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Generalized Littlewood-Paley Characterizations of
Fractional Sobolev Spaces

Shuichi Sato, Fan Wang, Dachun Yang* and Wen Yuan

Abstract In this article, the authors characterize the Sobolev spaces WP (R"™)
with « € (0,2] and p € (max{l, 2a+n} 00) via a generalized Lusin area function and

its corresponding Littlewood-Paley g}-function. The range p € (max{1, 2(H_n} 00) is

also proved to be nearly sharp in the sense that these new characterlzatlons are not

( ? 2()/+ 2a +n’ the
authors also obtaln some weak type estimates. Since these generalized Littlewood-

true whe

). Moreover, in the endpoint case p =

Paley functions are of wide generality, these results provide some new choices for
introducing the notions of fractional Sobolev spaces on metric measure spaces.

1 Introduction

The theory of Sobolev spaces is one of the central topic in modern analysis. In recent
years, there is an increasing interest in developing Sobolev spaces on metric measure spaces,
and the theory of Sobolev spaces with smoothness order not greater than 1 has already
been intensively studied in a series of literatures (see, for example, [12, 17, 20, 15, 14]).

Recently, via establishing some new characterizations of Sobolev spaces on R", Alabern
et al. [1] found some ways to introduce high order Sobolev spaces on metric measure
spaces. To recall their results, let S(R™) be the set of all Schwartz functions on R™
equipped with the well-known topology and S’(R™) its topological dual equipped with the
weak-x* topology, namely, the collection of all bounded linear functionals on S(R"™); let
A:=X0 1( ) be the Laplace operator and, for any a € (0,00), f € §'(R") and £ € R",

[e3

define (:A)z via [(=A)2 f]M(€) = |2m€|® f( ). Here and hereafter, for any f € L'(R"),
we use f to denote its Fourier transform, namely, for any £ € R™,

F&) = | fla)e ™ du.
]Rn

It is well known that the definition of the above Fourier traﬁpsform can be extended to
any f € §'(R™), whose Fourier transform is still denoted by f. Recall that the fractional
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Sobolev space W*P(R™), with any a € (0,00) and p € (1,00), is defined as the set of
all f € LP(R™) such that (—A) € LP(R™), equipped with the norm that, for any
fe WEP(R™),

I £llwer@ey = IfllLo@n) + 1(=A)2 £l o).
Recently, Alabern et al. [1] proved that the Sobolev spaces W*P(R™) with any a € (0, 2]
and p € (1,00) can be characterized, respectively, by the square functions S,(f) when

€ (0,2) and S(f,g) when a = 2, which are respectively defined by setting, for any
f7 g € L]oc (Rn) N S/(Rn)7

0o ) — T 2 2
Sa(f)(z) := {/0 ’Btf(iaf() it} , VreR" (1.1)
and
oo ) — f(x 2 2
S(f,9)(x) = {/O ‘Btf(;f() — Byg(x) Cit} , VzeR™ (1.2)

Here and hereafter, L1 (R") denotes the set of all locally integrable functions on R",

B(xz,t) the open ball with center z € R™ and radius ¢ € (0, c0), namely,
B(z,t) :={y eR": |y—z| <t}

and Byg(z) the integral average of g € L] .(R™) on ball B(x,t), namely,

1
Big(z) := ][B(x’t)g(y) dy = M/B(m,t)g(y) dy. (1.3)

Indeed, Alabern et al. in [1, Theorems 1, 2 and 3] proved the following results.

Theorem 1.A. Let p € (1,00), a € (0,2], Sq and S be as in (1.1), respectively, (1.2).
Then the following statements are equivalent:

(i) feW*P(R");

(ii) f € LP(R™) and So(f) € LP(R

") when a € (0,2), or there exists g € LP(R™) such
that S(f,g) € LP(R™) when o = 2.

Moreover, it holds true that H(—A)5f||Lp(Rn) is equivalent to ||So (f) | Lr(rn) when a € (0,2)
or to ||S(f, g)|lLr(rn) when o = 2 with equivalent positive constants independent of f.

The characterizations of Sobolev spaces in Theorem 1.A do not depend on the differen-
tial structure of R”, and hence provide a way to introduce Sobolev spaces with smoothness
order in (0, 2] on metric measure spaces. Motivated by Theorem 1.A and by noticing that
Sa(f) and S(f, g) are two kinds of the Littlewood-Paley g-functions, the authors of [13] and
[4] considered the characterizations of W*P(R") via the corresponding Lusin area function
and the Littlewood-Paley g}-function. To be precise, for any A € (1,00), f, g € LlOC (R™)

and x € R", define
1
o0 B - 2 dt |’
0 B(z,t)
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Al /

:{/ /" <t+y;_yy)mdytﬁ1}2 (1.6)
and
s | ]

2 An
t dt
R —— dy — 1.7
(=) ytnﬂ} -0
where B; with t € (0,00) is as in (1.3).

The following result was proved in [13, Theorem 1.1].

Bif(y) — f(y)

[N

Bty ) — Big(y)

Theorem 1.B. Letn €N, p € (1,00), S and G5 be as in (1.5), respectively, (1.7). Then
the following statements are mutually equivalent:

(i) feW>P(R");
(ii) f € LP(R™) and there exists g € LP(R™) such that S(f,g) € LP(R™);

(iii) f € LP(R™) and there exists g € LP(R™) such that G3(f,g) € LP(R™), provided that
pE[2,00),neNand A € (1,00), orpe (1,2), n € {1,2,3} and X € (%,oo).

Moreover, if f € W2P(R™), then g in (ii) and (i) can be taken as g := Af/(2n+4); while,
if either of (i) and (iii) holds true, then g = Af/(2n+4) almost everywhere. In any case,
1S(fs Dl rpwny and [|GX(f, )|l Lr@ny are equivalent to [|Af||Le@n) with equivalent positive
constants independent of f and g, respectively.

This result was further completed by [4] as follows.
Theorem 1.C. Letn € N, n >4, S and G5 be as in (1.5), respectively, (1.7).
(1) Ifpe (4+n, 2), then the following statements are mutually equivalent:
(i) f € WP(R");
(ii) f € LP(R™) and there exists g € LP(R™) such that S(f,g) € LP(R");
(iii) f € LP(R™) and there exists g € LP(R™) such that G5(f,g) € LP(R™) for some
A€ (%, 00).

Moreover, if f € W2P(R™), then g in (ii) and (iii) can be taken as g := Af/(2n+4);
while, if either of (ii) and (iii) holds true, then g = Af/(2n+4) almost everywhere.
In any case, |S(f; 9)l|Lrrny and |GX(f, 9)|r(rn) are equivalent to ||Af]|Lpgny with
equivalent positive constants independent of f and g, respectively.

(I1) If p € (1 ,4+2n) then the equivalence between (i) and either (ii) or (iii) of (I) no
longer holds true.
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As a fractional version, the following result was also obtained in [4].
Theorem 1.D. Letn €N, a € (0,2), S, and GZ, \ be as in (1.4), respectively, (1.6).

(I) If p € (max{1, 20[2%}, 00), then the following statements are mutually equivalent:
(i) f e W*P(R");
(ii) f € LP(R™) and Sa(f) € LP(R™);
(iii) f € LP(R™) and Gy, ,(f) € LP(R™) for some A € (max{1, %}, 00).

Moreover, HSa(f)HLp(Rn) and ||G2’)\(f)||Lp(Rn) are equivalent to ||(—A)5fHLp(Rn)
with equivalent positive constants independent of f, respectively.

(I1) If n > 2a and p € (1, %), then the equivalence between (i) and either (ii) or (iii)
of (I) no longer holds true.

On the other hand, let 0 denote the origin of R™,

X(z):= XB(&I)(:B), Xt(z) :=t7"x(z/t), VxeR" Vte (0,00), (1.8)

b
|B(0,1)]

where xg denotes the characteristic function of the subset E of R™. Then B;f = Xt * f
for any f € LY (R™). Based on this observation and motivated by [1], Sato [16] gave a

loc
weighted generalization of Theorem 1.A when « € (0,2). To state his result, we need the
following assumption on .

Assumption 1.E. Let ® be a bounded radial function on R™ with compact support
satisfying [o, ®(z)dz = 1.

It is easy to see that X is a special example satisfying Assumption 1.E. In what follows,
for any t € (0,00), let ®4(-) :=¢t""®(-/t) and, for any f € S(R") and = € R",

1
e dt 2
7)) = { [ o)) — s ()@ 5 (1.9
with I, being the Riesz potential operator defined via

Iof(€) == (2nle) ™ f(€), VEeR™\ {0} (1.10)

In what follows, for any p € [1,00), we use A,(R™) to denote the class of Muckenhoupt
weights on R” and, for any w € A,(R™), Li,(R") the weighted Lebesgue space equipped
with the norm that, for any f € L%, (R"),

£l 2z, (mny == {/Rn !f(ﬂf)!pw(x)d:c}p < o0.

Sato in [16, Theorem 1.5] obtained the following result.
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Theorem 1.F. Let o € (0,2), p € (1,00) and w € Ap(R™). Let ® satisfy Assumption
1.E and T,, be as in (1.9). Then there exists a positive constant C such that, for any
f e SR,

C_IHfHLﬁ)(R”) < NTa(Hllze,mny < Cllfll Lz, -

In view of the definition of W*P(R") and the density of S(R") in L%,(R"), we know
that Theorem 1.F induces a generalized weighted version of Theorem 1.A, which is just
[16, Corollary 1.6].

Comparing the characterizations obtained in [16] with those in [13] and [4], it is natural
to ask whether or not we can also characterize Sobolev spaces as in Theorems 1.B and
1.C with the ball average function y; used therein replaced by a general function ®; as in
Theorem 1.F. The main purpose of this article is to answer this question.

To be precise, for any a € (0,2), A € (1,00), f, g € L}, . (R™) and = € R, define

e « f(z) — flaz)? 2
Ua(f)(fl')i—{/o i+ J(@) - J(z) Cit} (1.11)

tOc
[T @5 f)— FW)P , dt \*
- {/0 /%(I,t) o dy tn+1} (112)
and
~ L o0 P, % f(y) _ f(y) 2 " An " % |
)@ = {/0 L. ; = dytw} )

while for o = 2, define

> x f(x T 2 :
<fg><>={/0 s R Cff} ,
. . 2 4
(f,9)(z) = {/0 /B(xt) @, f(zg W) _ 3,4 g(y) dytﬂl} (1.14)
and
2
& (f.0) :{/ / t*f —FW) 4, g0)

1
An 2
t dt

Notice that Theorem 1.F implies that, for any a € (0,2) and p € (1,00), f € W*P(R")
if and only if f € LP(R") and U,(f) € LP(R™). The main results of this article read as
the following several theorems.
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Theorem 1.1. Let n € N, a € (0,2), ® satisfy Assumption 1.E, and U, and éz/\ be as
(1.12) and (1.13), respectively.

(I) If p € (max{1, 23%}, o0), then the following statements are mutually equivalent:

(i) feW*P(R");
(ii) f € LP(R™) and Uy(f) € LP(R™);
(iii) f e LP(R™) and 637/\(f) € LP(R™) for some X € (max{1, %},oo).

Moreover, Ua(f)llLrwny and |G \(f)l|Le@n) are equivalent to ||(_A)a/2f”Lp(Rn)
with equivalent positive constants independent of f, respectively.

(IT1) If n > 2« and p € (1, 20%1”), then equivalence between (i) and either (ii) or (iii) of

(1) no longer holds true.

We point out that, when ® = x with Y as in (1.8), Theorem 1.1 coincides with
Theorems 1.D.

To consider the end-point case of Theorem 1.1, we need the following stronger assump-
tion on ®.

Assumption 1.2. Let & be a bounded radial function on R"™ with compact support
satisfying [z, ®(x)dz = 1. Assume that there exists tg € (0,00), depending on @, such
that supp ® C B(0, tg) (the closure of B(0,t)) and, for any ¢ € (0,ty), there exists = € R"
such that |z| € (t,tp) and ®(x) # 0. Moreover, assume that there exists a positive constant
C(), depending on @, such that, for any z, y € B(0,to),

() — @(y)| < Caylz —yl. (1.16)

Compared with Assumption 1.E, Assumption 1.2 requires that ® satisfies the additional

local interior Lipschitz reqularity (1.16).
It is easy to see that there exist many functions ¢ satisfying Assumption 1.2 and,

especially, Y as in (1.8) satisfies Assumption 1.2.
In what follows, for ® as in Assumption 1.2, let

Co = / () (2r21)? da. (1.17)
2 /B@ )

Since @ is radial, it follows that, for any ¢ € {2,...,n},

Co— = / B(x)(2m:)2 da
2 JB(G,t0)

Also, for any locally integrable functions f and g, let

@+ f(z) = f(x)
$2

+ & % g(x) VzeR", Vte (0,00). (1.18)

Fifa)(et) = |

)

We have the following results.
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Theorem 1.3. Let p € (1,00) and ® satisfy Assumption 1.2. Then the following two
statements are equivalent:

(i) feW*P(R");

(i) f € LARY) and there eaists g € LR) such that G(F(f,q) € I/(RY), wher
F(f,g) is as in (1.18) and

1
2

mey»@wz{AwumeLMQf}, Vo e R™.

Moreover, if f € W2P(R"), then g in (ii) can be taken as g := CoAf; while, if (i)
holds true, then g = CoAf almost everywhere, where Cy is as in (1.17). In both cases,
IG(F(f, 9)llLewny is equivalent to ||Af||pwny with equivalent positive constants indepen-
dent of f and g.

Observe that, when ® = Y with X as in (1.8), Theorem 1.3 coincides with Theorem
1.A in the case o = 2.

Theorem 1.4. Let n € N, ® satisfy Assumption 1.2, U and éﬁ\ be asin (1.14) and (1.15),
respectively.

(I) If p € (max{1, ﬁ—”ﬂ}, o0), then the following statements are mutually equivalent:

(i) feWP(R");
(ii) f € LP(R™) and there exists g € LP(R™) such that U(f,g) € LP(R");

(iii) f € LP(R™) and there exists g € LP(R™) such that é;‘\(f, g) € LP(R™) for some
A € (max{1, %},oo).

Moreover, if f € W2P(R™), then g in (ii) and (iii) can be taken as g := CoAf;
while, if either of (ii) and (iii) holds true, then g = CoAf almost everywhere, where
Co is as in (1.17). In any case, |U(f, g)||lpr@ny and [|GX(f, 9)||Lrwny are equivalent
to ||AfllLp(rny with equivalent positive constants independent of f and g.

(II) If n>5 and p € (1, ﬁr—”n), then the equivalence between (i) and either (ii) or (iii) of

(1) no longer holds true.

We point out that, when & = x with Y as in (1.8), Theorem 1.4 coincides with
Theorems 1.B and 1.C.

The proof of Theorem 1.1 is given in Section 2, and the proofs of Theorems 1.3 and
1.4 are presented in Section 3. We observe that (ii) and (iii) of Theorem 1.1(I) are
equivalent for all p € (1,00) and n € N (see its proof below). Moreover, the condi-
tion p € (max{1, ﬁr—"n}, o0) is nearly sharp in the sense that, if (i) of Theorem 1.1(I) is
equivalent to (ii) or to (iii) of Theorem 1.1(I), then one must have

2n
2004+ n’

pE [ oo) when n > 2a, and p € (1,00) when n < 2a.
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Also, the items (ii) and (iii) of Theorem 1.4(I) are equivalent for all p € (1,00) and
n € N, moreover, the condition p € (ﬁr—"n, 00) is also nearly sharp in the sense that, if (i)

of Theorem 1.4(I) is equivalent to (ii) or to (iii) of Theorem 1.4(I), then one must has
pE (%,oo) when n > 5 and p € (1,00) when n € {1,2,3,4}.
Finally, in the endpoint case when p = 22?_”, we have the following weak-type result.

Recall that, for any p € (0,00), f € WLP(R") if and only if f is measurable and

I lweo@ny == sup ~l{z € R*: [f(2)] > 7}|'/? < co.
~v€(0,00)
Theorem 1.5. Let @ satisfy Assumption 1.2, a € (0,2], p = 2n/(n + 2a) € (1,00) and
A€ (2/p,00). Let Io, Ua, G}, U and G be as in (1.10), (1.12), (1.13), (1.14) and
(1.15), respectively.

(i) If a € (0,2), then Uy o I, and éz/\ oI, are bounded from LP(R™) to WLP(R™) and
hence U, and éz/\ are bounded from WP(R™) to WLP(R™).

(i) If « = 2, then, for any f € W2P(R"), ﬁ(f, CoAf) and é;(f, CoAf) belong to
WLP(R™), where Cy is as (1.17), and there exists a positive constant C, independent
of f, such that

1U(f, CoAf)llwremny + IG3(f. CoA)llwrrwny < Cllf lw2pmn)-

Remark 1.6. (i) Even when ® = y with x as in (1.8), Theorem 1.5 is also new.

(ii) On Theorem 1.5(i), if o, p and A are as therein and U, € WLP(R™) or C:’Z)\ €
WLP(R™), then it is still unclear whether or not f € W*P(R™).

(iii) On Theorem 1.5(ii), it is still unclear whether or not a reverse statement still holds
true. Namely, if p and A are as in Theorem 1.5(ii) and there exists a g € LP(R™)
such that either U(f, g) or éj(f,g) belongs to WLP(R™), where Cj is as (1.17), it is
still unclear whether or not f € W2P(R").

(iv) Observe that, if ® satisfies either Assumption (1.E) or Assumption (1.2), then, for
any t € (0,00), ®; * f is indeed an average of f on a certain set, which, for some
special choices of ® (for example, when ® = X with X as in (1.8)), has a natural
generalization in metric measure spaces. Thus, Theorems 1.1, 1.3, 1.4 and 1.5 provide
some new choices for introducing fractional Sobolev spaces on metric measure spaces.

To prove Theorems 1.1 and 1.4, we borrow some ideas from [1] and [4]. The main idea is
to control the Lusin area functions ﬁa( f) and U (f, g) by a sum of a sequence of convolution
operators whose kernels satisfy vector-valued Hormander conditions. Then, applying the
vector-valued Calderén-Zygmund theory (see [9, Theorem 3.4]) and the Marcinkiewicz
interpolation theorem (see [10, Theorem 1.3.2]), we obtain the boundedness of all such
convolution operators on LP(R™) as well as the exact decay estimates of their operator
norms, which imply the desired boundedness of the Lusin area function. On the other
hand, we make use of the fact that W®P(R") = FgQ(R") and prove that || f]| fro () <

~
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H[Aja(f)HLp(Rn), with a € (0,2), p € (1,00) and the implicit positive constant independent
of f, by means of the classical Lusin area function characterization of Triebel-Lizorkin
spaces FEQ(R") (see, for example, [19]) and the Fefferman-Stein vector-valued inequality
from [7]. To prove Theorem 1.5, we apply some methods from Fefferman [8].

Remark 1.7. We point out that, as a generalization of the classical Sobolev spaces with
integer smoothness order, the fractional Sobolev spaces W*P(R") considered in this ar-
ticle were usually called the Bessel-potential (or Lebesgue or Liouwville) spaces in other
literatures, which were also denoted by H*P(R"™) therein (see, for example, [18, p.37]).
The fractional Sobolev space W*P(R") coincides with the Triebel-Lizorkin space Fy',(R™)
for any a € (0,00) and p € (1,00) (see, for example, [18, Section 2.2.2]). It is well known
that, in many literatures, there exists another approach for fractional Sobolev-type spaces,
which were called Aronszajn, Gagliardo or Slobodeckij spaces (see, for example, [5, p. 524]
or [18, p.36]), and we denote them by the symbol Wwer (R™) here. Recall that, following
[5], for any p € [1,00) and 6 € (0, 1), the so-called Gagliardo (semi)norm of f € LP(R") is

given by
W g
{// \:c— SR ddy} '

The Aronszajn, Gagliardo or Slobodeckij space Wo"p(R”), with any o € (0,00) \ N and
p € [1,00), is then defined to be the set of all functions f € WL*:P(R") such that

HfHWa,p(Rn) = HfHWLaLP(R") + BSBZE [Dﬁf]oa—Laj,p
|B8]=lo]

is finite, where |« | denotes the maximal integer not greater than « (see, for example, [18,
p.36]). The space WP (R™) coincides with the Besov space By ,(R™) for any o € (0,00)\N
and p € [1,00) and hence Wae2(R") = We2(R™) (see, for example, [18, Section 2.2.2]).
However, Wep (R™) does not coincide with W*P(R™) when p # 2 (see, for example, [5,
Remark 3.5]). (We thank the referee for reminding us these facts.)

Finally, we make some conventions on notation. We denote by C' a positive constant
which is independent of the main parameters, but may vary from line to line. The symbol
A< Bmeans A <CB. If A< B and B S A, then we write A ~ B. We use C,, ) to
denote a positive constant depending on the indicated parameters «,.... Let M denote
the Hardy-Littlewood mazimal operator defined by setting, for any f € Lloc (R™) and
x € R",

M@= sw o [ 1wl d (119)

B>z

where the supremum is taken over all balls B containing z. Also, we use 0 to denote
the origin of R™ and N to denote the set of all positive integers. Let Z; := NU {0} and
Z_ :=7Z\Z4. For any f € S'(R™), we use f and fY to denote its Fourier transform,
respectively, its inverse Fourier transform.
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2 Proof of Theorem 1.1

To prove Theorem 1.1, we first consider the relations among U,, ﬁa and é’; \» Tespec-
tively, from (1.11), (1.12) and (1.13). To this end, for any A € (1, c0), measurable function
F on R"™ x (0,00) and x € R", define

6(7)w)i={ [ "I P Cff} (2.1

G(F) () = { ) L Fw Ry ﬁl} (2:2)

G}(F)(x) == { /0 N / F@oP (M)A dytﬁl}é. (2.3)

For these operators, we have the following lemmas from [13, Lemmas 2.1(iii) and 2.2],

and

respectively.

Lemma 2.1. Let A € (1,00) and p € [2,00). Then there exists a positive constant C' such
that, for any measurable function F on R™ x (0,00), [|GX(F)|lr@n) < CG(F)I| Lr@n)-

Lemma 2.2. Let p € (1,00) and A € (max{%,l},oo). Then, for any measurable func-

tion F on R"™ x (0,00), G(F) € LP(R™) if and only if G{(F) € LP(R™). Moreover, the
LP(R™)-norm of GY(F) is equivalent to that of G(F) with the equivalent positive constants
independent of F.

For any « € (0,2), ® satisfying Assumption 1.E and x € R", let

where I, is as in (1.10). Then we have

B(6) = (2nle) ™ [Be) — 1], veeR"\ {0}
and, by the properties of ®, we also have

1

W) =5 [ Moo=y +Lale+y) —2Ua@lB) s, YoERT (23

and hence

U6 =5 [ (erleh [ 4 0O o] @)y, vEER" (260

(see [16, (2.1) and (2.4)]). Then we have the following lemma.
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Lemma 2.3. Let a € (0,00), ® satisfy Assumption 1.E and ¥ be as in (2.5). Then there
exists a positive constant C such that, for any & € R™\ {0},

[U(¢)| < Cmin {[¢]>7, [¢]7°}.

Proof. Let My := sup,epn |®(x)|, E := supp ® and a := |E|. Then, since ® is a bounded
and radial function with compact support, it follows that both My and a are finite.
On one hand, from (2.6), we deduce that, for any ¢ € R™ \ {0},

[B(6)| = 5 (2rle) ™

/ [e%i(y,f) 4 e 2miyg) _ 2} ®(y) dy‘
1 — Tl —2mi —Q| ¢
< gemle)™ [ [|e=i00)] 4 |60 2] [b(y)| dy < 2abp(2m)

On the other hand, also from (2.6), combined with the Cauchy-Schwarz inequality, we
conclude that, for any £ € R™ \ {0},

3(6)| = 5rle) | [ Roosr(y. ) - o)

< 2(2nle)) /E (sin(m(y, )22 ()| dy
< 2Myr? (2[€)) /E (49.€) dy < 2MoLn?(2m) (¢ >,

where L := [, |y|? dy. This finishes the proof of Lemma 2.3 O

Notice that ® is also a radial function. For any 7 € (0,00), let F(7) := ®(¢), where
& € R™ and |¢] = 7. Then we have the following conclusion.

Lemma 2.4. Let a € (0,2].

(i) It holds true that there exists a positive constant C, independent of «, such that

sup ‘F(TL_1’ < C < 0. (2.7)
7€(0,00) T

(ii) Ifj € N and s € (0,00), then there exists a positive constat C(q s j), depending on o,
s and j, such that

sup

TE(s,00) dr? T

ALLE

] ‘ < Claysj) < 0©. (2.8)

Proof. Let e; := (1,0,...,0) € R" and x := (z1,22,...,%y,). Then, by Assumption 1.E,
we know that

PO L e [d(ren - 1] = 0 { [ a1

7-04
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= /n O (z)7Ycos(2mx1T) — 1] d. (2.9)

We first prove (i). To this end, we consider two cases. In the case when 7 € [1,00),
since ® is bounded and has compact support, it follows that

~

T /n O (x)[cos(2mx17) — 1) dx| S 1. (2.10)

When 7 € (0,1), by the mean value theorem, we know that

| cos(2mz17) — 1| = 2[sin(mz17)]? = 2(7217)%[cos(Omay7)]?

for some 6 € (0, 1), which, together with « € (0,2), further implies that
27_2704[

T Y cos(2mxy7) — 1| = 2(721) cos(Omz 7)) <

and then, by the fact that ® is bounded and has compact support again, we conclude that

/ B(2) 7 [cos(2ra17) — 1] dz| < / B2 |22 dz < 1,

which, combined with (2.10), implies (2.7) and hence completes the proof of (i).
Now we prove (ii), namely, we show that (2.8) holds true. (From (2.9), the Leibniz
formula and Assumption 1.E, we deduce that

&’ [F(T)—l] ’ /n @(x)%{r—“[cos(Qﬂxlf) —1]}da

sup |— = sup
TE(8,00) dr T TE(s,00) dr
J
= sup / d(x) ch(T*a)(k) [cos(2ma17) — 1]U7R) dg
TE(8,00) |JR™ k=0

J
S sw [ (@)Y e g5,
k=0

TE(s,00)

where ¢y, := (i) denotes the binomial coefficient and f( := (8%)” f, which implies (2.8).
This finishes the proof of Lemma 2.4. O
For any a € (0,2), f € L} (R") and x € R", let

loc

Us()() = { L e s +y>|2dycf} , (211)

where U is as in (2.4) and Wy(-) = t7"U(-/t) for any ¢ € (0,00). Then it is easy to see
that, for any f € L1 _(R™).

loc
«@

Ua(f) ~ Us((=2)% f) (2.12)

with the equivalent positive constants independent of f.
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Let ¢, ¥ € S(R™) be two radial functions such that
suppp € {e e R J <lel <2} T perio = 1ve R\ (O
jez . (2.13)
<lél <afs 5 = Lwhen 5 <[¢ <2

g I

supp{/;C {f e R™:

Clearly, f*py—j = f*pg—j*1py—; for any j € Z and f € S'(R™). Then, from the Minkowski
inequality, we deduce that, for any f € L} (R") and z € R",

2

// DD I xpamsm Wilw 4 y)l X X[a-k 2-k+1) (1)

JEZL ke

1
2
dt
X Xp@oW W G

2 2
dt
S Z / ][ f * pg—j—k * Wy(z + )] X[Q—k72—k+l)(t) dy 7
B(0,t)
JEL keZ
S D TiN(), (2.14)
jez
where, for any j € Z,
1
o—k+1 2
9 , dt
Z/ ][ ) |f * poimn x Uy(z +y)|dy — | . (2.15)
keZ B(0,27k+1) t

By Lemma 2.3, we have the following estimates.

Lemma 2.5. Let o € (0,2) and @ satisfy Assumption 1.E. Then there exists a positive
constant C such that, for any j € Z and f € L*(R"),

1T (£l < € [min {279, 2= | 7] gy,
where Tj is as in (2.15).

Proof. By the Plancherel theorem and Lemma 2.3, we have

—k+1
dt
I175(f HL2 (Rm) — Z/ ][ . / |f * @ik * \I/t(a:+y)|2d$ dyT
keZ B(072—k+1) n
92— k+1
<Z/ / | f o poimie x Wy(z )de—
k€eZ

2—k+1

n = dt
< 2 ] 27d
S o FOR [ 1B0R

keZ
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< [min {2729, 227007 ] | £]12, ).

which implies the desired conclusion and hence completes the proof of Lemma 2.5. ]
From Lemmas 2.4 and 2.5, we deduce the following Lemma 2.6.

Lemma 2.6. Let a € (0,2), p € (1,00), q := max{p,p'} with p’ being the conjugate index
of p (namely, I%—{— 1% =1), e € (0, %) and ® satisfy Assumption 1.E. Let ¢, ¢ € S(R™)
be as in (2.13). Then there exists a positive constant Cle,a,p); depending on g, a, and p,
such that, for any j € (—o0,0)NZ and f € LP(R™),

oa)i(l_
175 (Dllzozn) < Cleam2 PG flLoan
where Tj is as in (2.15).

Proof. By the definition of 7;(f) (see (2.15)), we know that, for any z € R",

(z)]* < Z sup [t By % f % I % Pgjorc — [ % Io % gjoi)(z 4+ y)|?. (2.16)
B
heL tyee[z (?622 k+1))

Notice that, for any & € R™\ {0},

tN( Dy fox Do osn — [ 5 Lo % pp5)(€) = §(27777¢) |(2t7§2£‘a

= my k(277 F1(6),

fJ+k(§)

where R
2(2M€) —1

|2k 1rg|

and fjip := f * ¢¥y—j—k, with ¢ and ¢ as in (2.13). Since j < 0, from Lemma 2.4, we
deduce that, for any t € [27F, 27+ 1),

m k() = 3(277€)

Vi (6)] S 27 X1 201y(€]), Vi€ Zy, VEER"

and hence
mig(2)] S 2"+ 2|z) ™", VzeR™ (2.17)

Thus, by (2.17), we conclude that, for any ¢ € [2*’“, 2*’”1) and r € R",

7 sup  |[(Pex fx Iy xpojn — fxly*pgjk)(x+7y)
ly|<2—Fk+1

= sup 2
ly|<2—F+1

< ok / Fier(2)] sup (14259 (z 4y — 2)) 1 dz
ly|<2—k+1

/ Fian(2)mu (25 4y — 2)) dz



GENERALIZED LITTLEWOOD-PALEY CHARACTERIZATIONS 15

S2 [ @)1+ 2l = ) de S Mf) o),

where M denotes the Hardy-Littlewood maximal operator as in (1.19). ;jFrom this, (2.16),
the Fefferman-Stein vector-valued inequality (see [7]) and the Littlewood-Paley character-
ization of Lebesgue spaces (see, for example, [11, Theorem 1.3.8]), we deduce that

15 (Pl erwny S N fllLr@ny, V€ (1,00),

. 1-2+ . o .
Taking r := Ti:gv then, by Lemma 2.5 and the Riesz-Thorin interpolation theorem
2qg ' 2

(see, for example, [10, Theorem 1.3.4]), we find that
—oa)i(l_
IZ5 (o) S 247G ]l oy,
which completes the proof of Lemma 2.6. O

For the case j € [0, 00) NZ, we also obtain an estimate similar to that as in the above
lemma.

Lemma 2.7. Leta € (0,2),¢ € (0,1), p € (1,2] and ® satisfy Assumption 1.E. Then there
exists a positive constant C(¢ ), depending on e, a and p, such that, for any j € [0, 00)UZ
and f € LP(R™),

n(t-1H—a j
1T (D)) < Clea2™ ™2 V| fll oy,
where Tj is as in (2.15).

Proof. By Lemma 2.5 and the Marcinkiewicz interpolation theorem (see, for example, [10,
Theorem 1.3.1]), to show this lemma, it suffices to show that T} is bounded from L!(R"™)
to WL (R™) with operator norm not greater than 2/ (+8-2) modulo a positive constant,
where 3 € (0,1). To this end, we assume that f € L!(R™). Notice that, for any ¢ € (0, 00),
ge L} (R") and z € R",

loc

][ ) rgwt<:c+y>\2dy=t—2af g Ta(zty) — g Lala+y)dy
B(0,2t) B(0,2t)

<o f 9% Ln(2) d,
B(z,ct)

where ¢ := 2+ ty with ¢y as in Assumption 1.2. By this and (2.15), we know that, for any
x € R

N[

Ty(f)(x) < [Z 226*'“][

|f * Lo % a1 (2)|? dZ] =: Tja(f)(). (2.18)
LeZ B(z,c2—Fk)
On the other hand, for any § € (0,1), from [4, (3.9)], we deduce that

(o er: T > Ay s - IRE gy o)
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By this and (2.18), we find that

s I
)\ )
This finishes the proof of Lemma 2.7. O

[{z e R™: Ti(f)(z) > A} <26 V€ (0,00).

Now, we can prove the following technical lemma.

Lemma 2.8. Let a € (0,2), p € (max{1, jSn},oo), & satisfy Assumption 1.E and U}

be as in (2.11). Then there exists a positive constant C' such that, for any f € LP(R™),

U p@ny < ClF Nl @eny- (2.19)

In particular, if n < 2«, then (2.19) holds true for any p € (1,00).
Conversely, if (2.19) holds true for some a € (0,2), p € (1,00) and any f € LP(R"™),

2n
then p > Tt

Proof. We first show (2.19). For any a € (0,2), p € [2,00) and f € LP(R"), let

Fola,t) = ‘fbt o+ ) = o+ /()

, V(z,t) € R" x (0,00),

where I, is as in (1.10), ® satisfies Assumption 1.E, and ®;(-) = ¢t7"®(-/t) for any t €
(0,00). (From Lemmas 2.1 and 2.2, and [16, Theorem 1.5], we deduce that

120 oy = | GCP)

s[o®)

3

~

Gi(F)|

LP(R"™) LP(R"™)

LP(R™) ~ A lle gy,

where U¥, G, Gy and G are as in (2.11), (2.2), (2.3) and (2.1), respectively.
For any given p € (1,2), let € € (0, 5) be small enough such that 6 := %— 1+5€(0,1),
and ¢. be such that % = (% + 1?_‘9. Then % - % =0+ — %), which implies that ¢. € (1,2)

qe
because 6 > 2(% — %) If j € Z4, then, by Lemmas 2.5 and 2.7, and the Marcinkiewicz
interpolation theorem (see, for instance, [10, Theorem 1.3.2]), we have
ilg 11y +£ _ —0)|j Cy—m(L_1y_ y
15 (Dllzr(geny < 271G =270 3lgme (=0 £y oy ~ 2776727 £ .

If j € Z_, then, by Lemmas 2.5 and 2.6, and the Marcinkiewicz interpolation theorem
again, we obtain

IT5 () o @ny S 2\]‘\9[*2(2*0)(i*6)]2*(2—a)(1*9)|j| I1£ 1| 2o (m)

~ 9~ (2=0)[(Z —2:—1)0+1]|j] 11l 2o -

Notice that p € (20241717 2) implies a € (n(% — 3),2). We then choose an appropriate
e € (0,1) such that

5::min{a—n<;—;)—e, (2—a)[<(}2€—2e—1)9+1]}>0.
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Then we find that '
1T (o) S 27PN fllomny, Vi€ Z,

which, together with (2.14), implies (2.19). Thus, (2.19) holds true.
Next, we show that, if (2.19) holds true for some p € (1,00) and any f € LP(R"), then
p > 2(32” Since we always assume p € (1,00), it only needs to consider the case n > 2a.

Let ¢ be a radial Schwartz function on R™ such that

X[ 2] (1) < 6(6) < xpp g (1€]), VEER"

and ¢;(-) := 2/"¢(27) for any j € Z. Then, for any z € R", we have

Ua(#j)(z) 2 {/12 /3(6,1)

where

Oy x ¢+ la(r +y) = ¢ * La(z +y)
tOé

2 2
dy dt} > Ji1—Jj2,

(NI

Jja(z) =277 [/3(61) | In(x + )| dy]

and

[un

2 3
Jiale) = [ [ R A +y>|2dydt]
1 JB@))
For J; 1, from [4, (3.11)], we deduce that

135l o qny = 2795

Lr(R"
For J; 9, we rewrite ¢; * I (z) = 27 P;j(z), where

Pj(z) := 2" ( o() ) (27z), VaeR™

|27 - |

(ST

2

Since ® is bounded, it follows that, for any z € R",
Try- 2 dy dt

2
Jio(z) = / / B t"/ 0 <> (95 x1o)(2) dz
1 JB(@,1) ZHY=2 € B(0,t0) ¢

) N
< / / t_”/ |pj * In(2)|dz| dydt

1 JB(0,1) z—2€B(0,2ttg)
S M(pj = 1,

o)(z) ~ 277 M (Pj)(x),

which, combined with the boundedness of M on LP(R™) with any p € (1,00], further
implies that
. o1
1720l o (@) S 27 N1P; oy S 27292079, (2.20)
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Therefore, by the estimates of J; 1 and J; 2, and (2.19), we conclude that, for any sufficiently
large j € N,
9i(—a+3) < 1J51lle®ny S NUS(05) Loy + [195.2(l 2o )
S H¢J’HLP(Rn) + 27‘”’23'"(1*%) < 2jn(1—%).

2n

This implies that —a + 5§ < n(1 — %), namely, p > 552 and hence finishes the proof of
Lemma 2.8. ]

Next we turn to establish the inverse inequality of (2.19), which follows from the
following lemma. We prove this lemma by borrowing some ideas from [2, 3].

Lemma 2.9. Letp € (1,00), ¢ satisfy Assumption 1.E, a € (0,2) and U, be as in (1.12).
Then there exists a positive constant C such that, for any f € LP(R"),

=221 2l

Proof. Let p € S(R™) be such that

Lp (Rn

Lp(R7)

supp p C {§ eR": 2P~ < e < 2k0+1}

and |p(§)| > constant > 0 when %2’“0 <€ < %2’“0 for some ko € Z which is determined
later. Notice that

=221

~ a/Zf‘

||f||F£2(Rn)

LP(Rn) E0,(R")

- Aw[f;“ﬂm*f@ﬂ@/Q

where FI?’Q(R") and F;fQ(R") denote the homogeneous Triebel-Lizorkin spaces, and the
second equivalence is due to the lifting property of Triebel-Lizorkin spaces, and the third
one follows from the Lusin area function characterization of Triebel-Lizorkin spaces (see,
for example, [19, Theorem 2.8] and its proof).

On the other hand, for any £ € R", we have

dt

Batl : (2.21)

Lp(R™)

~

(@ f = ))E) = [B(t) = 1] Fle) = AN Fi¢)

and
o = [pe70)] = | 076) = [oe)aw 7o)
where
A(s) = A(sley|) = B(se1) — 1, Vs e (0,00),
and

/E\)

n(§) == (Ié)l) V¢ € supp p
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and otherwise n(¢) := 0. Since ® € L'(R™) with compact support, it follows that A(s)
is smooth when 2F0—1 < s < 20+l and A(s) # 0 therein provided that ko is sufficiently
small. Thus, we choose kg small enough such that n € C°(R™), and hence " is a Schwartz
function. Then, for any N € Nand z € R", | (x)| < (1+|2|)~" with the implicit positive
constant depending on N, and we also find that, for any ¢ € (0,00) and = € R,

f rpt*f<y>|dy=f Y % (@ % [ — 1))l dy
B(x,t) B(w,t)

< [Onf @ pwldyas
<[ 1" By f — f)(y)| dy dv
) e =g SN LAY

t*n
h 1 ey Oy x f— f)(y)|dyd
/|V+J:St (14 ey ][B(V,t)|( ex f = )yl dydv

oo 4n
" ;/ ][B(Mt)r(@t « f — F)(w)| dydv

k=lt<|pta|<2kt (1 + "’j—x')N

S G dy dv
- f|l/+$§t ][B(u,t)K(I)t f=Hwldy
) nko—N(k—1) s )

+;2 i ][V+x|S2kth(u,t)|((I)t F=Hw)ldyd
< o f_ B oo R
~M<][B(_7t)|(®t f f)(y)!dy)( ) 1-1-;2 ]
~ M (][ |(‘1’t*f—f)(y)!dy> (=),

B(-t)

)

where we took N > n. Therefore, by (2.21), the Fefferman-Stein vector-valued inequality
(see [7]) and the Holder inequality, we have

_ 2
oo dt
_A)Q/2 < —
|22 Lr@e) /0 " (J[B(-,t)‘@t D dy)] et
- Lr(R™)
1
oo i 2 2
<N @ pwla]
0 B(-) ghet
- Lp(R™)
%
oo dt
< - 2y
N {/0 /B('J) (P f = f)(y)|" dy t2a+1+n}
LP(R™)
~ Ua(f)’ LP(R”) )
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which completes the proof of Lemma 2.9. O
Based on these lemmas discussed above, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For any ® satisfying Assumption 1.E and f € W*P(R") with « €
(0,2) and p € (1,00), let

Py * f(x) — f(2)
to ’

Folx,t) := Y (z,t) € R™ x (0, 00).

Then, applying Lemma 2.2 with F replaced by F,, we know that the equivalence between
(ii) and (iii) of Theorem 1.1(I) when p € (1,00) holds true. The items (i) = (ii) of
Theorem 1.1(I) follows from Lemma 2.8 and (2.12), while the items (ii) = (i) of Theorem
1.1(I) comes from Lemma 2.9 and (2.12). Moreover, Theorem 1.1(II) is an immediate
consequence of Lemma 2.8. This finishes the proof of Theorem 1.1. O

3 Proofs of Theorems 1.3 and 1.4
To prove Theorem 1.3, for ® satisfying Assumption 1.2 and z € R", let
K(z) :=®x Iy(x) — Ir(z) + Co®P(x), (3.1)
where Cj is as in (1.17) and I3 is as in (1.10) with o = 2. Then, we have
R(©) = (2nlél) 2 [8(6) 1] + Cod(e), veeR\ {0}, (3.2)

In what follows, t — 0" means that ¢t € (0,00) and t — 0.

Lemma 3.1. Let K be as in (3.1). Then there exists a positive constant C such that, for
any & € R™\ {0},

C’min{|§\2,|§|_%} when n = 2,
’K(Q‘ < 4 Cmin {|¢% ¢} when n € {1, 3,4}, (3.3)
C'min {|¢]?, €72} when n € [5,00) N N.
Proof. Obviously, for any ¢ € R™\ {0}, we have
R(©)] = |2 [8() - 1] + Cod(e)]
|2rle) 2 [B(6) — 1] + Co| + Co| @) ~ 1],

where Cj is as in (1.17). By the Taylor expansion and the definition of Cy in (1.17), we
conclude that, when 0 < || < 1,

(2rle) =2 [8(9) — 1] + G
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- B/n ®(z)(2mizy)* dx + E',Z /n ®(z)(2mizy)* da

o(|¢*)
6!

- ‘§|2/ & () (2rmia) e + UL )/ B(z)(2rize)® dz|

_'_

/n ®(z)(2mizy)% dx + Cy

4!

where o(]¢]?) means o(|£]?) < |£]? and o (ﬁ‘ I 0 as €] — 0T, ;From this, it further
follows that N
|2rle) 2 [8(6) - 1] + & S Ief

By Lemma 2.4 with o = 2 and j = 0, we have Co|®(¢) — 1| < [£]2. This proves (3.3) when
€l < 1.

If [£] > 1, by [10, Appendix B.5, pp. 577-578], letting ®¢(r) := ®(x) with r := |z|, we
have

~ 2

() =

o
T [ a0yt ar
&=z Jo ’
where J,, denotes the Bessel function of order v. Then, by the well-known fact that
1J,(t)| ~t27  as t — 0 and [J,(t)] ~ t~1/2 as t — oo, together with the facts that g is
bounded and || > 1, we find that, when n > 2,

] 1 to to n
()] 5 T |y P gamledrd | S ooy [Ty 2erieir ar
2
1 %IE\ 1 to 1 1 1
S = [/ €l¥ Carlehi et ary [ ra2<2w|§r>w¥dr] S~
ez [Jo == 61"

where tg is as in Assumption 1.2 and, when > to, the integral

_1
2m[¢]

to 1 1 n
[ty trtar

27 (€]

in the above argument is void. On the other hand, when n = 1, since ® satisfies As-
sumption 1.2, we know that ® is a Lipschitz function on (—tg, %), and hence a function
of bounded variation on (—tg,tp). Then, by integrating by parts and the Riemannian-
Stieltjes integral theory, we know that, for any given € € (0,¢9/2) and any ¢ € R with

€l > 1,
to—e to—e
‘/ —27rza:§ del ~ — ‘/ —27T7:.1‘£)‘
to+e ‘6’ to+e€
(I) 727T’L.$£’t()—6
|€| ‘

r=—1tg+e€

to—e o
’§| ‘/t0+6

to—e
—27rix§ dq)(m) )
\5! €] ‘/me
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Since ® satisfies Assumption 1.2, it follows that

L[ [0 e 1 N
— e T dP(z)| = — lim e ST D (x;) — P(x-1)]
€] '/—to+e €] N—oo ; ! !
N
< — lim O(x;) — P(xj—1)
. Yo (e~ 20
N
< lim zj —xj-1| S 2(to — €) s
where {zg,...,zn} is a partition of [—tg+e€,to—¢€], nj € [xj_1, ;] and the implicit positive

constants are independent of € and £. Therefore, we conclude that, when n =1,

’6(5) — lim

e—0t

fo=e —2mix€ < 1
d(x)e dzx| < Gk

—to+e

On the other hand, since ® is a bounded function with compact support, it follows
that |®(&)| < 1 for any £ € R™. Thus, combining the previous estimates, we know that,
for any [£| > 1,

|§|_% when n = 2,
R©] <172 [3©) — 1|+ Co| @) S {lel™ whenn e {1,3,4},
|€|72 when n > 5.

This finishes the proof of Lemma 3.1. O
Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We prove this theorem by borrowing some ideas from the proof of
[1, Theorem 2]. To prove (i) = (ii), we only need to show that, for any f € W2P(R"),

IG(F(f, CoAfNr@ny ~ |1Afll Lrwn), (3.4)
where Cy is as in (1.17), F(f, CoAf)) as in (1.18) with g := CoAf and G as in Theorem
1.3(i).

To prove (3.4), we first show that, for any f € W22(R"),
IG(F(f; CoAfNz2@ny ~ IAFll L2 ). (3.5)

Applying the Plancherel theorem, we find that, for any f € W22(R"),

o * f(x) — J(x 2 d
IS OOy = /Rn/o ‘Cbt f(tg I, Co®;  Af(z) Ttdg;
P (+E) 7 7 2
_/0 /n <P(t£)f(fg) — f(€) T )T dg%
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~ 2
= [T adue| T @R de
n | Jo |t 3
= [ [ [Reo] §]etifera (36)
By Lemma 3.1, we know that, for any ¢ € R™ \ {0},
o\ 2qdt [T, ,dt  [® 1 dt
A\mw\tsé|mt+/ TRt (37

Since @ is a radial function, from [10, p.577, §E.5], it follows that ® is also a radial
function, which, together with (3.2), implies that K is a radial function and hence, for any
€ e R*\ {0}, K(€) =: k(|¢]). Therefore, for any £ € R™ \ {0},

| IRe] F= [ ke G = [T rer s,

. 2
which, combined with (3.7), further implies that f[j* ‘K (t{)‘ % is a positive constant

independent of ¢ € R\ {0}. By this and (3.6), we know that (3.5) holds true.
Now we turn our attention to the case p € (1,00). Let h := Af. Then we can translate
(3.5) into

/Rn 1K * hlIF2ge ey de ~ [[P] 72 gy s

where K is as in (3.1) and Ki(x) := t7"K(z/t) for any x € R" and t € (0,00). If the
kernel K; satisfies the following Hormander condition:

[ Tl =) = K@iy do S 1 Yy < B\ 0, (35)

z|>2[y

then, by [9, p.492, Theorem 3.4], we conclude that, when p € (1, 00), for any f € LP(R"),
L st S 1 ey

which means that, for any f € W2P(R"),

1G(F(f, CoAf)lLrrny S IASf] Lo gn).- (3.9)

We now prove the following stronger version of the Hérmander condition (3.8):
y[”
1Kt(z —y) = Ke(@) | 22(aep6) S ’l‘nﬂa Vx| > 2|yl >0, (3.10)

with certain v € (0, 00).
To show (3.10), we deal with the kernels Hy := ®; x I — I, and t2®; separately.
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For t2®;, we first observe that the quantity |®;(x — y) — ®;(z)]| is non-zero only when

t > min{ |xt;y|, %}, due to the compact support of ®, where t; is as in Assumption 1.2.
We only consider the case |z — y| < |z|, because the case |r| < |r — y| is similar, the
details being omitted. Then, by (1.16) and the mean value theorem, we know that, when

|z —y| <[] and [z[ > 2[y| > 0,

{7 et =) - o) fﬁ}

=]

1 1
woodt |° o odt |?
le—y| ¢2n+1 + Ja| ‘y| $2n+3
0

t to

1
1 L]z, ly|2
< - < 3.11
N[rx—w" Wn] T S per G4

AN

||
where, when |z — y| = |2/, the term [° tﬁ% automatically disappears. This is the
t

0
desired estimate for t2®;.

We now consider H;. By similarity, we also assume that |z —y| < |z|. If t < %, then
the origin 0 does not belong to the balls B(x,ttg) and B(x — y,ttp). By the mean value

theorem, we know that, when |z — y| < |z| and |z| > 2|y| > 0,

[Hy(x —y) — Hi(z)| <y sup ]!VHt(Z)\, (3.12)
zE|lx—y,x

where, when x — y # x, z € [ — y, 2] means that z lies in the segment connecting x — y
and z, otherwise, (3.12) automatically holds true.

In the remainder of the proof of this case, we always assume that x —y # x, otherwise,
all wanted conclusions automatically hold true. By the Taylor expansion, we find that,
for any z € [z — y, x],

VHi(z) =®, %« Via(z) — VIy(z) = / Oy (w)[VIa(z — w) — Via(2)] dw

n

") w B 2)(—w)? DBVIQ(z)(—w)’B
_ /B(mto)@(t) leD V(2 >+WZQ il

DBV I (z — 6w)(—w)P
- 3 Dbt

dw, (3.13)
18]=3

where 6 € (0,1). Since @ is radial, it follows that fB(G o) (L)w’dw = 0 if one of B; in
B := (B1,P2,...,0n) is odd, which implies that

2
w
o (— DPV Ih(2)w? | dw
/B(ﬁ,tto) (t> g::l

n 2
o (9) (M) dw = 0, (3.14)
(0,tto) t

n

~[AVE(@) [

B
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where the last equality follows from the fact that I3 in (1.10) with o = 2 is harmonic.
Notice that, if z € [z —y, z], § € (0,1), w € B(0, tt) and t < %, then |z —6w| > |z|/6.
From (3.13) and (3.14), we deduce that

VH,(2)] < t_”]:v|_”_2/ o[ duw ~ 3] ~12.
B(0,tto)

By this and (3.12), we obtain

||
10 5 dt s yl? |yl
Hi(x —y) — He(x) < / tdt p < , 3.15
{/0 | H( ) ()] 45 o |z[2nte ||t ( )

which is the desired estimate. If ¢ > :Lit(l), then

Wl
Wl

Hi(e —y) - Ho@)| <ly| swp |VH()] <

z€[z—y,x] ~ ‘x‘n—l’
where the last inequality follows from the facts that
VHi(z) =@ %« VIa(z) — VIy(2),
1 1

VI < <

’ 2(‘2)’ ~ ’Z‘”_l ~ ‘.’L‘|n_1
and P )

w
| VIa(2)] < ][ VI (w)] dw < ][ — < —.
B(z,ttg) B(z,tto) ||t |z[n—1

Therefore,

o0 dt < yl2  dt |y|?
_ ) — 27 <« e I
[I ’Ht(x ?J) Ht(xﬂ 45 N/ ‘ |1:]2”_2 RS ’x‘2n+2’

|z

3to 3to

which, combined with (3.15), further implies that

1
Y12 s o
s |z = 2[y| > 0.
T 2

| Hi(x —y) — He(@)|| 22 a5y S
This, together with (3.11), implies (3.10) and hence (3.9) holds true.

On the other hand, the reverse inequality of (3.9) follows from a polarization from
(3.5) via a well-known duality argument (see, for example, [9, p.507]). Thus, (3.4) holds
true, which completes the proof that (i) = (ii).

Now, we prove (ii) = (i). Assume that f, g € LP(R") such that G(F(f,g)) € LP(R").
We shall prove that g coincides with CyAf almost everywhere, where Cj is as in (1.17).
To this end, take a non-negative radial smooth function ¢ which is supported in the
closure of B(0,1) such that [Cllpiny = 1 and, for any ¢ € (0,00) and x € R, let
C(x) == e "(x/e), fe :== f*( and g. := g * (.. Then, by [1, Lemma 2(i)], we know
that f. € W2P(R"). Therefore, by the conclusion that (i) = (ii), we further find that
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G(F(f:, CoAf.)) € LP(R™). Moreover, from the Minkowski inequality, we deduce that, for
any € € (0,00) and z € R",
1
2 dt 2
i+l

G(F(fer 9))(x) = { [ (P - ameng) s

:{/Ooo /n[ét*f(:v—Z)—f(w—z)

t2
— Co®y *x g(x — z)} C(2)dz

1

2 dt}Z
tnt1
Lo

~ G(F(f,9)(x = 2)¢(2)dz = G(F(f,9)) * C(x).

For any ¢ € (0,00) and = € R", define

De() = {/Ooo@t*( — CoAf) (@) tdil}

Then we find that

_ 2 2
N d}
S G(F(fo, 9)(@) + G(F (fe, CoAfe))(x)

S G(F(f,9) * Ce(x) + G(F(fe, CoAfe)) (),

which implies that D. € LP(R™), in particular, D.(z) < oo for almost every z € R™.
Combining this with [6, Corollary 2.9], we find that, for almost every = € R",

9:(2) — CoAF.(@)] = lim g » B1(x) — CoA: = ()] = 0

and hence Af. — g in LP(R") as ¢ — 0T. Since f. — f in LP(R™) as ¢ — 0T, then it
follows that Af. — Af in §'(R") as ¢ — 07. Therefore, CoAf = g almost everywhere,
which completes the proof of Theorem 1.3. O

Let K be as in (3.1) and, for any suitable f and = € R", let

{/ ][ \Kt*f x+y)\2dyd}2. (3.16)

-
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It is clear that, for any f € W2P(R™) with p € (1,00), U(f,CoAf) ~ V*(g), where U is
as in (1.14), Cp as in (1.17), g := Af and the implicit equivalent positive constants are
independent of f. Similarly to (2.14), we know that, for any f € LP(R™) with p € (1,00)

and x € R™,
©) Y Ti(f)(x)
JEZ
where the implicit equivalent positive constant is independent of f and, for any j € Z,

==L

kEZ

1
2

dt
f s Katy)Pdy (3.17)
B(0,2—k+1) t

2— k+1

with ¢ as in (2.14). Then, similarly to Lemmas 2.5 and 2.6, we have the following technical
lemmas.

Lemma 3.2. Let n € NN[3,00). Let ® satisfy Assumption 1.2 and IN’] for any j € Z be as
in (8.2). Then there exists a positive constant C such that, for any j € Z and f € L*(R"),

min{2%, 277} when n € {3,4},
I £1 22

Hfj(f)’ min{2%, 2727} when n € [5,00) N N.

L2(Rm) —

Proof. When n € {3,4}, by the Plancherel theorem and Lemma 3.1, we find that

dt
Tj( = 7[ ok x K, 2 de dy —
H L2 (R™) 2/2 B(6,2’@'+1)/Rn |f * o—ii x Ki(x 4+ y)|" dx dy :

s [ e K@Pa

2— k+1

2— k+1

keZ
9—k+1
< Tre)2 2—d
~ Z/2j+k1§|§§21+k+1 ‘f(g)’ /k | (t£)| £

kEZ
< min{24j, 272]} Hf”%m{")'

The proof for the case n € [5,00) NN is similar, the details being omitted. This finishes
the proof of Lemma 3.2. 0

Lemma 3.3. Let n € [3,00) N N Let p € (1,00), p' be its conjugate index as in Lemma
2.6, ¢ := max{p,p'}, and e € (0,-). Let ® satisfy Assumption 1.2 and T forany j €Z
be as in (3.17). Let ¢, p € S R”% be as in (2.13). Then there exists a positive constant
Cle,p)» depending on ¢ and p, such that, for any j € Z_ and f € LP(R"),

~ (1
15| < Cen2 o,

Lp(R™)

Proof. Let r € (1,00). Similarly to (2.16), by (3.17), we conclude that, for any j € Z_,
feL"(R") and x € R",
T; s t2(® Io % @ojoic — f % I % g ji 2
i@ < sup [t ( Py x fxdak ppyn — [ r Iz x pysn) (T + y)

yeB(0,2—k+1)
k€EZ re[a—F a—k+1)
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+Z (f * pa-r) (@))%,

keZ

where M is as in (1.19). For the first part of the right-hand side of the above inequality,
similarly to the proof of Lemma 2.6, letting f; i := f *%5—j-r, we then have the following
analogous estimate: for any k € Z, t € [27%,27*+1) f ¢ L"(R") and 2 € R™,

t72 sup (P fordokpgjn — fx Iy % pysoi)(x +y)|
‘y|§2—k+1

S20 [ a1+ 2 = ) e S Mf) (o).
R’I’L
Thus, we conclude that, for any f € L"(R™) and x € R",

T(N@)| £ S AMGI @ + M * o) (@)}

keZ

which, together with the Fefferman-Stein vector-valued inequality (see [7]) as well as the
Littlewood-Paley characterization of L"(R™) (see, for example, [11, Theorem 1.3.8]), fur-
ther implies that, for any f € L"(R"),

|75

< ‘s AT
@) 1Nl zr )

1—2+2
Taking r := 1 —, then, by Lemma 3.2 and applying the Riesz-Thorin interpolation the-
q
orem (see, for example, [10, Theorem 1.3.4]) to T; (namely, taking interpolation between

L"(R™) and L?(R™)), we find that, for any j € Z_ and f € LP(R"),

175 ()l r ey S 2 4G | £l e (7
which completes the proof of Lemma 3.3. O

Using the same notation as in (3.17), similarly to (2.18), we conclude that, for any
x € R™,

D=

) < 224k][

k2 ) B2k

|f # Iz % pgsn (2) dZ]

+ {Z[M(f * %_j_k)(x)]?} ~ Tia(f) (@) + Tja(f) (@), (3.18)

keZ

where the implicit equivalent positive constants are independent of j, f and z,

Tj1(f) (@) = [Z 21k ][ f * Io % g sk (2)]? dz] (3.19)

keZ B(ma2ik+4)
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and

W=

Tja(f)(x) = {Z[M(f * wz—j—k)(l’)]Q}

kEZ

Dai et al. [4, Lemma 2.9] established the following lemma.

Lemma 3.4. Let € € (0,1) and p € (1,2]. Then there exists a positive constant C
depending on € and p, such that, for any j € Zy and f € LP(R™),

€,p)

n(l_1y_ ;
< Clep2™ 72725 £ Loy,

Hfj,l(f)‘

LP(R"™)
where fj,l is as in (3.19).
After these preparations, now we can prove the following conclusion.

Lemma 3.5. Letn € NN [4,00) and p € (41—””, ). Then there exists a positive constant
C such that, for any f € LP(R™),

V() llr@ey < Clf e @y, (3.20)

where V* is as in (3.16).
Conversely, if (3.20) holds true for some p € (1,00) and any f € LP(R™), then p €

Proof. We first prove (3.20). When p € [2,00), from Lemmas 2.1 and 2.2, and Theorem
1.3, we deduce that (3.20) holds true in this case.

For any given p € (1,2), let € € (0, 1) be small enough such that 6 := %—%—i—i €(0,3).
Let ¢. be such that ;1) = 3—5 + 17T20' Then %(% -4 = 9((%E — 1), which implies that

€ (1,2) because 6 > % - % If j € Z4, then, by (3.18), Lemmas 3.2 and 3.4, and the

Marcinkiewicz interpolation theorem (see, for instance, [10, Theorem 1.3.2]) to TJ (namely,
taking interpolation between L?(R") and L% (R")), we conclude that, when n > 5,

||

Lp(Rm) ™
while when n = 4, by the definition of 8, we have

< Q1205 =3)= 2+ 45ly-(1-26)1i] "
o & £ 1 £e®n)

~ G250 g~ 2 W26 )

|75

Here we point out that 1 —2(% - %) is positive because p € (1,2). Similarly, if j € Z_, then,

by Lemmas 3.2 and 3.3, and the Marcinkiewicz interpolation theorem again, we obtain

: 1 . oon(l_1)_40s .
- < 28999 2= £ Ly ~ 272G D)0 gy

|75
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Now, let p € (42+—"n,

e € (0,1) such that

1 1 1\ ¢ 11 1 1
S=mind=|2—n(===) =S| . 2n(2==)—4pe+1,1-2(=—-= .
mm{2[ n(zv 2) 2]’ n(p 2) s (p 2>}>0

Then we find that

), which implies n(% — %) < 2. We then choose an appropriate

1T () ler@ey S 2_|j|6HfHLP(R")7 VjEeL,

which, together with (3.16), implies (3.20). Thus, (3.20) holds true.
Now we show that, if (3.20) holds true, then it must hold true that p > 42+—”n. Let
¢ € S(R™) be as in the proof of Lemma 2.8. Then, for any x € R", we have

2 2 2
V(6)(a) 2 { I/ o dydt}

2 Jdi1—Jj2 = Jj2,

)

[

Dy x ¢y x In(x +y) — ¢ Io(x +y)
t2

+ @ x ¢j(z +y)

where

N |=

Jja(z) =277 [/ ey *Iz(ﬂf+y)|2dy] :
B(6,1)

1
2

_ 2
30(z) = [ / /B PR *12<w+y>|2dydt]

and
1

~ 2 2
T8(x) = [/ / |y gzbj(a:+y)|2dydt] .
1 JB(@G,1)
For jj@, Dai et al. ([4, (2.22)]) obtained

il 275 ax
For jj,g, similarly to (2.20), we have
3] Loy 27291, (3.22)

For jj,g, we find that, for any x € R",

2
e = [ o [ Lo )|¢j<z>dz] dy dt S [M(6) ()],

where M denotes the Hardy-Littlewood maximal operator as in (1.19). ;From this and
the boundedness of M on LP(R™) with any p € (1, oo], it follows that

i o
[3is]] , ... S U63llzogeny 27075, (3.23)

LP(R™)
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Therefore, by (3.21), (3.22), (3.23) and (3.20), we conclude that, for any sufficiently large
JjeN,

9i(~2+5) < Hjj’lH SIVH(8) | ogny + Hffj,zH

Jj3

|
LP(R™) LP(R"™)

< Nl eny + 27075 < 2707,

LP(R")

This implies that —2+4 5 < n(1 — }17) namely, p € [4+n, o0), which completes the proof of
Lemma 3.5. O

For the case n € {1, 2,3}, we have the following conclusion.

Lemma 3.6. Letn € {1,2,3} and p € (1,00). Then there exists a positive constant Cn)>
depending only on n, such that, for any f € LP(R™),

IV*(H)llr@ny < Ciy Il fll Lo (mny,s
where V* is as in (3.16).
Proof. Recall that, for any = € R\ {0},

1
—§|:L'| when n =1,
= 1
L(z) = ~on log|z|  whenn =2,
n
cylzP" when n = 3,

where c(,,) is a constant, depending on n, such that, for any f € W2P(R™), Iyx(—Af) = f.
Recall that, for any f € W2P(R") and € R", K (z) := ® * Is(x) — I(z) + Co®(z) and

{/ f Otrm*fwy)r?dyd’f}
N{/ooo/B(ﬁ,t)

where Cj is as in (1.17),

N

Ki(x4+y—2)f(2)dz
R’ﬂ

2
dt
dytm} — |7 (@) |23,

X5
_ <R" x (0,00), — 15) dy dt>

and

Tf(x)(y,t):= - Ki(x4+y—2)f(2)dz, V(y,t) € R" x (0,00).

When p = 2, for any f € W22(R"), by the Fubini theorem and (3.5), we know that

R dt
[ rs@lmde~ [ [T i s @R dy iy do
Rn nJ0o B(z,t)
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L et

~NGFNLz2wny ~ I1Af I L2 ey

If the kernel K; satisfies the following Hérmander condition:

/ [Ki(z+ —2) = Ki(z+ - —w)|2zyde < C, Vw, 2 € R" and w # 2, (3.24)
|z—2z|>2|w—z2|
then, by [9, p.492, Theorem 3.4], we conclude that, for any f € LP(R"),

e Ty do S 15
which means that, for any f € LP(R"),

V(I e@ny S N fllLe@n)-
We now prove the following stronger version of the Hérmander condition (3.24):

jw— 2|7
1K (2 + - — 2) = Ky + - — w) |25 S T

Ve —z| >2w—2|>0, (3.25)
where v € (0,00) is a positive constant independent of z, w and z.
Let  := x — z and 2z := w — 2. Then (3.25) becomes

Z - ~
1Ko + ) — Ko + ~)IIL2@~||W VIE| > 23] > 0. (3.26)

The proof of (3.26) is similar to that of (3.10), and we estimate K;; := ®; * Iy — I3 and
t2®,, separately.

For t2®,, we first observe that the quantity |®;(Z +vy) — ®¢(Z +y — )| is non-zero only
when t > min{w, [B101} Wwith to as in Assumption 1.2. Assume that |F+y—2] < |3+y|,
because the proof for another case [T+y—2| > |T+y| is similar, the details being omitted.

Notice that, when t > |x+y 2 and y € B(0,t), we have ¢ > \ﬁ:l > 2(1@1& 3 On the other

hand, we also notice that, When t> |t—+0y‘ and y € B(0,t), then tty > |Z| — |y| > || — t,

that is, t > 2(1‘f-|t y- Thus, there exists a positive constant ¢y, independent of ¢ and z, such

that ¢ > ¢o|z|. Let
By := {[B(Z,tty) \ B(Z — Z,1tg)] U [B(Z — Z,tto) \ B(Z, tto)]} N B(0,1)

and
Es := B(z,tty) N B(x — z,tty) N B(0,t).

JFrom the definitions of E; and Es, we deduce that, if y € Fy, then t > [B+y=2 4nd

to
|ar+y|

t> . We also have

Bl ST and [Ea| ST
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where |E1| and |E2| denote their Lebesgue measures, respectively. Then, combining (1.16)
and the fact that ® is bounded, we find that

1
2

[T +y) — Pz +y— 2 dy
//Bm) JF +y) — Bl NP dy s

_ 1
o0 dt 2
S / / dY 5 /312 / / t3n+3
L colZ| J E1 co|Z| J B2
- L 1 .
o dt o dt |Z]2
S / 2| 12n+2 / B 12n+3 N ~nti’
| Jeol] ol |z[" T

+
which is the desired estimate.
We now consider K. Similarly, without loss of generality, we may assume that

_ =7

T+y—z| < |jz+yl Ut< 5ot 1) then the origin 0 does not belong to the balls

B(Z +y — Z,ttg) and B(Z + y,ttg). Since y € B(0,t) and t < 5(t|xjr1), it follows that
|z +y| 2 |z|. Similarly to (3.13) and (3.15), we have

5(t+1) dt
/“ / Kia(F+0) — Koa(F +y = D) dy s

2 2
5(t0+1) Z dt z
/ / ‘2 T W S ~’2’+2'
B(@y [T+ yl*" t |z [

Ift> %l then we have

5to+1)°
, o dt
o [Ke1 (T +y) = Ken(@ +y = 2)[ dy s
500 11) B(0.t)
2
/w [ 19—y =2 dy i
(t0+1)
_ , . dt
| Py x Io(Z+y) — Ppx Lo(T+y —2)| dy —= =:J1+Ja.
7L B, et

5(to+1)

By the mean value theorem, we know that, for any |2 +y — z|] < |z + ¥,

(O % Ip(T +y) — Py [2(Z +y — 2)| < [2Z] sup [@y+ V(T +y — 62)],
0€l0,1]

which, together with the fact |Z] < % < 3t(to + 1) whenever |Z| < 5t(tg + 1), further
implies that, for any y € B(0,t) and 0 € [0, 1],

1

1
Oy % VIn(T +y — 03 5/ _ _ dh
2 ( 2 t" JB@ito) 1T +y — 0z — h|"1
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L
t" B0t t0+1)) |PI" tn-

because |VIp(x)| < |z|*~" for any « € R™\ {0}. Therefore, we obtain

J |Z‘2 ‘ |2 ‘z|2
2 S e n72 tn+5 e t2n+3 ~| |2n+2’

5(tg+1) 5(tp+1)

which is the desired estimate.
For Jp, similarly to the estimation for J; as in the proof of [13, Lemma 2.5], we also
have | ’2
z
J1 S B |2n+2’

which is also the desired estimate and hence completes the proof of Lemma 3.6. O
Now, we are ready to show Theorem 1.4.

Proof of Theorem 1.4. To prove Theorem 1.4, for any f € W2P(R") with p € (1,00) and
® satisfying Assumption 1.2, we define

O+ f(x) — f(x)
12

F(z,t) := — Oy xg(x)|, V(zr,t) € R" x (0,00).
Then, applying Lemma 2.2 to this F, we conclude the equivalence between (ii) and (iii)
of Theorem 1.4(I).

To prove (i) = (ii) of Theorem 1.4(I), let g :== CoAf in (ii) of Theorem 1.4(I). Then,
when n >4 and p € (4+n, o0), by Lemma 3.5, we know that (i) = (ii) holds true. When
n € {1,2,3} and p € (1,000), by Lemma 3.6, we know that (i) = (ii) holds true. Therefore,
to complete the proof of Theorem 1.4(I), we only need to prove (ii) = (i) of Theorem
1.4(1).

Assume that f, g € LP(R™) such that U(f,g) € LP(R™). We prove that g coincides
with Af modulo a positive constant. To this end, take a non-negative radial smooth
function ¢ which is supported in B(0,1) such that ||| z1(rn) = 1 and, for any ¢ € (0, 00)
and z € R", let {(z) := e "((x/e), f- :== f*( and g := g* (.. Then, by [1, Lemma 2(i)],
we know f. € W2P(R™). Therefore, by the conclusion that (i) = (ii) of Theorem 1.4(T),
we conclude that U(f.,CoAf:) € LP(R™). ;From the Minkowski inequality, we deduce
that, for any € € (0,00) and = € R™,

) 1
dt |*
dy ntl }

Ut ge)ie {/ /mt (q)t*f fq’t*g)*és(y)
RO N e

2 d 2
— Py xg(y — 2)} C(z)dz| dy tnfl}

-
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Joih
R 0 B(z—=z,t)

o / U(f,9)(x — 2)¢(2)dz ~ U(f, g) * ().

For any ¢ € (0,00) and = € R", define

dt :
{/ /BW By # (g — CoAL) ()2 ytw},

where Cj is as in (1.17). Then we know that

{/ /B(M <<I>t*fg 2

t2
Dy x fo— fe
+ (752

D x fy) — fy)
t2

2 )2
— Q¢ xg(y) dytnﬂ} Ce(z) dz

— Dy % gs> ()

2 2
dt
dy i+l }

=

o+ AJ%) )

S U(feg6) (@) + U(fz, CoAr fe) (x)
SU(f,9) * G(x) + U(fe, CoAfe)(z),
which implies that D, € LP(R™), in particular, D.(z) < oo for almost every x € R™. This,
combined with [6, Corollary 2.9], implies that, for almost every = € R,
lge(x) — CoAfe(x)| = %g% |ge * ®i(z) — CoAfe x Py(x)| =0

and hence CoAf. — g in LP(R™) as ¢ — 0". Since f. — f in LP(R™) as ¢ — 0T, then
Af: = Af in 8'(R") as € — 07. Therefore, CoAf = g almost everywhere in R"™, which
completes the proof of Theorem 1.4(I).

Finally, Theorem 1.4(II) is just deduced from Lemma 3.5. This finishes the proof of
Theorem 1.4. O

4 Proof of Theorem 1.5

Before we prove Theorem 1.5, we need several technical lemmas as follows. The first
one is from [8, p. 15, Decomposition Theorem].

Lemma 4.1 ([8]). Let g € (0,00), p € (1,00) and f € LP(R™). Then there exist a family
{Q;}; of disjoint cubes, functions g and b, and a positive constant C, independent of f,
such that f =g+ b and

(1) 2251Qil < CB7PISfTn

(ii) if fj := bxq,, then Jgn fj x)dx =0 and

| 15@Pds < corlyl
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(iii) [lgllzee@ny < CB, llgllze@ny < CllfllLe@ny;

(iv) b=23_; fj;

(v) 10diam(Q;) < dist (Q;, R™\ ©) < 20diam(Q);), where Q := U;Q;.
The following lemma can be found in [1, p. 615, Lemma].

Lemma 4.2. Let E be a measurable subset of R™ and € (0,n). Then there exists a
positive constant C, independent of E, such that

1
/ — dz < C|E|,
B |2

where |E| is the Lebesque measure of E.

The following lemma is similar to [1, p.598, Lemma 1], we give some details for the
completeness.

Lemma 4.3. Let t € (0,00), z € {z € R" : 8 < |2| < 3tot} and ® satisfy Assumption
1.2, where tg is as in Assumption 1.2. Then there exists a positive constant C, independent
of x and t, such that

T —w w
v [ ()
B(zx,tot) t |w|m+

Proof. If 8¢ < |z| < tot, then B(0,tot — |z|) C B(x,tot) and hence we can write

T —w w
v [ ()
B(zx,tot) t |wl[n

r — W w r —w w
() e [ b(10) v,
/B(m,tot)\B(G,totx|) t w|m+ B(G,tot—||) t w|m

Since ® is bounded, it follows that

’CL‘| + tot

< (Clog ——.
=8 2 = o]

(4.1)

/ o (5 ) < [ s e
B(,tot)\ B(0.tot—|z) t lw[" Y S e T ||| — tot|

On the other hand, by the fact that ® is radial and (1.16), we know that

r —w w
p.V. / o <> T W
B(G,tot—||) t w|m+
r —w w
| — | ——dw
/B(ﬁ,tot|x|)\3(6,s) < t > |w[n+ ‘
1
lim —

J [ (50) - () e
ce@iriap 2 1/ BOtot-2)\B@e) t t |w

= lim
e—0
e€(0,tot—|z|)
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tot—lz| tot — tot
<t lim AP LI U

e—=0t Je ~ t ~ H.%’ — tot‘.

This proves (4.1) when |z| < tto. If tot < |z| < 3tot, then, by the fact that ® is bounded,

we conclude that
T —w w
Pl — | ———dw
\é(x,tot) < t ) |w‘n+1

r—w w
p.V./ (0] () T dw| =
B(z,tot) t w1

< /t0t+|x dr |x| + tot
~ lz|—tot T ||z] — tot|
Combining all above estimates, we then complete the proof of Lemma 4.3. O

Applying Lemmas 4.2 and 4.3, we can obtain the following conclusion, which can be
proved by an argument similar to that used in [1, pp. 597-601]. Here we give some details
for the completeness.

Lemma 4.4. There exists a positive constant C such that, for any z € R",
o du
/ / |Wy(z —2) — ¥y(z)| —dx < C
|z|>2|z| JO U

and

/ / \Ku(ﬂs—z)—Ku(xﬂd—ud:ch,
lz|>2|z| JO U

where W is as in (2.4) with o € (0,2), K is as in (3.1) and VU,(-) = v "¥(-/u) and
Ku(-) :=u"K(-/u) for any u € (0,00).

Proof. For the first inequality, we are going to prove the following stronger version of the
Hoérmander condition:

ly|”

[y(z —y) — \Iju(x)”Ll(du/u) S Wa Vx| > 2ly| > 0,

with some v € (0, 00).
By the mean value theorem, we know that

(Wu(z —y) = Wu(z)] < |yl sup ]\V\Ifu(z)\,
ze|lx—Y,T

where z € [z — y, 2] means z lies in the segment with endpoints z — y and x.
Ifu> % with ¢9 as in Assumption 1.2, we first consider a € (1,2). Since, for any
z € [l‘ - Y x]v
VU, (2) = u %Py * VIy(2) — VIy(2)],
S e S e
|Z’n a+1 ‘$|n a+1

[Via(2)
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and

dw 1
‘w|nfo¢+1 ~ |x’nfa+1’

VLGS VL@l s f

B(z,utp) B(z,utp)

it follows that

|yl
ua|x|n—a+1'

(W2 —y) = Vul2)] S

Therefore, we have

> du _ [* yl  du ||
Jowie =) =@l F S [ e S e (4.2
3to

||

30

When o = 1, we consider two cases. When |z| < &% for each z in the segment

[z — y,z], we have B(0,tu/6) C B(z,tou) and hence

1 zZ—w w z
VU, (2) = (—n+1ut p.v./ @( ) dw —
() ={=n+1) [ B to0)] Jero "\ ) ol @ e

= (—n+1Lu?

1 / @ <z — w) W
|B(2, tow)| J Bz t0u)\ B@,tou/6) u ) fwntt

i 1 / o (z — w) wo z
Ve— _ .
|B(2, tow)| JB(5,10u/6) u ) fwntt Ellas

Since ® is bounded and |z| ~ u ~ |z|, it is easy to see that the first and the third items of
the last quantity are controlled by ﬁ modulo a positive constant. For the second term,
since ® is radial and satisfies (1.16), it follows that

b 1 / ® <z - w) w o
N, — E— —
|B(2, tou)| JB(@tou/6) u ) |w|vtt
1
e—0 Q‘B(Z,tou)’

/ {@(2—w>_¢)<z+w>} iﬂdw
z—:e(O,tOT“) B(0,tou/6)\B(0,¢) u U ‘w’

1 L tou/6 1
— i dr < ——.
|B(z,t0u)|u 50 h ulz|?
e€(0 to—u) c
76

= lim

A

tou

%, we have

Hence, for any |z| <

1
VU.(2)| S Wa Vz € [r -y,

which, combined with the mean value theorem, further implies that

R du > y| du [y
_ _ < B NN
/i’)lzl (@ = y) = Vul@)] u N/Slw |z u? ||t

to to
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When tOT“ < |z| < 3tou, by Lemma 4.3, similarly to the proof presented in [1, pp. 599-600],
we conclude that

3|z
o |y Jz =Tyl +tou du
v — — 1+ log —
o 0=l S ot e =
3\96
< | // |+ log |z — Tyl +tou | du
El ' |z — Ty| — toul

1+ log

<yl [0
~ |m|n+1 2
9

where the third inequality follows from letting s := log

1+s ly|
ds <
|1—s|‘ S Jar T

tou
r—T
Now we consider the case o € (0,1). Let D; be t|he ?ymmetric difference between
B(x,utg) and B(x —y, utg) and Dy := B(x,utg) N B(z — y,utg). Then |Dq| < u" !|y| and
|Ds| < u < Jy[t"awFa. By (1.16), Lemma 4.2 and the fact that & is bounded, we
find that

| Dy % In(x — y) — Py * ()]

/ (I)<x—y—z> Ia(z)dz—/ q)(x—z) Io(2) dz
B(z—y,uto) U B(z,uto) u
—n 1 —n—1 ]'
<u ——dz +|ylu —d
D |2] D |2|

SuT Wy 4 fyle T (Yl e T ) Sut T

~

= u—’l’b

I\

which, together with the fact that

o0 a 1
u" T ——du ~ 2| n,
=] ulte

3to

uN|‘n+

further implies that f?ij | Wy (2 —y) — Wy (x)| & < Ll —Z— whenever « € (0, 1). This finishes
0

the proof of the desired estimate when u > m

Ifu<£t|,

z €[z —y, ],

by the Taylor formula and the fact that ® is radial, we know that, for any

VU, (2)] = [y * VIn(2) — VI(2)]

/n D,(s) [VIn(z —s) — VIy(2)] ds

=y " / B D, (s) V2Ia(z) < (—s)+
B(0,utp)

Su? sup  [VPa(w)],
weB(z,uto)
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where 6 € (0,1).
Notice that, if z € [z — y,z], w € B(z,utp) and u < :ﬁ\ , then |w| > \ml and
VP o (w)] S w72,
Then we find that

(Pu(z —y) = Cu(@)| <yl sup  [V(2)] S lylu?|z|*" 72,

z€[z—y,x]
which further implies that
|z |z
ST du 3ty a3 du Y
[ e - vi@ F s [T et S s s 4
Combining (4.2) and (4.3), we obtain
lyl»

H\I/u($ - y) - \Ilu(x)HLl(du/u) S ’x‘n+g> V‘$| > 2|y’ > 0.

This proves the first inequality of Lemma 4.4.
The proof of the second inequality of Lemma 4.4 is similar to that of (3.10), the details
being omitted. This finishes the proof of Lemma 4.4. O

Now, we are ready to prove Theorem 1.5.

Proof of Theorem, 1.5. We first prove Theorem 1.5(i). As in (2.11), we write U* := Uyol,
for any « € (0,2). We also notice that the assumption on p in Theorem 1.5 implies a < n.
Let f € LP(R™) with p = niga Then, for any § € (0,00), by Lemma 4.1, we can
decompose f as f = g+ b with two functions g and b as in Lemma 4.1. Hence, to estimate
UZ(f), it suffices to consider UX(g) and U} (b), separately.

By Lemma 2.8, we know that U? is bounded on L?(R"), which, together with the

Chebyshev inequality, p < 2 and Lemma 4.1(iii), implies that, for any g € (0, 00),

{z €R": Uz(9)(2) > BY S B2NUL () T2y S B2 N9M T2 mny S B2 0 (geny-

This is the desired estimate.

Next we estimate U} (b). Let y € R™. As in [8], the symbol y ~ Q; means that y is
contained in some (); which touches or coincides with ();, roughly speaking, y ~ @); means
that y is not much far away from @; than diam(Q);), otherwise we say y ~ Q;. Then, for
any x € R", we have UZ(b)(z) < Ni(x) + Na(z), where

_ 2 - 1/2
o0 - ot

Ny () = / / S W )| - ay |
|70 IR G g} |

_ 2 - 1/2
> —1 —-n dt

No(z) := Z Uy fi(y)| x(t |y — =)t dy* ,
7O TR G Q) l
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U is as in (2.4), f; is as in Lemma 4.1(ii) and x denotes the characteristic function of the
unit ball B(0,1).
We first estimate N;. Notice that, for ® satisfying Assumption 1.2 and ¥ being as in
(2'4)7
1U(z)] < |1+ |z)) 2 =: L(z), Yz eR"™ (4.4)

Indeed, we know that, when |z| < 3to,

inf |z T 4 J2]) T2 = [3te] VT + |3to]) 2 ~ 1.
xEB(6,3to)

On the other hand, since ® is bounded, it follows that, for any x € R",

|D * I ()| < /

B - al2)dz S [
Rn

B(w,to)

< / 277 dz < (J] 4+ t0)™ < 19 ~ 1. (4.5)
B(@al-+to)

Combining these estimates, we find that, when |z| < 3¢,
(@5 Lo(2)] S 1S a1+ J2) 7%

When |z| > 3tg, since ® is radial, from the Taylor expansion, we deduce that, for any
x € R,

| [ () — In(x)] = / O(2)[Io(z — 2) — In(x)] dz
B(ﬁ‘,to)
DPI,(x—6
- / () |Via(@) - (—2) + Y M(—z)ﬁ dz
B(0,t0) =2 6
= Z 1'/ . ®(2)DPI,(x — 02)(—2)° dz
‘:8|:2 B B(O,to)
S [ e 0l S ] S fal L)
B(ﬁ,to)

where 6 € (0,1). This proves (4.4).
Notice that, if y = Q;, then sup_q, ly — 2| Sinf.eq, |y — 2|, which implies that

-2
sup Li(y —2) =t “sup |y — 2| """ (1 + |yz|> < inf Li(y — 2), (4.6)
ZEQj ZGQ]' t ZEQj

where L is as in (4.4). Therefore, by supp f; C @Q;, the Hélder inequality, and Lemma
4.1(ii), we know that

YRR EVIOIEEDY [supmy—z)] JRECIEE

{j: y=Q;} {3: y=Q;} #€Q;
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< X | nw-o|aeliss [ @dss

{7+ y=Q;}
Thus, for any = € R", we have

2 1 n dt

[N (2 <B Ve £ ()| x( ly — 2t dy —
Rn
{7: ?/”“QJ
and hence
[ m@pass [T | wenw| (4.7)

{7: y=Q;}
Let z; be the center of @);. Using Lemma 4.4 and the Holder inequality, we have

[ L] X e
<Z/ /yw e 1) dy &
gz/o /Q /Q Wiy — 2) — Wyly — )] f5(2) d2

<Z/ [/ /wQ]y\pt — Wiy —z)| dy ]|fj< )| dz

<Z/ iz |d2<2</ 55 |sz>p|czj1—é

< ZB\QJI < B S g

dt
dy —

=

where the penultlmate and the last inequalities follow from (ii) and (i) of Lemma 4.1,
respectively. By this and (4.7), we conclude that HN1HL2 Rn) S B2 prHLp (rn)- Therefore
for any 8 € (0,00), we have

{z €R": Ni(z) > B} < B2NU T2 gny S B2 @ny-

(4.8)
Next we estimate Na. Let © := U;Q;. Then, since Q] < 8~ p||f|\Lp gny» (O prove
estimate (4.8) with Ny in place of Ny, it suffices to show that, for any 8 € (0 oo)
[ e do £ 501 (19
R™\Q

Notice that

// S W f <t—1|y—x|>t—”dy@

{7: y~Qj}
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because y ~ Q; for any j if y € R™\ Q. Also, we find that, for any y € R",
Wy fy) =7 * Lo * Pu(y) — f * La(y)]

> fm= D fm

{m: y~Qm} {m: 2;~Qm}

where z; denotes the center of Q;. Put f7 = Z{m:szQm} fm- Then, if z € R™\ Q, we
have

and, if y € Q;, then

o0 . n—2a dt

2=Z/O / Bow Lo w F1(y) — L x PPty — a2 dy &
< ] 2 —1 —n—2a dt

Z M(Io = f1) )Pty — 2t~ dy —
~Z/ M (Lo % 7)) Pl — y| "2 dy
< Z |2 — 2| 7" M (1o, * fj)H2L2(]R")

J
< Z @ — 2|72 Iy fjH%Z(R”)v (4.10)

J
where M denotes the Hardy-Littlewood maximal operator as in (1.19). Notice that
o f 72y SUF N Trmny S B° Y 1Qul™? S B%Qs177,
{m: zj~Qm}

where the last inequality follows from the geometry of the Whitney decomposition (see
part (v) of Lemma 4.1). Then, by (4.10), we know that

/ [N2(:C)]2 deJﬁQZ‘Q”Q/p/ ’w_zjrnfgadx
R™\Q 7 RM\Q

Tl Lo el

J

<5 Z Qi171Q; 7> < B2 Z Qi1 £ BN I o gy

which proves (4.9). Combining all above arguments, we prove that U} is bounded from
LP(R™) to WLP(R™). N

Now we consider the operator GZ’ y © 1. The proof is similar to the above proof for
U;. Indeed, for any x € R", let

2 1/2

An
U L2 o) (=) et

{7:y=Q;}
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and

2 1/2

An d
/ / Wy f5(y) <t—|—|;—y|> fndy%

{7:y~Q;}

The estimation of ]\71 is similar to that of N7 due to the fact that

¢ n
[t ) e
re \t+ |7 —

while the estimation of ng is similar to that of Ny because, if A > %, then, for any x, y € R”
with = # vy,

00 ¢ An
o \t+[z—y
lz—yl t An 0 t An
= / (> t-’ﬂ—ZO&—l dt + / () t—n—2a—1 dt
0 t+‘x_y‘ |z—y| t+‘x_y‘

|z—yl ’JE _ y’)\nfanafl o0 pAn—n—2a-1 )
</ dt [t S o=y
0 (t+ [z —y[)*» lo—y| (2|2 —y[)A"

With these estimates and repeating the argument used for the estimation of U}, we con-
clude that éz ) © Iy is also bounded from LP(R™) to WLP(R™). This proves Theorem
1.5(i). ’
Now we consider the case o = 2, namely, we prove Theorem 1.5(ii). To show
U(f,CoAf) € WLP(R") with p= 2
9 n+47

it suffices to show that V* in (3.16) is of weak type (p,p). This proof is also similar to the
above proof of U}, and the differences lie in (4.4), (4.6) and the estimation of Na. Indeed,
letting K be as in Theorems 1.3 and 1.4, similarly to (4.4), when a = 2, for any = € R",
we have

K (z)| < L(z),
where, for any x € R™,
3
L(z) = ]w\_"+2(1 + ]m\i)_Q. (4.11)

Indeed, when |z| > 3ty, by the Taylor expansion and an argument similar to that used for
the proof of (3.12), we know that

| @ Ix(2) — Io(x)]

_ / Nls(z — 2) — I(x)] dz
B
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< 277 S L),
where 0 € (0,1). When |z| < 3tg, similarly to (4.5), we obtain
K (2)] S |27+ < L(2).

Hence, (4.6) holds true for L as in (4.11). To obtain an estimate analog to N2, we employ
the fact that, for any ¢ € (0,00) and y € R",

o il =| [ o) ) ds

5/ ly — 221 (=) dz ~ | | )],
Rn

where the second inequality is deduced from the facts that ® is bounded and n > 4 (due
to p := nQ—J’:ZL > 1 in the assumption). The remainder of the proof for the case v = 2 is
similar to the proof for the case o € (0,2), the details being omitted.

Finally, the proof of CNT”)‘\(f, CoAf) € WLP(R™) can also be proved like C:‘Z 3 © 1o, Via
replacing ¥; therein by K;, the details being omitted again. This finishes the proof of

Theorem 1.5. ]
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