucleotides (also known as a codon) in the mRNA is 

translated by tRNA into one amino acid. The Ribosome attaches itself to the mRNA string and reads 

the nucleotide in the string. A tRNA containing three nucleotides (an anti-codon) that complement 

the codon of the mRNA will attach to the mRNA and then release the amino acid to the polypeptide 

string.  

1.1.2 Post-translational modification 

PTM is one way of expanding the genetic coding capacity to generate diversity in the 

corresponding proteomes. PTM cellular regulation is complex and plays a very important role in 

biological regulation. There are different types of PTM. These are the common ones: Methylation, 

Acetylation, Glycosylation, Lipidation, Ubiquitination, and Proteolysis. Among all the PTMs that 

occur in eukaryotic cell, one of the most common is Phosphorylation. 

1.1.3 Phosphorylation 

Protein phosphorylation is a reversible modification of adding a phosphate group to certain 

residues, which are Serine, Threonine or Tyrosine [1]. This process includes the transfer of a 

phosphate group from Adenosine Triphosphate (ATP) to the target residue (Serine, Threonine, or 

Tyrosine), thereby creating Adenosine Diphosphate (ADP) as the byproduct. This PTM event 

normally occurs in the cytosol or the cell nucleus. The kinase protein helps the phosphorylation 

process.  

2. Literature review 

2.1 Phosphorylation site identification 

There are two common approaches in identifying protein phosphorylation sites. They are the 

experimental approach and the computational approach. 

2.1.1 Experimental approach: Mass spectrometry 

In the past, researchers relied on the experimental approach to analyze protein and identify its 

phosphorylation sites. One common method has been to use a machine called a mass spectrometry 

(MS) machine.  

2.1.2 Computational approach 

Currently, because of the advancement of computer and information technology, researchers 

more commonly use computer technology to identify phosphorylation sites. In general, 

phosphorylation site prediction using the computational approach can be divided into two methods, 

which are the kinase-specific approach and the non-specific-kinase approach.  

i. Kinase-specific approach 
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To conduct phosphorylation site prediction using this approach, two areas of information are 

required. First is the information about the kinase protein, which catalyzes the phosphorylation. 

Second is information about the protein target of phosphorylation, including the information of 

residue that has been phosphorylated. There have been several research works conducted using this 

approach. Xue et al, proposed a method called GPS 2.1 [2]. The other research work conducted by 

Bloom, who introduced NetphosK [1]. The main problem of implementing this approach is that 

kinases protein information is typically not publicly available. 

ii Non-specific-kinase approach 

This approach only requires information about the protein targets of phosphorylation, 

including phosphorylated residue. Many computational techniques using this approach have been 

implemented for phosphorylation site prediction. In this thesis, two related works using this approach 

will be explained. There are two related research work based on these approach. First is 

PhosphoSVM , introduced by Dou in 2014 [3]. The second is RF-Phos, proposed by Ismail [4]. 

2.2 Feature selection 

In real-world situations, our data contains relevant and irrelevant information. However, 

relevant and irrelevant features for many real-world learning problems are often unidentified. The 

problem with data sets containing irrelevant information is that it could degrade the performance of 

classification, both in computational time and in accuracy of prediction Feature selection is a process 

of selecting relevant feature subsets. There are several important reasons for implementing feature 

selection, to help visualize and understand the data, reduce data storage, reduce computation time 

and break the curse of dimensionality in order to improve classification performance [5]. 

There are two common types feature selection. First is Wrapper method, introduced by Kohavi, 

1997 [6]. Second is Filter Method. 

2.4 Classification 

Classification is a process using collected data to assign discrete labels. The goal is to predict 

the class of new observations. Classification tries to generate a classifier than can produce an output 

from arbitrary input. Classifiers can then label and assign an unseen example into a specific class.  

2.5 Cross validation 

Cross validation is a method used to evaluate prediction performance from a certain model. 

The main concept of this method is to split the data set into training data and testing data. This is 

done to avoid overfitting the result and create a generalizable prediction model.  

k-fold cross validation is a very popular cross-validation type. One common implementation 

of k-fold is where k=10. First, the data set is divided into ten groups. Ten iterations of cross validation 

are conducted for all groups, where 90% of the data is used to create the model to test 10% of the 

data. Then the average result of all iterations is used to measure the performance of the classification 
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using the data set. An extreme example of k-fold cross validation is Leave-One-Out cross validation. 

Where the number of folds equal the number of observations.  

3. Data and method 

3.1 Data 

3.1.1 P.ELM data set 

 P.ELM is a database containing phosphorylation sites in the eukaryotic cell which have been 

experimentally verified [7]. This data set was collected by Dou and redundant sequences with 30% 

similarity were removed. The data was made available for download from PhosphoSVM [3]. 

We then created protein sequences that have fixed-lengths. The window size for these 

sequences is 9, with the phosphorylatable residue (Serine, Threonine, or Tyrosine) located at the 

center. A sequence was defined as ‘positive’ when the center of that sequence is a known 

phosphorylated residue; otherwise, it is defined as a ‘negative’ sequence. We removed redundant 

sequences for both positive and negative sequences by using skipredundant [8]. Table 3.1 lists the 

number of positive and negative sequences before and after removing redundant sequences for each 

residue. We then selected negative sequences randomly for each residue based on the negative 

sequences from Ismail’s work. 

Table 3.1 Number of sequences before and after removing redundant sequences for window size- 

Residue 
Positive 

Negative 
Before After 

Serine 20,557 1,554 1,543 

Threonine 5,596 707 453 

Tyrosine 1,392 267 226 

3.1.2 PPA data set 

The second data we used was PPA, as a small independent data set [9]. We created protein 

sequences for this data set using the same window size and method as P.ELM. After removal of 

redundant sequences, we selected positive and negative sequences randomly also based on Ismail’s 

work. We can see in Table 3.2 the number of positive and negative phosphorylation sites for each 

residue with windows size 9.  

Table 3.2 PPA data set as the independent data set 

Residue Number of positive/negative sequences after 

redundancy removal 

Number of positive/negative 

sequences after selection 

Serine 484/1830 307/307 

Threonine 132/1227 68/68 

Tyrosine 187/640 51/51 
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3.2. Method 

3.2.1 Flowchart of research method 

 

Figure 3.1 Flowchart of the research method 

We conducted six processes in our research, as shown in Figure 3.1 

3.2.2 Feature extraction 

Feature extraction generates a series of features by analyzing the original data. Using a fixed-

length protein sequence, we implemented feature extraction to generate information as numerical 

vectors. The features that we used in this research were extracted using three tools: PROFEAT 2016 

[10], NCBI-Psiblast [11], and protr package [12]. 

We extracted these features in this research: Amino Acid Composition (AAC), Dipeptide 

Composition (DPC), Normalized Moreau-Broto Autocorrelation Descriptors (NMB), Moran 

Autocorrelation Descriptors (MORAN), Geary Autocorrelation Descriptors (GEARY), Composition, 

Transition, Distribution (CTD), Sequence-Order-Coupling Number (SOCN), Quasi-Sequence-Order 

Descriptors (QSO),Amphiphilic Pseudo-Amino Acid Composition (APAAC), Total Amino Acid 

Properties (AAP), Position Specific Scoring Matrix (PSSM), BLOSUM and PAM Matrices for the 

20 Amino Acid (BLOSUM), Amino Acid Properties Based Scales Descriptors (Protein Fingerprint) 

(ProtFP), Scales-based Descriptor derived by Principal Components Analysis (SCALES), Scales-

based Descriptor derived by Multidimensional Scaling (MDDSCALES), and Conjoint Triad 

Descriptors (CTriad) 

3.2.3 Protein feature selection using Random Forest  

We implemented Random Forest for feature selection. We listed the important features based on 

the Gini Impurity index.  

3.2.4 Support Vector Machine for phosphorylation site prediction 

To classify whether a residue is phosphorylated, we used Support Vector Machine.  

3.2.5 Evaluation 

Evaluation metrics 

Data preparation: Protein 

and Phosphorylation sites 

from P.ELM and PPA 

Generate fixed-length 

protein sequence 

Redundancy Removal using 

skipredundant 

Feature extraction using: 

PROFEAT 2016, NCBI-

PSIBlast, protr package 

Feature selection using 

Random Forest 

Classification using Support 

Vector Machine 
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We conducted an evaluation to measure and compare the performance of classification results. Table 

3.3 shows the combination of results of prediction compared to the results of real observations. True 

positive (TP) and True Negative (TN) occur when the result of the prediction is the same as the 

outcome of the real observation. False Positive (FP) and False Negative (FN) occur when the result 

of the prediction is different from the outcome of real observation. 

 

Table 3.3 Combination of prediction outcomes with observation matrix 

 Predicted Condition 

Positive Negative 

True 

Condition 

Positive True Positive 

(TP) 

False Negative (FN) 

Negative False Positive 

(FP) 

True Negative (TN) 

 

Using the result of the classification which are True Positive (TP), False Negative (FN), False 

Positive (FP), True Negative (TN), we calculated this metrics 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  

Matthews Correlation Coefficient (MCC) 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
  

Receiver Operating Character (ROC) Curve. An ROC curve is a commonly used way to visualize 

and evaluate the performance of a binary classifier. ROC compares the values of True Positive Rate 

with the False Positive Rate. 

3.2.6 Grid search 

Grid search is a method of finding the best number of features that achieve the highest accuracy 

for classification. This method consist of two phases. In the first phase, we defined the class label 

and the features. Then we split the data set into two sets, a data for training and a data for testing, by 

using k–fold cross validation. Using the training data, we created a model with Random Forest and 

listed the important features. We then set the grid length (for example, grid length=20), selected the 

number of features, and added numbers of features based on grid length. Using the selected number 



A Study on the Protein Phosphorylation Site Prediction by a Set of New Features and Feature 

Selection with Grid Search 

6 

 

of features, we conducted cross validation for each number of feature selection. We selected the best 

number of features (X) that produced the highest accuracy from cross validation 

In phase two, we conducted a finer grid search than phase one. The feature numbers that were 

selected were based on the numbers within the grid length of X. By selecting those feature numbers, 

we conducted cross validation. We then selected the number of the feature that had the highest 

accuracy (Y). Using the important list, we then selected Y number of features for the test and training 

data. We then generated a new model from the selected features in the training data and tested the 

model using the test data set, in which we also selected Y number of features. We conducted grid 

search for each fold. In addition, we recorded the result of the prediction. 

4. Result and discussion 

4.1 P.ELM data set 

4.1.1 Important features 

We conducted classification using the P.ELM data set. To evaluate the performance, we used 

ten times 10-fold cross validation. For each fold in each iteration, the model generates a list of 

important features measured. We averaged the value of each feature in the 100 lists and conducted a 

detailed analysis to determine which features were dominant and most influenced the classification 

method. An important features comparison was conducted for the P.ELM data set. We listed the top 

20 important features for each residue, as shown in Table 4.1 List of top 20 important features in the 

P.ELM data set for Serine, Threonine, and Tyrosine residues.  

Table 4.1 List of top 20 important features in the P.ELM data set for Serine, Threonine, and Tyrosine residues 

Rank Serine Threonine Tyrosine  Rank 

(cont’d) 

Serine Threonine Tyrosine 

1 QSO QSO QSO  11 CTD CTD CTD 

2 AAC QSO QSO  12 CTD CTD CTD 

3 QSO APAAC APAAC  13 DPC CTD CTD 

4 APAAC AAC AAC  14 CTD CTD CTD 

5 PSSM PSSM PSSM  15 CTD CTD CTD 

6 CTD BLOSUM BLOSUM  16 CTD CTD CTD 

7 CTD DPC DPC  17 CTD MDSSCALES MDSSCALES 

8 CTD CTD CTD  18 CTD PROTFP PROTFP 

9 CTD PSSM PSSM  19 PSSM PSSM PSSM 

10 CTD SCALES SCALES  20 PSSM PSSM PSSM 

4.1.2 Classification result 

By implementing feature selection with grid search for finding the best set of features, 

performances were greatly improved, as shown in Table 4.2. For instance, Serine increased its 

accuracy and had the highest accuracy at 96.46% using 373.45 important features in average (i.e. the 

average number of features selected in 10 times 10-fold cross validation). This is followed by 

Threonine at 91.75% using its averaged  296.71 important features. Tyrosine achieved its best 

performance, 76.77%, using its averaged 402.69 important features. Based on the comparison of 
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before and after using feature selection, Threonine had the largest percentage of increase in accuracy, 

26.08%, followed by Serine, 24.68%, and Tyrosine, 12.44%.  

 

Since feature selection decreased the performance in Ismail’s work, it is an important finding that 

under an appropriate combination of classifier and features, feature selection could improve the 

performance of protein phosphorylation site prediction. 

Table 4.2 Performance of classification using all of the features (2292 features) and best result of features selection for 

P.ELM data set 

Metrics 

Serine Threonine Tyrosine 

All features Average 

373.45 

features 

All features Average 

296.71 

features 

All 

features 

Average 

402.69 

features 

Accuracy  0.7177 0.9642 0.6567 0.9175 0.6433 0.7677  

AUC 0.7174 0.9642 0.6567 0.9168 0.6387 0.7639 

Sensitivity 0.7959 0.9701 0.8581 0.9197 0.6968 0.8097 

Specificity 0.6388 0.9582 0.3425 0.9139 0.5805 0.7181 

F1 Score 0.7388 0.9645 0.7526 0.9314 0.6783 0.7906 

MCC 0.4403 0.9285 0.2381 0.8282 0.2814 0.5309 

4.2 PPA data set  

4.2.1 Important features 

For the PPA data set, we also conducted classification. We evaluated performance using 

Leave-One-Out cross validation. Based on each fold, using Random Forest, an important feature list 

was generated from the training data. Therefore, the number of important feature lists generated 

equals the number of observations in the data set. As in the P.ELM data set, we measured the average 

value of each feature in all the feature lists. 

Important feature comparison is also conducted for the PPA data set. We list top 20 important 

feature for each residue as shown in Table 4.3.  

Table 4.3 List of top 20 important features in the PPA data set for Serine, Threonine, and Tyrosine residues 

Rank Serine Threonine Tyrosine  Rank 

(cont’d) 

Serine Threonine Tyrosine 

1 QSO APAAC QSO  11 CTD CTD QSO 

2 QSO QSO AAP  12 CTD CTD CTD 

3 APAAC QSO SOCN  13 AAP MDSSCALES QSO 

4 AAC AAC QSO  14 CTD MDSSCALES PSSM 

5 CTD CTD CTD  15 CTD MDSSCALES QSO 

6 CTD CTD QSO  16 CTD MDSSCALES BLOSUM 

7 CTD APAAC CTD  17 CTD BLOSUM MDSSCALES 

8 CTD QSO APAAC  18 CTD MDSSCALES SCALES 

9 CTD QSO CTD  19 CTD SCALES APAAC 

10 CTD AAC AAP  20 CTD MDSSCALES QSO 

 

4.2.2 Classification result  

In general, as shown in Table 4.4, we can see that without feature selection the accuracy is 

lower than 70% for all three data sets. However, there is an improvement if we implement feature 

selection before conducting class prediction. Threonine has the highest accuracy, 86.76%, using the 
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averaged 521.49 important features. This is followed by Serine, achieving 84.73% accuracy using 

the averaged 403.98 important features. Tyrosine has the lowest accuracy, achieving 77.45% using 

the averaged 264.18 important features. 

If we compare the increase in performance between not using feature selection and feature 

selection, Threonine achieved a 30.88% increase in accuracy, followed by Serine’s 27.30% increase. 

Tyrosine has the lowest increase of accuracy at 10.78%. 

 

Table 4.4 Performance of classification using all of the features (2292 features) and best result of features selection for 

PPA data set 

Metrics 

Serine Threonine Tyrosine 

All 

features 

Average 

402.98 

features 

All features Average 

521.49 

feature 

All 

features 

Average 

264.18 

feature 

Accuracy  0.5863 0.8593 0.5588 0.8676 0.6667 0.7745 

AUC 0.5863 0.8593 0.5588 0.8676 0.6667 0.7745 

Sensitivity 0.7687 0.8586 0.4412 0.8529 0.6471 0.7647 

Specificity 0.4039 0.8599 0.6765 0.8823 0.6863 0.7843 

F1 Score 0.6502 0.8592 0.5 0.8657 0.66 0.6531 

MCC 0.1854 0.7186 0.1210 0.7356 0.3336 0.5491 

 

4.3 Comparison with other previous data set 

In this research, we compared the result from our method to several other previous research works 

on phosphorylation site prediction. The compared methods are as follows: Netphos [13] , NetphosK 

[1], GPS 2.1 [2], Swaminathan, PPRED [14], Musite [15], PhosphoSVM [3], and RF-Phos [4]. Most 

of the previous research did not conduct feature selection to improve the classification of 

phosphorylation sites. Only RF-Phos implemented feature selection using Random Forest.  

4.3.1 Classification result 

P.ELM Data Set 

In this work, we also compared the result from the P.ELM data set and the PPA data set with 

other results from previous research. Table 4.5 shows the performance comparison between our 

results and other results. For Serine and Threonine, our method achieved the highest AUC, sensitivity, 

and MCC values. However, our specificity value from the Threonine data set is lower than the result 

of RF-Phos. On the other hand, in the Tyrosine data set our method achieved a lower AUC, specificity, 

and MCC, in comparison with the result of RF-Phos.  

 

Table 4.5 Performance comparison of several phosphorylation site prediction methods for Serine, Threonine, and 

Tyrosine residues using the P.ELM data set 

Methods 

Serine Threonine Tyrosine 

AUC Sen Spec MCC AUC Sen Spec MCC AU

C 

Sen Spec MCC 

NetPhosK 0.63 0.509 0.678 0.08 0.60 0.620 0.568 0.07 0.60 0.395 0.742 0.08  

GPS 2.1 0.73 0.331 0.933 0.20 0.70 0.381 0.923 0.20 0.61 0.345 0.789 0.08  

Swaminathan 0.70 0.313 0.887 0.13 0.72 0.280 0.925 0.14 0.62 0.605 0.570 0.09  

NetPhos 0.70 0.341 0.867 0.12 0.66 0.343 0.837 0.09 0.65 0.347 0.845 0.13  

PPRED 0.75 0.323 0.916 0.17 0.73 0.303 0.910 0.13 0.70 0.430 0.827 0.17  
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Musite 0.81 0.414 0.937 0.25 0.78 0.338 0.948 0.22 0.72 0.384 0.867 0.18  

PhosphoSVM 0.84 0.444 0.940 0.30 0.82 0.378 0.950 0.25 0.74 0.419 0.873 0.21  

RF-Phos 0.88 0.840 0.850 0.65 0.90 0.830 0.940 0.70 0.91 0.830 0.880 0.70  

Our Method 0.96 0.970 0.958 0.93 0.92 0.920 0.914 0.83 0.77 0.810 0.759 0.53 

 

PPA Data Set 

We also compared our classification results with the results in other research. The methods we 

compared are: NetphosK, GPS 2.1, NetPhos, PHOSPHER, Musite, PhosphoSVM, and RF-Phos. In 

Table 4.6, we can see that our method has a lower performance in sensitivity and specificity, for all 

residues. However, achieving the best MCC for all residues is of higher importance.  

 

Table 4.6 Performance comparison of several phosphorylation site prediction methods for Serine, Threonine, and 

Tyrosine residues using the PPA data set 

Methods 

Serine Threonine Tyrosine 

Sen Spec MCC Sen Spec MCC Sen Spec MCC 

 

NetPhosK 0.8013 0.3879 0.10 0.6912 0.5082 0.06 0.2549 0.8323 0.04 

GPS 2.1 0.9479 0.2862 0.14 0.9559 0.2084 0.07 0.9804 0.2142 0.09 

NetPhos 0.7655 0.5420 0.16 0.5441 0.7743 0.12 0.6471 0.6750 0.13 

PHOSFER 0.7459 0.6551 0.22 0.7794 0.6477 0.14 0.6275 0.5929 0.08 

Musite 0.5570 0.8739 0.31 0.4853 0.9355 0.26 0.4706 0.8877 0.20 

PhosphoSVM 0.6384 0.8176 0.29 0.7059 0.8176 0.19 0.8235 0.6418 0.18 

RF-Phos 0.7200 0.7000 0.41 0.7900 0.7000 0.50 0.6100 0.6200 0.29 

Our Method 0.8430 0.8556 0.68 0.8529 0.8824 0.74 0.7647 0.7843 0.55 

 

4.3.2 Feature selection 

Table 4.7 shows a comparison of the top ten important features used in our method and RF-Phos. 

Both of these lists are used to classify phosphorylation sites using the P.ELM data set.  

Table 4.7 Comparison of the top 10 important features between RF-Phos and our method for phosphorylation site 

prediction using the P.ELM data set 

Rank RF-Phos Our Method 

Serine Threonine Tyrosine Serine Threonine Tyrosine 

1 QSO QSO CTD QSO QSO QSO 

2 OP QSO CTD AAC QSO QSO 

3 QSO SF ASA QSO APAAC APAAC 

4 SF OP IG APAAC AAC AAC 

5 CTD CTD OP PSSM PSSM PSSM 

6 ACH CTD CTD CTD BLOSUM BLOSUM 

7 ACH CTD CTD CTD DPC DPC 

8 ASA OP CTD CTD CTD CTD 

9 CTD CTD CTD CTD PSSM PSSM 

10 ASA CTD ASA CTD SCALES SCALES 

5. Summary and future work 

5.1 Summary 

In this research, we conducted predictions for phosphorylation sites using the non-kinase-specific 

approach. We used the P.ELM data set. In addition, we used the PPA data set as a small independent 

data set. Random Forest was implemented for feature selection. We listed the important features 

using Gini Impurity Index. By implementing grid search we found the numbers of features that 
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achieved the highest classification performance for each residue. We classified the phosphorylation 

sites by using Support Vector Machine. 

In this study using the P.ELM data set, we (i) outperformed the classification performance from 

previous research for the Serine and Threonine data sets. However, the classification performance 

using Tyrosine data could not be improved. For PPA data set, our method achieved the highest MCC 

value for all residues. (ii) By implementing feature selection in our method, we could increase the 

performance of phosphorylation site classification. We conducted a grid search to find the best 

number of features to increase the classification performance. (iii) We introduced new features to 

improve Phosphorylation site classification.  

5.2 Future work 

In this study, we proposed new features to be implemented for the classification of 

phosphorylation sites. These new features consisted of numerical information representing the 

physicochemical properties of each amino acid in the protein sequence.  

We hope future work can discover new features that may improve classification performance. 

Feature selection in this thesis is conducted using three tools PROFEAT, PSIBlast, and protr to 

generate 16 different feature descriptors. We suggest finding new features, not only numerical but 

also categorical, which can increase the performance of phosphorylation site prediction. 

 Future research should explore new combinations of new features with features from previous 

research. We hope that combining new features with the features in our thesis will have an 

improvement for the prediction. 

More research should be done for phosphorylated Tyrosine to achieve a better result. In both the 

P.ELM and PPA data sets, the classification performance using the Tyrosine data set achieved the 

lowest results. Improvement of features extraction and selection for the Tyrosine data set is suggested 

to increase performance. 
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