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Abstract  

RNA editing is a post-transcriptional process that alters the nucleotide sequence of RNA 

transcripts to generate transcriptome diversity. Among the various types of RNA editing, 

adenosine-to-inosine (A-to-I) RNA editing is the most frequent type of RNA editing in 

mammals. Adenosine deaminases acting on RNA (ADAR) enzymes, ADAR1 and ADAR2, 

convert adenosines in double-stranded RNA structures into inosines by hydrolytic 

deamination. Inosine forms a base pair with cytidine as if it were guanosine; therefore, the 

conversion may affect the amino acid sequence, splicing, microRNA targeting, and miRNA 

maturation. It became apparent that disrupted RNA editing or abnormal ADAR expression is 

associated with several diseases including cancer, neurological disorders, metabolic diseases, 

viral infections, and autoimmune disorders. The biological significance of RNA editing in 

pharmacokinetics/ pharmacodynamics (PK/PD)-related genes is starting to be demonstrated. 

The authors conducted pioneering studies to reveal that RNA editing modulates drug 

metabolism potencies in the human liver, as well as the response of cancer cells to 

chemotherapy agents. Awareness of the importance of RNA editing in drug therapy is 

growing. This review summarizes the current knowledge on the RNA editing that affects the 

expression and function of drug response-related genes. Continuing studies on the RNA 

editing that regulates pharmacokinetics/pharmacodynamics would provide new beneficial 

information for personalized medicine. 
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1. Introduction 

Gene regulation occurs at every step in the central dogma. In addition to regulatory 

mechanisms that act on DNA and proteins, eukaryotic RNA transcripts are subjected to 

various processing, such as alternative splicing, nucleotide modification and localization. 

Among such regulatory mechanisms, RNA editing refers to sequence alterations, including 

insertion, deletion or nucleotide conversion, that offer diversity in the transcriptome. 

Adenosine-to-inosine (A-to-I) RNA editing is a predominant form of RNA editing in 

mammals (Fig. 1) (Nishikura, 2010). In 1987, an enzymatic activity that causes the unwinding 

of double-stranded RNA (dsRNA) was discovered in Xenopus laevis oocytes and embryos 

(Bass & Weintraub, 1987). Later, this reaction was found to be the hydrolytic deamination of 

adenosine to form inosine, i.e., A-to-I RNA editing, which is catalyzed by adenosine 

deaminase acting on RNA (ADAR) enzymes (Bass & Weintraub, 1988; Wagner et al., 1989). 

At that time, a limited number of RNA editing sites were discovered in the coding region of 

mRNA by comparing the sequences of genomic DNA and cDNA using Sanger sequencing 

(Sommer et al., 1991). Within the past 10 years, the progress of next-generation sequencing 

technologies has enabled the high-throughput identification of 4.5 million A-to-I RNA editing 

sites, not only in the coding region but also in the non-coding region (Picardi et al., 2017). 

Since the base-paring property of inosine is similar to that of guanosine, the conversion of 

nucleotides potentially affects gene function and expression, depending on the region where 

the editing event occurs. For genes associated with pharmacokinetics (PK) and 

pharmacodynamics (PD), the roles of RNA editing have just started being studied. The 

purpose of this review is to outline recent findings on the role of RNA editing of PK/PD-

related genes and its potential pharmacotherapeutic implications. 

 

2. ADAR enzymes 

 ADAR enzymes convert the adenosines in dsRNA structures into inosines by hydrolytic 

deamination at the C6 position (Kim et al., 1994; Gerber et al., 1997). A highly conserved 

deaminase domain in the C-terminal region and dsRNA-binding domains in the N-terminal 
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region of ADARs catalyze this reaction (Nishikura, 2016). In the ADAR family in 

vertebrates, there are three members, ADAR1, ADAR2, and ADAR3 (also called ADAR, 

ADARB1, and ADARB2, respectively) (Bass et al., 1997). The ADAR1 gene encodes two 

isoforms, ADAR1 p110 (110 kDa protein) and ADAR1 p150 (150 kDa protein), using 

different transcription initiation sites and start codons. The former is constitutively expressed 

and is localized in the nucleus whereas the expression of the latter is induced by interferon 

and exists in both the nucleus and the cytoplasm (Patterson and Samuel, 1995; Desterro et al., 

2003). ADAR2, which is also a ubiquitous form, is highly expressed in the brain and is 

localized in nucleus (Melcher et al, 1996b). The expression of ADAR3 is limited to the brain 

(Melcher et al., 1996b; Chen et al., 2000). ADAR1 (Kim et al., 1994) and ADAR2 (Melcher 

et al., 1996a) have A-to-I RNA editing ability whereas ADAR3 does not show editing activity 

(Melcher et al., 1996b; Herbert et al., 1997; Chen et al., 2000). For ADAR1 and ADAR2, 

homodimerization is required to exert their editing activities (Cho et al., 2003; Poulsen et al., 

2006; Valente & Nishikura, 2007). Cho et al. (2003) have reported that ADAR3 is unable to 

homodimerize, which may account for its lack of editing activity. Although there is no strict 

sequence specificity for A-to-I editing, the surrounding nucleotides have some influence on 

recognition by ADARs. ADAR1 has a 5’ neighbor preference (A = U > C > G), but no 

apparent 3’ neighbor preference (Riedmann et al., 2008). The 5’ neighbor preference of 

ADAR2 (A ≈ U > C = G) is similar to that of ADAR1 whereas ADAR2 has a 3’ neighbor 

preference (U = G > C = A) (Polson & Bass, 1994). Some nucleotides are edited by either 

ADAR1 or ADAR2, and the others can be edited by both enzymes (Lehmann & Bass, 2000; 

Hartner et al., 2004).  

Mice genetically lacking either ADAR1 or ADAR2 were generated. It has been reported 

that the ADAR1-null mouse dies with numerous tissue failures at the embryogenesis stages 

(E11.5-12.5) (Wang et al., 2004), and the ADAR2-null mouse dies with epileptic seizures at 

postnatal day 20 (Higuchi et al., 2000), suggesting that ADAR proteins are indispensable for 

life. 
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3. Functional significance of A-to-I RNA editing of coding genes and miRNAs  

Following the conversion of adenosine into inosine, the nucleotide is interpreted as a 

guanosine, leading to a series of functional consequences depending on the site of A-to-I 

editing (Fig. 2) (Zipeto et al., 2015). Editing in the coding region of pre-mRNA may change 

the genetic code, resulting in a change in the amino acid sequence. Editing in the intron may 

affect splicing by generating or deleting alternative splice sites. The editing events within the 

3’-untranslated region (3’-UTR) have the potential to create or destroy the binding site of 

microRNAs (miRNAs) (Borchert et al., 2009; Farajollahi & Maas, 2010; Deffit & Hundley, 

2016).  

 miRNAs are short (~22-nucleotide), endogenous non-coding RNAs that regulate gene 

expression at the post-transcriptional level via base pairing with the target mRNA, resulting in 

gene silencing by either translational repression or mRNA degradation (Bartel, 2004). 

Nucleotides 2-8 at the 5’-end of the miRNA, called the seed sequence, are critical and 

sometimes sufficient for repressing the target translation (Lewis et al., 2005). The biogenesis 

of miRNA is a multi-step process. miRNAs are transcribed in the nucleus by RNA 

polymerase II as long primary transcripts (pri-miRNAs) containing a stem-loop structure. The 

pri-miRNAs are subsequently cleaved into 70-100 nt precursors (pre-miRNAs) by the 

microprocessor complex, which is composed of the RNase III, Drosha and DiGeorge 

syndrome critical region 8 (DGCR8). After they are exported into the cytoplasm by exportin 

5, pre-miRNAs undergo secondary cleavage by Dicer and TAR RNA binding protein (TRBP), 

leading to mature miRNA duplexes, and then they are unwound into the guide strand form of 

mature miRNAs. The passenger strand, named miRNA*, is usually degraded, but it is 

sometimes functional. The stem-loop structures of pri-miRNAs and pre-miRNAs are 

favorable targets for ADARs (Luciano et al., 2004; Kawahara et al., 2007). The A-to-I change 

in a miRNA transcript can alter its processing by changing the ability of Drosha and Dicer to 

bind to pri-miRNA and pre-miRNA, thereby affecting miRNA expression. In other cases, A-

to-I editing of the miRNA seed sequence could change its target selection or binding 

efficiency, although editing frequency in this region is low (Vesely et al., 2012; Ekdahl et al., 
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2012; Alon et al., 2012). With the finding of miRNAs, RNA editing became recognized as a 

critically important regulator of gene expression.  

In addition to A-to-I sequence change in miRNAs or their targets, ADAR regulates miRNA 

processing via an editing-independent mechanism (Nishikura et al., 2013). It has been 

reported that ADAR1 forms a complex with DGCR8 which is mutually exclusive  with the 

DGCR8-Drosha complex, leading to suppression of processing of pri-miRNA to pre-miRNA 

(Nemlich et al., 2013; Chen et al., 2015). Ota et al. (2013) revealed that ADAR1 forms a 

heterodimer with Dicer to function like TRBP, a Dicer’s partner. ADAR1 promotes Dicer-

dependent pre-miRNA cleavage, resulting the increase of generation of miRNAs. Thus, 

ADAR has a potential to modulate global miRNA synthesis. 

 

4. Databases of RNA editing sites  

Recent advances in next-generation sequencing enabled us to identify global RNA editing 

sites. RNA editing sites have been compiled in databases such as DARNED 

(http://darned.ucc.ie/, Kiran & Baranov, 2010; Kiran et al., 2013), RADAR 

(http://rnaedit.com/, Ramaswami & Li, 2014), and REDIportal 

(http://srv00.recas.ba.infn.it/atlas/, Picardi et al., 2017). According to RADAR, almost all of 

the editing sites (99.83%) are located in non-coding regions, including introns and UTR in 

coding genes as well as non-coding RNA molecules (Ramaswami & Li, 2016). A limited 

number of genes are edited in the coding regions, and their effects on protein function have 

been demonstrated (Pinto et al. 2014). Despite the broad distribution of editing sites in the 

non-coding regions, their physiological and functional significances largely remain to be 

clarified. The databases can help us to search for editing sites that may have biological 

significance. 

 

5. Diseases associated with RNA editing 

Accumulating evidence has demonstrated that disrupted RNA editing or abnormal ADAR 

expression in humans is linked with several diseases, including cancer, neurological disorders, 
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metabolic diseases, viral infections, and autoimmune disorders (Table 1) (Slotkin and 

Nishikura, 2013). In this section, the studies on the RNA editing that is associated with a 

neurological disorder, cancers and a metabolic disease are summarized.  

 

5.1. Neurological disorder 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that is 

characterized by the selective death of motor neurons. Although mutations of the superoxide 

dismutase gene have been found in 20% of familial ALS patients (Rosen et al., 1993), the 

majority of ALS cases are sporadic. Glutamate receptor 2 (GluR2), a subunit of the -amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, is the first example that was 

found to be subjected to A-to-I editing in mammals (Sommer et al., 1991). The editing occurs 

in the coding region and causes an amino acid substitution, Q607R. This site is completely 

edited in neurons throughout life, starting in, from the embryonic stage onwards. Kawahara et 

al. (2004) found that its editing levels in the motor neurons from patients with sporadic ALS 

were lower than those in healthy subjects. Motor neurons with less edited receptors had 

increased Ca2+, which resulted in cell death (Higuchi et al., 2000). Two research groups 

reported that the loss of editing of GluR2 is attributed to the decreased expression of ADAR2 

(Kawahara & Kwak, 2005; Aizawa et al., 2010), although the reason behind the down-

regulation of ADAR2 in ALS patients remains to be clarified. Hideyama et al (2010) have 

generated a conditional knockout mouse whose motor neurons lack ADAR2. These mice 

prematurely died with a neuronal defect (Hideyama et al., 2010), but the restoration of 

ADAR2 could rescue them, indicating that the editing of GluR2 is crucial for neuronal 

survival (Yamashita et al., 2013).  

Interestingly, a research group reported that antidepressants, such as paroxetine and 

imipramine, have the potency to enhance the editing of GluR2 at the Q/R site by up-

regulating ADAR2 expression (Sawada et al., 2009). Therefore, such drugs may have the 

potential to treat sporadic ALS. In addition, the Q607R substitution changes the affinity 

towards the Joro spider toxin (JSTX) isolated from Nephila clavata, which is one of the most 
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potent blockers of the AMPA receptor (Blaschke et al., 1993). Non-edited GluR2 has a higher 

affinity toward sJSTX than edited GluR2 (Iino et al., 1996; Savidge & Bristow, 1998). 

Therefore, inhibitors that are specific to the non-edited receptor may be an additional tool for 

ALS therapy.  

 

5.2. Cancers  

Tumor initiation and progression are the processes characterized by cellular changes in 

proliferation, differentiation and survival. Some genes and non-coding RNAs are involved in 

these processes as oncogenes or tumor suppressor genes. In addition, the effects of somatic 

mutations on cancer progression are well studied. RNA editing was also been found to be 

dysregulated in human cancers (Galeano et al., 2012). Interestingly, ADARs differentially 

function as oncogenes or tumor suppressive genes, depending on the cancer type, to cause 

hyper- or hypo-editing. Here, we summarize the studies demonstrating the role of A-to-I 

editing in cancer biology (Slotkin & Nishikura, 2013; Gallo & Locatelli, 2012).  

Hepatocellular carcinoma (HCC) is the third most common cause of cancer related deaths 

in the world. Recent studies demonstrated that the dysregulation of ADARs in tumors, which 

causes bankrupted editing, underlies tumor progression (Chen et al., 2013; Chan et al., 2014). 

Patients with up-regulated ADAR1 have an increased risk of liver cirrhosis, postoperative 

recurrence, and poor prognoses (Chan et al., 2014). In that study, the authors found that the 

mRNA of antizyme inhibitor 1 (AZIN1) is edited by ADAR1, leading to an S367G amino acid 

substitution (from AGC [serine] to GGC [glycine]). AZIN1 inhibits the antizyme-mediated 

degradation of cycle regulatory proteins, such as ornithine decarboxylase and cyclin D1 

(Coffino, 2001; Bercovich & Kahana, 2004; Newman et al, 2004; Kahana, 2009). The editing 

of AZIN1 mRNA resulted in the stabilization of AZIN1 protein and increased its binding to 

the antizymes to prevent the degradation of onco-proteins. Notably, the edited AZIN1 

conferred a tumorigenic phenotype to HCC cells that presented as higher proliferation and 

invasive ability, indicating that ADAR1 functions as an oncogene by enhancing the activity of 

AZIN1. A recent study revealed that Ba/F3 cells (murine dependent pro-B cell line) stably 
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expressing edited AZIN1 shows a higher resistance to BMS536924, an IGF-1R inhibitor, than 

the cells expressing non-edited AZIN1 (Han et al., 2015). The authors found that the IC50 

value of chemotherapy agents, such as paclitaxel, irinotecan and topotecan, were correlated 

with the editing levels of AZIN1 in 740 cell lines from the Cancer Cell Line Encyclopedia 

(Barretina et al., 2012), suggesting that RNA editing could modulate the sensitivity of cancer 

cells to the drug. Another study revealed that ADAR2 expression is elevated in HCC tissues 

and that ADAR2-mediated RNA editing of pre-miR-214 resulted in a decrease in the mature 

miR-214 level, leading to increased expression of its target Rab15, a member of the RAS 

oncogene family.  

Melanoma is the most aggressive type of skin cancer. Shoshan et al. (2015) found that 

cyclic AMP-responsive element binding protein (CREB) negatively regulates ADAR1 

expression and that ADAR1 inhibits melanoma tumor growth and metastasis. It has been 

reported that RNA editing by ADAR1 suppresses the maturation of pri-miR-455. The 

decrease in ADAR1 expression results in the decreased editing of pri-miR-455, an increased 

mature miR-455-5p level, and decreased levels of its target, the tumor suppressor cytoplasmic 

polyadenylation element-binding protein 1 (CPEB1) in melanoma progression. 

Previous studies have revealed a decreased expression of ADAR2 in glioblastoma, which 

is the most aggressive type of brain cancer (Maas et al., 2001; Ishiuchi et al., 2002; Galeano et 

al., 2013). The restoration of ADAR2 in glioblastoma cells resulted in decreased proliferation 

and migration in vitro. As the biological mechanism, it has been reported that the phosphatase 

CDC14B, which regulates Skp2/p21/p27 and is involved in glioblastoma growth, is a target of 

ADAR2 (Galeano et al., 2013). Onco-miRNAs, pri-miR-21 and pri-miR-221/222 are edited 

by ADAR2, leading to a decrease in their mature miRNA levels (Tomaselli et al., 2015). The 

seed sequence of miR-376* is edited by ADAR2, but the editing is reduced in glioblastoma. 

Since non-edited miR-376* directly represses RAP2A (a member of RAS family) expression, 

the increase in the non-edited miR-376* level by a decreased editing level in glioblastoma 

facilitates the down-regulation of RAP2A (Choudhury et al., 2012). Interestingly, it has been 

revealed that hypo-editing of the coding region of GluR2 increases Ca2+ influx, leading to the 
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promotion of glioblastoma growth (Ishiuchi et al., 2002). Thus, these studies indicate the 

essential role of ADAR2 in glioblastoma, with ADAR2 acting on multiple targets that 

contribute to cancer progression. 

The biological significance of RNA editing in cancer is not fully understood. Current 

knowledge of ADAR’s impact on human cancer development and progression may provide 

new ideas for developing drugs for cancer therapy. A study demonstrated that 2’-O-

methyl/locked nucleic acid mixmer antisense oligonucleotides against the target region of 

ADAR can be potent and selective inhibitors of RNA editing (Mizrahi et al., 2013). Site-

selective editing inhibitors could have therapeutic potential in cancers, which are 

characterized by hyper-editing at specific sites. 

 

5.3. Metabolic disease 

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by the abnormal 

secretion and uptake of insulin. The glucose-stimulated secretion of insulin from pancreatic -

cells plays a pivotal role in the pathology of T2DM (Ashcroft & Rorsman, 2012). It has been 

revealed that ADAR2 expression in pancreatic -cells is up-regulated by glucose stimulation 

via the c-Jun amino-terminal kinase-1 pathway (Gan et al., 2006; Yang et al., 2012). Another 

study demonstrated that the knockdown of ADAR2 impairs the secretion of insulin via 

glucose stimulation, suggesting that ADAR2 is required for insulin secretion by the pancreatic 

-cells (Yang et al., 2010). Although the responsible target(s) of ADAR2 for insulin secretion 

has not been uncovered, ADAR2-knockdowned -cells exhibited a lower expression of two 

key molecules, Munc18-1 and synaptotamin-7, that are involved in vesicle exocytosis (Yang 

et al., 2010). Further studies are required to disclose the mechanism in which ADAR2 is 

associated with the glucose-stimulated insulin secretion in pancreatic -cells. 

 

6. RNA editing of human AhR, which modulates PK 

As mentioned above, the roles of RNA editing in human diseases is becoming clear. 

However, the significance of RNA editing of the mRNAs that regulate drug responses is 
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largely unknown. Recently, we found that there is a large inter-individual difference (220-

fold) in ADAR1 protein expression (whereas ADAR2 was not detected) in human livers 

(Nakano et al., 2016), which is the principal tissue of drug metabolism, indicating the 

possibility that interindividual differences in ADAR expression and RNA editing levels may 

affect the expression or function of drug metabolism-related genes. 

In RADAR, many PK-related genes, including drug-metabolism enzymes, drug 

transporters and transcriptional factors, are registered as mRNAs that are subjected to RNA 

editing (Table 2). Almost all of the RNA editing sites are located in non-coding regions, such 

as introns and 3’-UTR, suggesting a possibility that the RNA editing events may affect the 

splicing or expression of the concerned genes. However, the biological significance of their 

RNA editing is not fully understood. Recently, we demonstrated the first evidence of the 

impact of RNA editing on the expression of drug-metabolism enzymes, which is described as 

follows.  

AhR is a ligand-activated transcription factor that regulates the expression of xenobiotic-

metabolizing enzymes, including CYP1A1, CYP1A2, CYP1B1, UDP-

glucuronosyltransferase, glutathione S-transferase (Ramadoss et al., 2005). We found that 

there are 38 edited sites in the 3’-UTR of AhR mRNA in the human liver. ADAR1 is 

responsible for their editing, and ADAR1-mediated RNA editing negatively regulates AhR 

expression in human liver cells (Nakano et al., 2016) (Fig. 3). Interestingly, the down-

regulation of the AhR attenuated 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated induction of 

CYP1A1, a downstream gene of AhR, suggests that RNA editing affects the expression of 

P450s. For the underlying mechanism of the negative regulation of AhR, we found that RNA 

editing creates the binding site of miR-378 in the 3’-UTR of AhR. In the human liver 

samples, a significant inverse association was observed between the miR-378 and AhR 

protein levels, suggesting that the RNA editing-dependent down-regulation of AhR by miR-

378 contributes to the variability in the constitutive hepatic expression of AhR. This is the 

first evidence to reveal that A-to-I RNA editing modulates the potency of xenobiotic 

metabolism in the human liver. 
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7. RNA editing of human DHFR, which modulates PD  

RNA editing can occur in the transcripts of a drug target, possibly affecting the drug 

response (Streit & Decher, 2011; Decher et al., 2013). We recently found a clinical 

significance to the RNA editing of dihydrofolate reductase (DHFR) expression. 

DHFR is a key enzyme of folate metabolism. It catalyzes the reduction of dihydrofolate 

to form tetrahydrofolate using NADPH as a cofactor. Tetrahydrofolate is essential for the de 

novo synthesis of purine and thymidylate, which are required for DNA synthesis, cell growth 

and proliferation. Therefore, DHFR is a target of the chemotherapeutic agents methotrexate 

and pemetrexed (Schweitzer et al., 1990; Fowler. 2001; Nazki et al., 2014). The efficacy of 

methotrexate in cancer cells is often limited by the acquisition of resistance. As one of the 

mechanisms of methotrexate resistance, the overexpression of DHFR protein is recognized. In 

addition to the known mechanism, we recently found that DHFR expression in breast cancer 

is positively regulated by RNA editing via DHFR mRNA stabilization. For the underlying 

mechanism of the positive regulation of DHFR, we found that RNA editing destroys the 

binding sites of miR-25-3p and miR-125a-3p in the 3’-UTR of DHFR. (Nakano et al., 2017) 

(Fig. 4). The up-regulation of DHFR enhanced cellular proliferation and resistance to 

methotrexate. The editing levels in breast cancer tissues were higher than in normal tissues, 

suggesting a possibility that hyper-editing of the DHFR transcript could be responsible for 

increased DHFR expression. ADAR1 may be a potential anti-tumor target for anti-folate 

compounds, including methotrexate. 

 

8. Potential effects of editing in miRNA on PK and PD 

We and other research groups have revealed the impacts of miRNA-mediated regulation 

on drug metabolism-related genes (Nakajima & Yokoi 2011; Li et al., 2016). For CYP 

enzymes, human CYP1A1 (Choi et al., 2012), CYP1B1 (Tsuchiya et al., 2006), CYP2A6 

(Nakano et al., 2015a), CYP2B6 (Jin et al., 2016), CYP2C8 (Zhang et al., 2012), CYP2C9 

(Riger et al., 2015; Yu et al., 2015a), CYP2C19 (Zhang et al., 2012; Yu et al., 2015b), 
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CYP2E1 (Mohri et al., 2010; Nakano et al., 2015b; Miao et al., 2016) and CYP3A4 (Pan et 

al., 2009; Wei et al., 2014; Shi et al., 2015) have been revealed to be regulated by miRNAs. 

Such accumulating evidence indicates that miRNA is an important determinant of drug 

efficacy and toxicity. However, it remains to be clarified how the expression of miRNAs that 

regulate PK/PD-related genes is regulated. As mentioned above, the RNA editing in miRNA 

molecules has the potential to change their expression and function. In Table 3, miRNAs that 

regulate PK-related genes and have RNA editing sites in their pre-miRNA are summarized. To 

further elucidate the impact of RNA editing on PK/PD, the effects of the RNA editing of pre-

miRNAs on the expression of PK/PD-related genes that are the targets of miRNAs should be 

evaluated. 

 

9. Conclusions 

At present, the critical roles of RNA editing in physiological processes and their 

involvement in human diseases are becoming clear. The significance of RNA editing in the 

research field of PK/PD has only recently started to become clear, and this post-

transcriptional modulation could be an additional solid factor that causes intra- and inter-

individual differences in drug response. The issues that would make it possible for RNA 

editing to become a part of pharmacotherapy are as follows: (1) The impact of RNA editing 

on the expression or function of PK-related genes should be examined, as the functional 

significance of RNA editing of the mRNAs shown in Table 2 is unknown. (2) It should be 

investigated whether the change of RNA editing levels could affect PK/PD properties in vivo. 

(3) It should be determined to what extent ADARs expression and RNA editing levels change 

under physiological conditions (aging, hormones, diet, alcohol, smoking, environmental 

chemicals, stress, and drugs). (4) Trials to examine whether ADARs can be a therapeutic 

target should be conducted. The development of molecules to modulate ADAR expression or 

activity may be challenging. Studies to uncover the roles of RNA editing of the genes 

associated with pharmacotherapy would also provide useful information for personalized 

medicine. 
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Table 1. RNA editing-associated diseases 

Disease ADAR involved Target Reference 

Amyotrophic lateral sclerosis (ALS) ADAR2 GluR2 Kawahara et al., 2004 

   Kwak & Kawahara, 2005 

   Hideyama et al., 2010 

    

Hepatocellular carcinoma ADAR1 AZIN1 Chan et al., 2014 

 ADAR2 miR-214 Liu et al., 2013 

    

Melanoma ADAR1 miR-455-5p Shosan et al., 2015 

    

Glioblastoma ADAR2 CDC14B Galeano et al., 2013 

 ADAR2 miR-376* Choudhury et al., 2012 

 ADAR2 miR-21/221/222 Tomaselli et al., 2015 

 ADAR2 GluR2 Ishiuchi et al., 2002 

    

Prostate cancer ADAR1 PRUNE2/PCA3 Sarameh et al., 2015 

    

Type 2 diabetes mellitus  ADAR2 Unknown Gan et al., 2006 

   Yang et al., 2010 

    

Prader-Willi syndrome (PWS) ADAR1/ADAR2 5-HT2C-R Morabito et al., 2010 

    

Dyschromatosis symmetrica 

hereditaria (DSH) 
ADAR1 Unknown Miyamura et al., 2003 

   Tojo et al., 2006 

   Liu et al., 2006 

    

Aicadi-Goutières syndrome (AGS) ADAR2 Unknown Rice et al., 2007 

    

Alzheimer's disease ADAR2 GluR2 
Gaisler-Salomon et al., 

2014 

    

HIV-1 infection ADAR1 Viral p24 Gag Doria et al., 2009 
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Table 2. Drug metabolizing enzymes, transporters, and transcriptional factors that are subjected to RNA editing    

Drug metabolizing  

enzyme 
Genic region   Transporter Genic region   

Transcriptional  

factor 
Genic region 

ADH1B Intron, 3'-UTR  BCRP (ABCG2) Intron  AhR 3'-UTR 

ADH1C Coding region  MRP2 (ABCC2) Intron  CAR (NR1I3) Intron 

AKR1C1 Intron, 3'-UTR  OAT2 (SLC22A2) Intron  FXR (NR1H4) Intron 

AKR1C2 Intron  OAT3 (SLC22A8) Coding region  GR (NR3C1) Intron 

CES2 3'-UTR  OATP1A2 (SLCO1A2) Intron  LXR (NR1H3) Intron 

COMT Intron  OATP1B1 (SLCO1B1) Intron  PXR (NR1I2) Intron 

CYP1A2 Intron, 3'-UTR  OATP2B1 (SLCO2B1) Intron  VDR Intron, 3'-UTR 

CYP1B1 Intron  OCT1 (SLC22A1) Intron    

CYP2B6 Intron, 3'-UTR  OCTN2 (SLC22A5) Intron    

CYP2C8 5'-UTR, intron  PEPT1 (SLC15A1) Intron, 3'-UTR    

CYP2C9 Intron  P-gp (ABCB1) Intron    

CYP2C18 Intron  URAT1 (SLC22A12) Intron    

CYP2D6 Intron       

CYP2E1 Intron       

CYP3A4 Intron       

CYP3A7 Intron       

FMO1 Intron       

FMO2 Intron       

FMO3 Intron       

FMO4 Intron       

FMO5 5'-UTR, coding region, intron       

SULT1A1 Intron, 3'-UTR       

TPMT Intron, 3'-UTR       

UGT2B15 Intron             

From RADAR (http://rnaedit.com/search/)     
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Table 3. miRNAs that regulate PK-related genes and have RNA editing sites in their pre-

miRNAs  

miRNA Pre-miRNA 
RNA editing 

sitea 
Target gene Reference 

miR-7 Pre-miR-7-2 +41 P-gp (ABCB1) Liu et al., 2015 

miR-27a Pre-miR-27a +17, +24 CYP3A4 Shi et al., 2015 

   P-gp (ABCB1) 
Zhu et al., 2008 & 

Li et al.,2010 

   PPAR 
Lin et al., 2009 & 

Kim et al., 2010 

miR-27b Pre-miR-27b +13 CYP1B1 Tsuchiya et al., 2006 

   CYP3A4 Pan et al., 2009 

   PPAR Kida et al., 2011 

   PPAR 
Karbiener et al., 2009 & 

Jennewein et al., 2010 

   VDR Pan et al., 2009 

miR-222 Pre-miR-222 +10 ER Zhao et al., 2008 

miR-223 Pre-miR-223 +91 P-gp (ABCB1) Yang et al., 2013 

miR-379 Pre-miR-379 +10 MRP2 (ABCC2) 
Haenisch et al., 2011 & 

Werk et al., 2014 

miR-508 Pre-miR-508 +31 P-gp (ABCB1) Shang et al., 2014 

miR-532 Pre-miR-532 +34 CYP3A4 Wei et al., 2014 

miR-641 Pre-miR-641 +24, +30, +31 CYP3A4 Yan et al., 2017 

miR-376c Pre-miR-376c +48, +50 UGT2B15 
Margaillan et al., 2015 & 

Wijayakumara et al., 2015 

      UGT2B17 
Margaillan et al., 2015 &  

Wijayakumara et al., 2015 

These pre-miRNAs are registered in RADAR (http://rnaedit.com/search/). 
aThe numbering denotes the 5' end of the pre-miRNA as +1. 
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Figure Legends 

 

Fig. 1. A-to-I RNA editing, which refers to the deamination of adenosine to inosine in the 

RNA molecule. Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine to 

inosine by hydrolytic deamination. Inosine is recognized by the cellular machinery as if it 

were guanosine.  

 

Fig. 2. Functional significance of A-to-I RNA editing. A-to-I editing occurs in double-

stranded RNA structure. Editing in the coding region of pre-mRNA may change the amino 

acid sequence. Editing in the intron may affect splicing by generating or deleting alternative 

splice sites. The editing events within the 3’-untranslated region (3’-UTR) have the potential 

to create or destroy the binding site of miRNAs. The A-to-I change in a miRNA transcript can 

alter its processing, thereby affecting miRNA expression. A-to-I editing of the miRNA seed 

sequence could change its target selection or binding efficiency. 

 

Fig. 3. The down-regulation of aryl hydrocarbon receptor (AhR) expression by RNA editing. 

The 3’-UTR of AhR is edited by ADAR1, and the edited sequence of AhR is recognized by 

miR-378 in human liver cells. This mechanism affects the expression and induction of drug-

metabolizing enzymes that are downstream of AhR.  

 

Fig. 4. The up-regulation of dihydrofolate reductase (DHFR) expression by RNA editing. The 

3’-UTR of DHFR is edited by ADAR1, and the edited DHFR mRNA can escape from 

repression by miR-25-3p and miR-125a-3p, leading to an increase in DHFR expression in 

breast cancer cells with high ADAR1 expression. This mechanism affects cellular 

proliferation and resistance to methotrexate.  
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