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PAPER

Model Checking of Embedded Assembly Program Based on
Simulation

Satoshi YAMANE†a), Member, Ryosuke KONOSHITA†, and Tomonori KATO†, Nonmembers

SUMMARY Embedded systems have been widely used. In addition,
embedded systems have been gradually complicated. It is important to
ensure the safety for embedded software by software model checking. We
have developed a verification system for verifying embedded assembly pro-
grams. It generates exact Kripke structure by exhaustively and dynami-
cally simulating assembly programs, and simultaneously verify it by model
checking. In addition, we have introduced undefined values to reduce the
number of states in order to avoid the state space explosion.
key words: embedded assembly program, model checking, simulation

1. Introduction

Embedded systems are widely used in airplanes, cars, and
household appliances. It is important to find errors and re-
pair them. Model checking [1] is useful for this purpose.
Recently software model checking [2] is actively studied,
and program verification [3] is receiving a lot of attention.
B.Schlich have developed model checking [mc]square [10],
[11] of assembly programs for microcontrollers. [mc]square
generates overapproximated models by static program anal-
ysis, and verifies them by model checking. This model
checking can verify assembly programs, and find various
errors such as stack overflow and stack underflow.

In this paper, we develop new model checking of as-
sembly programs. While we generate an exact model by
dynamic program analysis, simultaneously verify it. The
reasons to verify assembly programs are as follows:

1. We realize program verification at the level of registers.
We can verify hardware-dependent erros such as for ex-
ample, stack overflows, stack underflows and interrupt
handing erros.

2. We realize verifying timing errors. We can estimate the
execution time of assembly programs.

But verifying assembly programs causes the state space
explosion problem [4]. B.Schlich generates the whole over-
approximated models by static program analysis, and af-
ter that verifies them by model checking [mc]square. But
B.Schlich does not consider clock cycles.

In this paper, we generate Kripke structure such as the
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exact models including clock cycles, and develop abstract
and refinement method of the bit level by undefined values.
Also we verify Kripke structure by model checking while
generating the Kripke structure by dynamic program analy-
sis.

We explain our proposed new methods as follows:

1. By generating the exact models including clock cy-
cles, we can uniquely decide the timing of the inter-
rupt about clock cycles. Therefore we can reduce the
number of states of Kripke structure. Moreover we can
verify timing constraints.

2. Our proposed abstract and refinement method of the
bit level is quiet different from Delayed NonDetermin-
ism (DND) [12]. In our method, only bits needing
concretization is refined. Therefore we avoid the state
space explosion problem.

3. By the exact Kripke structure, we never judge it to be
dangerous when it is safe.

4. As we verify Kripke structure by model checking while
generating the Kripke structure by dynamic program
analysis, verification results may be provided even if
we do not generate the whole Kripke structure. There-
fore we may avoid the state space explosion problem.

We demonstrate the effectiveness of our proposed veri-
fication method for robots [6] which carried microcomputer
H8/3687[5] of Renesas company. In addition, this robot is
equipped with plural timers and analog-digital converters.

The rest of this paper is structured as follows. First,
Sect. 2 introduces Kripke structure and model checking. Our
proposed verification system is described in Sect. 3. Es-
pecially, we describe interrupts and an abstraction method.
Experiments of embedded robot software are described in
Sect. 4. Finally, Sect. 5 concludes this paper.

1.1 Related Works

B.Schlich reported that embedded C programs were not
verified by the existing C code model checkers (e.g.
BLAST [7], BOOP [8]) [9] because embedded C contains
more features than defined in ANSI C.

Afterwards B.Schlich developed model checker
[mc]square, which verified assembly programs [10].
[mc]square generates the whole overapproximated model
by static program analysis, and then verifies it by model
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checking. But [mc]square does not consider clock cycles.
B.Schlich developed abstraction techniques such as Delayed
NonDeterminism (DND) [12], Dead Variable Reduction
(DVR) [13], [14], Path Reduction (PR) [14] in [mc]square.
DND is an abstraction technique that is used when replac-
ing abstract values with concrete values.

In this paper, our proposed method is quiet different
from [mc]square as follows: (1) Generating models includ-
ing clock cycles, (2) Abstract and refinement method of the
bit level, (3) Generating exact models by dynamic program
analysis, (4) Verifying a model by model checking while
generating the model by dynamic program analysis.

On the other hand, Lynette Millett sliced the Promela
programming language, used to specify protocols for the
Spin model checker [15]. A static program slice consists of
the parts of a program that may affect or are affected by the
value being computed at the point of interest. Our method
is dynamic abstract and refinement method of the bit level,
which is quiet different from Lynette Millett’s method.

2. Overview of Kripke Structure and Model Checking

We define Kripke structure [16] as the model generated from
assembly program, and describe model checking [1].

Let AP be a set of atomic propositions. A Kripke struc-
ture M over AP is a three tuple M = (S ,R, L) where

• S is a finite set of states.
• R ⊆ S × S is a transition.
• L : S → 2AP is a function that labels each state with

the set of atomic propositions true in that state.

We use CTL(Computational Tree Logic) for specifying
properties of Kripke structures [17]. CTL formulas are com-
posed of path quantifiers and temporal operators. The path
quantifiers are used to describe the branching structure in the
computation tree. There are two such quantifiers A(”for all
computation paths”) and E(”for some computation path”).
On the other hand, the temporal operators describe proper-
ties of a path through the tree. There are five basic operators
such as X(”next time”), F(”eventually” or ”in the future”),
G(”always” or ”globally”), U(”until”) and R(”release”).

Given a Kripke structure M = (S ,R, L) and a temporal
logic formula ϕ, find the set of all states in S that satisfy ϕ.

In this paper, we verify whether stack overflow happens
or not. We specify stack overflow by CTL [17] as follows.

AG(sS T ACK ≤ LIMITS T ACK) (1)

= ¬EF(sS T ACK > LIMITS T ACK) (2)

,where sS T ACK denotes the consumption of the stack in
some state, and LIMITS T ACK denotes the use limit quantity
of the stack. This formula intuitively means that sS T ACK ≤
LIMITS T ACK holds at every state on every path from initial
states; that is, sS T ACK ≤ LIMITS T ACK holds globally.

In this paper, we verify EF(sS T ACK > LIMITS T ACK).
That is, if EF(sS T ACK > LIMITS T ACK) does not hold true
at initial states, ¬EF holds true. In this case, stack overflow

does not happen.
We can easily verify other properties described in CTL.

3. Verification System

3.1 Overview of Verification System

This subsection describes the configuration of the veri-
fication system, which consists of Simulator and Model
Checker as shown in Fig. 1.

First Simulator inputs assembly program, and gener-
ates a Kripke structure. Next Model Checker inputs the
Kripke structure and a property, and outputs true or false.
Especially, Model Checker inputs a Kripke structure while
Simulator generates the Kripke structure.

Simulator generates the exact model of the behavior
exhibited by the correponding assembly program, based on
dynamic program analysis. The exact model is described by
Kripke structure, which consists of a finite set S of states, a
transition R ⊆ S × S and a set of atomic propositions. The
set of atomic propositions denote input and output informa-
tions from environments, events, registers. For example, n-
th register is described by Reg(n) = XXXX, a memory value
by add = XXXX, a stack pointer by stack = XXXX, a pro-
gram counter by PC = XXX. In addition, PC in a state s is
denoted by s.PC.

3.2 Algorithm of Verification System

The algorithm of our verification system is defined by Algo-
rithm 1.

First we explain the outline of Algorithm 1.

1. First, in an initial state s0, all enabled interruptions
are executed by InterruptHandling, and then Inter-
ruptHandling generates scucesosr states (line 10,23).
A generated state s′ by InterruptHandling(line 10)
is added to Kripke structure by AddNewState (line
31,43). Afterwards ModelCheckEF verifies the Kripke
structre by model checking (line 47,50). We assume an
interrupt processing is one instruction.

2. Next, after interruptions, the instruction of the address
of program counter PC in a state s is executed, and
then the next state s′ is generated (line 12,37). A gen-
erated state s′ by InterruptHandling(line 10) is added
to Kripke structure by AddNewState (line 40,43). Af-
terwards ModelCheckEF verifies the Kripke structure

Fig. 1 Configuration of verification system
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Algorithm 1 Algorithm of verification system
1: f := s.S T ACK > LIMITS T ACK ▷ Formula
2: EF f ▷ Property
3: s0 ▷ initial state
4: S := {s0} ▷ set of states
5: R := ∅ ▷ set of relations between states
6: list = [s0] ▷ generated states
7: function Main
8: while list.length , 0 do
9: s← head of list ▷ current state s

10: InterruptHandling(s) ▷ generate state by interrupt
11: if decidable interrupts don’t exist then
12: ExecuteInstruction(s) ▷ generate state
13: end if
14: if EF f ∈ L(s0) then break ▷ verification terminates
15: end if
16: remove s from list
17: end while
18: if EF f ∈ L(s0) then return (S ,R, true) ▷ output stack overflow
19: else return (S ,R, f alse) ▷ don’t stack overflow
20: end if
21: end function
22:
23: function InterruptHandling(s)
24: for all i ∈ Interrupts do
25: if i is interruptible then
26: s′ ← s ▷ Generate new state s′ moved from s
27: PCi = VectorTable[i] ▷ get vector address
28: s′.PC = PCi ▷ set PCi to PC of s′

29: GlobalMaskBits′ ← true ▷ mask s′

30: InterruptFlags′ ← f alse ▷ clear flag of s′

31: AddNewState (s, s′)
32: ExecuteInstruction (s′) ▷ interrupt is executed
33: end if
34: end for
35: end function
36:
37: function ExecuteInstruction(s)
38: operation← memory[s.PC] ▷ get operation accroding to PC
39: s′ ← execute(s, operation) ▷ generate a new state
40: AddNewState (s, s′)
41: end function
42:

43: function AddNewState(s, s′)
44: S := S ∪ {s′} ▷ add new state to S
45: R := R ∪ {(s, s′)} ▷ add new transition from s to s′

46: add s′ at the tail of list
47: ModelCheckEF (s′)
48: end function
49:
50: function ModelCheckEF(s)
51: T := ϕ
52: if s.S T ACK > LIMITS T ACK then ▷ formula f holds ture
53: T := T ∪ {s}
54: end if
55: while T , ϕ do
56: Choose {s ∈ T }
57: T := T/{s}
58: L(s) := L(s) ∪ {EF f }
59: for all t such that R(t, s) do
60: L(t) := L(t) ∪ {EF f }
61: T := T ∪ {t}
62: end for
63: end while
64: end function

by model checking (line 47,50).

While a new state is generated, that is, while list is not
empty, Algorithm 1 repeats the above procedure. But when
s0 ∈ L(EF f ) holds true, ModelCheckEF outputs true, and
then terminates.

Next we explain main functions in Algorithm 1.

1. In InterruptHandling(line 23), interruptions are exe-
cuted. The top address of the interrupt service routine
corresponding to an enabled interrupt i is captured from
the interrupt vector table, and then is substituted for PC
(line 27). Afterwards flags are masked (line 29) and re-
leased (line 30), and then the interrupution is executed.

2. In ExecuteInstruction (line 37), a new next state is
generated. In ExecuteInstruction (line 37), there are
two functions as follows.

a. In execute(s, operation) (line 39), a new next
state s′ is generated by updating propositions in
current states corresponding to an input instruc-
tion operation. For example, we explain move in-
struction between registers and registers. (1) First
a source register is refined in order to concretize
values of CCR, (2) Next the value of the source
register is moved to the value of a destination reg-
ister, and then CCR is set, (3) Finally both a timer
counter and PC are updated.

b. In AddNewState (line 43), a new generated state
s′ is added in Kripke structure. (1) First s′ is
added in the set of states, and the transition re-
lation between s and s′ is added in the set of rela-
tions (line 44,45). (2) Next s′ is added in list (line
46). (3) Finally new updated Kripke structure is
verified by model checking (line 47).

3. Whenever S imulator generates a new state, Mod-
elCheckEF (line 50) is performed. (1) First Mod-
elCheckEF (line 50) checks whether the stack pointer
in a state s exceeds the stack domain (line 52). If the
stack pointer does not exceed the stack domain, noth-
ing is dones. Otherwise, s is added into a set T (line
53), (2) Next until T is empty (line 55), a state s is cho-
sen from T (line 56), and s is deleted from T (line 57),
(3) For any state t which satisfies R(t, s) (line 59), EF f
is added in L(t) (line 60) and t is added in T (line 61).

Example 1: If s0 ∈ L(EF f ), stack overflow is detected
(line 18).

For example, we explain simulation and model check-
ing by Fig. 2.

First Simulator executes MOV.W, and generates a new
state s′. Next whether s′ satisfies f or not is checked. When
we suppose that s′ does not satisfy f , Simulator executes
PUSH.W, and generates a new state s′′. When we suppose
that s′′ satisfies f , EF f is added in L(s′) which satisfies
R(s′, s′′). Moreover EF f is added in L(s) which satisfies
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Fig. 2 Example of simulation and model checking

R(s, s′).

3.2.1 Interrupts

All interrupts have fixed priorities. The interrupt stops a cur-
rent processing temporarily and performs a high processing
of importance earlier. At 25 line in Algorithm 1, whether
the interrupt is enabled or not is checked.

We explain how to check whether the interrupt is en-
abled or not as follows.

When many interrupts are enabled, an enabled interrupt
is chosen from four elements such as (A)whether there is
an interrupt request, (B)the interrupt enable bit, (C)whether
the timing of the interrupt is decided, (D)the priority of the
interrupt.

In the following, we consider the timer interrupt that
assumed the overflow of the timer trigger .

1. When a timer overflows, this timer interrupt starts the
demand of the interrupt by doing an appointed bit truly.
Without this demand, the interrupt is not executed (A).

2. Even if a demand of the handling of an interrupt is
given, the interrupt is not executed if it is not allowed
by Interrupt Enable bit (IE) and Global Mask bit (GM)
(B).

3. By the interrupt that can decide a timing (C), interrupts
having priorities which are lower than the interrupt are
not executed (D).

The timing of the interrupt can be decided as follows.
We consider the timer interrupt that assumed the overflow
of the timer trigger as an example.

i fs = (tcs + ci > lims) ∨ i fs′ (3)

ti = i fs ∧ ¬gms ∧ ies (4)

1. We check a timer overflow by Eq. (3). i fs denotes Inter-
rupt Flag(IF) at a current state s. As a result of having
calculated the right side of Eq. (3), IF becomes true if
overflow occurs, where tcs is a timer count at a current
state s, ci is the number of clock cycles necessary to
execute current instruction i, lims is the ceiling value
for a timer at a current state s, i fs′ is Interrupt Flag(IF)

Fig. 3 Kripke structure either including or without clock cycles

at a previous state s′. If i fs is true, there is an interrupt
request.

2. Equation (4) denotes an enabled condition of the inter-
rupt, where gms is Global Mask bit (GM), ies is Inter-
rupt Enable bit (IE). If ti is true, the interrupt is exe-
cuted.

From Eq. (3) and Eq. (4), we can decide the timing of
the interrupt. If we can decide timings of all interrupts, we
can generate Kripke structure, which is an exact model.

Example 2: For example, we consider two Kripke struc-
tures such as Fig. 3(1) and Fig. 3(2) generated from the same
assembly program. Kripke structure including clock cycles
is shown in Fig. 3(1), and Kripke structure without clock
cycles is shown in Fig. 3(2). Here we consider only timer
interrupts. By generating Kripke structure including clock
cycles, we can decide timings of timer interrupts by a timer
count, Global Mask bit (GM) and Interrupt Enable bit (IE).

1. In Fig. 3(1), a timer overflow happens in a top node. In
this case, states and transitions by executing the timer
Interrupt are generated. Next states and transitions by
executing usual instructions of program counter(PC)
are generated.

2. On the other hand, in Fig. 3(2), both a timer interrupt
and usual instructions at all the nodes are generated. In
this case, the Kripke structre reachs an error state. But
this transition to the error state may be spurious.

It is important to consider clock cycles in order to both
generate an exact Kripke structure and avoid spurious coun-
terexamples.

3.2.2 Undefined Values

Abstraction and refinement method by undefined values is
based on DND [12]. An undefined value X denotes 0 or 1.
Because an undefined value can make two states one when
we pay my attention to one bit, undefined values can con-
tribute to reduction of the number of states.

For example, undefined values are used as shown in
Fig. 4. R0 shows that lower 8 bits are undefined in a 16-bit
register. @FF21 shows that all bits of address H’FF21 on
the memory are unclear. An undefined bit is described by
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Fig. 4 Undefined values

an undefined value. This undefined bit describes the initial
value given from environments. In addition, we treat the
undefined values with being unsettled as possible. When an
undefined value is divided into 0 and 1 when an instruction
accesses it. The refinement is performed with the execution
of an instruction in 39 line of Algorithm 1 mainly.

The exhaustive search of Simulator is performed while
an initial value is an undefined value and it is gradually re-
fined. Particularly, such an undefined value becomes essen-
tial because it is unknown as for the value at the time of the
power supply injection as for embedded systems unless we
state an initial value clearly.

Example 3: We explain processes of refinement using
Fig. 5.

Figure 5 shows how to handle undefined values when
we transfer 8 bits data from register R1 to register R0. When
an instruction is executed because all bits are undefined val-
ues, the necessary part of R1 must be refined. The part
which is necessary here is Condition Cord Register(CCR)
affected by data transmission. Thus, by the relation between
CCR and transfer data, we refine it not to cause contradic-
tion.

The result of the instruction is stored in CCR. CCR in
H8/3687 is comprised of 8 bits, and each bit changes de-
pending on an execution. By data transmission, a negative
flag (N flag) and a zero flag (Z flag) change. We can judge
the setting of the N flag if we watch Most Significant Bit
(MSB). If any bit contains 1, we understand that Z flag is
not 0.

First we break off the contradiction for the Z flag. In
this example, we can divide all the cases into nine cases
when R1 includes 1 in either bit and when all bits of R1
are 0. Next we refine N flag. In this example, N flag is true
when MSB of R1 is 1, N flag is false when MSB of R1 is 0,
N flag is an undefined value when MSB of R1 is an unde-
fined value. Because there is not contradiction in nine cases,
the refinement of the N flag is unnecessary.

After that, because all the contradictions are removed,
we transfer data from R1 to R0.

Without undefined values, in Fig. 5, we must generate
28 transitions (because the transfer of 8 bits data). With un-
defined values, we can generate nine transitions. Therefore
an undefined value is effective for reducing the number of
states and transitions. On the other hand, there may not be
approximately an effect by some instruction. For example,
in the case of add instruction and sub instruction, it becomes
difficult to break off contradiction with CCR by partial re-
finement.

Fig. 5 The procedure of refinement

4. Experiments of Verification System

4.1 Embedded Software

The experiment of our verification system demonstrates the
effects of our proposed techniques. We used seven programs
written for H8/3687 microcontroller [5], [6].

Program 1: LED program lights up three LEDs by the
number of timer overflow interrupts of timer V. For exam-
ple, when five times of timer overflow interrupts occur, the
program lights up LED1 and LED3.

Program 2: PID program operates a motor until it arrives
at the aim. The motor is controlled by PID control, and the
targeted value is decided beforehand.

Program 3: stack program calculates the numerical sum to
1-255 by recursive function. When Simulator detects stack
overflow, it terminates and outputs Kripke structure.

Program 4: Tsensor LED program acquires a combina-
tion of outputs of sensors, and lights up LEDs. This pro-
cessing to let supporting LED turn on is described as a
timer overflow interrupt of timer B1. Here there are three
LEDs and three sensors, and the sensor can distinguish black
and white. For example, when sensor 1 and sensor 2 de-
tect black, program lets LED1 and LED2 turn on in Tsen-
sor LED program.

In addition, the LED turns off the light every unifor-
mity time. This processing is described as a timer overflow
interrupt of timer V.

Program 5: Tsensor motor program acquires the value of
the sensor, and lets a motor work based on the value. When
a timer overflow interrupt occurs, the program acquires the
value of the sensor. After acquiring the value of the sensor,
the program decides a current value to cancel in a motor
and hands the value to the motor. There are three sensors
and motors. A sensor is a thing same as sprogram 1, and a
motor is a thing same as program 2.

Program 6: Tsensor P program acquires the value of the
sensor only once and decides the targeted value. Afterwards,
the rule number of timer interrupts happens, and the soft-
ware moves a robot. Here there are three sensors and mo-
tors. A sensor is a thing same as program 1, and a motor is
a thing same as sprogram 3.
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Table 1 Embedded software
Program C code (lines) Assembly Code (lines)

LED 32 107
PID 141 510

Stack 8 42
Tsensor LED 42 118
Tsensor motor 34 100

Tsensor P 90 272
Linetrace 249 811

Program 7: Linetrace program acquires the value of the
sensor, and the program operates H8/3687 microcon-
troller [5] from the value. Here there are three sensors and a
motor. A sensor is a thing same as program 1, and a motor is
a thing same as program 3. When a timer overflow interrupt
of timer B1 occurs, program acquires the value of the sen-
sor, and sets the new current targeted value from the value.
When a timer overflow interrupt of timer V occurs, program
performs PID control from the current targeted value and the
current value, and outputs the value in a motor.

We show the number of lines of seven above-
mentioned C language program and the assembly program
in Table 1.

4.2 Results of Experiments

4.2.1 Overview of Experiments

Our proposed verification system has the following origi-
nality: (1) generating models including clock cycles, (2) ab-
stract and refinement method of the bit level, (3) generat-
ing exact models, (4) verifying a model by model checking
while generating it by dynamic program analysis. We show
them effective by experiments as follows:

1. We compare (4)”verifying a model by model check-
ing while generating the model by dynamic program
analysis” with ”verifying a model after generating the
model”, using only stack program. When we verify a
model by model checking while generating the model
by dynamic program analysis, we show how much the
number of the states can reduce by changing program
stack size.

2. We implement both verification systems when we do
not consider a clock cycle and when we consider a
clock cycle, and compare the difference with both.

3. We compare the difference with three cases as follows.
(1) When we use undefined values for all, we generate
Kripke structure. (2) When we do not use undefined
values for all, we generate Kripke structure. (3) Also
when we use undefined values except CCR, we gener-
ate Kripke structure.

We verify seven programs in the following experiment
environment.

• Windows 8.1

Table 2 Verifying a model while generating the model

stack size(B) state relation time(s) stack overflow
1024 1398 1397 33.3 true
512 758 757 17 true
256 438 437 10.2 true
48 177 176 4.1 true

Table 3 Verifying a model after generating the model

stack size(B) state relation time(s) stack overflow
1024 - - - Time Out
512 - - - Time Out
254 92823 92822 6649.9 true
48 17683 17682 1889.3 true

• Intel (R) Core (TM) i3-2120T CPU @ 2.60GHz
• Available memory area : 2GB

Simulator is written in a combination of Java and Scala,
and Model Checker is written in Java as follows.

• Java 1.7.0 45 , 15000 lines
• Scala 2.10.3 , 5000 lines
• tools : JFlex [18] Jacc [19]

4.2.2 Experiments

We show results of experiments in from Table 2 to Table
8. The items of each table consists of the number of states
and relations, required time, stack overflow. Required time
is total time of both Simulator and Model Checking. stack
overflow shows stack overflow occurs or not (true/false).

1. In order to evaluate verifying a model by model check-
ing while generating the model by dynamic program
analysis, we show Table 2 and Table 3. Here true
means that stack overflow occurs, and Time Out means
that a result is not given in 24 hours. By comparing Ta-
ble 2 and Table 3, verifying a model by model checking
while generating the model by dynamic program anal-
ysis is very effective.

2. In order to evaluate undefined values, we show Table
4, Table 5 and Table 6.

a. When we do not use undefined values for all, we
must refine seven 32bit registers in an initial state.
For this reason, we can not get a result for the
state space explosion as shown in Table 5.
When we use undefined values for all, we can ver-
ify programs except PID and Linetrace as shown
in Table 4. Whenever AD conversion is carried
out by PID program, 28 states are generated and
causes the state explosion. Whenever a sensor
inputs the external environment, eight states are
generated with Linetarce program in addition to
the problem of PID program.
We show undefined values very effective as
shown in Table 4 and Table 5.
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Table 4 Using undefined values considering clock cycles

Program states relations time(s) stackoverflow
LED 26909 28613 523 false
PID - - - Time Out

Stack 177 176 4.2 true
Tsensor LED 13664 14996 334.8 false
Tsensor motor 14842 15054 599.8 false

Tsensor P 106495 108883 7352.1 false
Linetarce - - - Time Out

Table 5 Without undefined values considering clock cycles

Program states relations time(s) stackoverflow
LED - - - OutofMemory
PID - - - OutofMemory

Stack - - - OutofMemory
Tsensor LED - - - OutofMemory
Tsensor motor - - - OutofMemory

Tsensor P - - - OutofMemory
Linetarce - - - OutofMemory

Table 6 Using undefined values except CCR considering clock cycles

Software state relation time(s) stackoverflow
LED 107709 1145444 2474.1 false
PID - - - Time Out

Stack 194 193 5.3 true
Tsensor LED 54713 60056 1307.5 false
Tsensor motor 60357 61504 2735.9 false

Tsensor P - - - Time Out
Linetarce - - - Time Out

Table 7 Using undefined values without clock cycles

Software state relation time(s) stackoverflow
LED - - - OutofMemory
PID - - - OutofMemory

Stack 177 176 4.1 true
Tsensor LED - - - OutofMemory
Tsensor motor - - - OutofMemory

Tsensor P - - - OutofMemory
Linetarce - - - OutofMemory

b. As shown in Table 4 and Table 6, the number of
states in the case of using undefined values except
CCR increases to approximately 4 times than the
number of states in the case of using undefined
values. As CCR is a special register, we evaluate
undefined values of CCR. Using undefined values
of CCR is slightly effective.

3. In order to evaluate considering clock cycles, we show
Table 7, Table 8 and Table 9. When we do not consider
clock cycles, we can not verify programs except Stack
program even if we use undefined values for all. When
we do not consider clock cycles, an interrupt is carried
out disorderly. Therefore the state spece explosion oc-
curs.

Here we denote stack overflow by stackoverflow, and
denote Out of Memory by OutofMemory.

Our proposed verification system has the following
originality: (1) generating models including clock cycles,

Table 8 Without undefined values without clock cycles

Software state relation time(s) stackoverflow
LED - - - OutofMemory
PID - - - OutofMemory

Stack - - - OutofMemory
Tsensor LED - - - OutofMemory
Tsensor motor - - - OutofMemory

Tsensor P - - - OutofMemory
Linetarce - - - OutofMemory

Table 9 Using undefined values execept CCR without clock cycles

Software state relation time(s) stackoverflow
LED - - - OutofMemory
PID - - - OutofMemory

Stack 194 193 5.3 true
Tsensor LED - - - OutofMemory
Tsensor motor - - - OutofMemory

Tsensor P - - - OutofMemory
Linetarce - - - OutofMemory

(2) abstract and refinement method of the bit level, (3) gen-
erating exact models, (4) verifying a model by model check-
ing while generating it by dynamic program analysis.

We show the above techniques such as (1), (2) and (4)
very effective by our experiments.

5. Conclusion

In this paper, we explain verifying embedded assembly pro-
grams. We generate the exact models including clock cy-
cles, and develop abstract and refinement method of the bit
level by undefined values. Also we verify Kripke structure
by model checking while generating the Kripke structure by
dynamic program analysis. Our proposed verification sys-
tem has the following originality: (1) generating models in-
cluding clock cycles, (2) abstract and refinement method of
the bit level, (3) generating exact models, (4) verifying a
model by model checking while generating it by dynamic
program analysis. We show the above techniques very ef-
fective by our experiments.

In the future, we will verify embedded assembly pro-
grams based on CEGAR(Counterexample-guided abstrac-
tion refinement). We will verify liveness properties by ex-
tending our proposed method.
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