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Generalized Littlewood-Paley Characterizations of
Fractional Sobolev Spaces

Shuichi Sato, Fan Wang, Dachun Yang ∗ and Wen Yuan

Abstract In this article, the authors characterize the Sobolev spaces Wα,p(Rn)

with α ∈ (0, 2] and p ∈ (max{1, 2n
2α+n},∞) via a generalized Lusin area function and

its corresponding Littlewood-Paley g∗λ-function. The range p ∈ (max{1, 2n
2α+n},∞) is

also proved to be nearly sharp in the sense that these new characterizations are not

true when 2n
2α+n > 1 and p ∈ (1, 2n

2α+n ). Moreover, in the endpoint case p = 2n
2α+n , the

authors also obtain some weak type estimates. Since these generalized Littlewood-

Paley functions are of wide generality, these results provide some new choices for

introducing the notions of fractional Sobolev spaces on metric measure spaces.

1 Introduction

The theory of Sobolev spaces is one of the central topic in modern analysis. In recent
years, there is an increasing interest in developing Sobolev spaces on metric measure spaces,
and the theory of Sobolev spaces with smoothness order not greater than 1 has already
been intensively studied in a series of literatures (see, for example, [12, 17, 20, 15, 14]).

Recently, via establishing some new characterizations of Sobolev spaces on Rn, Alabern
et al. [1] found some ways to introduce high order Sobolev spaces on metric measure
spaces. To recall their results, let S(Rn) be the set of all Schwartz functions on Rn

equipped with the well-known topology and S ′(Rn) its topological dual equipped with the
weak-∗ topology, namely, the collection of all bounded linear functionals on S(Rn); let
∆ := Σn

i=1(
∂
∂xi

)2 be the Laplace operator and, for any α ∈ (0,∞), f ∈ S ′(Rn) and ξ ∈ Rn,

define (−∆)
α
2 via [(−∆)

α
2 f ]∧(ξ) := |2πξ|αf̂(ξ). Here and hereafter, for any f ∈ L1(Rn),

we use f̂ to denote its Fourier transform, namely, for any ξ ∈ Rn,

f̂(ξ) :=

∫
Rn

f(x)e−2πixξ dx.

It is well known that the definition of the above Fourier transform can be extended to
any f ∈ S ′(Rn), whose Fourier transform is still denoted by f̂ . Recall that the fractional
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Sobolev space Wα,p(Rn), with any α ∈ (0,∞) and p ∈ (1,∞), is defined as the set of
all f ∈ Lp(Rn) such that (−∆)

α
2 f ∈ Lp(Rn), equipped with the norm that, for any

f ∈Wα,p(Rn),
∥f∥Wα,p(Rn) := ∥f∥Lp(Rn) + ∥(−∆)

α
2 f∥Lp(Rn).

Recently, Alabern et al. [1] proved that the Sobolev spaces Wα,p(Rn) with any α ∈ (0, 2]
and p ∈ (1,∞) can be characterized, respectively, by the square functions Sα(f) when
α ∈ (0, 2) and S(f, g) when α = 2, which are respectively defined by setting, for any
f, g ∈ L1

loc (Rn) ∩ S ′(Rn),

Sα(f)(x) :=

{∫ ∞

0

∣∣∣∣Btf(x) − f(x)

tα

∣∣∣∣2 dtt
} 1

2

, ∀x ∈ Rn (1.1)

and

S(f, g)(x) :=

{∫ ∞

0

∣∣∣∣Btf(x) − f(x)

t2
−Btg(x)

∣∣∣∣2 dtt
} 1

2

, ∀x ∈ Rn. (1.2)

Here and hereafter, L1
loc (Rn) denotes the set of all locally integrable functions on Rn,

B(x, t) the open ball with center x ∈ Rn and radius t ∈ (0,∞), namely,

B(x, t) := {y ∈ Rn : |y − x| < t},

and Btg(x) the integral average of g ∈ L1
loc (Rn) on ball B(x, t), namely,

Btg(x) := –

∫
B(x,t)

g(y) dy :=
1

|B(x, t)|

∫
B(x,t)

g(y) dy. (1.3)

Indeed, Alabern et al. in [1, Theorems 1, 2 and 3] proved the following results.

Theorem 1.A. Let p ∈ (1,∞), α ∈ (0, 2], Sα and S be as in (1.1), respectively, (1.2).
Then the following statements are equivalent:

(i) f ∈Wα,p(Rn);

(ii) f ∈ Lp(Rn) and Sα(f) ∈ Lp(Rn) when α ∈ (0, 2), or there exists g ∈ Lp(Rn) such
that S(f, g) ∈ Lp(Rn) when α = 2.

Moreover, it holds true that ∥(−∆)
α
2 f∥Lp(Rn) is equivalent to ∥Sα(f)∥Lp(Rn) when α ∈ (0, 2)

or to ∥S(f, g)∥Lp(Rn) when α = 2 with equivalent positive constants independent of f .

The characterizations of Sobolev spaces in Theorem 1.A do not depend on the differen-
tial structure of Rn, and hence provide a way to introduce Sobolev spaces with smoothness
order in (0, 2] on metric measure spaces. Motivated by Theorem 1.A and by noticing that
Sα(f) and S(f, g) are two kinds of the Littlewood-Paley g-functions, the authors of [13] and
[4] considered the characterizations of Wα,p(Rn) via the corresponding Lusin area function
and the Littlewood-Paley g∗λ-function. To be precise, for any λ ∈ (1,∞), f, g ∈ L1

loc (Rn)
and x ∈ Rn, define

S̃α(f)(x) :=

{∫ ∞

0

∫
B(x,t)

∣∣∣∣Btf(y) − f(y)

tα

∣∣∣∣2 dy dt

tn+1

} 1
2

, (1.4)
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S̃(f, g)(x) :=

{∫ ∞

0

∫
B(x,t)

∣∣∣∣Btf(y) − f(y)

tα
−Btg(y)

∣∣∣∣2 dy dt

tn+1

} 1
2

, (1.5)

G∗
α,λ(f)(x) :=

{∫ ∞

0

∫
Rn

∣∣∣∣Btf(y) − f(y)

tα

∣∣∣∣2( t

t+ |x− y|

)λn

dy
dt

tn+1

} 1
2

(1.6)

and

G∗
λ(f, g)(x) :=

{∫ ∞

0

∫
Rn

∣∣∣∣Btf(y) − f(y)

tα
−Btg(y)

∣∣∣∣2( t

t+ |x− y|

)λn

dy
dt

tn+1

} 1
2

, (1.7)

where Bt with t ∈ (0,∞) is as in (1.3).
The following result was proved in [13, Theorem 1.1].

Theorem 1.B. Let n ∈ N, p ∈ (1,∞), S̃ and G∗
λ be as in (1.5), respectively, (1.7). Then

the following statements are mutually equivalent:

(i) f ∈W 2,p(Rn);

(ii) f ∈ Lp(Rn) and there exists g ∈ Lp(Rn) such that S̃(f, g) ∈ Lp(Rn);

(iii) f ∈ Lp(Rn) and there exists g ∈ Lp(Rn) such that G∗
λ(f, g) ∈ Lp(Rn), provided that

p ∈ [2,∞), n ∈ N and λ ∈ (1,∞), or p ∈ (1, 2), n ∈ {1, 2, 3} and λ ∈ (2p ,∞).

Moreover, if f ∈W 2,p(Rn), then g in (ii) and (iii) can be taken as g := ∆f/(2n+4); while,
if either of (ii) and (iii) holds true, then g = ∆f/(2n+4) almost everywhere. In any case,
∥S̃(f, g)∥Lp(Rn) and ∥G∗

λ(f, g)∥Lp(Rn) are equivalent to ∥∆f∥Lp(Rn) with equivalent positive
constants independent of f and g, respectively.

This result was further completed by [4] as follows.

Theorem 1.C. Let n ∈ N, n ≥ 4, S̃ and G∗
λ be as in (1.5), respectively, (1.7).

(I) If p ∈ ( 2n
4+n , 2), then the following statements are mutually equivalent:

(i) f ∈W 2,p(Rn);

(ii) f ∈ Lp(Rn) and there exists g ∈ Lp(Rn) such that S̃(f, g) ∈ Lp(Rn);

(iii) f ∈ Lp(Rn) and there exists g ∈ Lp(Rn) such that G∗
λ(f, g) ∈ Lp(Rn) for some

λ ∈ (2p ,∞).

Moreover, if f ∈W 2,p(Rn), then g in (ii) and (iii) can be taken as g := ∆f/(2n+4);
while, if either of (ii) and (iii) holds true, then g = ∆f/(2n+ 4) almost everywhere.
In any case, ∥S̃(f, g)∥Lp(Rn) and ∥G∗

λ(f, g)∥Lp(Rn) are equivalent to ∥∆f∥Lp(Rn) with
equivalent positive constants independent of f and g, respectively.

(II) If p ∈ (1, 2n
4+2n), then the equivalence between (i) and either (ii) or (iii) of (I) no

longer holds true.
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As a fractional version, the following result was also obtained in [4].

Theorem 1.D. Let n ∈ N, α ∈ (0, 2), S̃α and G∗
α,λ be as in (1.4), respectively, (1.6).

(I) If p ∈ (max{1, 2n
2α+n},∞), then the following statements are mutually equivalent:

(i) f ∈Wα,p(Rn);

(ii) f ∈ Lp(Rn) and S̃α(f) ∈ Lp(Rn);

(iii) f ∈ Lp(Rn) and G∗
α,λ(f) ∈ Lp(Rn) for some λ ∈ (max{1, 2p},∞).

Moreover, ∥S̃α(f)∥Lp(Rn) and ∥G∗
α,λ(f)∥Lp(Rn) are equivalent to ∥(−∆)

α
2 f∥Lp(Rn)

with equivalent positive constants independent of f , respectively.

(II) If n > 2α and p ∈ (1, 2n
2α+n), then the equivalence between (i) and either (ii) or (iii)

of (I) no longer holds true.

On the other hand, let 0⃗ denote the origin of Rn,

χ̃(x) :=
1

|B(⃗0, 1)|
χB(⃗0,1)(x), χ̃t(x) := t−nχ̃(x/t), ∀x ∈ Rn, ∀ t ∈ (0,∞), (1.8)

where χE denotes the characteristic function of the subset E of Rn. Then Btf = χ̃t ∗ f
for any f ∈ L1

loc (Rn). Based on this observation and motivated by [1], Sato [16] gave a
weighted generalization of Theorem 1.A when α ∈ (0, 2). To state his result, we need the
following assumption on Φ.

Assumption 1.E. Let Φ be a bounded radial function on Rn with compact support
satisfying

∫
Rn Φ(x) dx = 1.

It is easy to see that χ̃ is a special example satisfying Assumption 1.E. In what follows,
for any t ∈ (0,∞), let Φt(·) := t−nΦ(·/t) and, for any f ∈ S(Rn) and x ∈ Rn,

Tα(f)(x) :=

{∫ ∞

0
|Iα(f)(x) − Φt ∗ Iα(f)(x)|2 dt

t1+2α

} 1
2

(1.9)

with Iα being the Riesz potential operator defined via

Îαf(ξ) := (2π|ξ|)−αf̂(ξ), ∀ ξ ∈ Rn \ {⃗0}. (1.10)

In what follows, for any p ∈ [1,∞), we use Ap(Rn) to denote the class of Muckenhoupt
weights on Rn and, for any w ∈ Ap(Rn), Lp

w(Rn) the weighted Lebesgue space equipped
with the norm that, for any f ∈ Lp

w(Rn),

∥f∥Lp
w(Rn) :=

{∫
Rn

|f(x)|pw(x)dx

} 1
p

<∞.

Sato in [16, Theorem 1.5] obtained the following result.
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Theorem 1.F. Let α ∈ (0, 2), p ∈ (1,∞) and ω ∈ Ap(Rn). Let Φ satisfy Assumption
1.E and Tα be as in (1.9). Then there exists a positive constant C such that, for any
f ∈ S(Rn),

C−1∥f∥Lp
w(Rn) ≤ ∥Tα(f)∥Lp

w(Rn) ≤ C∥f∥Lp
w(Rn).

In view of the definition of Wα,p(Rn) and the density of S(Rn) in Lp
w(Rn), we know

that Theorem 1.F induces a generalized weighted version of Theorem 1.A, which is just
[16, Corollary 1.6].

Comparing the characterizations obtained in [16] with those in [13] and [4], it is natural
to ask whether or not we can also characterize Sobolev spaces as in Theorems 1.B and
1.C with the ball average function χ̃t used therein replaced by a general function Φt as in
Theorem 1.F. The main purpose of this article is to answer this question.

To be precise, for any α ∈ (0, 2), λ ∈ (1,∞), f, g ∈ L1
loc (Rn) and x ∈ Rn, define

Uα(f)(x) :=

{∫ ∞

0

∣∣∣∣Φt ∗ f(x) − f(x)

tα

∣∣∣∣2 dtt
} 1

2

, (1.11)

Ũα(f)(x) :=

{∫ ∞

0

∫
B(x,t)

∣∣∣∣Φt ∗ f(y) − f(y)

tα

∣∣∣∣2 dy dt

tn+1

} 1
2

(1.12)

and

G̃∗
α,λ(f)(x) :=

{∫ ∞

0

∫
Rn

∣∣∣∣Φt ∗ f(y) − f(y)

tα

∣∣∣∣2( t

t+ |x− y|

)λn

dy
dt

tn+1

} 1
2

; (1.13)

while for α = 2, define

U(f, g)(x) :=

{∫ ∞

0

∣∣∣∣Φt ∗ f(x) − f(x)

t2
− Φt ∗ g(x)

∣∣∣∣2 dtt
} 1

2

,

Ũ(f, g)(x) :=

{∫ ∞

0

∫
B(x,t)

∣∣∣∣Φt ∗ f(y) − f(y)

t2
− Φt ∗ g(y)

∣∣∣∣2 dy dt

tn+1

} 1
2

(1.14)

and

G̃∗
λ(f, g)(x) :=

{∫ ∞

0

∫
Rn

∣∣∣∣Φt ∗ f(y) − f(y)

t2
− Φt ∗ g(y)

∣∣∣∣2

×
(

t

t+ |x− y|

)λn

dy
dt

tn+1

} 1
2

. (1.15)

Notice that Theorem 1.F implies that, for any α ∈ (0, 2) and p ∈ (1,∞), f ∈Wα,p(Rn)
if and only if f ∈ Lp(Rn) and Uα(f) ∈ Lp(Rn). The main results of this article read as
the following several theorems.
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Theorem 1.1. Let n ∈ N, α ∈ (0, 2), Φ satisfy Assumption 1.E, and Ũα and G̃∗
α,λ be as

(1.12) and (1.13), respectively.

(I) If p ∈ (max{1, 2n
2α+n},∞), then the following statements are mutually equivalent:

(i) f ∈Wα,p(Rn);

(ii) f ∈ Lp(Rn) and Ũα(f) ∈ Lp(Rn);

(iii) f ∈ Lp(Rn) and G̃∗
α,λ(f) ∈ Lp(Rn) for some λ ∈ (max{1, 2p},∞).

Moreover, ∥Ũα(f)∥Lp(Rn) and ∥G̃∗
α,λ(f)∥Lp(Rn) are equivalent to ∥(−∆)α/2f∥Lp(Rn)

with equivalent positive constants independent of f , respectively.

(II) If n > 2α and p ∈ (1, 2n
2α+n), then equivalence between (i) and either (ii) or (iii) of

(I) no longer holds true.

We point out that, when Φ = χ̃ with χ̃ as in (1.8), Theorem 1.1 coincides with
Theorems 1.D.

To consider the end-point case of Theorem 1.1, we need the following stronger assump-
tion on Φ.

Assumption 1.2. Let Φ be a bounded radial function on Rn with compact support
satisfying

∫
Rn Φ(x) dx = 1. Assume that there exists t0 ∈ (0,∞), depending on Φ, such

that supp Φ ⊆ B(⃗0, t0) (the closure of B(⃗0, t0)) and, for any t ∈ (0, t0), there exists x ∈ Rn

such that |x| ∈ (t, t0) and Φ(x) ̸= 0. Moreover, assume that there exists a positive constant
C(Φ), depending on Φ, such that, for any x, y ∈ B(⃗0, t0),

|Φ(x) − Φ(y)| ≤ C(Φ)|x− y|. (1.16)

Compared with Assumption 1.E, Assumption 1.2 requires that Φ satisfies the additional
local interior Lipschitz regularity (1.16).

It is easy to see that there exist many functions Φ satisfying Assumption 1.2 and,
especially, χ̃ as in (1.8) satisfies Assumption 1.2.

In what follows, for Φ as in Assumption 1.2, let

C0 :=
1

2

∫
B(⃗0,t0)

Φ(x)(2πx1)
2 dx. (1.17)

Since Φ is radial, it follows that, for any i ∈ {2, . . . , n},

C0 =
1

2

∫
B(⃗0,t0)

Φ(x)(2πxi)
2 dx.

Also, for any locally integrable functions f and g, let

F(f, g)(x, t) :=

∣∣∣∣Φt ∗ f(x) − f(x)

t2
+ Φt ∗ g(x)

∣∣∣∣ , ∀x ∈ Rn, ∀ t ∈ (0,∞). (1.18)

We have the following results.
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Theorem 1.3. Let p ∈ (1,∞) and Φ satisfy Assumption 1.2. Then the following two
statements are equivalent:

(i) f ∈W 2,p(Rn);

(ii) f ∈ Lp(Rn) and there exists g ∈ Lp(Rn) such that G(F(f, g)) ∈ Lp(Rn), where
F(f, g) is as in (1.18) and

G(F(f, g))(x) :=

{∫ ∞

0
|F(f, g)(x, t)|2 dt

t

} 1
2

, ∀x ∈ Rn.

Moreover, if f ∈ W 2,p(Rn), then g in (ii) can be taken as g := C0∆f ; while, if (ii)
holds true, then g = C0∆f almost everywhere, where C0 is as in (1.17). In both cases,
∥G(F(f, g))∥Lp(Rn) is equivalent to ∥∆f∥Lp(Rn) with equivalent positive constants indepen-
dent of f and g.

Observe that, when Φ = χ̃ with χ̃ as in (1.8), Theorem 1.3 coincides with Theorem
1.A in the case α = 2.

Theorem 1.4. Let n ∈ N, Φ satisfy Assumption 1.2, Ũ and G̃∗
λ be as in (1.14) and (1.15),

respectively.

(I) If p ∈ (max{1, 2n
4+n},∞), then the following statements are mutually equivalent:

(i) f ∈W 2,p(Rn);

(ii) f ∈ Lp(Rn) and there exists g ∈ Lp(Rn) such that Ũ(f, g) ∈ Lp(Rn);

(iii) f ∈ Lp(Rn) and there exists g ∈ Lp(Rn) such that G̃∗
λ(f, g) ∈ Lp(Rn) for some

λ ∈ (max{1, 2p},∞).

Moreover, if f ∈ W 2,p(Rn), then g in (ii) and (iii) can be taken as g := C0∆f ;
while, if either of (ii) and (iii) holds true, then g = C0∆f almost everywhere, where
C0 is as in (1.17). In any case, ∥Ũ(f, g)∥Lp(Rn) and ∥G̃∗

λ(f, g)∥Lp(Rn) are equivalent
to ∥∆f∥Lp(Rn) with equivalent positive constants independent of f and g.

(II) If n ≥ 5 and p ∈ (1, 2n
4+n), then the equivalence between (i) and either (ii) or (iii) of

(I) no longer holds true.

We point out that, when Φ = χ̃ with χ̃ as in (1.8), Theorem 1.4 coincides with
Theorems 1.B and 1.C.

The proof of Theorem 1.1 is given in Section 2, and the proofs of Theorems 1.3 and
1.4 are presented in Section 3. We observe that (ii) and (iii) of Theorem 1.1(I) are
equivalent for all p ∈ (1,∞) and n ∈ N (see its proof below). Moreover, the condi-
tion p ∈ (max{1, 2n

4+n},∞) is nearly sharp in the sense that, if (i) of Theorem 1.1(I) is
equivalent to (ii) or to (iii) of Theorem 1.1(I), then one must have

p ∈
[

2n

2α+ n
,∞
)

when n > 2α, and p ∈ (1,∞) when n ≤ 2α.
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Also, the items (ii) and (iii) of Theorem 1.4(I) are equivalent for all p ∈ (1,∞) and
n ∈ N, moreover, the condition p ∈ ( 2n

4+n ,∞) is also nearly sharp in the sense that, if (i)
of Theorem 1.4(I) is equivalent to (ii) or to (iii) of Theorem 1.4(I), then one must has
p ∈ ( 2n

4+n ,∞) when n ≥ 5 and p ∈ (1,∞) when n ∈ {1, 2, 3, 4}.

Finally, in the endpoint case when p = 2n
2α+n , we have the following weak-type result.

Recall that, for any p ∈ (0,∞), f ∈WLp(Rn) if and only if f is measurable and

∥f∥WLp(Rn) := sup
γ∈(0,∞)

γ|{x ∈ Rn : |f(x)| > γ}|1/p <∞.

Theorem 1.5. Let Φ satisfy Assumption 1.2, α ∈ (0, 2], p = 2n/(n + 2α) ∈ (1,∞) and
λ ∈ (2/p,∞). Let Iα, Ũα, G̃

∗
α,λ, Ũ and G̃∗

λ be as in (1.10), (1.12), (1.13), (1.14) and
(1.15), respectively.

(i) If α ∈ (0, 2), then Ũα ◦ Iα and G̃∗
α,λ ◦ Iα are bounded from Lp(Rn) to WLp(Rn) and

hence Ũα and G̃∗
α,λ are bounded from Wα,p(Rn) to WLp(Rn).

(ii) If α = 2, then, for any f ∈ W 2,p(Rn), Ũ(f, C0∆f) and G̃∗
λ(f, C0∆f) belong to

WLp(Rn), where C0 is as (1.17), and there exists a positive constant C, independent
of f , such that

∥Ũ(f, C0∆f)∥WLp(Rn) + ∥G̃∗
λ(f, C0∆f)∥WLp(Rn) ≤ C∥f∥W 2,p(Rn).

Remark 1.6. (i) Even when Φ = χ̃ with χ̃ as in (1.8), Theorem 1.5 is also new.

(ii) On Theorem 1.5(i), if α, p and λ are as therein and Ũα ∈ WLp(Rn) or G̃∗
α,λ ∈

WLp(Rn), then it is still unclear whether or not f ∈Wα,p(Rn).

(iii) On Theorem 1.5(ii), it is still unclear whether or not a reverse statement still holds
true. Namely, if p and λ are as in Theorem 1.5(ii) and there exists a g ∈ Lp(Rn)
such that either Ũ(f, g) or G̃∗

λ(f, g) belongs to WLp(Rn), where C0 is as (1.17), it is
still unclear whether or not f ∈W 2,p(Rn).

(iv) Observe that, if Φ satisfies either Assumption (1.E) or Assumption (1.2), then, for
any t ∈ (0,∞), Φt ∗ f is indeed an average of f on a certain set, which, for some
special choices of Φ (for example, when Φ = χ̃ with χ̃ as in (1.8)), has a natural
generalization in metric measure spaces. Thus, Theorems 1.1, 1.3, 1.4 and 1.5 provide
some new choices for introducing fractional Sobolev spaces on metric measure spaces.

To prove Theorems 1.1 and 1.4, we borrow some ideas from [1] and [4]. The main idea is
to control the Lusin area functions Ũα(f) and Ũ(f, g) by a sum of a sequence of convolution
operators whose kernels satisfy vector-valued Hörmander conditions. Then, applying the
vector-valued Calderón-Zygmund theory (see [9, Theorem 3.4]) and the Marcinkiewicz
interpolation theorem (see [10, Theorem 1.3.2]), we obtain the boundedness of all such
convolution operators on Lp(Rn) as well as the exact decay estimates of their operator
norms, which imply the desired boundedness of the Lusin area function. On the other
hand, we make use of the fact that Ẇα,p(Rn) = Ḟα

p,2(Rn) and prove that ∥f∥Ḟα
p,2(Rn) .
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∥Ũα(f)∥Lp(Rn), with α ∈ (0, 2), p ∈ (1,∞) and the implicit positive constant independent
of f , by means of the classical Lusin area function characterization of Triebel-Lizorkin
spaces Ḟα

p,2(Rn) (see, for example, [19]) and the Fefferman-Stein vector-valued inequality
from [7]. To prove Theorem 1.5, we apply some methods from Fefferman [8].

Remark 1.7. We point out that, as a generalization of the classical Sobolev spaces with
integer smoothness order, the fractional Sobolev spaces Wα,p(Rn) considered in this ar-
ticle were usually called the Bessel-potential (or Lebesgue or Liouville) spaces in other
literatures, which were also denoted by Hα,p(Rn) therein (see, for example, [18, p. 37]).
The fractional Sobolev space Wα,p(Rn) coincides with the Triebel-Lizorkin space Fα

p,2(Rn)
for any α ∈ (0,∞) and p ∈ (1,∞) (see, for example, [18, Section 2.2.2]). It is well known
that, in many literatures, there exists another approach for fractional Sobolev-type spaces,
which were called Aronszajn, Gagliardo or Slobodeckij spaces (see, for example, [5, p. 524]

or [18, p. 36]), and we denote them by the symbol W̃α,p(Rn) here. Recall that, following
[5], for any p ∈ [1,∞) and θ ∈ (0, 1), the so-called Gagliardo (semi)norm of f ∈ Lp(Rn) is
given by

[f ]θ,p :=

{∫
Rn

∫
Rn

|f(x) − f(y)|p

|x− y|n+θp
dxdy

}1/p

.

The Aronszajn, Gagliardo or Slobodeckij space W̃α,p(Rn), with any α ∈ (0,∞) \ N and
p ∈ [1,∞), is then defined to be the set of all functions f ∈W ⌊α⌋,p(Rn) such that

∥f∥
W̃α,p(Rn)

:= ∥f∥W ⌊α⌋,p(Rn) + sup
β∈Zn+

|β|=⌊α⌋

[Dβf ]α−⌊α⌋,p

is finite, where ⌊α⌋ denotes the maximal integer not greater than α (see, for example, [18,

p. 36]). The space W̃α,p(Rn) coincides with the Besov space Bα
p,p(Rn) for any α ∈ (0,∞)\N

and p ∈ [1,∞) and hence W̃α,2(Rn) = Wα,2(Rn) (see, for example, [18, Section 2.2.2]).

However, W̃α,p(Rn) does not coincide with Wα,p(Rn) when p ̸= 2 (see, for example, [5,
Remark 3.5]). (We thank the referee for reminding us these facts.)

Finally, we make some conventions on notation. We denote by C a positive constant
which is independent of the main parameters, but may vary from line to line. The symbol
A . B means A ≤ CB. If A . B and B . A, then we write A ∼ B. We use C(α,... ) to
denote a positive constant depending on the indicated parameters α, . . . . Let M denote
the Hardy-Littlewood maximal operator defined by setting, for any f ∈ L1

loc (Rn) and
x ∈ Rn,

M(f)(x) := sup
B∋x

1

|B|

∫
B
|f(y)| dy, (1.19)

where the supremum is taken over all balls B containing x. Also, we use 0⃗ to denote
the origin of Rn and N to denote the set of all positive integers. Let Z+ := N ∪ {0} and
Z− := Z \ Z+. For any f ∈ S ′(Rn), we use f̂ and f∨ to denote its Fourier transform,
respectively, its inverse Fourier transform.
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2 Proof of Theorem 1.1

To prove Theorem 1.1, we first consider the relations among Uα, Ũα and G̃∗
α,λ, respec-

tively, from (1.11), (1.12) and (1.13). To this end, for any λ ∈ (1,∞), measurable function
F on Rn × (0,∞) and x ∈ Rn, define

G(F)(x) :=

{∫ ∞

0
|F(x, t)|2 dt

t

} 1
2

, (2.1)

G̃(F)(x) :=

{∫ ∞

0

∫
B(x,t)

|F(y, t)|2 dy dt

tn+1

} 1
2

(2.2)

and

G∗
λ(F)(x) :=

{∫ ∞

0

∫
Rn

|F(y, t)|2
(

t

t+ |x− y|

)λn

dy
dt

tn+1

} 1
2

. (2.3)

For these operators, we have the following lemmas from [13, Lemmas 2.1(iii) and 2.2],
respectively.

Lemma 2.1. Let λ ∈ (1,∞) and p ∈ [2,∞). Then there exists a positive constant C such
that, for any measurable function F on Rn × (0,∞), ∥G∗

λ(F)∥Lp(Rn) ≤ C∥G(F)∥Lp(Rn).

Lemma 2.2. Let p ∈ (1,∞) and λ ∈ (max{2
p , 1},∞). Then, for any measurable func-

tion F on Rn × (0,∞), G̃(F) ∈ Lp(Rn) if and only if G∗
λ(F) ∈ Lp(Rn). Moreover, the

Lp(Rn)-norm of G∗
λ(F) is equivalent to that of G̃(F) with the equivalent positive constants

independent of F .

For any α ∈ (0, 2), Φ satisfying Assumption 1.E and x ∈ Rn, let

Ψ(x) := Φ ∗ Iα(x) − Iα(x), (2.4)

where Iα is as in (1.10). Then we have

Ψ̂(ξ) = (2π|ξ|)−α
[
Φ̂(ξ) − 1

]
, ∀ ξ ∈ Rn \ {⃗0}

and, by the properties of Φ, we also have

Ψ(x) =
1

2

∫
Rn

[Iα(x− y) + Iα(x+ y) − 2Iα(x)]Φ(y) dy, ∀x ∈ Rn (2.5)

and hence

Ψ̂(ξ) =
1

2

∫
Rn

(2π|ξ|)−α
[
e2πi(y,ξ) + e−2πi(y,ξ) − 2

]
Φ(y) dy, ∀ ξ ∈ Rn (2.6)

(see [16, (2.1) and (2.4)]). Then we have the following lemma.



Generalized Littlewood-Paley Characterizations 11

Lemma 2.3. Let α ∈ (0,∞), Φ satisfy Assumption 1.E and Ψ be as in (2.5). Then there
exists a positive constant C such that, for any ξ ∈ Rn \ {⃗0},

|Ψ̂(ξ)| ≤ C min
{
|ξ|2−α, |ξ|−α

}
.

Proof. Let M0 := supx∈Rn |Φ(x)|, E := supp Φ and a := |E|. Then, since Φ is a bounded
and radial function with compact support, it follows that both M0 and a are finite.

On one hand, from (2.6), we deduce that, for any ξ ∈ Rn \ {⃗0},

|Ψ̂(ξ)| =
1

2
(2π|ξ|)−α

∣∣∣∣∫
Rn

[
e2πi(y,ξ) + e−2πi(y,ξ) − 2

]
Φ(y) dy

∣∣∣∣
≤ 1

2
(2π|ξ|)−α

∫
E

[
|e2πi(y,ξ)| + |e−2πi(y,ξ)| + 2

]
|Φ(y)| dy ≤ 2aM0(2π)−α|ξ|−α.

On the other hand, also from (2.6), combined with the Cauchy-Schwarz inequality, we
conclude that, for any ξ ∈ Rn \ {⃗0},

|Ψ̂(ξ)| =
1

2
(2π|ξ|)−α

∣∣∣∣∫
Rn

[2 cos(2π(y, ξ)) − 2]Φ(y) dy

∣∣∣∣
≤ 2(2π|ξ|)−α

∫
E

[sin(π(y, ξ))]2|Φ(y)| dy

≤ 2M0π
2(2π|ξ|)−α

∫
E
|(y, ξ)|2 dy ≤ 2M0Lπ

2(2π)−α|ξ|2−α,

where L :=
∫
E |y|2 dy. This finishes the proof of Lemma 2.3

Notice that Φ̂ is also a radial function. For any τ ∈ (0,∞), let F (τ) := Φ̂(ξ), where
ξ ∈ Rn and |ξ| = τ . Then we have the following conclusion.

Lemma 2.4. Let α ∈ (0, 2].

(i) It holds true that there exists a positive constant C, independent of α, such that

sup
τ∈(0,∞)

∣∣∣∣F (τ) − 1

τα

∣∣∣∣ ≤ C <∞. (2.7)

(ii) If j ∈ N and s ∈ (0,∞), then there exists a positive constat C(α,s,j), depending on α,
s and j, such that

sup
τ∈(s,∞)

∣∣∣∣ djdτ j
[
F (τ) − 1

τα

]∣∣∣∣ ≤ C(α,s,j) <∞. (2.8)

Proof. Let e1 := (1, 0, . . . , 0) ∈ Rn and x := (x1, x2, . . . , xn). Then, by Assumption 1.E,
we know that

F (τ) − 1

τα
= τ−α

[
Φ̂(τe1) − 1

]
= τ−α

[∫
Rn

Φ(x)e−2πix1τ dx− 1

]
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=

∫
Rn

Φ(x)τ−α[cos(2πx1τ) − 1] dx. (2.9)

We first prove (i). To this end, we consider two cases. In the case when τ ∈ [1,∞),
since Φ is bounded and has compact support, it follows that∣∣∣∣τ−α

∫
Rn

Φ(x)[cos(2πx1τ) − 1] dx

∣∣∣∣ . 1. (2.10)

When τ ∈ (0, 1), by the mean value theorem, we know that

| cos(2πx1τ) − 1| = 2[sin(πx1τ)]2 = 2(πx1τ)2[cos(θπx1τ)]2

for some θ ∈ (0, 1), which, together with α ∈ (0, 2), further implies that

τ−α| cos(2πx1τ) − 1| = 2(πx1)
2τ2−α[cos(θπx1τ)]2 . x21

and then, by the fact that Φ is bounded and has compact support again, we conclude that∣∣∣∣∫
Rn

Φ(x)τ−α[cos(2πx1τ) − 1] dx

∣∣∣∣ . ∫
Rn

|Φ(x)|x21 dx . 1,

which, combined with (2.10), implies (2.7) and hence completes the proof of (i).
Now we prove (ii), namely, we show that (2.8) holds true. ¿From (2.9), the Leibniz

formula and Assumption 1.E, we deduce that

sup
τ∈(s,∞)

∣∣∣∣ djdτ j
[
F (τ) − 1

τα

]∣∣∣∣ = sup
τ∈(s,∞)

∣∣∣∣∫
Rn

Φ(x)
dj

dτ j
{τ−α[cos(2πx1τ) − 1]} dx

∣∣∣∣
= sup

τ∈(s,∞)

∣∣∣∣∣
∫
Rn

Φ(x)

j∑
k=0

ck(τ−α)(k)[cos(2πx1τ) − 1](j−k) dx

∣∣∣∣∣
. sup

τ∈(s,∞)

∫
Rn

|Φ(x)|
j∑

k=0

τ−α−k dx . s−α−j ,

where ck := ( j
k ) denotes the binomial coefficient and f (n) := ( ∂

∂τ )nf , which implies (2.8).
This finishes the proof of Lemma 2.4.

For any α ∈ (0, 2), f ∈ L1
loc (Rn) and x ∈ Rn, let

U∗
α(f)(x) :=

{∫ ∞

0
–

∫
B(⃗0,t)

|Ψt ∗ f(x+ y)|2 dy dt
t

} 1
2

, (2.11)

where Ψ is as in (2.4) and Ψt(·) = t−nΨ(·/t) for any t ∈ (0,∞). Then it is easy to see
that, for any f ∈ L1

loc (Rn).

Ũα(f) ∼ U∗
α((−∆)

α
2 f) (2.12)

with the equivalent positive constants independent of f .
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Let φ, ψ ∈ S(Rn) be two radial functions such that
supp φ̂ ⊂

{
ξ ∈ Rn :

1

2
≤ |ξ| ≤ 2

}
;
∑
j∈Z

φ̂(2−jξ) = 1, ∀ ξ ∈ Rn \ {⃗0};

supp ψ̂ ⊂
{
ξ ∈ Rn :

1

4
≤ |ξ| ≤ 4

}
; ψ̂(ξ) = 1 when

1

2
≤ |ξ| ≤ 2.

(2.13)

Clearly, f ∗φ2−j = f ∗φ2−j ∗ψ2−j for any j ∈ Z and f ∈ S ′(Rn). Then, from the Minkowski
inequality, we deduce that, for any f ∈ L1

loc (Rn) and x ∈ Rn,

U∗
α(f)(x) ∼


∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑
j∈Z

∑
k∈Z

[f ∗ φ2−j−k ∗ Ψt(x+ y)]χ[2−k,2−k+1)(t)

∣∣∣∣∣∣
2

× χB(⃗0,t)(y) dy
dt

tn+1


1
2

.
∑
j∈Z


∫ ∞

0
–

∫
B(⃗0,t)

∣∣∣∣∣∑
k∈Z

[f ∗ φ2−j−k ∗ Ψt(x+ y)]χ[2−k,2−k+1)(t)

∣∣∣∣∣
2

dy
dt

t


1
2

.
∑
j∈Z

Tj(f)(x), (2.14)

where, for any j ∈ Z,

Tj(f)(x) :=

[∑
k∈Z

∫ 2−k+1

2−k

–

∫
B(⃗0,2−k+1)

|f ∗ φ2−j−k ∗ Ψt(x+ y)|2 dy dt
t

] 1
2

. (2.15)

By Lemma 2.3, we have the following estimates.

Lemma 2.5. Let α ∈ (0, 2) and Φ satisfy Assumption 1.E. Then there exists a positive
constant C such that, for any j ∈ Z and f ∈ L2(Rn),

∥Tj(f)∥L2(Rn) ≤ C
[
min

{
2−αj , 2(2−α)j

}]
∥f∥L2(Rn),

where Tj is as in (2.15).

Proof. By the Plancherel theorem and Lemma 2.3, we have

∥Tj(f)∥2L2(Rn) =
∑
k∈Z

∫ 2−k+1

2−k

–

∫
B(⃗0,2−k+1)

∫
Rn

|f ∗ φ2−j−k ∗ Ψt(x+ y)|2 dx dy dt
t

.
∑
k∈Z

∫ 2−k+1

2−k

∫
Rn

|f ∗ φ2−j−k ∗ Ψt(x)|2 dx dt
t

.
∑
k∈Z

∫
2j+k−1≤|ξ|<2j+k+1

|f̂(ξ)|2
∫ 2−k+1

2−k

|Ψ̂(tξ)|2 dt
t
dξ
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.
[
min

{
2−2αj , 22(2−α)j

}]
∥f∥2L2(Rn),

which implies the desired conclusion and hence completes the proof of Lemma 2.5.

¿From Lemmas 2.4 and 2.5, we deduce the following Lemma 2.6.

Lemma 2.6. Let α ∈ (0, 2), p ∈ (1,∞), q := max{p, p′} with p′ being the conjugate index
of p (namely, 1

p + 1
p′ = 1), ε ∈ (0, 1q ) and Φ satisfy Assumption 1.E. Let φ, ψ ∈ S(Rn)

be as in (2.13). Then there exists a positive constant C(ε,α,p), depending on ε, α, and p,
such that, for any j ∈ (−∞, 0] ∩ Z and f ∈ Lp(Rn),

∥Tj(f)∥Lp(Rn) ≤ C(ε,α,p)2
(4−2α)j( 1

q
−ε)∥f∥Lp(Rn),

where Tj is as in (2.15).

Proof. By the definition of Tj(f) (see (2.15)), we know that, for any x ∈ Rn,

|Tj(f)(x)|2 .
∑
k∈Z

sup
y∈B(⃗0,2−k+1)

t∈[2−k,2−k+1)

|t−α(Φt ∗ f ∗ Iα ∗ φ2−j−k − f ∗ Iα ∗ φ2−j−k)(x+ y)|2. (2.16)

Notice that, for any ξ ∈ Rn \ {⃗0},

t−α(Φt ∗ f ∗ Iα ∗ φ2−j−k − f ∗ Iα ∗ φ2−j−k)∧(ξ) = φ̂(2−j−kξ)
Φ̂(tξ) − 1

|2πtξ|α
f̂j+k(ξ)

=: mj,k(2−kξ)f̂j+k(ξ),

where

mj,k(ξ) := φ̂(2−jξ)
Φ̂(2ktξ) − 1

|2k+1πtξ|α

and fj+k := f ∗ ψ2−j−k , with ψ and φ as in (2.13). Since j ≤ 0, from Lemma 2.4, we
deduce that, for any t ∈

[
2−k, 2−k+1

)
,

|∇imj,k(ξ)| . 2−ijχ[2j−1,2j+1](|ξ|), ∀ i ∈ Z+, ∀ ξ ∈ Rn

and hence

|m∨
j,k(x)| . 2jn(1 + 2j |x|)−n−1, ∀x ∈ Rn. (2.17)

Thus, by (2.17), we conclude that, for any t ∈
[
2−k, 2−k+1

)
and x ∈ Rn,

t−α sup
|y|≤2−k+1

|(Φt ∗ f ∗ Iα ∗ φ2−j−k − f ∗ Iα ∗ φ2−j−k)(x+ y)|

= sup
|y|≤2−k+1

2kn
∣∣∣∣∫

Rn

fj+k(z)m∨
j,k(2k(x+ y − z)) dz

∣∣∣∣
. 2(k+j)n

∫
Rn

|fj+k(z)| sup
|y|≤2−k+1

(1 + 2k+j |x+ y − z|)−n−1 dz
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. 2(k+j)n

∫
Rn

|fj+k(z)|(1 + 2k+j |x− z|)−n−1 dz .M(fj+k)(x),

where M denotes the Hardy-Littlewood maximal operator as in (1.19). ¿From this, (2.16),
the Fefferman-Stein vector-valued inequality (see [7]) and the Littlewood-Paley character-
ization of Lebesgue spaces (see, for example, [11, Theorem 1.3.8]), we deduce that

∥Tj(f)∥Lr(Rn) . ∥f∥Lr(Rn), ∀ r ∈ (1,∞).

Taking r :=
1− 1

q
+ε

1
p
− 1

2q
+ ε

2

, then, by Lemma 2.5 and the Riesz-Thorin interpolation theorem

(see, for example, [10, Theorem 1.3.4]), we find that

∥Tj(f)∥Lp(Rn) . 2
(4−2α)j( 1

q
−ε)∥f∥Lp(Rn),

which completes the proof of Lemma 2.6.

For the case j ∈ [0,∞) ∩ Z, we also obtain an estimate similar to that as in the above
lemma.

Lemma 2.7. Let α ∈ (0, 2), ε ∈ (0, 1), p ∈ (1, 2] and Φ satisfy Assumption 1.E. Then there
exists a positive constant C(ε,α,p), depending on ε, α and p, such that, for any j ∈ [0,∞)∪Z
and f ∈ Lp(Rn),

∥Tj(f)∥Lp(Rn) ≤ C(ε,α,p)2
[n( 1

p
− 1

2
)−α+ε]j∥f∥Lp(Rn),

where Tj is as in (2.15).

Proof. By Lemma 2.5 and the Marcinkiewicz interpolation theorem (see, for example, [10,
Theorem 1.3.1]), to show this lemma, it suffices to show that Tj is bounded from L1(Rn)
to WL1(Rn) with operator norm not greater than 2j(

n
2
+β−α) modulo a positive constant,

where β ∈ (0, 1). To this end, we assume that f ∈ L1(Rn). Notice that, for any t ∈ (0,∞),
g ∈ L1

loc (Rn) and x ∈ Rn,

–

∫
B(⃗0,2t)

|g ∗ Ψt(x+ y)|2 dy = t−2α –

∫
B(⃗0,2t)

|Φt ∗ g ∗ Iα(x+ y) − g ∗ Iα(x+ y)|2 dy

. t−2α –

∫
B(x,c̃t)

|g ∗ Iα(z)|2 dz,

where c̃ := 2 + t0 with t0 as in Assumption 1.2. By this and (2.15), we know that, for any
x ∈ Rn,

Tj(f)(x) .
[∑
k∈Z

22αk –

∫
B(x,c̃2−k)

|f ∗ Iα ∗ φ2−j−k(z)|2 dz

] 1
2

=: Tj,1(f)(x). (2.18)

On the other hand, for any β ∈ (0, 1), from [4, (3.9)], we deduce that

| {x ∈ Rn : Tj,1(f)(x) > λ} | . 2j(
n
2
+β−α)

∥f∥L1(Rn)

λ
, ∀λ ∈ (0,∞).
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By this and (2.18), we find that

| {x ∈ Rn : Tj(f)(x) > λ} | . 2j(
n
2
+β−α)

∥f∥L1(Rn)

λ
, ∀λ ∈ (0,∞).

This finishes the proof of Lemma 2.7.

Now, we can prove the following technical lemma.

Lemma 2.8. Let α ∈ (0, 2), p ∈ (max{1, 2n
2α+n},∞), Φ satisfy Assumption 1.E and U∗

α

be as in (2.11). Then there exists a positive constant C such that, for any f ∈ Lp(Rn),

∥U∗
α(f)∥Lp(Rn) ≤ C∥f∥Lp(Rn). (2.19)

In particular, if n ≤ 2α, then (2.19) holds true for any p ∈ (1,∞).
Conversely, if (2.19) holds true for some α ∈ (0, 2), p ∈ (1,∞) and any f ∈ Lp(Rn),

then p ≥ 2n
2α+n .

Proof. We first show (2.19). For any α ∈ (0, 2), p ∈ [2,∞) and f ∈ Lp(Rn), let

F̃α(x, t) :=

∣∣∣∣Φt ∗ Iα ∗ f(x) − Iα ∗ f(x)

tα

∣∣∣∣ , ∀ (x, t) ∈ Rn × (0,∞),

where Iα is as in (1.10), Φ satisfies Assumption 1.E, and Φt(·) = t−nΦ(·/t) for any t ∈
(0,∞). ¿From Lemmas 2.1 and 2.2, and [16, Theorem 1.5], we deduce that

∥U∗
α(f)∥Lp(Rn) =

∥∥∥G̃(F̃)
∥∥∥
Lp(Rn)

.
∥∥∥G∗

λ(F̃)
∥∥∥
Lp(Rn)

.
∥∥∥G(F̃)

∥∥∥
Lp(Rn)

∼ ∥f∥Lp(Rn),

where U∗
α, G̃, G∗

λ and G are as in (2.11), (2.2), (2.3) and (2.1), respectively.
For any given p ∈ (1, 2), let ε ∈ (0, 12) be small enough such that θ := 2

p −1+ ε
2 ∈ (0, 1),

and qε be such that 1
p = θ

qε
+ 1−θ

2 . Then 1
p −

1
2 = θ( 1

qε
− 1

2), which implies that qε ∈ (1, 2)

because θ > 2(1p − 1
2). If j ∈ Z+, then, by Lemmas 2.5 and 2.7, and the Marcinkiewicz

interpolation theorem (see, for instance, [10, Theorem 1.3.2]), we have

∥Tj(f)∥Lp(Rn) . 2
|j|θ[n( 1

qε
− 1

2
)−α+ ε

θ
]
2−α(1−θ)|j|∥f∥Lp(Rn) ∼ 2

−[α−n( 1
p
− 1

2
)−ε]|j|∥f∥Lp(Rn).

If j ∈ Z−, then, by Lemmas 2.5 and 2.6, and the Marcinkiewicz interpolation theorem
again, we obtain

∥Tj(f)∥Lp(Rn) . 2
|j|θ[−2(2−α)( 1

qε
−ε)]

2−(2−α)(1−θ)|j|∥f∥Lp(Rn)

∼ 2
−(2−α)[( 2

qε
−2ε−1)θ+1]|j|∥f∥Lp(Rn).

Notice that p ∈ ( 2n
2α+n , 2) implies α ∈ (n(1p − 1

2), 2). We then choose an appropriate
ε ∈ (0, 1) such that

δ := min

{
α− n

(
1

p
− 1

2

)
− ε, (2 − α)

[(
2

qε
− 2ε− 1

)
θ + 1

]}
> 0.
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Then we find that
∥Tj(f)∥Lp(Rn) . 2−|j|δ∥f∥Lp(Rn), ∀ j ∈ Z,

which, together with (2.14), implies (2.19). Thus, (2.19) holds true.
Next, we show that, if (2.19) holds true for some p ∈ (1,∞) and any f ∈ Lp(Rn), then

p ≥ 2n
2α+n . Since we always assume p ∈ (1,∞), it only needs to consider the case n > 2α.

Let ϕ be a radial Schwartz function on Rn such that

χ[ 12 ,2]
(|ξ|) ≤ ϕ̂(ξ) ≤ χ[ 14 ,4]

(|ξ|), ∀ ξ ∈ Rn

and ϕj(·) := 2jnϕ(2j ·) for any j ∈ Z. Then, for any x ∈ Rn, we have

U∗
α(ϕj)(x) &

{∫ 2

1

∫
B(⃗0,1)

∣∣∣∣Φt ∗ ϕj ∗ Iα(x+ y) − ϕj ∗ Iα(x+ y)

tα

∣∣∣∣2 dy dt
} 1

2

& Jj,1 − Jj,2,

where

Jj,1(x) := 2−α

[∫
B(⃗0,1)

|ϕj ∗ Iα(x+ y)|2 dy

] 1
2

and

Jj,2(x) :=

[∫ 2

1

∫
B(⃗0,1)

|Φt ∗ ϕj ∗ Iα(x+ y)|2 dy dt

] 1
2

.

For Jj,1, from [4, (3.11)], we deduce that

∥Jj,1∥Lp(Rn) & 2−αj+ jn
2 .

For Jj,2, we rewrite ϕj ∗ Iα(x) = 2−αjPj(x), where

Pj(x) := 2jn

(
ϕ̂(·)

|2π · |α

)∨

(2jx), ∀x ∈ Rn.

Since Φ is bounded, it follows that, for any x ∈ Rn,

Jj,2(x) =

∫ 2

1

∫
B(⃗0,1)

∣∣∣∣∣t−n

∫
x+y−z

t
∈B(⃗0,t0)

Φ

(
x+ y − z

t

)
(ϕj ∗ Iα)(z) dz

∣∣∣∣∣
2

dy dt

 1
2

.


∫ 2

1

∫
B(⃗0,1)

[
t−n

∫
x−z∈B(⃗0,2tt0)

|ϕj ∗ Iα(z)| dz

]2
dy dt


1
2

.M(ϕj ∗ Iα)(x) ∼ 2−jαM(Pj)(x),

which, combined with the boundedness of M on Lp(Rn) with any p ∈ (1,∞], further
implies that

∥Jj,2∥Lp(Rn) . 2−αj∥Pj∥Lp(Rn) . 2−αj2
jn(1− 1

p
)
. (2.20)
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Therefore, by the estimates of Jj,1 and Jj,2, and (2.19), we conclude that, for any sufficiently
large j ∈ N,

2j(−α+n
2
) . ∥Jj,1∥Lp(Rn) . ∥U∗

α(ϕj)∥Lp(Rn) + ∥Jj,2∥Lp(Rn)

. ∥ϕj∥Lp(Rn) + 2−αj2
jn(1− 1

p
) . 2

jn(1− 1
p
)
.

This implies that −α + n
2 ≤ n(1 − 1

p), namely, p ≥ 2n
2α+n and hence finishes the proof of

Lemma 2.8.

Next we turn to establish the inverse inequality of (2.19), which follows from the
following lemma. We prove this lemma by borrowing some ideas from [2, 3].

Lemma 2.9. Let p ∈ (1,∞), Φ satisfy Assumption 1.E, α ∈ (0, 2) and Ũα be as in (1.12).
Then there exists a positive constant C such that, for any f ∈ Lp(Rn),∥∥∥(−∆)α/2f

∥∥∥
Lp(Rn)

≤ C
∥∥∥Ũα(f)

∥∥∥
Lp(Rn)

.

Proof. Let ρ ∈ S(Rn) be such that

supp ρ̂ ⊂
{
ξ ∈ Rn : 2k0−1 ≤ |ξ| ≤ 2k0+1

}
and |ρ̂(ξ)| ≥ constant > 0 when 3

52k0 ≤ |ξ| ≤ 5
32k0 for some k0 ∈ Z which is determined

later. Notice that∥∥∥(−∆)α/2f
∥∥∥
Lp(Rn)

∼
∥∥∥(−∆)α/2f

∥∥∥
Ḟ 0
p,2(Rn)

∼ ∥f∥Ḟα
p,2(Rn)

∼

∥∥∥∥∥∥∥

∫ ∞

0

[
–

∫
B(·,t)

|ρt ∗ f(y)| dy

]2
dt

t2α+1


1
2

∥∥∥∥∥∥∥
Lp(Rn)

, (2.21)

where Ḟ 0
p,2(Rn) and Ḟα

p,2(Rn) denote the homogeneous Triebel-Lizorkin spaces, and the
second equivalence is due to the lifting property of Triebel-Lizorkin spaces, and the third
one follows from the Lusin area function characterization of Triebel-Lizorkin spaces (see,
for example, [19, Theorem 2.8] and its proof).

On the other hand, for any ξ ∈ Rn, we have

(Φt ∗ f − f)∧(ξ) =
[
Φ̂(tξ) − 1

]
f̂(ξ) =: A(t|ξ|)f̂(ξ)

and

ρt ∗ f =
[
ρ̂(t·)f̂(·)

]∨
=

[
ρ̂(t·)
A(t| · |)

A(t| · |)f̂(·)
]∨

=:
[
η(t·)A(t| · |)f̂(·)

]∨
,

where
A(s) := A(s|e1|) = Φ̂(se1) − 1, ∀ s ∈ (0,∞),

and

η(ξ) :=
ρ̂(ξ)

A(|ξ|)
, ∀ ξ ∈ supp ρ̂
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and otherwise η(ξ) := 0. Since Φ ∈ L1(Rn) with compact support, it follows that A(s)
is smooth when 2k0−1 ≤ s ≤ 2k0+1, and A(s) ̸= 0 therein provided that k0 is sufficiently
small. Thus, we choose k0 small enough such that η ∈ C∞

c (Rn), and hence η∨ is a Schwartz
function. Then, for any N ∈ N and x ∈ Rn, |η∨(x)| . (1+|x|)−N with the implicit positive
constant depending on N , and we also find that, for any t ∈ (0,∞) and x ∈ Rn,

–

∫
B(x,t)

|ρt ∗ f(y)| dy = –

∫
B(x,t)

|η∨t ∗ (Φt ∗ f − f)(y)| dy

≤
∫
Rn

|η∨t (ν)| –
∫

B(ν−x,t)
|(Φt ∗ f − f)(y)| dy dν

.
∫
Rn

t−n

(1 + |ν+x|
t )N

–

∫
B(ν,t)

|(Φt ∗ f − f)(y)| dy dν

∼
∫
|ν+x|≤t

t−n

(1 + |ν+x|
t )N

–

∫
B(ν,t)

|(Φt ∗ f − f)(y)| dy dν

+

∞∑
k=1

∫
2k−1t<|ν+x|≤2kt

t−n

(1 + |ν+x|
t )N

–

∫
B(ν,t)

|(Φt ∗ f − f)(y)| dy dν

. –

∫
|ν+x|≤t

–

∫
B(ν,t)

|(Φt ∗ f − f)(y)| dy dν

+
∞∑
k=1

2nk2−N(k−1) –

∫
|ν+x|≤2kt

–

∫
B(ν,t)

|(Φt ∗ f − f)(y)| dy dν

.M

(
–

∫
B(·,t)

|(Φt ∗ f − f)(y)| dy

)
(−x)

[
1 +

∞∑
k=1

2−(N−n)k

]

∼M

(
–

∫
B(·,t)

|(Φt ∗ f − f)(y)| dy

)
(−x),

where we took N > n. Therefore, by (2.21), the Fefferman-Stein vector-valued inequality
(see [7]) and the Hölder inequality, we have

∥∥∥(−∆)α/2f
∥∥∥
Lp(Rn)

.

∥∥∥∥∥∥∥

∫ ∞

0

[
M

(
–

∫
B(·,t)

|(Φt ∗ f − f)(y)| dy

)]2
dt

t2α+1


1
2

∥∥∥∥∥∥∥
Lp(Rn)

.

∥∥∥∥∥∥∥

∫ ∞

0

[
–

∫
B(·,t)

|(Φt ∗ f − f)(y)| dy

]2
dt

t2α+1


1
2

∥∥∥∥∥∥∥
Lp(Rn)

.

∥∥∥∥∥∥
{∫ ∞

0

∫
B(·,t)

|(Φt ∗ f − f)(y)|2 dy dt

t2α+1+n

} 1
2

∥∥∥∥∥∥
Lp(Rn)

∼
∥∥∥Ũα(f)

∥∥∥
Lp(Rn)

,
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which completes the proof of Lemma 2.9.

Based on these lemmas discussed above, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For any Φ satisfying Assumption 1.E and f ∈ Wα,p(Rn) with α ∈
(0, 2) and p ∈ (1,∞), let

Fα(x, t) :=

∣∣∣∣Φt ∗ f(x) − f(x)

tα

∣∣∣∣ , ∀ (x, t) ∈ Rn × (0,∞).

Then, applying Lemma 2.2 with F replaced by Fα, we know that the equivalence between
(ii) and (iii) of Theorem 1.1(I) when p ∈ (1,∞) holds true. The items (i) ⇒ (ii) of
Theorem 1.1(I) follows from Lemma 2.8 and (2.12), while the items (ii) ⇒ (i) of Theorem
1.1(I) comes from Lemma 2.9 and (2.12). Moreover, Theorem 1.1(II) is an immediate
consequence of Lemma 2.8. This finishes the proof of Theorem 1.1.

3 Proofs of Theorems 1.3 and 1.4

To prove Theorem 1.3, for Φ satisfying Assumption 1.2 and x ∈ Rn, let

K(x) := Φ ∗ I2(x) − I2(x) + C0Φ(x), (3.1)

where C0 is as in (1.17) and I2 is as in (1.10) with α = 2. Then, we have

K̂(ξ) = (2π|ξ|)−2
[
Φ̂(ξ) − 1

]
+ C0Φ̂(ξ), ∀ ξ ∈ Rn \ {⃗0}. (3.2)

In what follows, t→ 0+ means that t ∈ (0,∞) and t→ 0.

Lemma 3.1. Let K be as in (3.1). Then there exists a positive constant C such that, for
any ξ ∈ Rn \ {⃗0},

∣∣∣K̂(ξ)
∣∣∣ ≤


C min

{
|ξ|2, |ξ|−

1
2

}
when n = 2,

C min
{
|ξ|2, |ξ|−1

}
when n ∈ {1, 3, 4},

C min
{
|ξ|2, |ξ|−2

}
when n ∈ [5,∞) ∩ N.

(3.3)

Proof. Obviously, for any ξ ∈ Rn \ {⃗0}, we have∣∣∣K̂(ξ)
∣∣∣ =

∣∣∣(2π|ξ|)−2
[
Φ̂(ξ) − 1

]
+ C0Φ̂(ξ)

∣∣∣
≤
∣∣∣(2π|ξ|)−2

[
Φ̂(ξ) − 1

]
+ C0

∣∣∣+ C0

∣∣∣Φ̂(ξ) − 1
∣∣∣ ,

where C0 is as in (1.17). By the Taylor expansion and the definition of C0 in (1.17), we
conclude that, when 0 < |ξ| ≤ 1,∣∣∣(2π|ξ|)−2

[
Φ̂(ξ) − 1

]
+ C0

∣∣∣
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=

∣∣∣∣12
∫
Rn

Φ(x)(2πix1)
2 dx+

|ξ|2

4!

∫
Rn

Φ(x)(2πix1)
4 dx

+
o(|ξ|2)

6!

∫
Rn

Φ(x)(2πix1)
6 dx+ C0

∣∣∣∣
=

∣∣∣∣ |ξ|24!

∫
Rn

Φ(x)(2πix1)
4 dx+

o(|ξ|2)
6!

∫
Rn

Φ(x)(2πix1)
6 dx

∣∣∣∣ ,
where o(|ξ|2) means o(|ξ|2) . |ξ|2 and |o(|ξ|2)|

|ξ|2 → 0 as |ξ| → 0+. ¿From this, it further

follows that ∣∣∣(2π|ξ|)−2
[
Φ̂(ξ) − 1

]
+ C0

∣∣∣ . |ξ|2.

By Lemma 2.4 with α = 2 and j = 0, we have C0|Φ̂(ξ)− 1| . |ξ|2. This proves (3.3) when
|ξ| ≤ 1.

If |ξ| > 1, by [10, Appendix B.5, pp. 577-578], letting Φ0(r) := Φ(x) with r := |x|, we
have

Φ̂(ξ) =
2π

|ξ|
n−2
2

∫ ∞

0
Φ0(r)Jn

2
−1(2πr|ξ|)r

n
2 dr,

where Jν denotes the Bessel function of order ν. Then, by the well-known fact that
|Jν(t)| ∼ t

n
2
−1 as t→ 0+ and |Jν(t)| ∼ t−1/2 as t→ ∞, together with the facts that Φ0 is

bounded and |ξ| > 1, we find that, when n ≥ 2,∣∣∣Φ̂(ξ)
∣∣∣ . 1

|ξ|
n−2
2

∣∣∣∣∫ t0

0
Φ0(r)Jn

2
−1(2πr|ξ|)r

n
2 dr

∣∣∣∣ . 1

|ξ|
n−2
2

∫ t0

0
|Jn

2
−1(2πr|ξ|)|r

n
2 dr

. 1

|ξ|
n−1
2

[∫ 1
2π|ξ|

0
|ξ|

1
2 (2πr|ξ|)

n
2
−1r

n
2 dr +

∫ t0

1
2π|ξ|

|ξ|
1
2 (2πr|ξ|)−

1
2 r

n
2 dr

]
. 1

|ξ|
n−1
2

,

where t0 is as in Assumption 1.2 and, when 1
2π|ξ| ≥ t0, the integral∫ t0

1
2π|ξ|

|ξ|
1
2 (2πr|ξ|)−

1
2 r

n
2 dr

in the above argument is void. On the other hand, when n = 1, since Φ satisfies As-
sumption 1.2, we know that Φ is a Lipschitz function on (−t0, t0), and hence a function
of bounded variation on (−t0, t0). Then, by integrating by parts and the Riemannian-
Stieltjes integral theory, we know that, for any given ϵ ∈ (0, t0/2) and any ξ ∈ R with
|ξ| > 1,∣∣∣∣∫ t0−ϵ

−t0+ϵ
Φ(x)e−2πixξ dx

∣∣∣∣ ∼ 1

|ξ|

∣∣∣∣∫ t0−ϵ

−t0+ϵ
Φ(x) d

(
e−2πixξ

)∣∣∣∣
. 1

|ξ|

∣∣∣Φ(x)e−2πixξ|t0−ϵ
x=−t0+ϵ

∣∣∣+
1

|ξ|

∣∣∣∣∫ t0−ϵ

−t0+ϵ
e−2πixξ dΦ(x)

∣∣∣∣
. 1

|ξ|
+

1

|ξ|

∣∣∣∣∫ t0−ϵ

−t0+ϵ
e−2πixξ dΦ(x)

∣∣∣∣ .
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Since Φ satisfies Assumption 1.2, it follows that

1

|ξ|

∣∣∣∣∫ t0−ϵ

−t0+ϵ
e−2πixξ dΦ(x)

∣∣∣∣ =
1

|ξ|
lim

N→∞

∣∣∣∣∣∣
N∑
j=1

e−2πiηj [Φ(xj) − Φ(xj−1)]

∣∣∣∣∣∣
. 1

|ξ|
lim

N→∞

N∑
j=1

|Φ(xj) − Φ(xj−1)|

. 1

|ξ|
lim

N→∞

N∑
j=1

|xj − xj−1| . 2(t0 − ϵ)
1

|ξ|
,

where {x0, . . . , xN} is a partition of [−t0+ϵ, t0−ϵ], ηj ∈ [xj−1, xj ] and the implicit positive
constants are independent of ϵ and ξ. Therefore, we conclude that, when n = 1,∣∣∣Φ̂(ξ)

∣∣∣ = lim
ϵ→0+

∣∣∣∣∫ t0−ϵ

−t0+ϵ
Φ(x)e−2πixξ dx

∣∣∣∣ . 1

|ξ|
.

On the other hand, since Φ is a bounded function with compact support, it follows
that |Φ̂(ξ)| . 1 for any ξ ∈ Rn. Thus, combining the previous estimates, we know that,
for any |ξ| > 1,

∣∣∣K̂(ξ)
∣∣∣ . |ξ|−2

∣∣∣Φ̂(ξ) − 1
∣∣∣+ C0

∣∣∣Φ̂(ξ)
∣∣∣ .


|ξ|−

1
2 when n = 2,

|ξ|−1 when n ∈ {1, 3, 4},
|ξ|−2 when n ≥ 5.

This finishes the proof of Lemma 3.1.

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We prove this theorem by borrowing some ideas from the proof of
[1, Theorem 2]. To prove (i) ⇒ (ii), we only need to show that, for any f ∈W 2,p(Rn),

∥G(F(f, C0∆f))∥Lp(Rn) ∼ ∥∆f∥Lp(Rn), (3.4)

where C0 is as in (1.17), F(f, C0∆f)) as in (1.18) with g := C0∆f and G as in Theorem
1.3(ii).

To prove (3.4), we first show that, for any f ∈W 2,2(Rn),

∥G(F(f, C0∆f))∥L2(Rn) ∼ ∥∆f∥L2(Rn). (3.5)

Applying the Plancherel theorem, we find that, for any f ∈W 2,2(Rn),

∥G(F(f, C0∆f))∥2L2(Rn) =

∫
Rn

∫ ∞

0

∣∣∣∣Φt ∗ f(x) − f(x)

t2
+ C0Φt ∗ ∆f(x)

∣∣∣∣2 dtt dx
=

∫ ∞

0

∫
Rn

∣∣∣∣∣ Φ̂(tξ)f̂(ξ) − f̂(ξ)

t2
+ C0Φ̂(tξ)|ξ|2f̂(ξ)

∣∣∣∣∣
2

dξ
dt

t
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=

∫
Rn

∫ ∞

0

∣∣∣∣∣ Φ̂(tξ) − 1

|tξ|2
+ C0Φ̂(tξ)

∣∣∣∣∣
2
dt

t

 |ξ|4|f̂(ξ)|2 dξ

=

∫
Rn

[∫ ∞

0

∣∣∣K̂(tξ)
∣∣∣2 dt

t

]
|ξ|4|f̂(ξ)|2 dξ. (3.6)

By Lemma 3.1, we know that, for any ξ ∈ Rn \ {⃗0},∫ ∞

0

∣∣∣K̂(tξ)
∣∣∣2 dt

t
≤
∫ 1

|ξ|

0
|tξ|4 dt

t
+

∫ ∞

1
|ξ|

1

|tξ|
dt

t
. 1. (3.7)

Since Φ is a radial function, from [10, p. 577, §B.5], it follows that Φ̂ is also a radial
function, which, together with (3.2), implies that K̂ is a radial function and hence, for any
ξ ∈ Rn \ {⃗0}, K̂(ξ) =: k(|ξ|). Therefore, for any ξ ∈ Rn \ {⃗0},∫ ∞

0

∣∣∣K̂(tξ)
∣∣∣2 dt

t
=

∫ ∞

0
|k(t|ξ|)|2 dt

t
=

∫ ∞

0
|k(s)|2 ds

s
,

which, combined with (3.7), further implies that
∫∞
0

∣∣∣K̂(tξ)
∣∣∣2 dt

t is a positive constant

independent of ξ ∈ Rn \ {⃗0}. By this and (3.6), we know that (3.5) holds true.
Now we turn our attention to the case p ∈ (1,∞). Let h := ∆f . Then we can translate

(3.5) into ∫
Rn

∥Kt ∗ h∥2L2(dt/t)dx ∼ ∥h∥2L2(Rn),

where K is as in (3.1) and Kt(x) := t−nK(x/t) for any x ∈ Rn and t ∈ (0,∞). If the
kernel Kt satisfies the following Hörmander condition:∫

|x|≥2|y|
∥Kt(x− y) −Kt(x)∥L2(dt/t) dx . 1, ∀ y ∈ Rn \ {⃗0}, (3.8)

then, by [9, p. 492, Theorem 3.4], we conclude that, when p ∈ (1,∞), for any f ∈ Lp(Rn),∫
Rn

∥Kt ∗ f∥pL2(dt/t)
dx . ∥f∥pLp(Rn),

which means that, for any f ∈W 2,p(Rn),

∥G(F(f, C0∆f))∥Lp(Rn) . ∥∆f∥Lp(Rn). (3.9)

We now prove the following stronger version of the Hörmander condition (3.8):

∥Kt(x− y) −Kt(x)∥L2(dt/t) .
|y|γ

|x|n+γ
, ∀ |x| ≥ 2|y| > 0, (3.10)

with certain γ ∈ (0,∞).
To show (3.10), we deal with the kernels Ht := Φt ∗ I2 − I2 and t2Φt separately.
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For t2Φt, we first observe that the quantity |Φt(x− y) − Φt(x)| is non-zero only when

t > min{ |x−y|
t0

, |x|t0
}, due to the compact support of Φ, where t0 is as in Assumption 1.2.

We only consider the case |x − y| ≤ |x|, because the case |x| < |x − y| is similar, the
details being omitted. Then, by (1.16) and the mean value theorem, we know that, when
|x− y| ≤ |x| and |x| ≥ 2|y| > 0,

{∫ ∞

0
|t2[Φt(x− y) − Φt(x)]|2 dt

t5

} 1
2

.
[∫ |x|

t0

|x−y|
t0

dt

t2n+1

] 1
2

+

[∫ ∞

|x|
t0

|y|2 dt

t2n+3

] 1
2

.
[

1

|x− y|2n
− 1

|x|2n

] 1
2

+
|y|

|x|n+1
. |y|

1
2

|x|n+
1
2

, (3.11)

where, when |x − y| = |x|, the term
∫ |x|

t0
|x−y|
t0

dt
t2n+1 automatically disappears. This is the

desired estimate for t2Φt.
We now consider Ht. By similarity, we also assume that |x− y| ≤ |x|. If t < |x|

3t0
, then

the origin 0⃗ does not belong to the balls B(x, tt0) and B(x − y, tt0). By the mean value
theorem, we know that, when |x− y| ≤ |x| and |x| ≥ 2|y| > 0,

|Ht(x− y) −Ht(x)| ≤ |y| sup
z∈[x−y,x]

|∇Ht(z)|, (3.12)

where, when x − y ̸= x, z ∈ [x − y, x] means that z lies in the segment connecting x − y
and x, otherwise, (3.12) automatically holds true.

In the remainder of the proof of this case, we always assume that x−y ̸= x, otherwise,
all wanted conclusions automatically hold true. By the Taylor expansion, we find that,
for any z ∈ [x− y, x],

∇Ht(z) = Φt ∗ ∇I2(z) −∇I2(z) =

∫
Rn

Φt(w)[∇I2(z − w) −∇I2(z)] dw

= t−n

∫
B(⃗0,tt0)

Φ
(w
t

)∑
|β|=1

Dβ∇I2(z)(−w)β +
∑
|β|=2

Dβ∇I2(z)(−w)β

β!

+
∑
|β|=3

Dβ∇I2(z − θw)(−w)β

β!

 dw, (3.13)

where θ ∈ (0, 1). Since Φ is radial, it follows that
∫
B(⃗0,tt0)

Φ(wt )wβdw = 0 if one of βi in

β := (β1, β2, . . . , βn) is odd, which implies that

∫
B(⃗0,tt0)

Φ
(w
t

) 2∑
|β|=1

Dβ∇I2(z)wβ

 dw
= [∆∇I2(z)]

∫
B(⃗0,tt0)

Φ
(w
t

)(∑n
i=1w

2
i

n

)
dw = 0, (3.14)
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where the last equality follows from the fact that I2 in (1.10) with α = 2 is harmonic.

Notice that, if z ∈ [x−y, x], θ ∈ (0, 1), w ∈ B(⃗0, tt0) and t < |x|
3t0

, then |z−θw| ≥ |x|/6.
From (3.13) and (3.14), we deduce that

|∇Ht(z)| . t−n|x|−n−2

∫
B(⃗0,tt0)

|w|3 dw ∼ t3|x|−n−2.

By this and (3.12), we obtain{∫ |x|
3t0

0
|Ht(x− y) −Ht(x)|2 dt

t5

} 1
2

.
{∫ |x|

3t0

0

|y|2

|x|2n+4
t dt

} 1
2

. |y|
|x|n+1

, (3.15)

which is the desired estimate. If t ≥ |x|
3t0

, then

|Ht(x− y) −Ht(x)| ≤ |y| sup
z∈[x−y,x]

|∇Ht(z)| .
|y|

|x|n−1
,

where the last inequality follows from the facts that

∇Ht(z) = Φt ∗ ∇I2(z) −∇I2(z),

|∇I2(z)| . 1

|z|n−1
. 1

|x|n−1

and

|Φt ∗ ∇I2(z)| . –

∫
B(z,tt0)

|∇I2(ω)| dω . –

∫
B(z,tt0)

dω

|ω|n−1
. 1

|x|n−1
.

Therefore, ∫ ∞

|x|
3t0

|Ht(x− y) −Ht(x)|2 dt
t5

.
∫ ∞

|x|
3t0

|y|2

|x|2n−2

dt

t5
. |y|2

|x|2n+2
,

which, combined with (3.15), further implies that

∥Ht(x− y) −Ht(x)∥L2(dt/t5) .
|y|

1
2

|x|n+
1
2

, ∀ |x| ≥ 2|y| > 0.

This, together with (3.11), implies (3.10) and hence (3.9) holds true.
On the other hand, the reverse inequality of (3.9) follows from a polarization from

(3.5) via a well-known duality argument (see, for example, [9, p. 507]). Thus, (3.4) holds
true, which completes the proof that (i) ⇒ (ii).

Now, we prove (ii) ⇒ (i). Assume that f, g ∈ Lp(Rn) such that G(F(f, g)) ∈ Lp(Rn).
We shall prove that g coincides with C0∆f almost everywhere, where C0 is as in (1.17).
To this end, take a non-negative radial smooth function ζ which is supported in the
closure of B(⃗0, 1) such that ∥ζ∥L1(Rn) = 1 and, for any ε ∈ (0,∞) and x ∈ Rn, let
ζε(x) := ε−nζ(x/ε), fε := f ∗ ζε and gε := g ∗ ζε. Then, by [1, Lemma 2(i)], we know
that fε ∈ W 2,p(Rn). Therefore, by the conclusion that (i) ⇒ (ii), we further find that
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G(F(fε, C0∆fε)) ∈ Lp(Rn). Moreover, from the Minkowski inequality, we deduce that, for
any ε ∈ (0,∞) and x ∈ Rn,

G(F(fε, gε))(x) =

{∫ ∞

0

∣∣∣∣(Φt ∗ f − f

t2
− C0Φt ∗ g

)
∗ ζε(x)

∣∣∣∣2 dt

tn+1

} 1
2

=

{∫ ∞

0

∣∣∣∣∫
Rn

[
Φt ∗ f(x− z) − f(x− z)

t2

− C0Φt ∗ g(x− z)

]
ζε(z) dz

∣∣∣∣2 dt

tn+1

} 1
2

.
∫
Rn

{∫ ∞

0

∣∣∣∣Φt ∗ f(x) − f(x)

t2
− C0Φt ∗ g(x)

∣∣∣∣2 dt

tn+1

} 1
2

ζε(z) dz

∼
∫
Rn

G(F(f, g))(x− z)ζε(z)dz = G(F(f, g)) ∗ ζε(x).

For any ε ∈ (0,∞) and x ∈ Rn, define

Dε(x) :=

{∫ ∞

0
|Φt ∗ (gε − C0∆fε)(x)|2 dt

tn+1

} 1
2

.

Then we find that

Dε(x) =

{∫ ∞

0

∣∣∣∣−(Φt ∗ fε − fε
t2

− Φt ∗ gε
)

(x)

+

(
Φt ∗ fε − fε

t2
− C0Φt ∗ ∆fε

)
(x)

∣∣∣∣2 dt

tn+1

} 1
2

. G(F(fε, gε))(x) + G(F(fε, C0∆fε))(x)

. G(F(f, g)) ∗ ζε(x) + G(F(fε, C0∆fε))(x),

which implies that Dε ∈ Lp(Rn), in particular, Dε(x) < ∞ for almost every x ∈ Rn.
Combining this with [6, Corollary 2.9], we find that, for almost every x ∈ Rn,

|gε(x) − C0∆fε(x)| = lim
t→0

|gε ∗ Φt(x) − C0∆fε ∗ Φt(x)| = 0

and hence ∆fε → g in Lp(Rn) as ε → 0+. Since fε → f in Lp(Rn) as ε → 0+, then it
follows that ∆fε → ∆f in S ′(Rn) as ε → 0+. Therefore, C0∆f = g almost everywhere,
which completes the proof of Theorem 1.3.

Let K be as in (3.1) and, for any suitable f and x ∈ Rn, let

V ∗(f)(x) :=

{∫ ∞

0
–

∫
B(⃗0,t)

|Kt ∗ f(x+ y)|2 dy dt
t

} 1
2

. (3.16)
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It is clear that, for any f ∈ W 2,p(Rn) with p ∈ (1,∞), Ũ(f, C0∆f) ∼ V ∗(g), where Ũ is
as in (1.14), C0 as in (1.17), g := ∆f and the implicit equivalent positive constants are
independent of f . Similarly to (2.14), we know that, for any f ∈ Lp(Rn) with p ∈ (1,∞)
and x ∈ Rn,

V ∗(f)(x) .
∑
j∈Z

T̃j(f)(x),

where the implicit equivalent positive constant is independent of f and, for any j ∈ Z,

T̃j(f)(x) :=

[∑
k∈Z

∫ 2−k+1

2−k

–

∫
B(⃗0,2−k+1)

|f ∗ φ2−j−k ∗Kt(x+ y)|2 dy dt
t

] 1
2

(3.17)

with φ as in (2.14). Then, similarly to Lemmas 2.5 and 2.6, we have the following technical
lemmas.

Lemma 3.2. Let n ∈ N∩ [3,∞). Let Φ satisfy Assumption 1.2 and T̃j for any j ∈ Z be as
in (3.2). Then there exists a positive constant C such that, for any j ∈ Z and f ∈ L2(Rn),∥∥∥T̃j(f)

∥∥∥
L2(Rn)

≤ C∥f∥L2(Rn)

{
min{22j , 2−j} when n ∈ {3, 4},
min{22j , 2−2j} when n ∈ [5,∞) ∩ N.

Proof. When n ∈ {3, 4}, by the Plancherel theorem and Lemma 3.1, we find that∥∥∥T̃j(f)
∥∥∥2
L2(Rn)

=
∑
k∈Z

∫ 2−k+1

2−k

–

∫
B(⃗0,2−k+1)

∫
Rn

|f ∗ φ2−j−k ∗Kt(x+ y)|2 dx dy dt
t

.
∑
k∈Z

∫ 2−k+1

2−k

∫
Rn

|f ∗ φ2−j−k ∗Kt(x)|2 dx dt
t

.
∑
k∈Z

∫
2j+k−1≤|ξ|≤2j+k+1

|f̂(ξ)|2
∫ 2−k+1

2−k

|K̂(tξ)|2 dt
t
dξ

. min
{

24j , 2−2j
}
∥f∥2L2(Rn).

The proof for the case n ∈ [5,∞) ∩ N is similar, the details being omitted. This finishes
the proof of Lemma 3.2.

Lemma 3.3. Let n ∈ [3,∞) ∩ N. Let p ∈ (1,∞), p′ be its conjugate index as in Lemma
2.6, q := max{p, p′}, and ε ∈ (0, 1q ). Let Φ satisfy Assumption 1.2 and T̃j for any j ∈ Z
be as in (3.17). Let φ, ψ ∈ S(Rn) be as in (2.13). Then there exists a positive constant
C(ε,p), depending on ε and p, such that, for any j ∈ Z− and f ∈ Lp(Rn),∥∥∥T̃j(f)

∥∥∥
Lp(Rn)

≤ C(ε,p)2
4j( 1

q
−ε)∥f∥Lp(Rn).

Proof. Let r ∈ (1,∞). Similarly to (2.16), by (3.17), we conclude that, for any j ∈ Z−,
f ∈ Lr(Rn) and x ∈ Rn,∣∣∣T̃j(f)(x)

∣∣∣2 .∑
k∈Z

sup
y∈B(⃗0,2−k+1)

t∈[2−k,2−k+1)

|t−2(Φt ∗ f ∗ I2 ∗ φ2−j−k − f ∗ I2 ∗ φ2−j−k)(x+ y)|2
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+
∑
k∈Z

[M(f ∗ φ2−k)(x)]2,

where M is as in (1.19). For the first part of the right-hand side of the above inequality,
similarly to the proof of Lemma 2.6, letting fj+k := f ∗ψ2−j−k , we then have the following
analogous estimate: for any k ∈ Z, t ∈ [2−k, 2−k+1), f ∈ Lr(Rn) and x ∈ Rn,

t−2 sup
|y|≤2−k+1

|(Φt ∗ f ∗ I2 ∗ φ2−j−k − f ∗ I2 ∗ φ2−j−k)(x+ y)|

. 2(k+j)n

∫
Rn

|fj+k(z)|(1 + 2k+j |x− z|)−n−1 dz .M(fj+k)(x).

Thus, we conclude that, for any f ∈ Lr(Rn) and x ∈ Rn,∣∣∣T̃j(f)(x)
∣∣∣2 .∑

k∈Z

{
[M(fk)(x)]2 + [M(f ∗ φ2−k)(x)]2

}
,

which, together with the Fefferman-Stein vector-valued inequality (see [7]) as well as the
Littlewood-Paley characterization of Lr(Rn) (see, for example, [11, Theorem 1.3.8]), fur-
ther implies that, for any f ∈ Lr(Rn),∥∥∥T̃j(f)

∥∥∥
Lr(Rn)

. ∥f∥Lr(Rn).

Taking r :=
1− 2

q
+2ε

1
p
− 1

q
+ε

, then, by Lemma 3.2 and applying the Riesz-Thorin interpolation the-

orem (see, for example, [10, Theorem 1.3.4]) to Tj (namely, taking interpolation between
Lr(Rn) and L2(Rn)), we find that, for any j ∈ Z− and f ∈ Lp(Rn),

∥Tj(f)∥Lp(Rn) . 2
4j( 1

q
−ε)∥f∥Lp(Rn),

which completes the proof of Lemma 3.3.

Using the same notation as in (3.17), similarly to (2.18), we conclude that, for any
x ∈ Rn,

T̃j(f)(x) .
[∑
k∈Z

24k –

∫
B(x,2−k+4)

|f ∗ I2 ∗ φ2−j−k(z)|2 dz

] 1
2

+

{∑
k∈Z

[M(f ∗ φ2−j−k)(x)]2

} 1
2

∼ T̃j,1(f)(x) + T̃j,2(f)(x), (3.18)

where the implicit equivalent positive constants are independent of j, f and x,

T̃j,1(f)(x) :=

[∑
k∈Z

24k –

∫
B(x,2−k+4)

|f ∗ I2 ∗ φ2−j−k(z)|2 dz

] 1
2

(3.19)
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and

T̃j,2(f)(x) :=

{∑
k∈Z

[M(f ∗ φ2−j−k)(x)]2

} 1
2

.

Dai et al. [4, Lemma 2.9] established the following lemma.

Lemma 3.4. Let ε ∈ (0, 1) and p ∈ (1, 2]. Then there exists a positive constant C(ε,p),
depending on ε and p, such that, for any j ∈ Z+ and f ∈ Lp(Rn),∥∥∥T̃j,1(f)

∥∥∥
Lp(Rn)

≤ C(ε,p)2
[n( 1

p
− 1

2
)−2+ε]j∥f∥Lp(Rn),

where T̃j,1 is as in (3.19).

After these preparations, now we can prove the following conclusion.

Lemma 3.5. Let n ∈ N ∩ [4,∞) and p ∈ ( 2n
4+n ,∞). Then there exists a positive constant

C such that, for any f ∈ Lp(Rn),

∥V ∗(f)∥Lp(Rn) ≤ C∥f∥Lp(Rn), (3.20)

where V ∗ is as in (3.16).

Conversely, if (3.20) holds true for some p ∈ (1,∞) and any f ∈ Lp(Rn), then p ∈
[ 2n
4+n ,∞).

Proof. We first prove (3.20). When p ∈ [2,∞), from Lemmas 2.1 and 2.2, and Theorem
1.3, we deduce that (3.20) holds true in this case.

For any given p ∈ (1, 2), let ε ∈ (0, 12) be small enough such that θ := 1
p−

1
2 + ε

4 ∈ (0, 12).

Let qε be such that 1
p = 2θ

qε
+ 1−2θ

2 . Then 1
2(1p − 1

2) = θ( 1
qε

− 1
2), which implies that

qε ∈ (1, 2) because θ > 1
p − 1

2 . If j ∈ Z+, then, by (3.18), Lemmas 3.2 and 3.4, and the

Marcinkiewicz interpolation theorem (see, for instance, [10, Theorem 1.3.2]) to T̃j (namely,
taking interpolation between L2(Rn) and Lqε(Rn)), we conclude that, when n ≥ 5,∥∥∥T̃j(f)

∥∥∥
Lp(Rn)

. 2
|j|2θ[n( 1

qε
− 1

2
)−2+ ε

4θ
]
2−(1−2θ)2|j|∥f∥Lp(Rn) ∼ 2

−[2−n( 1
p
− 1

2
)− ε

2
]|j|∥f∥Lp(Rn),

while when n = 4, by the definition of θ, we have∥∥∥T̃j(f)
∥∥∥
Lp(Rn)

. 2
|j|2θ[n( 1

qε
− 1

2
)−2+ ε

4θ
]
2−(1−2θ)|j|∥f∥Lp(Rn)

∼ 2
|j|[n( 1

p
− 1

2
)−2θ+ ε

2
−1]∥f∥Lp(Rn) ∼ 2

−|j|[1−2( 1
p
− 1

2
)]∥f∥Lp(Rn).

Here we point out that 1−2(1p−
1
2) is positive because p ∈ (1, 2). Similarly, if j ∈ Z−, then,

by Lemmas 3.2 and 3.3, and the Marcinkiewicz interpolation theorem again, we obtain∥∥∥T̃j(f)
∥∥∥
Lp(Rn)

. 2
8jθ( 1

qε−ε
)
2−2|j|(1−2θ)∥f∥Lp(Rn) ∼ 2

−2[2n( 1
p
− 1

2
)−4θε+1]|j|∥f∥Lp(Rn).
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Now, let p ∈ ( 2n
4+n , 2), which implies n(1p − 1

2) < 2. We then choose an appropriate
ε ∈ (0, 1) such that

δ := min

{
1

2

[
2 − n

(
1

p
− 1

2

)
− ε

2

]
, 2n

(
1

p
− 1

2

)
− 4θε+ 1, 1 − 2

(
1

p
− 1

2

)}
> 0.

Then we find that
∥Tj(f)∥Lp(Rn) . 2−|j|δ∥f∥Lp(Rn), ∀ j ∈ Z,

which, together with (3.16), implies (3.20). Thus, (3.20) holds true.
Now we show that, if (3.20) holds true, then it must hold true that p ≥ 2n

4+n . Let
ϕ ∈ S(Rn) be as in the proof of Lemma 2.8. Then, for any x ∈ Rn, we have

V ∗(ϕj)(x) &
{∫ 2

1

∫
B(⃗0,1)

∣∣∣∣Φt ∗ ϕj ∗ I2(x+ y) − ϕj ∗ I2(x+ y)

t2
+ Φt ∗ ϕj(x+ y)

∣∣∣∣2 dy dt
} 1

2

& J̃j,1 − J̃j,2 − J̃j,2,

where

J̃j,1(x) := 2−2

[∫
B(⃗0,1)

|ϕj ∗ I2(x+ y)|2 dy

] 1
2

,

J̃j,2(x) :=

[∫ 2

1

∫
B(⃗0,1)

|Φt ∗ ϕj ∗ I2(x+ y)|2 dy dt

] 1
2

and

J̃j,3(x) :=

[∫ 2

1

∫
B(⃗0,1)

|Φt ∗ ϕj(x+ y)|2 dy dt

] 1
2

.

For J̃j,1, Dai et al. ([4, (2.22)]) obtained∥∥∥J̃j,1

∥∥∥
Lp(Rn)

& 2−2j+ jn
2 . (3.21)

For J̃j,2, similarly to (2.20), we have∥∥∥J̃j,2

∥∥∥
Lp(Rn)

. 2−2j2
jn(1− 1

p
)
. (3.22)

For J̃j,3, we find that, for any x ∈ Rn,

∣∣∣J̃j,3(x)
∣∣∣2 . ∫ 2

1

∫
B(⃗0,1)

[
–

∫
B(x,t0)

|ϕj(z)| dz

]2
dy dt . [M(ϕj)(x)]2,

where M denotes the Hardy-Littlewood maximal operator as in (1.19). ¿From this and
the boundedness of M on Lp(Rn) with any p ∈ (1,∞], it follows that∥∥∥J̃j,3

∥∥∥
Lp(Rn)

. ∥ϕj∥Lp(Rn) . 2
jn(1− 1

p
)
. (3.23)
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Therefore, by (3.21), (3.22), (3.23) and (3.20), we conclude that, for any sufficiently large
j ∈ N,

2j(−2+n
2
) .

∥∥∥J̃j,1

∥∥∥
Lp(Rn)

. ∥V ∗(ϕj)∥Lp(Rn) +
∥∥∥J̃j,2

∥∥∥
Lp(Rn)

+
∥∥∥J̃j,3

∥∥∥
Lp(Rn)

. ∥ϕj∥Lp(Rn) + 2
jn(1− 1

p
) . 2

jn(1− 1
p
)
.

This implies that −2 + n
2 ≤ n(1 − 1

p), namely, p ∈ [ 2n
4+n ,∞), which completes the proof of

Lemma 3.5.

For the case n ∈ {1, 2, 3}, we have the following conclusion.

Lemma 3.6. Let n ∈ {1, 2, 3} and p ∈ (1,∞). Then there exists a positive constant C(n),
depending only on n, such that, for any f ∈ Lp(Rn),

∥V ∗(f)∥Lp(Rn) ≤ C(n)∥f∥Lp(Rn),

where V ∗ is as in (3.16).

Proof. Recall that, for any x ∈ Rn \ {⃗0},

I2(x) :=


−1

2
|x| when n = 1,

− 1

2n
log |x| when n = 2,

c(n)|x|2−n when n = 3,

where c(n) is a constant, depending on n, such that, for any f ∈W 2,p(Rn), I2∗(−∆f) = f .
Recall that, for any f ∈W 2,p(Rn) and x ∈ Rn, K(x) := Φ ∗ I2(x) − I2(x) + C0Φ(x) and

V ∗(f)(x) :=

{∫ ∞

0
–

∫
B(⃗0,t)

|Kt ∗ f(x+ y)|2 dy dt
t

} 1
2

∼

{∫ ∞

0

∫
B(⃗0,t)

∣∣∣∣∫
Rn

Kt(x+ y − z)f(z) dz

∣∣∣∣2 dy dt

tn+5

} 1
2

=: ∥Tf(x)∥L2(Σ),

where C0 is as in (1.17),

Σ :=

(
Rn × (0,∞),

χB(⃗0,t)

tn+5
dy dt

)
and

Tf(x)(y, t) :=

∫
Rn

Kt(x+ y − z)f(z) dz, ∀ (y, t) ∈ Rn × (0,∞).

When p = 2, for any f ∈W 2,2(Rn), by the Fubini theorem and (3.5), we know that∫
Rn

∥Tf(x)∥2L2(Σ) dx ∼
∫
Rn

∫ ∞

0

∫
B(x,t)

|Kt ∗ f(y)|2 dy dt

tn+1
dx
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∼
∫
Rn

∫ ∞

0

∫
B(y,t)

|Kt ∗ f(y)|2 dx dt

tn+1
dy

∼ ∥G(F)∥L2(Rn) ∼ ∥∆f∥L2(Rn).

If the kernel Kt satisfies the following Hörmander condition:∫
|x−z|≥2|w−z|

∥Kt(x+ ·−z)−Kt(x+ ·−w)∥L2(Σ) dx ≤ C, ∀w, z ∈ Rn and w ̸= z, (3.24)

then, by [9, p. 492, Theorem 3.4], we conclude that, for any f ∈ Lp(Rn),∫
Rn

∥Kt ∗ f∥pL2(Σ)
dx . ∥f∥pLp(Rn),

which means that, for any f ∈ Lp(Rn),

∥V ∗(f)∥Lp(Rn) . ∥f∥Lp(Rn).

We now prove the following stronger version of the Hörmander condition (3.24):

∥Kt(x+ · − z) −Kt(x+ · − w)∥2L2(Σ) .
|w − z|γ

|x− z|n+γ
, ∀ |x− z| ≥ 2|w − z| > 0, (3.25)

where γ ∈ (0,∞) is a positive constant independent of x, w and z.
Let x̃ := x− z and z̃ := w − z. Then (3.25) becomes

∥Kt(x̃+ ·) −Kt(x̃+ · − z̃)∥2L2(Σ) .
|z̃|γ

|x̃|n+γ
, ∀ |x̃| ≥ 2|z̃| > 0. (3.26)

The proof of (3.26) is similar to that of (3.10), and we estimate Kt,1 := Φt ∗ I2 − I2 and
t2Φt, separately.

For t2Φt, we first observe that the quantity |Φt(x̃+ y)−Φt(x̃+ y− z̃)| is non-zero only

when t > min{ |x̃+y−z̃|
t0

, |x̃+y|
t0

} with t0 as in Assumption 1.2. Assume that |x̃+y−z̃| ≤ |x̃+y|,
because the proof for another case |x̃+y− z̃| > |x̃+y| is similar, the details being omitted.

Notice that, when t > |x̃+y−z̃|
t0

and y ∈ B(⃗0, t), we have t > |x̃−z̃|
1+t0

> |x̃|
2(1+t0)

. On the other

hand, we also notice that, when t > |x̃+y|
t0

and y ∈ B(⃗0, t), then tt0 > |x̃| − |y| ≥ |x̃| − t,

that is, t > |x̃|
2(1+t0)

. Thus, there exists a positive constant c0, independent of t and x̃, such

that t > c0|x̃|. Let

E1 := {[B(x̃, tt0) \B(x̃− z̃, tt0)] ∪ [B(x̃− z̃, tt0) \B(x̃, tt0)]} ∩B(⃗0, t)

and
E2 := B(x̃, tt0) ∩B(x̃− z̃, tt0) ∩B(⃗0, t).

¿From the definitions of E1 and E2, we deduce that, if y ∈ E2, then t > |x̃+y−z̃|
t0

and

t > |x̃+y|
t0

. We also have

|E1| . tn−1|z̃| and |E2| . tn,
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where |E1| and |E2| denote their Lebesgue measures, respectively. Then, combining (1.16)
and the fact that Φ is bounded, we find that[∫ ∞

0

∫
B(⃗0,t)

|t2[Φt(x̃+ y) − Φt(x̃+ y − z̃)]|2 dy dt

tn+5

] 1
2

.
[∫ ∞

c0|x̃|

∫
E1

dy
dt

t3n+2

] 1
2

+

[∫ ∞

c0|x̃|

∫
E2

|z̃|2 dy dt

t3n+3

] 1
2

.
[∫ ∞

c0|x̃|
|z̃| dt

t2n+2

] 1
2

+

[∫ ∞

c0|x̃|
|z̃|2 dt

t2n+3

] 1
2

. |z̃|
1
2

|x̃|n+
1
2

,

which is the desired estimate.

We now consider Kt,1. Similarly, without loss of generality, we may assume that

|x̃ + y − z̃| ≤ |x̃ + y|. If t < |x̃|
5(t0+1) , then the origin 0⃗ does not belong to the balls

B(x̃ + y − z̃, tt0) and B(x̃ + y, tt0). Since y ∈ B(⃗0, t) and t < |x̃|
5(t0+1) , it follows that

|x̃+ y| & |x̃|. Similarly to (3.13) and (3.15), we have

∫ |x̃|
5(t0+1)

0

∫
B(⃗0,t)

|Kt,1(x̃+ y) −Kt,1(x̃+ y − z̃)|2 dy dt

tn+5

.
∫ |x̃|

5(t0+1)

0

∫
B(⃗0,t)

|z̃|2

|x̃+ y|2n+4
dy

dt

tn−1
. |z̃|2

|x̃|2n+2
.

If t ≥ |x̃|
5(t0+1) , then we have∫ ∞

|x̃|
5(t0+1)

∫
B(⃗0,t)

|Kt,1(x̃+ y) −Kt,1(x̃+ y − z̃)|2 dy dt

tn+5

≤
∫ ∞

|x̃|
5(t0+1)

∫
B(⃗0,t)

|I2(x̃+ y) − I2(x̃+ y − z̃)|2 dy dt

tn+5

+

∫ ∞

|x̃|
5(t0+1)

∫
B(⃗0,t)

|Φt ∗ I2(x̃+ y) − Φt ∗ I2(x̃+ y − z̃)|2 dy dt

tn+5
=: J1 + J2.

By the mean value theorem, we know that, for any |x̃+ y − z̃| ≤ |x̃+ y|,

|Φt ∗ I2(x̃+ y) − Φt ∗ I2(x̃+ y − z̃)| ≤ |z̃| sup
θ∈[0,1]

|Φt ∗ ∇I2(x̃+ y − θz̃)|,

which, together with the fact |z̃| < |x̃|
2 ≤ 5

2 t(t0 + 1) whenever |x̃| ≤ 5t(t0 + 1), further

implies that, for any y ∈ B(⃗0, t) and θ ∈ [0, 1],

|Φt ∗ ∇I2(x̃+ y − θz̃)| . 1

tn

∫
B(⃗0,tt0)

1

|x̃+ y − θz̃ − h|n−1
dh
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. 1

tn

∫
B(⃗0,10t(t0+1))

1

|h|n−1
dh . 1

tn−1
,

because |∇I2(x)| . |x|1−n for any x ∈ Rn \ {⃗0}. Therefore, we obtain

J2 .
∫ ∞

|x̃|
5(t0+1)

∫
B(⃗0,t)

|z̃|2

t2n−2
dy

dt

tn+5
∼ |z̃|2

∫ ∞

|x̃|
5(t0+1)

∫
B(⃗0,t)

1

t2n+3
dt . |z̃|2

|x̃|2n+2
,

which is the desired estimate.
For J1, similarly to the estimation for J1 as in the proof of [13, Lemma 2.5], we also

have

J1 .
|z̃|2

|x̃|2n+2
,

which is also the desired estimate and hence completes the proof of Lemma 3.6.

Now, we are ready to show Theorem 1.4.

Proof of Theorem 1.4. To prove Theorem 1.4, for any f ∈ W 2,p(Rn) with p ∈ (1,∞) and
Φ satisfying Assumption 1.2, we define

F(x, t) :=

∣∣∣∣Φt ∗ f(x) − f(x)

t2
− Φt ∗ g(x)

∣∣∣∣ , ∀ (x, t) ∈ Rn × (0,∞).

Then, applying Lemma 2.2 to this F , we conclude the equivalence between (ii) and (iii)
of Theorem 1.4(I).

To prove (i) ⇒ (ii) of Theorem 1.4(I), let g := C0∆f in (ii) of Theorem 1.4(I). Then,
when n ≥ 4 and p ∈ ( 2n

4+n ,∞), by Lemma 3.5, we know that (i) ⇒ (ii) holds true. When
n ∈ {1, 2, 3} and p ∈ (1,∞), by Lemma 3.6, we know that (i) ⇒ (ii) holds true. Therefore,
to complete the proof of Theorem 1.4(I), we only need to prove (ii) ⇒ (i) of Theorem
1.4(I).

Assume that f, g ∈ Lp(Rn) such that Ũ(f, g) ∈ Lp(Rn). We prove that g coincides
with ∆f modulo a positive constant. To this end, take a non-negative radial smooth
function ζ which is supported in B(⃗0, 1) such that ∥ζ∥L1(Rn) = 1 and, for any ε ∈ (0,∞)
and x ∈ Rn, let ζε(x) := ε−nζ(x/ε), fε := f ∗ζε and gε := g ∗ζε. Then, by [1, Lemma 2(i)],
we know fε ∈ W 2,p(Rn). Therefore, by the conclusion that (i) ⇒ (ii) of Theorem 1.4(I),
we conclude that Ũ(fε, C0∆fε) ∈ Lp(Rn). ¿From the Minkowski inequality, we deduce
that, for any ε ∈ (0,∞) and x ∈ Rn,

Ũ(fε, gε)(x) =

{∫ ∞

0

∫
B(x,t)

∣∣∣∣(Φt ∗ f − f

t2
− Φt ∗ g

)
∗ ζε(y)

∣∣∣∣2 dy dt

tn+1

} 1
2

=

{∫ ∞

0

∫
B(x,t)

∣∣∣∣∫
Rn

[
Φt ∗ f(y − z) − f(y − z)

t2

− Φt ∗ g(y − z)

]
ζε(z) dz

∣∣∣∣2 dy dt

tn+1

} 1
2
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.
∫
Rn

{∫ ∞

0

∫
B(x−z,t)

∣∣∣∣Φt ∗ f(y) − f(y)

t2
− Φt ∗ g(y)

∣∣∣∣2 dy dt

tn+1

} 1
2

ζε(z) dz

∼
∫
Rn

Ũ(f, g)(x− z)ζε(z)dz ∼ Ũ(f, g) ∗ ζε(x).

For any ε ∈ (0,∞) and x ∈ Rn, define

Dε(x) :=

{∫ ∞

0

∫
B(x,t)

|Φt ∗ (gε − C0∆fε)(y)|2 dy dt

tn+1

} 1
2

,

where C0 is as in (1.17). Then we know that

Dε(x) =

{∫ ∞

0

∫
B(x,t)

∣∣∣∣−(Φt ∗ fε − fε
t2

− Φt ∗ gε
)

(y)

+

(
Φt ∗ fε − fε

t2
− C0Φt ∗ ∆fε

)
(y)

∣∣∣∣2 dy dt

tn+1

} 1
2

. Ũ(fε, gε)(x) + Ũ(fε, C0∆fε)(x)

. Ũ(f, g) ∗ ζε(x) + Ũ(fε, C0∆fε)(x),

which implies that Dε ∈ Lp(Rn), in particular, Dε(x) <∞ for almost every x ∈ Rn. This,
combined with [6, Corollary 2.9], implies that, for almost every x ∈ Rn,

|gε(x) − C0∆fε(x)| = lim
t→0

|gε ∗ Φt(x) − C0∆fε ∗ Φt(x)| = 0

and hence C0∆fε → g in Lp(Rn) as ε → 0+. Since fε → f in Lp(Rn) as ε → 0+, then
∆fε → ∆f in S ′(Rn) as ε → 0+. Therefore, C0∆f = g almost everywhere in Rn, which
completes the proof of Theorem 1.4(I).

Finally, Theorem 1.4(II) is just deduced from Lemma 3.5. This finishes the proof of
Theorem 1.4.

4 Proof of Theorem 1.5

Before we prove Theorem 1.5, we need several technical lemmas as follows. The first
one is from [8, p. 15, Decomposition Theorem].

Lemma 4.1 ([8]). Let β ∈ (0,∞), p ∈ (1,∞) and f ∈ Lp(Rn). Then there exist a family
{Qj}j of disjoint cubes, functions g and b, and a positive constant C, independent of f ,
such that f = g + b and

(i)
∑

j |Qj | ≤ Cβ−p∥f∥pLp(Rn);

(ii) if fj := bχQj , then
∫
Rn fj(x)dx = 0 and∫

Rn

|fj(x)|p dx ≤ Cβp|Qj |;
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(iii) ∥g∥L∞(Rn) ≤ Cβ, ∥g∥Lp(Rn) ≤ C∥f∥Lp(Rn);

(iv) b =
∑

j fj;

(v) 10 diam(Qj) ≤ dist (Qj ,Rn \ Ω) ≤ 20 diam(Qj), where Ω := ∪jQj.

The following lemma can be found in [1, p. 615, Lemma].

Lemma 4.2. Let E be a measurable subset of Rn and β ∈ (0, n). Then there exists a
positive constant C, independent of E, such that∫

E

1

|z|n−β
dz ≤ C|E|

β
n ,

where |E| is the Lebesgue measure of E.

The following lemma is similar to [1, p. 598, Lemma 1], we give some details for the
completeness.

Lemma 4.3. Let t ∈ (0,∞), x ∈ {x ∈ Rn : t0t
3 < |x| < 3t0t} and Φ satisfy Assumption

1.2, where t0 is as in Assumption 1.2. Then there exists a positive constant C, independent
of x and t, such that∣∣∣∣∣p. v.

∫
B(x,t0t)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣ ≤ C log
|x| + t0t

||x| − t0t|
. (4.1)

Proof. If t0t
3 < |x| < t0t, then B(⃗0, t0t− |x|) ⊂ B(x, t0t) and hence we can write∣∣∣∣∣p. v.

∫
B(x,t0t)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(x,t0t)\B(⃗0,t0t−|x|)

Φ

(
x− w

t

)
w

|w|n+1
dw + p. v.

∫
B(⃗0,t0t−|x|)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣ .
Since Φ is bounded, it follows that∣∣∣∣∣

∫
B(x,t0t)\B(⃗0,t0t−|x|)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣ .
∫ |x|+t0t

t0t−|x|

dr

r
∼ log

|x| + t0t

||x| − t0t|
.

On the other hand, by the fact that Φ is radial and (1.16), we know that∣∣∣∣∣p. v.
∫
B(⃗0,t0t−|x|)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣
= lim

ε→0
ε∈(0,t0t−|x|)

∣∣∣∣∣
∫
B(⃗0,t0t−|x|)\B(⃗0,ε)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣
= lim

ε→0
ε∈(0,t0t−|x|)

1

2

∣∣∣∣∣
∫
B(⃗0,t0t−|x|)\B(⃗0,ε)

[
Φ

(
x− w

t

)
− Φ

(
x+ w

t

)]
w

|w|n+1
dw

∣∣∣∣∣



Generalized Littlewood-Paley Characterizations 37

. t−1 lim
ε→0+

∫ t0t−|x|

ε
dr . t0t− |x|

t
. log

|x| + t0t

||x| − t0t|
.

This proves (4.1) when |x| < tt0. If t0t ≤ |x| < 3t0t, then, by the fact that Φ is bounded,
we conclude that∣∣∣∣∣p. v.

∫
B(x,t0t)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣ =

∣∣∣∣∣
∫
B(x,t0t)

Φ

(
x− w

t

)
w

|w|n+1
dw

∣∣∣∣∣
.
∫ t0t+|x|

|x|−t0t

dr

r
∼ log

|x| + t0t

||x| − t0t|
.

Combining all above estimates, we then complete the proof of Lemma 4.3.

Applying Lemmas 4.2 and 4.3, we can obtain the following conclusion, which can be
proved by an argument similar to that used in [1, pp. 597-601]. Here we give some details
for the completeness.

Lemma 4.4. There exists a positive constant C such that, for any z ∈ Rn,∫
|x|>2|z|

∫ ∞

0
|Ψu(x− z) − Ψu(x)| du

u
dx ≤ C

and ∫
|x|>2|z|

∫ ∞

0
|Ku(x− z) −Ku(x)| du

u
dx ≤ C,

where Ψ is as in (2.4) with α ∈ (0, 2), K is as in (3.1) and Ψu(·) := u−nΨ(·/u) and
Ku(·) := u−nK(·/u) for any u ∈ (0,∞).

Proof. For the first inequality, we are going to prove the following stronger version of the
Hörmander condition:

∥Ψu(x− y) − Ψu(x)∥L1(du/u) .
|y|γ

|x|n+γ
, ∀ |x| ≥ 2|y| > 0,

with some γ ∈ (0,∞).

By the mean value theorem, we know that

|Ψu(x− y) − Ψu(x)| ≤ |y| sup
z∈[x−y,x]

|∇Ψu(z)|,

where z ∈ [x− y, x] means z lies in the segment with endpoints x− y and x.

If u ≥ |x|
3t0

with t0 as in Assumption 1.2, we first consider α ∈ (1, 2). Since, for any
z ∈ [x− y, x],

∇Ψu(z) = u−α[Φu ∗ ∇Iα(z) −∇Iα(z)],

|∇Iα(z)| . 1

|z|n−α+1
. 1

|x|n−α+1
,
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and

|Φu ∗ ∇Iα(z)| . –

∫
B(z,ut0)

|∇Iα(ω)| dω . –

∫
B(z,ut0)

dω

|ω|n−α+1
. 1

|x|n−α+1
,

it follows that

|Ψu(x− y) − Ψu(x)| . |y|
uα|x|n−α+1

.

Therefore, we have∫ ∞

|x|
3t0

|Ψu(x− y) − Ψu(x)| du
u

.
∫ ∞

|x|
3t0

|y|
|x|n+1−α

du

u1+α
. |y|

|x|n+1
. (4.2)

When α = 1, we consider two cases. When |x| < t0u
3 , for each z in the segment

[x− y, x], we have B(⃗0, t0u/6) ⊂ B(z, t0u) and hence

∇Ψu(z) = (−n+ 1)u−1

[
p. v.

1

|B(z, t0u)|

∫
B(z,t0u)

Φ

(
z − w

u

)
w

|w|n+1
dw − z

|z|n+1

]

= (−n+ 1)u−1

[
1

|B(z, t0u)|

∫
B(z,t0u)\B(⃗0,t0u/6)

Φ

(
z − w

u

)
w

|w|n+1
dw

+p. v.
1

|B(z, t0u)|

∫
B(⃗0,t0u/6)

Φ

(
z − w

u

)
w

|w|n+1
dw − z

|z|n+1

]
.

Since Φ is bounded and |x| ∼ u ∼ |z|, it is easy to see that the first and the third items of
the last quantity are controlled by 1

u|x|n modulo a positive constant. For the second term,

since Φ is radial and satisfies (1.16), it follows that∣∣∣∣∣p. v. 1

|B(z, t0u)|

∫
B(⃗0,t0u/6)

Φ

(
z − w

u

)
w

|w|n+1
dw

∣∣∣∣∣
= lim

ε→0
ε∈(0, t0u

6
)

1

2|B(z, t0u)|

∣∣∣∣∣
∫
B(⃗0,t0u/6)\B(⃗0,ε)

[
Φ

(
z − w

u

)
− Φ

(
z + w

u

)]
w

|w|n+1
dw

∣∣∣∣∣
. 1

|B(z, t0u)|
u−1 lim

ε→0
ε∈(0, t0u

6
)

∫ t0u/6

ε
dr . 1

u|x|n
.

Hence, for any |x| < t0u
3 , we have

|∇Ψu(z)| . 1

u|x|n
, ∀ z ∈ [x− y, x],

which, combined with the mean value theorem, further implies that∫ ∞

3|x|
t0

|Ψu(x− y) − Ψu(x)| du
u

.
∫ ∞

3|x|
t0

|y|
|x|n

du

u2
. |y|

|x|n+1
.
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When t0u
3 ≤ |x| < 3t0u, by Lemma 4.3, similarly to the proof presented in [1, pp. 599-600],

we conclude that∫ 3|x|
t0

|x|
3t0

|Ψu(x− y) − Ψu(x)| du
u

. |y|
|x|n+1

∫ 3|x|
t0

|x|
3t0

∫ 1

0

∣∣∣∣1 + log
|x− τy| + t0u

||x− τy| − t0u|

∣∣∣∣ dτ duu
. |y|

|x|n+1

∫ 1

0

∫ 3|x|
t0

|x|
3t0

∣∣∣∣1 + log
|x− τy| + t0u

||x− τy| − t0u|

∣∣∣∣ duu dτ
. |y|

|x|n+1

∫ 6

2
9

∣∣∣∣1 + log
1 + s

|1 − s|

∣∣∣∣ ds . |y|
|x|n+1

,

where the third inequality follows from letting s := log t0u
|x−τy| .

Now we consider the case α ∈ (0, 1). Let D1 be the symmetric difference between
B(x, ut0) and B(x− y, ut0) and D2 := B(x, ut0)∩B(x− y, ut0). Then |D1| . un−1|y| and
|D2| . un . |y|1−

n
αun−1+n

α . By (1.16), Lemma 4.2 and the fact that Φ is bounded, we
find that

|Φu ∗ Iα(x− y) − Φu ∗ Iα(x)|

= u−n

∣∣∣∣∣
∫
B(x−y,ut0)

Φ

(
x− y − z

u

)
Iα(z) dz −

∫
B(x,ut0)

Φ

(
x− z

u

)
Iα(z) dz

∣∣∣∣∣
. u−n

∫
D1

1

|z|n−α
dz + |y|u−n−1

∫
D2

1

|z|n−α
dz

. u−n(un−1|y|)
α
n + |y|u−n−1(|y|1−

n
αun−1+n

α )
α
n . uα−n−α

n |y|
α
n ,

which, together with the fact that∫ ∞

|x|
3t0

uα−n−α
n

1

u1+α
du ∼ |x|−n−α

n ,

further implies that
∫∞

|x|
3t0

|Ψu(x−y)−Ψu(x)| duu . |y|
α
n

|x|n+α
n

whenever α ∈ (0, 1). This finishes

the proof of the desired estimate when u ≥ |x|
3t0

.

If u < |x|
3t0

, by the Taylor formula and the fact that Φ is radial, we know that, for any
z ∈ [x− y, x],

|∇Ψu(z)| = |Φu ∗ ∇Iα(z) −∇Iα(z)|

=

∣∣∣∣∫
Rn

Φu(s) [∇Iα(z − s) −∇Iα(z)] ds

∣∣∣∣
= u−n

∣∣∣∣∣∣
∫
B(⃗0,ut0)

Φu(s)

∇2Iα(z) · (−s) +
∑
|β|=2

Dβ∇Iα(z − θs)(−s)β

β!

 ds
∣∣∣∣∣∣

. u2 sup
w∈B(z,ut0)

|∇3Iα(w)|,
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where θ ∈ (0, 1).

Notice that, if z ∈ [x− y, x], w ∈ B(z, ut0) and u ≤ |x|
3t0

, then |w| ≥ |x|
6t0

and

|∇3Iα(w)| . |w|α−n−3.

Then we find that

|Ψu(x− y) − Ψu(x)| ≤ |y| sup
z∈[x−y,x]

|∇Ψu(z)| . |y|u2|x|α−n−3,

which further implies that∫ |x|
3t0

0
|Ψu(x− y) − Ψu(x)| du

u
.
∫ |x|

3t0

0
|y|u2|x|n−α+3 du

u1+α
. |y|

|x|n+1
. (4.3)

Combining (4.2) and (4.3), we obtain

∥Ψu(x− y) − Ψu(x)∥L1(du/u) .
|y|

α
n

|x|n+
α
n

, ∀ |x| ≥ 2|y| > 0.

This proves the first inequality of Lemma 4.4.
The proof of the second inequality of Lemma 4.4 is similar to that of (3.10), the details

being omitted. This finishes the proof of Lemma 4.4.

Now, we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We first prove Theorem 1.5(i). As in (2.11), we write U∗
α := Ũα ◦Iα

for any α ∈ (0, 2). We also notice that the assumption on p in Theorem 1.5 implies α < n.
Let f ∈ Lp(Rn) with p = 2n

n+2α . Then, for any β ∈ (0,∞), by Lemma 4.1, we can
decompose f as f = g+ b with two functions g and b as in Lemma 4.1. Hence, to estimate
U∗
α(f), it suffices to consider U∗

α(g) and U∗
α(b), separately.

By Lemma 2.8, we know that U∗
α is bounded on L2(Rn), which, together with the

Chebyshev inequality, p < 2 and Lemma 4.1(iii), implies that, for any β ∈ (0,∞),

|{x ∈ Rn : U∗
α(g)(x) > β}| . β−2∥U∗

α(g)∥2L2(Rn) . β−2∥g∥2L2(Rn) . β−p∥f∥pLp(Rn).

This is the desired estimate.
Next we estimate U∗

α(b). Let y ∈ Rn. As in [8], the symbol y ∼ Qj means that y is
contained in some Qi which touches or coincides with Qj , roughly speaking, y ∼ Qj means
that y is not much far away from Qj than diam(Qj), otherwise we say y � Qj . Then, for
any x ∈ Rn, we have U∗

α(b)(x) ≤ N1(x) +N2(x), where

N1(x) :=

∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑

{j: y�Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣
2

χ(t−1|y − x|)t−n dy
dt

t

1/2

,

N2(x) :=

∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑

{j: y∼Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣
2

χ(t−1|y − x|)t−n dy
dt

t

1/2

,
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Ψ is as in (2.4), fj is as in Lemma 4.1(ii) and χ denotes the characteristic function of the
unit ball B(⃗0, 1).

We first estimate N1. Notice that, for Φ satisfying Assumption 1.2 and Ψ being as in
(2.4),

|Ψ(x)| . |x|−n+α(1 + |x|)−2 =: L(x), ∀x ∈ Rn. (4.4)

Indeed, we know that, when |x| < 3t0,

inf
x∈B(⃗0,3t0)

|x|−n+α(1 + |x|)−2 = |3t0|−n+α(1 + |3t0|)−2 ∼ 1.

On the other hand, since Φ is bounded, it follows that, for any x ∈ Rn,

|Φ ∗ Iα(x)| ≤
∫
Rn

|Φ(x− z)|Iα(z) dz .
∫
B(x,t0)

|z|−n+α dz

.
∫
B(⃗0,|x|+t0)

|z|−n+α dz . (|x| + t0)
α . tα0 ∼ 1. (4.5)

Combining these estimates, we find that, when |x| < 3t0,

|Φ ∗ Iα(x)| . 1 . |x|−n+α(1 + |x|)−2.

When |x| > 3t0, since Φ is radial, from the Taylor expansion, we deduce that, for any
x ∈ Rn,

|Φ ∗ Iα(x) − Iα(x)| =

∣∣∣∣∣
∫
B(⃗0,t0)

Φ(z)[Iα(x− z) − Iα(x)] dz

∣∣∣∣∣
=

∣∣∣∣∣∣
∫
B(⃗0,t0)

Φ(z)

∇Iα(x) · (−z) +
∑
|β|=2

DβIα(x− θz)

β!
(−z)β

 dz
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
|β|=2

1

β!

∫
B(⃗0,t0)

Φ(z)DβIα(x− θz)(−z)β dz

∣∣∣∣∣∣
.
∫
B(⃗0,t0)

|x− θz|α−n−2 dz . |x|−n+α−2 . |x|−n+α(1 + |x|)−2,

where θ ∈ (0, 1). This proves (4.4).
Notice that, if y � Qj , then supz∈Qj

|y − z| . infz∈Qj |y − z|, which implies that

sup
z∈Qj

Lt(y − z) = t−α sup
z∈Qj

|y − z|−n+α

(
1 +

|y − z|
t

)−2

. inf
z∈Qj

Lt(y − z), (4.6)

where L is as in (4.4). Therefore, by supp fj ⊂ Qj , the Hölder inequality, and Lemma
4.1(ii), we know that∣∣∣∣∣∣

∑
{j: y�Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣ .
∑

{j: y�Qj}

[
sup
z∈Qj

Lt(y − z)

]∫
Rn

|fj(z)| dz
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.
∑

{j: y�Qj}

[
inf
z∈Qj

Lt(y − z)

]
β|Qj | . β

∫
Rn

L(z) dz . β.

Thus, for any x ∈ Rn, we have

[N1(x)]2 . β

∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑

{j: y�Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣χ(t−1|y − x|)t−n dy
dt

t

and hence ∫
Rn

[N1(x)]2 dx . β

∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑

{j: y�Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣ dy dtt . (4.7)

Let zj be the center of Qj . Using Lemma 4.4 and the Hölder inequality, we have∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑

{j: y�Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣ dy dtt
≤
∑
j

∫ ∞

0

∫
y�Qj

|Ψt ∗ fj(y)| dy dt
t

≤
∑
j

∫ ∞

0

∫
y�Qj

∣∣∣∣∣
∫
Qj

[Ψt(y − z) − Ψt(y − zj)] fj(z) dz

∣∣∣∣∣ dy dtt
≤
∑
j

∫
Qj

[∫ ∞

0

∫
y�Qj

|Ψt(y − z) − Ψt(y − zj)| dy
dt

t

]
|fj(z)| dz

.
∑
j

∫
Qj

|fj(z)| dz .
∑
j

(∫
Qj

|fj(z)|p dz

) 1
p

|Qj |1−
1
p

.
∑
j

β|Qj | . β1−p∥f∥pLp(Rn),

where the penultimate and the last inequalities follow from (ii) and (i) of Lemma 4.1,
respectively. By this and (4.7), we conclude that ∥N1∥2L2(Rn) . β2−p∥f∥pLp(Rn). Therefore,

for any β ∈ (0,∞), we have

|{x ∈ Rn : N1(x) > β}| ≤ β−2∥N1∥2L2(Rn) . β−p∥f∥pLp(Rn). (4.8)

Next we estimate N2. Let Ω := ∪jQj . Then, since |Ω| . β−p∥f∥pLp(Rn), to prove

estimate (4.8) with N2 in place of N1, it suffices to show that, for any β ∈ (0,∞),∫
Rn\Ω

[N2(x)]2 dx . β2−p∥f∥pLp(Rn). (4.9)

Notice that

[N2(x)]2 =

∫ ∞

0

∫
Ω

∣∣∣∣∣∣
∑

{j: y∼Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣
2

χ(t−1|y − x|)t−n dy
dt

t
,
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because y � Qj for any j if y ∈ Rn \ Ω. Also, we find that, for any y ∈ Rn,

Ψt ∗ f(y) = t−α[f ∗ Iα ∗ Φt(y) − f ∗ Iα(y)]

and, if y ∈ Qj , then ∑
{m: y∼Qm}

fm =
∑

{m: zj∼Qm}

fm,

where zj denotes the center of Qj . Put f j :=
∑

{m:zj∼Qm} fm. Then, if x ∈ Rn \ Ω, we
have

[N2(x)]2 =
∑
j

∫ ∞

0

∫
Qj

|Φt ∗ Iα ∗ f j(y) − Iα ∗ f j(y)|2χ(t−1|y − x|)t−n−2α dy
dt

t

.
∑
j

∫ ∞

0

∫
Qj

|M(Iα ∗ f j)(y)|2χ(t−1|y − x|)t−n−2α dy
dt

t

∼
∑
j

∫
Qj

|M(Iα ∗ f j)(y)|2|x− y|−n−2α dy

.
∑
j

|x− zj |−n−2α∥M(Iα ∗ f j)∥2L2(Rn)

.
∑
j

|x− zj |−n−2α∥Iα ∗ f j∥2L2(Rn), (4.10)

where M denotes the Hardy-Littlewood maximal operator as in (1.19). Notice that

∥Iα ∗ f j∥2L2(Rn) . ∥f j∥2Lp(Rn) . β2
∑

{m: zj∼Qm}

|Qm|2/p . β2|Qj |2/p,

where the last inequality follows from the geometry of the Whitney decomposition (see
part (v) of Lemma 4.1). Then, by (4.10), we know that∫

Rn\Ω
[N2(x)]2 dx . β2

∑
j

|Qj |2/p
∫
Rn\Ω

|x− zj |−n−2α dx

. β2
∑
j

|Qj |2/p
∫
Rn\Qj

|x− zj |−n−2α dx

. β2
∑
j

|Qj |2/p|Qj |−2α/n . β2
∑
j

|Qj | . β2−p∥f∥pLp(Rn),

which proves (4.9). Combining all above arguments, we prove that U∗
α is bounded from

Lp(Rn) to WLp(Rn).
Now we consider the operator G̃∗

α,λ ◦ Iα. The proof is similar to the above proof for
U∗
α. Indeed, for any x ∈ Rn, let

Ñ1(x) :=


∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑

{j: y�Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣
2(

t

t+ |x− y|

)λn

t−n dy
dt

t


1/2
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and

Ñ2(x) :=


∫ ∞

0

∫
Rn

∣∣∣∣∣∣
∑

{j: y∼Qj}

Ψt ∗ fj(y)

∣∣∣∣∣∣
2(

t

t+ |x− y|

)λn

t−n dy
dt

t


1/2

.

The estimation of Ñ1 is similar to that of N1 due to the fact that∫
Rn

(
t

t+ |x− y|

)λn

dx <∞;

while the estimation of Ñ2 is similar to that of N2 because, if λ > 2
p , then, for any x, y ∈ Rn

with x ̸= y,∫ ∞

0

(
t

t+ |x− y|

)λn

t−n−2α−1 dt

=

∫ |x−y|

0

(
t

t+ |x− y|

)λn

t−n−2α−1 dt+

∫ ∞

|x−y|

(
t

t+ |x− y|

)λn

t−n−2α−1 dt

≤
∫ |x−y|

0

|x− y|λn−n−2α−1

(t+ |x− y|)λn
dt+

∫ ∞

|x−y|

tλn−n−2α−1

(2|x− y|)λn
dt . |x− y|−n−2α.

With these estimates and repeating the argument used for the estimation of U∗
α, we con-

clude that G̃∗
α,λ ◦ Iα is also bounded from Lp(Rn) to WLp(Rn). This proves Theorem

1.5(i).
Now we consider the case α = 2, namely, we prove Theorem 1.5(ii). To show

Ũ(f, C0∆f) ∈WLp(Rn) with p =
2n

n+ 4
,

it suffices to show that V ∗ in (3.16) is of weak type (p, p). This proof is also similar to the
above proof of U∗

α, and the differences lie in (4.4), (4.6) and the estimation of N2. Indeed,
letting K be as in Theorems 1.3 and 1.4, similarly to (4.4), when α = 2, for any x ∈ Rn,
we have

|K(x)| . L(x),

where, for any x ∈ Rn,

L(x) := |x|−n+2(1 + |x|
3
2 )−2. (4.11)

Indeed, when |x| > 3t0, by the Taylor expansion and an argument similar to that used for
the proof of (3.12), we know that

|Φ ∗ I2(x) − I2(x)|

=

∣∣∣∣∣
∫
B(⃗0,t0)

Φ(z)[I2(x− z) − I2(x)] dz

∣∣∣∣∣
=

∣∣∣∣∣∣
∫
B(⃗0,t0)

Φ(z)

∇I2(x) · (−z) +
∑
|β|=2

DβI2(x)

β!
(−z)β +

∑
|β|=3

DβI2(x− θz)

β!
(−z)β

 dz
∣∣∣∣∣∣
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. |x|−n−1 . L(x),

where θ ∈ (0, 1). When |x| < 3t0, similarly to (4.5), we obtain

|K(x)| . |x|−n+2 . L(x).

Hence, (4.6) holds true for L as in (4.11). To obtain an estimate analog to N2, we employ
the fact that, for any t ∈ (0,∞) and y ∈ Rn,

|t2Φt ∗ f j(y)| =

∣∣∣∣∫
Rn

t2−nΦ
(y − z

t

)
f j(z) dz

∣∣∣∣ . ∫
Rn

|y − z|2−n|f j(z)| dz ∼ |I2 ∗ |f j |(y)|,

where the second inequality is deduced from the facts that Φ is bounded and n > 4 (due
to p := 2n

n+4 > 1 in the assumption). The remainder of the proof for the case α = 2 is
similar to the proof for the case α ∈ (0, 2), the details being omitted.

Finally, the proof of G̃∗
λ(f, C0∆f) ∈ WLp(Rn) can also be proved like G̃∗

α,λ ◦ Iα, via
replacing Ψt therein by Kt, the details being omitted again. This finishes the proof of
Theorem 1.5.

Acknowledgements. Fan Wang would like to express his deep thanks to Ziyi He for
some helpful discussions on this article.
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