Nucleophilic substitution reactions on indole nucleus：Formation of
（3a，8a－cis）－1，2，3，3a，8，8a－hexahydropyrrolo－［2，3－b］i ndoles having a substituent at the 3a－position

メタデータ	言語：eng
	出版者：
	公開日：2017－12－28
	キーワード（Ja）：
	キーワード（En）：
	作成者： メールアドレス： 所属：
URL	https：／／doi．org／10．24517／00049644

NUCLEOPHILIC SUBSTITUTION REACTIONS ON INDOLE NUCLE-

 US: FORMATION OF (3a,8a-cis)-1,2,3,3a,8,8a-HEXAHYDROPYRROLO-[2,3-b]INDOLES HAVING A SUBSTITUENT AT THE 3a-POSITION ${ }^{1, \#}$Fumio Yamada, Aya Goto, Masakazu Hasegawa, Kensuke Kobayashi, and Masanori Somei**

Faculty of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan Corresponding author: e-mail address: somei.home@topaz.plala.or.jp

Abstract

Various nucleophiles, such as indole, 1,2,3-trimethoxybenzene, anisole, phenol, and pyrrole, reacted with 1-hydroxy-Nb-trifluoroacetyltryptamine under the presence of mesyl chloride to give novel series of (3a,8a-cis)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indoles having a substituent at the $3 \mathrm{a}-$ position. Their structures and by-products were strictly determined.

INTRODUCTION

We have opened the door to the chemistry of 1-hydroxyindole and 1-hydroxytryptophan derivatives, ${ }^{3}$ and demonstrated that these compounds generally undergo nucleophilic substitution reaction, ${ }^{4}$ which was thus far rarely observed in indole chemistry. ${ }^{4}$
In our 1-hydroxyindole hypothesis, ${ }^{5}$ we assume the 1-hydroxy group of the general formula (A) in Scheme 1 departs, after being transformed to a good leaving group (B), leaving a resonance stabilized indolyl cation ${ }^{6}(\mathbf{C})$. It would be possible to trap it with suitable nucleophiles to give imine ${ }^{6}(\mathbf{D})$.

[^0]Subsequent cyclization of Nb -nitrogen on the side chain results in providing simple and novel methodology for the preparation of (3a,8a-cis)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indoles (E) having an employed nucleophile at the 3a-position. According to the idea, we first employed indole as a nucleophile and reported the result as the previous communication. ${ }^{7}$ This is its full report together with the results of additionally examined nucleophiles such as 1,2,3-trimethoxybenzene, anisole, phenol, and pyrrole.

RESULTS AND DISCUSSION

I. Reaction of 1-hydroxy- Nb -trifluoroacetyltryptamine (2) with indole

Nb -Trifluoroacetyltryptamine (1, Scheme 2) was converted to 1-hydroxy- Nb -trifluoroacetyltryptamine (2) by our 1-hydroxyindole synthetic method. ${ }^{3}$ Then, 2 was reacted with mesyl chloride (MsCl) in 1,2-dichloroethane in the presence of indole (3 mol eq) and trimethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ at $0^{\circ} \mathrm{C}$ (Table 1, Entry 3). As expected, smooth reaction occurred to provide 1,2,3,8-tetrahydro-1-trifluoroacetylpyrrolo[2,3-b]indole 8,9 (3), (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-3a-(indol-2-yl)- (4), -3a-(indol-3-yl)-1-trifluoro-acetylpyrrolo[2,3-b]indole (5), and 6-mesyloxy- Nb -trifluoroacetyltryptamine ${ }^{8,9}$ (6), in $13,5,11$, and 3%

yields, respectively.
With an attempt to improve the product yield of nucleophilic reaction and examine solvent effect, 1,2-dichloroethane was changed to benzene, CHCl_{3}, THF, DMF, MeCN, MeNHCHO, and EtOAc. The product and their distribution ratio variably changed and their results are summarized in Table 1.

When the reaction was carried out in CHCl_{3} (Entry 2), the yield of $\mathbf{5}$ was improved to 21% together with the formations of $\mathbf{3}, \mathbf{4}$, and $\mathbf{6}$ in the respective yields of 14,5 , and 4%. Under similar reaction conditions, the use of excess indole (10 mol eq., Entry 8) further raised the yield of $\mathbf{5}$ up to 30% in addition to the concomitant formations of $\mathbf{3}, \mathbf{4}$, and $\mathbf{6}$ in 4, 7 , and 1% yields, respectively.

In the case of THF as the solvent, various products were formed (Entry 4). Thus, the reaction of $\mathbf{2}$ with MsCl in THF in the presence of indole (3 mol eq) and $\mathrm{Et}_{3} \mathrm{~N}$ at $0^{\circ} \mathrm{C}$ gave 3, 4, 5, 6, 3H-3-(indol-3-yl)Nb -trifluoroacetyltryptamine (7), and (3a,8a-cis)-3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydro-1-tri-fluoroacetylpyrrolo[2,3-b]indole ${ }^{9}$ (8), in $28,6,15,5,4$, and 6% yields, respectively. From the results shown in Table 1, we found that solvent polarity has no effect for the preferred product formation, though

MeNHCHO produced (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-3a-hydroxy-1-trifluoroacetylpyrrolo[2,3-b]indole (9) as a major product (Entry 7).

Table 1. Solvent effect on the product formation and distribution

II. Reaction of 1-hydroxy- Nb -trifluoroacetyltryptamine (2) with nucleophiles

We next examined aromatic electron rich nucleophiles. When 1,2,3-trimethoxybenzene (10 mol eq.) was employed in the reaction of 2 with MsCl in CHCl_{3} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (Scheme 3), (3a, $8 \mathrm{a}-$ cis)-1,2,3,3a,8,8a-hexahydro-1-trifluoroacetyl-3a-(2,3,4-trimethoxyphenyl)pyrrolo[2,3-b]indole (10), 3, $\mathbf{6}$, 1, and (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-1-trifluoroacetyl-3a-[3-(Nb-trifluoroacetyl)aminoethylindol-1-yl]pyrrolo[2,3-b]indole (11a) were formed in 2, 15, 4, 4, and 13\% yields, respectively. Further treatment of 11a with NaHCO_{3} afforded 11b in 67% yield.

Under similar reaction conditions with anisole as a nucleophile, (3a,8a-cis)-1,2,3,3a,8,8a-hexa-hydro-3a-(4-methoxyphenyl)-1-trifluoroacetylpyrrolo[2,3-b]indole (12), 3, 1, and 11a were isolated in the
respective yields of $5,18,6$, and 10%. $\mathbf{1 2}$ was easily converted to ($3 \mathrm{a}, 8 \mathrm{a}-$ cis)-1,2,3,3a,8,8a-hexa-hydro-3a-(4-methoxyphenyl) pyrrolo[2,3-b]indole (13) in 94% yield by the treatment with aq. NaHCO_{3}. In the case of employing phenol as a nucleophile, (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-3a-(4-hydroxyphenyl)- (14) and -3a-(2-hydroxyphenyl)-1-trifluoroacetylpyrrolo[2,3-b]indole (15) were produced in addition to $\mathbf{6}, \mathbf{1}$, and $\mathbf{1 1 a}$ in $3,5,4,8$, and 8% yields, respectively. The compound $\mathbf{1 4}$ was derived to $\mathbf{1 2}$ in 73% yield by the reaction with $\mathrm{CH}_{2} \mathrm{~N}_{2}$.

Scheme 3

Since pyrrole is a good nucleophile, expected product, (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-3a-(pyrrol-2-yl)-1-trifluoroacetylpyrrolo[2,3-b]indole (16), was obtained in rather better yield (29\%) compared to the above products $(\mathbf{1 0}-\mathbf{1 2}, \mathbf{1 4}, \mathbf{1 5})$ together with $\mathbf{3}, \mathbf{1}$, and $\mathbf{1 1 a}$ in 6,7 , and 8% yields, respectively. Formation of the other expected isomer, pyrrol-3-yl isomer (17), was not detected at all. Treatment of $\mathbf{1 6}$ with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine afforded (3a,8a-cis)-8-acetyl-1,2,3,3a,8,8a-hexahydro-3a-(pyrrol-2-yl)-1-trifluoroacetylpyrrolo[2,3-b]indole (18) in 83% yield.

III. Structural determination of products (Scheme 4)

Structures of various products reported in the above sections were determined spectroscopically. In cases where spectroscopically more than two structures were possible candidates, the product was led to suitable derivative which could prove its structure.

The high resolution MS and other spectral data of $\mathbf{4}$ and $\mathbf{5}$ show the presence of an extra indole moiety in both molecules. In the ${ }^{1} \mathrm{H}$-NMR spectra, 4 and 5 show characteristic C -(8a) proton signal at $\delta 5.63$ and 5.92, respectively, proving the presence of hexahydropyrrolo[2,3-b]indole skeleton. In addition, $\mathbf{5}$ has a long-range coupled doublet proton $(J=2.5 \mathrm{~Hz})$ at $\delta 6.93$ and is assigned to be $\mathrm{C}\left(2^{\prime}\right)$-proton, which is unusually shielded compared to the usual indole $\mathrm{C}(2)$-proton. ${ }^{10,11}$ In the spectrum of $\mathbf{4}$, a double doublets proton ($J=2.2$ and 0.7 Hz) resonates at $\delta 6.48$, which is attributed to the $\mathrm{C}\left(3^{\prime}\right)$-proton. The structures of $\mathbf{4}$ and 5 were further confirmed by treating them with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine to provide the acetyl derivatives (20 and 19) in the respective yields of 97 and 51% (Scheme 4). From these data, $\mathbf{4}$ and $\mathbf{5}$ were deduced to be indol-2-yl and indol-3-yl isomers, respectively.
Repeated recrystallization of $\mathbf{4}$ formed suitable prisms for X-ray single crystallographic analysis and the structure was determined unequivocally as shown in Figure 1. Since the indol-2-yl structure of $\mathbf{4}$ is established, then it determines that the other isomer (5) is the indol-3-yl isomer. The preferred formation of $\mathbf{5}$ to $\mathbf{4}$ is in accord with the well-known positional order $3>2$ for the reactivity of unsubstituted indole.

The structure of 6 was proved as reported in the previous paper ${ }^{9}$ by converting it to 1 -acetyl-6-mesyloxy- Nb -trifluoroacetyltryptamine (21) in 25% yield by the treatment with $\mathrm{NaH}-\mathrm{AcCl}$. The compound (7) has a ring opened structure of $\mathbf{5}$. It was proved by isolating $\mathbf{7}$ in 89% yield when $\mathbf{5}$ was heated in DMSO at $130^{\circ} \mathrm{C}$.

To establish the structure of $\mathbf{9}$, it was converted to the common compound for structural determination by series of reactions. First, 9 was led to (3a,8a-cis)-3a-acetoxy- (22) and -8-acetyl-1,2,3,3a,8,8a-hexahydro-1-trifluoroacetylpyrrolo[2,3-b]indole (23) in 71 and 17% yields, respectively, by the reaction with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine at rt . Treatment of $\mathbf{2 2}$ with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine at $55^{\circ} \mathrm{C}$ afforded $\mathbf{2 3}$ in 62% yield together with 26% yield of recovery. Hydrolysis of trifluoroacetyl group of $\mathbf{2 3}$ with aq. NaHCO_{3} at rt provided (3a,8a-cis)-3a-acetoxy-8-acety-1,2,3,3a,8,8a-hexahydro- (24) and (3a,8a-cis)-8-acety-1,2,3,3a,8,8a-hexa-hydro-3a-hydroxypyrrolo[2,3-b]indole (25) in 80 and 19% yields, respectively. At the reflux conditions 23 gave 98% yield of $\mathbf{2 5}$. Treatment of both 24 and 25 with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine at rt furnished (3a,8a-cis)-3a-acetoxy-1,8-diacetyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (26) in the respective yields of 99 and 96%.

On the other hand, $\mathbf{2 6}$ was obtained from $\mathbf{2 7}^{3,4}$ by the treatment with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{NaOAc}$. Aside from this, $\mathbf{2 6}$ was produced by the treatment with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine in 80% yield from ($3 \mathrm{a}, 8 \mathrm{a}$-cis)-1-acetyl-1,2,3,3a, $8,8 \mathrm{a}-$ hexahydro-3a-hydroxypyrrolo[2,3-b]indole (29), which was derived in 80% yield from 8b-(2-acetyl-aminoethyl)-2,2-dimethyl-4 H -1,3-dioxolo[4,5-b]indole (28) by the treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$. Since the structure of a derivative of $\mathbf{2 8}$ is determined by X-ray single crystallographic analysis as reported in our previous paper, ${ }^{12}$ the structure of common compound (26) is established.
In conclusion, 1-hydroxy- Nb -trifluoroacetyltryptamine is a suitable starting material for obtaining novel type of (3a,8a-cis)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indoles carrying aromatic and/or heteroaromatic substituent at the 3a position. Among this family members are core structures of Leptosins A-F, ${ }^{13}$ which are cytotoxic substances against P-388 lymphocytic leukemia cell line comparable to that of mytomycin C. Therefore, we expect that compounds shown in this paper would have a useful biological activity.

Experimental

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR) spectra with a Shimadzu IR-420, a Shimadzu IR-460, and a Horiba FT-720 spectrophotometer and proton nuclear magnetic resonance ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ spectra with a JEOL JNM-GSX 500 spectrometer with tetramethylsilane as an internal standard. Mass spectra (MS) were recorded on a JEOL SX-102A spectrometer. Column chromatography was performed on silica gel ($\mathrm{SiO}_{2}, 100-200$ mesh, from Kanto Chemical Co. Inc.) throughout the present study. The solution of diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ in diethylether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ was prepared as follows: a solution of potassium hydroxide $(\mathrm{KOH})(5.50 \mathrm{~g}, 98.0$
$\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{~mL})$ was placed in a 500 mL round bottom flask and cooled in an ice bath. The 95% $\mathrm{EtOH}(25 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(60.0 \mathrm{~mL})$, and p-tolylsulfonylmethylnitrosoamide ($21.5 \mathrm{~g}, 100 \mathrm{mmol}$) were added and the whole was slowly distilled to give the $\mathrm{Et}_{2} \mathrm{O}$ solution including about 3 g of $\mathrm{CH}_{2} \mathrm{~N}_{2}$. Anhydrous N, N-dimethylformamide (DMF), tetrahydrofuran (THF), and CHCl_{3} were prepared by distillation over calcium hydride, sodium, and calcium chloride, respectively.
Reaction of 1-hydroxy-Nb-trifluoroacetyltryptamine (2) with indole as a nucleophile: 1,2,3,8-Tetrahydro-1-trifluoroacetylpyrrolo[2,3-b]indole (3), (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-3a-(indol-2-yl)-1-trifluoroacetyl- (4), -3a-(indol-3-yl)-1-trifluoroacetyl- (5), (3a,8a-cis)-3a-(4-chloro-butoxy)-1,2,3,3a,8,8a-hexahydro-1-trifluoroacetylpyrrolo[2,3-b]indole (8), 6-mesyloxy-Nb-trifluoroacetyltryptamin (6), 3H-3-(indol-3-yl)-Nb-trifluoroacetyltryptamine (7) from 2 - [Table 1, Entry 4]: A solution of $\mathrm{MsCl}(232.9 \mathrm{mg}, 1.99 \mathrm{mmol})$ in anhydrous THF (2.0 mL) was added to a solution of $\mathbf{2}$ $(419.9 \mathrm{mg}, 1.54 \mathrm{mmol})$ and indole $(542.6 \mathrm{mg}, 4.73 \mathrm{mmol})$ in anhydrous THF $(14.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}$, 11.5 mmol) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ under ice cooling, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} successively with $\mathrm{CHCl}_{3}-$ hexane ($1: 1, \mathrm{v} / \mathrm{v}$), $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$, EtOAc-hexane (1:5, $\mathrm{v} / \mathrm{v})$, and EtOAc-hexane ($1: 2, \mathrm{v} / \mathrm{v}$) to give $\mathbf{3}(107.7 \mathrm{mg}, 28 \%), \mathbf{8}(31.9 \mathrm{mg}, 6 \%), \mathbf{4}(31.4 \mathrm{mg}, 6 \%), 5(86.3$ $\mathrm{mg}, 15 \%), 7(23.4 \mathrm{mg}, 4 \%)$, and $6(29.4 \mathrm{mg}, 5 \%)$ in the order of elution. 3: mp $238.0-240.0^{\circ} \mathrm{C}$ (decomp., colorless plates, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). IR (KBr): 3370, 1670, 1446, 1351, 1278, 1233, 1203, 1139, 1069, $746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.30(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 4.71(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$, $7.15(1 \mathrm{H}, \mathrm{dt}, J=1.6,6.9 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=1.6,6.9 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{dd}, J=1.6,6.9 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}$, $J=1.6,6.9 \mathrm{~Hz}$), $9.11(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High resolution MS m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: 254.0666$. Found: 254.0662. 4: $\mathrm{mp} 223.0-225.0^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from CHCl_{3}). IR (KBr) : $3365,1676,1605,1482,1465,1453,1205,1183,1179,745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.60(1 / 11 \mathrm{H}$, dd, $J=12.5,5.6 \mathrm{~Hz}), 2.76(10 / 11 \mathrm{H}, \mathrm{dd}, J=12.5,5.6 \mathrm{~Hz}), 2.81(1 / 11 \mathrm{H}, \mathrm{td}, J=12.5,7.8 \mathrm{~Hz}), 2.93(10 / 11 \mathrm{H}, \mathrm{td}$, $J=12.5,7.8 \mathrm{~Hz}), 3.34(1 / 11 \mathrm{H}, \mathrm{td}, J=12.5,5.6 \mathrm{~Hz}), 3.45(10 / 11 \mathrm{H}, \mathrm{td}, J=12.5,5.6 \mathrm{~Hz}), 4.10(10 / 11 \mathrm{H}, \mathrm{m})$, $4.32(1 / 11 \mathrm{H}, \mathrm{m}), 4.54\left(1 / 11 \mathrm{H}, \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.30(10 / 11 \mathrm{H}, \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.63(10 / 11 \mathrm{H}, \mathrm{s}), 5.75(1 / 11 \mathrm{H}, \mathrm{s}), 6.48(10 / 11 \mathrm{H}, \mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}), 6.50(1 / 11 \mathrm{H}$, dd, $J=2.2,0.7 \mathrm{~Hz}), 6.76(1 / 11 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.78(10 / 11 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.83(10 / 11 \mathrm{H}, \mathrm{dt}, J=7.6,1.0 \mathrm{~Hz})$, $6.86(1 / 11 \mathrm{H}, \mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}), 7.07(10 / 11 \mathrm{H}, \mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}), 7.10(10 / 11 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.13$ $(10 / 11 \mathrm{H}, \mathrm{td}, J=7.6,1.0 \mathrm{~Hz}), 7.19(10 / 11 \mathrm{H}, \mathrm{td}, J=7.6,1.0 \mathrm{~Hz}), 7.22(10 / 11 \mathrm{H}, \mathrm{dd}, J=7.6,1.0 \mathrm{~Hz})$, $7.07-7.24(5 / 11 \mathrm{H}, \mathrm{m}), 7.56(10 / 11 \mathrm{H}, \mathrm{dd}, J=7.6,0.7 \mathrm{~Hz}), 7.58(1 / 11 \mathrm{H}, \mathrm{dd}, J=7.6,0.7 \mathrm{~Hz}), 7.77(1 / 11 \mathrm{H}$, br s), $7.94\left(10 / 11 \mathrm{H}\right.$, br s). High-resolution MS m / z : Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: 371.1246$. Found: 371.1244.

5: colorless oil. IR (film): 3405, 1681, 1467, 1460, 1204, 1185, 1145, $744 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $2.47-2.53(1 / 6 \mathrm{H}, \mathrm{m}), 2.64-2.70(5 / 6 \mathrm{H}, \mathrm{m}), 2.87-2.96(1 / 6 \mathrm{H}, \mathrm{m}), 3.02-3.11(5 / 6 \mathrm{H}, \mathrm{m}), 3.32-3.40$ $(1 / 6 \mathrm{H}, \mathrm{m}), 3.45-3.52(5 / 6 \mathrm{H}, \mathrm{m}), 4.19(5 / 6 \mathrm{H}, \mathrm{m}), 4.30-4.36(1 / 6 \mathrm{H}, \mathrm{m}), 4.71(1 / 6 \mathrm{H}$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.25\left(5 / 6 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.92(5 / 6 \mathrm{H}, \mathrm{s}), 6.00(1 / 6 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.90$ $(5 / 6 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 6.93(1 / 6 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.06-7.12(1 / 6 \mathrm{H}, \mathrm{m}), 7.09(5 / 6 \mathrm{H}, \mathrm{ddd}, J=8.1,7.1,1.0 \mathrm{~Hz})$, $7.12-7.26(8 / 6 H, ~ m), 7.16(5 / 6 H, ~ t d, ~ J=7.6,1.2 \mathrm{~Hz}), 7.22(5 / 6 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.36(5 / 6 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $7.38(1 / 6 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.39(1 / 6 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.54(5 / 6 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.02(5 / 6 \mathrm{H}, \mathrm{br}$ s), $8.05(1 / 6 \mathrm{H}$, br s). High-resolution MS m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$: 371.1245. Found: 371.1246. 6: mp 114.5$115.5{ }^{\circ} \mathrm{C}$ (colorless needles, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). IR (KBr): 3430, 3340, 1700, 1563, 1349, 1206, 1172, 1119, 976, 952, $870 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.04(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.15(3 \mathrm{H}, \mathrm{s})$, $3.67(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.05(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{s}), 7.58(1 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}), 8.26(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High resolution MS $m / z:$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: 350.0547$. Found: 350.0539. 7: very pale yellow oil. IR (film): 3402, 1709, 1213, 1180, 1167, $746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta: 3.00(2 \mathrm{H}, \mathrm{tm}, J=8.1 \mathrm{~Hz}), 3.39-3.41(2 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}), 7.07(1 \mathrm{H}$, ddd, $J=8.0,7.0,1.1 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}), 7.38(1 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 9.62\left(1 \mathrm{H}\right.$, br $\mathrm{t}, J=5.6 \mathrm{~Hz}$ disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 11.0(1 \mathrm{H}, \mathrm{s}), 11.5(1 \mathrm{H}, \mathrm{br}$ s, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). High-resolution MS m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$: 371.1245. Found: 371.1248. 8: colorless oil. IR (film): 3370, 2940, 1694, 1612, 1486, 1471, 1255, 1206, 1145, 1101, 1066, $750 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.60-1.69(2 \mathrm{H}, \mathrm{m}), 1.75-1.83(2 \mathrm{H}, \mathrm{m}), 2.34-2.41(2 / 6 \mathrm{H}, \mathrm{m}), 2.47-2.59(10 / 6 \mathrm{H}$, m), $3.15(1 \mathrm{H}, \mathrm{dt}, J=8.8,6.4 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{dt}, J=8.8,6.4 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{dt}, J=6,4,11.2 \mathrm{~Hz}), 3.49(2 \mathrm{H}, \mathrm{t}$, $J=7.8 \mathrm{~Hz}), 3.95-3.98(5 / 6 \mathrm{H}, \mathrm{m}), 4.14-4.18(1 / 6 \mathrm{H}, \mathrm{m}), 5.52(5 / 6 \mathrm{H}, \mathrm{s}), 5.64(1 / 6 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.65$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$. High resolution MS m / z : Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}: 364.0978$ and 362.1008. Found: 364.1003 and 362.1022.
[Entry 1] A solution of $\mathrm{MsCl}(67.0 \mathrm{mg}, 0.59 \mathrm{mmol})$ in benzene $(1.0 \mathrm{~mL})$ was added to a solution of 2 $(119.0 \mathrm{mg}, 0.44 \mathrm{mmol})$ and indole $(155.0 \mathrm{mg}, 1.32 \mathrm{mmol})$ in benzene $(3.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87$ mmol) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4, \mathbf{3}(19.9 \mathrm{mg}, 18 \%)$, $\mathbf{5}(6.7 \mathrm{mg}, 4 \%)$, and $7(6.7 \mathrm{mg}, 4 \%)$ were obtained in the order of elution.
[Entry 2] A solution of $\mathrm{MsCl}(73.4 \mathrm{mg}, 0.64 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a solution of $2(113.5 \mathrm{mg}, 0.42 \mathrm{mmol})$ and indole $(146.1 \mathrm{mg}, 1.25 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4, \mathbf{3}(15.2 \mathrm{mg}, 14 \%), 4(7.1 \mathrm{mg}, 5 \%), \mathbf{5}(33.1 \mathrm{mg}, 21 \%)$, and $\mathbf{6}(5.7 \mathrm{mg}$,
4%) were obtained in the order of elution.
[Entry 3] A solution of $\mathrm{MsCl}(60.3 \mathrm{mg}, 0.53 \mathrm{mmol})$ in anhydrous $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL})$ was added to a solution of $2(111.6 \mathrm{mg}, 0.41 \mathrm{mmol})$ and indole $(143.7 \mathrm{mg}, 1.23 \mathrm{mmol})$ in anhydrous $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(3.0$ $\mathrm{mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4, \mathbf{3}(13.8 \mathrm{mg}, 13 \%), \mathbf{4}(7.6 \mathrm{mg}, 5 \%), 5(16.4 \mathrm{mg}, 11 \%)$, and $\mathbf{6}(3.8 \mathrm{mg}, 3 \%)$ were obtained in the order of elution.
[Entry 5] A solution of $\mathrm{MsCl}(59.4 \mathrm{mg}, 0.52 \mathrm{mmol})$ in anhydrous DMF $(1.0 \mathrm{~mL})$ was added to a solution of $\mathbf{2}(101.0 \mathrm{mg}, 0.37 \mathrm{mmol})$ and indole ($131.9 \mathrm{mg}, 1.13 \mathrm{mmol}$) in anhydrous DMF (3.0 mL) and $\mathrm{Et}_{3} \mathrm{~N}(0.4$ $\mathrm{mL}, 2.87 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4, \mathbf{3}(28.2 \mathrm{mg}, 30 \%), \mathbf{4}(1.6 \mathrm{mg}, 1 \%), 5(9.8 \mathrm{mg}, 7 \%)$, and $\mathbf{6}(1.9 \mathrm{mg}, 2 \%)$ were obtained in the order of elution.
[Entry 6] A solution of $\mathrm{MsCl}(59.2 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added to a solution of 2 $(107.8 \mathrm{mg}, 0.39 \mathrm{mmol})$ and indole $(137.8 \mathrm{mg}, 1.18 \mathrm{mmol})$ in $\mathrm{MeCN}(3.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87$ mmol) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry 4, $\mathbf{3}$ ($10.0 \mathrm{mg}, 10 \%$), $\mathbf{4}(1.5 \mathrm{mg}, 1 \%)$, 5 ($12.2 \mathrm{mg}, 8 \%$), and $\mathbf{1}(5.8 \mathrm{mg}, 6 \%)$ were obtained in the order of elution.
[Entry 7] A solution of $\mathrm{MsCl}(57.5 \mathrm{mg}, 0.50 \mathrm{mmol})$ in anhydrous MeNHCHO (1.0 mL) was added to a solution of $2(108.2 \mathrm{mg}, 0.39 \mathrm{mmol})$ and indole $(140.5 \mathrm{mg}, 1.20 \mathrm{mmol})$ in anhydrous MeNHCHO (3.0 $\mathrm{mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4,3(1.7 \mathrm{mg}, 2 \%), 4$ ($1.1 \mathrm{mg}, 1 \%$), 5 ($4.4 \mathrm{mg}, 4 \%$), (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-3a-hydroxy-1-trifluoroacetylpyrrolo[2,3-b]indole (9) ($21.2 \mathrm{mg}, 20 \%$), and unreacted $2(22.0 \mathrm{mg}, 20 \%)$ were obtained in the order of elution. 9: mp $115.0-115.5^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from CHCl_{3}-hexane). IR (KBr): 3336, 3282 , 1697, 1685, 1469, 1250, 1201, 1147, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 120^{\circ} \mathrm{C}\right) \delta: 2.14-2.53(2 \mathrm{H}, \mathrm{m}), 3.22-3.43(1 \mathrm{H}, \mathrm{m}), 3.84-4.03(1 \mathrm{H}, \mathrm{m})$, $5.36(1 \mathrm{H}, \mathrm{br}$ s), $5.56(1 \mathrm{H}, \mathrm{br}$ s), $6.26(1 \mathrm{H}, \mathrm{br}$ s), $6.60(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.06$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}: 272.0773$. Found: 272.0772.
[Entry 8] A solution of $\mathrm{MsCl}(63.3 \mathrm{mg}, 0.55 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a solution of $2(111.7 \mathrm{mg}, 0.41 \mathrm{mmol})$ and indole $(481.0 \mathrm{mg}, 4.11 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4,3(4.4 \mathrm{mg}, 4 \%), 4(10.3 \mathrm{mg}, 7 \%), 5(46.1 \mathrm{mg}, 30 \%)$, and $\mathbf{6}(1.9 \mathrm{mg}$, 1%) were obtained in the order of elution.
[Entry 9] A solution of $\mathrm{MsCl}(57.4 \mathrm{mg}, 0.50 \mathrm{mmol})$ in anhydrous $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL})$ was added to a solution of $2(103.8 \mathrm{mg}, 0.38 \mathrm{mmol})$ and indole $(444.7 \mathrm{mg}, 3.80 \mathrm{mmol})$ in anhydrous $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(3.0$
$\mathrm{mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4, \mathbf{3}(7.4 \mathrm{mg}, 8 \%), 4(7.3 \mathrm{mg}, 5 \%), 5(25.5 \mathrm{mg}, 18 \%)$, and $\mathbf{6}$ ($2.3 \mathrm{mg}, 2 \%$) were obtained in the order of elution.
[Entry 10] A solution of $\mathrm{MsCl}(59.3 \mathrm{mg}, 0.52 \mathrm{mmol})$ in anhydrous EtOAc (1.0 mL) was added to a solution of $2(111.7 \mathrm{mg}, 0.41 \mathrm{mmol})$ and indole ($479.8 \mathrm{mg}, 4.10 \mathrm{mmol}$) in anhydrous EtOAc (3.0 mL) and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the same work-up and separation as described in Entry $4, \mathbf{3}$ ($6.4 \mathrm{mg}, 6 \%$), $\mathbf{4}$ ($11.1 \mathrm{mg}, 7 \%$), 5 ($38.6 \mathrm{mg}, 25 \%$), and $\mathbf{6}$ (4.9 mg , 3%) were obtained in the order of elution.

7 from 5 - A solution of $5(10.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ in DMSO (2.0 mL) was stirred at $130^{\circ} \mathrm{C}$ for 3 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) to give 7 ($8.9 \mathrm{mg}, 89 \%$).
(3a,8a-cis)-1,2,3,3a,8,8a-Hexahydro-1-trifluoroacetyl-3a-(2,3,4-trimethoxyphenyl)pyrrolo[2,3-b]indole (10), and (3a,8a-cis)-1,2,3,3a,8,8a-hexahydro-1-trifluoroacetyl-3a-[3-(Nb-trifluoroacetyl)-aminoethylindol-1-yl]pyrrolo[2,3-b]indole (11a) from 2 - A solution of $\mathrm{MsCl}(55.1 \mathrm{mg}, 0.48 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a solution of $2(100.1 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $1,2,3$-trimethoxybenzene ($619.0 \mathrm{mg}, 3.69 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ under ice cooling, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($95: 5$, v/v). The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} successively with CHCl_{3}-hexane ($1: 1, \mathrm{v} / \mathrm{v}$), $\mathrm{CHCl}_{3}-\mathrm{MeOH}(98: 2$, v/v), and EtOAc-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) to give $\mathbf{3}$ ($14.2 \mathrm{mg}, 15 \%$), $\mathbf{1 0}$ ($2.4 \mathrm{mg}, 2 \%$), 11a ($11.8 \mathrm{mg}, 13 \%$), $\mathbf{1}(4.0 \mathrm{mg}, 4 \%)$, and $\mathbf{6}(5.4 \mathrm{mg}, 4 \%)$ in the order of elution. 10: colorless oil. IR (film): 1684, 1466, 1203, 1144, 1103, $752 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}, 120^{\circ} \mathrm{C}\right) \delta: 2.36-2.58(1 \mathrm{H}, \mathrm{m}), 2.71-2.92(1 \mathrm{H}, \mathrm{m}), 3.19-3.34(1 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.74$ $(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.90-4.10(1 \mathrm{H}, \mathrm{m}), 5.86(1 \mathrm{H}, \mathrm{br}$ s), $6.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.61-6.70(2 \mathrm{H}, \mathrm{m}), 6.66(1 \mathrm{H}$, d, $J=8.8 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.99-7.10(1 \mathrm{H}, \mathrm{m})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$: 422.1453. Found: 422.1448. 11a: colorless oil. IR (film): 1689, 1209, 1186, $1153,752 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 120^{\circ} \mathrm{C}\right) \delta: 2.58-3.03(4 \mathrm{H}, \mathrm{m}), 3.27-3.47(1 \mathrm{H}, \mathrm{m}), 3.42(2 \mathrm{H}, \mathrm{q}$, $J=6.6 \mathrm{~Hz}), 4.02-4.12(1 \mathrm{H}, \mathrm{m}), 5.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.64-6.75(3 \mathrm{H}, \mathrm{m}), 7.00-7.07(2 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{t}$, $J=8.2 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, 8.96 ($1 \mathrm{H}, \mathrm{br}$ s). High-resolution MS m / z : Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$: 510.1490. Found: 510.1486.
(3a,8a-cis)-1,2,3,3a,8,8a-Hexahydro-3a-[3-(Nb-trifluoroacetyl)aminoethylindol-1-yl]pyrrolo[2,3-b]indole (11b) from (11a) - Sat. aq. $\mathrm{NaHCO}_{3}(2.0 \mathrm{~mL}, 2.1 \mathrm{mmol})$ was added to a solution of 11a (25.3 $\mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeOH}(4.0 \mathrm{~mL})$ and the mixture was stirred at rt for 3 h . After addition of $\mathrm{H}_{2} \mathrm{O}$, the
whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil. Then $\mathrm{H}_{2} \mathrm{O}$ layer was evaporated under reduced pressure to leave an oil. These oils were combined and column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3, \mathrm{v} / \mathrm{v})$ to give 11b ($13.8 \mathrm{mg}, 67 \%$). 11b: colorless oil. IR (film): 1709, 1213, 1182, 1161, $746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 2.36-2.42(1 \mathrm{H}, \mathrm{m}), 2.61-2.70(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.94-3.02(1 \mathrm{H}, \mathrm{m})$, $3.22-3.30(1 \mathrm{H}, \mathrm{m}), 3.48-3.60(2 \mathrm{H}, \mathrm{m}), 4.20\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.31(1 \mathrm{H}, \mathrm{s})$, $6.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.59(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.19$ $(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}$, $J=7.7 \mathrm{~Hz}$). High-resolution MS m / z : Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}: 414.1668$. Found: 414.1647.

(3a,8a-cis)-1,2,3,3a,8,8a-Hexahydro-3a-(4-methoxyphenyl)-1-trifluoroacetylpyrrolo[2,3-b]indole

(12) from 2 - A solution of $\mathrm{MsCl}(56.8 \mathrm{mg}, 0.49 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a solution of $2(99.4 \mathrm{mg}, 0.37 \mathrm{mmol})$ and anisole ($2 \mathrm{~mL}, 18.4 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ under ice cooling, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc-hexane ($1: 7, \mathrm{v} / \mathrm{v}$) to give $\mathbf{3}$ ($16.5 \mathrm{mg}, 18 \%$), $\mathbf{1 2}$ (6.0 mg , $\mathbf{5 \%}$), 11a ($9.6 \mathrm{mg}, 10 \%$), and $\mathbf{1}(6.0 \mathrm{mg}, 6 \%)$ in the order of elution. 12: colorless oil. IR (film): 1684, $1252,1186,1144 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.52-2.58(1 / 11 \mathrm{H}, \mathrm{m}), 2.61-2.67(1 / 11 \mathrm{H}, \mathrm{m}), 2.67-2.80$ $(20 / 11 \mathrm{H}, \mathrm{m}), 3.22-3.31(1 / 11 \mathrm{H}, \mathrm{m}), 3.38(10 / 11 \mathrm{H}, \mathrm{td}, J=11.3,6.2 \mathrm{~Hz}), 3.79(30 / 11 \mathrm{H}, \mathrm{s}), 3.88(3 / 11 \mathrm{H}, \mathrm{s})$, $4.01-4.09(10 / 11 \mathrm{H}, \mathrm{m}), 4.24-4.30(1 / 11 \mathrm{H}, \mathrm{m}), 4.65\left(1 / 11 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.22$ $\left(10 / 11 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.65(10 / 11 \mathrm{H}, \mathrm{s}), 5.71(1 / 11 \mathrm{H}, \mathrm{br}$ s), $6.68(1 \mathrm{H}, \mathrm{d}, J=7.5$ $\mathrm{Hz}), 6.79(10 / 11 \mathrm{H}, \mathrm{td}, J=7.5,0.8 \mathrm{~Hz}), 6.77-6.87(1 / 11 \mathrm{H}, \mathrm{m}), 6.83(20 / 11 \mathrm{H}, \mathrm{dm}, J=8.9 \mathrm{~Hz}), 6.85(2 / 11 \mathrm{H}$, $\mathrm{dm}, J=8.9 \mathrm{~Hz}), 7.01(1 / 11 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.06(10 / 11 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.12(10 / 11 \mathrm{H}, \mathrm{td}, J=7.5,1.3 \mathrm{~Hz})$, $7.10-7.15(1 / 11 \mathrm{H}, \mathrm{m}), 7.20(2 / 11 \mathrm{H}, \mathrm{dm}, J=8.9 \mathrm{~Hz}), 7.26(20 / 11 \mathrm{H}, \mathrm{dm}, J=8.9 \mathrm{~Hz})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: 362.1242. Found: 362.1244.
(3a,8a-cis)-1,2,3,3a,8,8a-Hexahydro-3a-(4-methoxyphenyl)pyrrolo[2,3-b]indole (13) from 12 — Sat. aq. $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL}, 0.53 \mathrm{mmol})$ was added to a solution of $\mathbf{1 2}(6.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ and the mixture was refluxed for 40 min with stirring. The solvent was evaporated under reduced pressure to leave a solid, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 3}$ ($4.3 \mathrm{mg}, 94 \%$). 13: pale yellow oil. IR (film): 2929, $1606,1512,1250,746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $1.56-2.05\left(2 \mathrm{H}, \mathrm{m}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.41(1 \mathrm{H}, \mathrm{dd}, J=11.5,5.1 \mathrm{~Hz}), 2.49(1 \mathrm{H}, \mathrm{td}, J=11.5$, $6.6 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{td}, J=11.5,5.1 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=11.5,6.6 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 5.12(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}$, d, $J=7.6 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{dm}, J=8.7 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{dd}, J=7.6,0.9 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{td}$,
$J=7.6,0.9 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{dm}, J=8.7 \mathrm{~Hz})$. High-resolution MS m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: 266.1419$. Found: 266.1412.
(3a,8a-cis)-1,2,3,3a,8,8a-Hexahydro-3a-(4-hydoroxyphenyl)- (14) and -3a-(2-hydoroxyphenyl)-1-trifluoroacetylpyrrolo[2,3-b]indole (15) from 2 - A solution of MsCl ($226.7 \mathrm{mg}, 1.99 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a solution of $\mathbf{2}(107.2 \mathrm{mg}, 0.39 \mathrm{mmol})$ and phenol $(370.5 \mathrm{mg}$, $3.94 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.27 \mathrm{~mL}, 1.94 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ under ice cooling, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} successively with CHCl_{3}-hexane ($2: 1, \mathrm{v} / \mathrm{v}$) and EtOAc-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) to give 11a ($8.0 \mathrm{mg}, 8 \%$), $\mathbf{1}(7.6 \mathrm{mg}, 8 \%), \mathbf{1 5}$ (7.4 $\mathrm{mg}, 5 \%), \mathbf{1 4}(4.0 \mathrm{mg}, 3 \%)$, and $\mathbf{6}(5.1 \mathrm{mg}, 4 \%)$ in the order of elution. 14: colorless oil. IR (film): 1678, 1203, 1188, 1151, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.66-2.79(2 \mathrm{H}, \mathrm{m}), 3.32-3.41(1 \mathrm{H}, \mathrm{m}), 4.00-4.09$ $(1 \mathrm{H}, \mathrm{m}), 4.91\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.21\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $5.64(1 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}, \mathrm{td}, J=7.6,0.6 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$, $7.12(1 \mathrm{H}, \mathrm{td}, J=7.6,1.1 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{m})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}: 348.1086$. Found: 348.1086. 15: colorless oil. IR (film): $1709,1211,1184,1165,750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $2.34-2.43(1 \mathrm{H}, \mathrm{m}), 2.43-2.52(1 \mathrm{H}, \mathrm{m}), 3.22-3.32(1 \mathrm{H}, \mathrm{m}), 3.35-3.45(1 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}, \mathrm{br}$ s), 6.21 $\left(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}\right.$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.70(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{td}, J=7.6,0.9 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{td}, J=7.6,0.9 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{td}, J=7.6,1.3 \mathrm{~Hz}), 7.12$ $(1 \mathrm{H}, \mathrm{td}, J=7.6,1.3 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.3 \mathrm{~Hz})$. High-resolution MS $m / z:$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: 348.1085. Found: 348.1084.
12 from 14 - Excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was added to a solution of $14(3.7 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5$ mL) and the mixture was stirred at rt for 30 min . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with CHCl_{3}-hexane ($2: 1$, v/v) to give $\mathbf{1 2}$ (2.8 $\mathrm{mg}, 73 \%$).
(3a,8a-cis)-1,2,3,3a,8,8a-Hexahydro-3a-(pyrrol-2-yl)-1-trifluoroacetylpyrrolo[2,3-b]indole (16) from $\mathbf{2}$ - A solution of $\mathrm{MsCl}(60.1 \mathrm{mg}, 0.53 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a solution of $\mathbf{2}$ $(106.2 \mathrm{mg}, 0.39 \mathrm{mmol})$ and pyrrole ($263.6 \mathrm{mg}, 3.93 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4$ $\mathrm{mL}, 2.87 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ under ice cooling, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc-hexane (1:5, v/v) and $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1, \mathrm{v} / \mathrm{v})$ to give 3 ($5.6 \mathrm{mg}, 6 \%$), $\mathbf{1 6}(36.5 \mathrm{mg}, 29 \%)$, 11a ($8.3 \mathrm{mg}, 8 \%$), and $\mathbf{1}(6.9 \mathrm{mg}, 7 \%)$ in the order of elution. $\mathbf{1 6}$:
colorless oil. IR (film): 1684, 1483, 1468, 1205, 1188, 1747, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) δ : $2.34-2.70(2 \mathrm{H}, \mathrm{m}), 3.04-3.13(1 / 5 \mathrm{H}, \mathrm{m}), 3.16-3.27(4 / 5 \mathrm{H}, \mathrm{m}), 3.90-3.98(4 / 5 \mathrm{H}, \mathrm{m}), 3.99-4.06$ $(1 / 5 \mathrm{H}, \mathrm{m}), 5.61(4 / 5 \mathrm{H}, \mathrm{s}), 5.62-5.67(1 \mathrm{H}, \mathrm{m}), 5.67-5.71(1 / 5 \mathrm{H}, \mathrm{m}), 5.83-5.89(1 \mathrm{H}, \mathrm{m}), 6.62(4 / 5 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 6.65(1 / 5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.67-6.76(3 \mathrm{H}, \mathrm{m}), 7.04(4 / 5 \mathrm{H}, \mathrm{td}, J=7.6,1.2 \mathrm{~Hz}), 7.07(1 / 5 \mathrm{H}, \mathrm{td}$, $J=7.6,1.2 \mathrm{~Hz}), 7.41(1 / 5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.22(4 / 5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 10.81(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS $m / z:$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: 321.1089$. Found: 321.1083.
(3a,8a-cis)-8-Acetyl-1,2,3,3a,8,8a-hexahydro-3a-(pyrrol-2-yl)-1-trifluoroacetylpyrrolo[2,3-b]indole (18) from $16-\mathrm{Ac}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added to a solution of $\mathbf{1 6}(36.2 \mathrm{mg}, 0.11 \mathrm{mmol})$ in pyridine $(2.0 \mathrm{~mL})$ and the mixture was stirred at $65^{\circ} \mathrm{C}$ for 10 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc-hexane ($1: 4, \mathrm{v} / \mathrm{v}$) to give $\mathbf{1 8}(33.9 \mathrm{mg}$, 83%). 18: mp $218.0-220.0^{\circ} \mathrm{C}$ (colorless powder, recrystallized from EtOAc-hexane). IR (KBr): 3263, $1705,1662,1151,760 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.47(3 \mathrm{H}, \mathrm{s}), 2.62(1 \mathrm{H}, \mathrm{dd}, J=12.7,5.3 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{td}$, $J=12.7,7.5 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{td}, J=12.7,5.3 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{m}), 6.02(1 \mathrm{H}, \mathrm{s}), 6.16-6.22(2 \mathrm{H}, \mathrm{m})$, $6.74-6.78(1 \mathrm{H}, \mathrm{m}), 7.19-7.28(2 \mathrm{H}, \mathrm{m}), 7.39(1 \mathrm{H}$, ddd, $J=8.1,7.1,1.8 \mathrm{~Hz}), 7.79(1 \mathrm{H}$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 8.06(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 59.50; H, 4.44; N, 11.57. Found: C, 59.61; H, 4.43; N, 11.56.
(3a,8a-cis)-8-Acetyl-1,2,3,3a,8,8a-hexahydro-3a-(indol-3-yl)-1-trifluoroacetylpyrrolo[2,3-b]indole
(19) from 5 - $\mathrm{Ac}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added to a solution of $5(22.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in pyridine (3.0 mL) and the mixture was stirred at $62{ }^{\circ} \mathrm{C}$ for 9.5 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc-hexane (1:2, v/v) to give 19 (12.5 $\mathrm{mg}, 51 \%$). 19: $\mathrm{mp} 219.0-220.5^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from CHCl_{3}). IR (KBr): 3360,1679 , 1479, 1462, 1388, 1206, 1142, $740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.41(3 \mathrm{H}, \mathrm{s}), 2.58(1 \mathrm{H}, \mathrm{dd}, J=12.5,5.1 \mathrm{~Hz})$, $3.04(1 \mathrm{H}, \mathrm{td}, J=12.5,7.3 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{td}, J=12.5,5.1 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{m}), 6.43(1 \mathrm{H}, \mathrm{br}$ s), $6.71(1 \mathrm{H}, \mathrm{d}$, $J=2.7 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.30-7.34(2 \mathrm{H}, \mathrm{m})$, $7.38(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.16(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$: 413.1351. Found: 413.1353. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.23$; H, 4.34; N, 10.05. Found: C, 63.00; H, 4.37; N, 9.81.
(3a,8a-cis)-8-Acetyl-1,2,3,3a,8,8a-hexahydro-3a-(indol-2-yl)-1-trifluoroacetylpyrrolo[2,3-b]indole
(20) from 4 - $\mathrm{Ac}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added to a solution of $4(20.5 \mathrm{mg}, 0.03 \mathrm{mmol})$ in pyridine (2.0 mL) and the mixture was stirred at $63^{\circ} \mathrm{C}$ for 10 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) to give $\mathbf{2 0}(22.1 \mathrm{mg}$, 97%). 20: mp $147.0-150.0^{\circ} \mathrm{C}$ (colorless fine needles, recrystallized from CHCl_{3}-hexane). IR (KBr): 1709, 1662, 1479, 1394, 1147, 1142, 1124, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.46(3 \mathrm{H}, \mathrm{s}), 2.71(1 \mathrm{H}, \mathrm{dd}$,
$J=12.5,5.1 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{td}, J=12.5,7.2 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{td}, J=12.5,5.1 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{m}), 6.19(1 \mathrm{H}, \mathrm{s})$, $6.51(1 \mathrm{H}, \mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \operatorname{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz})$, $7.21-7.29(3 H, m), 7.38-7.45(1 H, m), 7.58(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.11(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}$). High-resolution MS m / z : Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$: 413.1351. Found: 413.1351.
1-Acetyl-6-mesyloxy-Nb-trifluoroacetyltryptamine (21) from 6 - Reported in our previous paper. ${ }^{9}$ (3a,8a-cis)-3a-Acetoxy- (22) and (3a,8a-cis)-3a-acetoxy-8-acetyl-1,2,3,3a,8,8a-hexahydro-1-trifluo-roacetylpyrrolo[2,3-b]indole (23) from 9 - $\mathrm{Ac}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added to a solution of $9(40.9 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ in pyridine (5.0 mL) and the mixture was stirred at rt for 18 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} successively with $\mathrm{CHCl}_{3}-$ hexane ($1: 2, \mathrm{v} / \mathrm{v} /$) and CHCl_{3} to give $22(33.5 \mathrm{mg}, 71 \%)$ and $\mathbf{2 3}(9.0 \mathrm{mg}, 17 \%)$ in the order of elution. 22: colorless oil. IR (film): 1741, 1693, 1240, 1205, $1146 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.04(12 / 5 \mathrm{H}$, s), $2.05(3 / 5 \mathrm{H}, \mathrm{s}), 2.51-2.60(1 / 5 \mathrm{H}, \mathrm{m}), 2.68(4 / 5 \mathrm{H}$, ddd, $J=12.9,11.6,8.3 \mathrm{~Hz}), 2.77(1 / 5 \mathrm{H}, \mathrm{dd}, J=12.4$, $6.0 \mathrm{~Hz}), 3.04(4 / 5 \mathrm{H}, \mathrm{ddd}, J=12.9,6.2,1.5 \mathrm{~Hz}), 3.17(1 / 5 \mathrm{H}, \mathrm{td}, J=12.4,6.0 \mathrm{~Hz}), 3.41(4 / 5 \mathrm{H}, \mathrm{td}, J=11.6,6.2$ $\mathrm{Hz}), 4.02(4 / 5 \mathrm{H}, \mathrm{m}), 4.22(1 / 5 \mathrm{H}, \mathrm{dd}, J=12.4,8.3 \mathrm{~Hz}), 4.81(1 / 5 \mathrm{H}, \mathrm{br}$ d, $J=4.0 \mathrm{~Hz}$ disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.18\left(4 / 5 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.81(4 / 5 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.95-5.98(1 / 5 \mathrm{H}, \mathrm{m}), 6.67(4 / 5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.69(1 / 5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.82(4 / 5 \mathrm{H}$, $\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}), 6.86(1 / 5 \mathrm{H}, \mathrm{td}, J=7.6,1.1 \mathrm{~Hz}), 7.22(4 / 5 \mathrm{H}, \mathrm{td}, J=7.6,1.3 \mathrm{~Hz}), 7.23(1 / 5 \mathrm{H}, \mathrm{td}, J=7.6,1.3$ $\mathrm{Hz}), 7.41(1 / 5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.51(4 / 5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$: 314.0878. Found: 314.0881. 23: mp $117.5-118.0{ }^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from EtOAc-hexane). IR (KBr): 1745, 1701, 1685, 1373, 1242, 1133, $758 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $2.05(3 \mathrm{H}, \mathrm{s}), 2.59(3 \mathrm{H}, \mathrm{s}), 2.59(1 \mathrm{H}, \mathrm{td}, J=12.7,7.8 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=12.7,5.1 \mathrm{~Hz}), 3.13(1 \mathrm{H}$, ddd, $J=12.7,11.7,5.1 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{m}), 6.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.19(1 \mathrm{H}, \mathrm{td}, J=7.4,1.0 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{ddd}, J=8.1$, $7.4,1.2 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz})$. High-resolution MS m/z: Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$: 356.0984. Found: 356.0994. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 53.94; H, 4.24; N, 7.86. Found: C, 53.98; H, 4.18; N, 7.62.

23 from 22 - $\mathrm{Ac}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added to a solution of $22(33.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ in pyridine (5.0 mL) and the mixture was stirred at $55^{\circ} \mathrm{C}$ for 32 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with CHCl_{3}-hexane $(1: 1, \mathrm{v} / \mathrm{v} /)$ to give unreacted 22 ($8.7 \mathrm{mg}, 26 \%$) and $23(23.7 \mathrm{mg}, 62 \%)$ in the order of elution.
(3a,8a-cis)-3a-Acetoxy-8-acety-1,2,3,3a,8,8a-hexahydro- (24) and (3a,8a-cis)-8-acety-1,2,3,3a,8,8a-hexahydro-3a-hydroxypyrrolo[2,3-b]indole (25) from 23 - Sat. aq. $\mathrm{NaHCO}_{3}(4.0 \mathrm{~mL}, 4.2 \mathrm{mmol})$ was added to a solution of $\mathbf{2 3}(39.7 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ and the mixture was stirred at rt for 20 min. The solvent was evaporated under reduced pressure to leave a solid, which was column-chromatographed on SiO_{2} successively with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}(46: 1: 0.1$, v/v) and
$\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}(46: 10: 1, \mathrm{v} / \mathrm{v})$ to give $24(23.3 \mathrm{mg}, 80 \%)$ and $25(4.5 \mathrm{mg}, 19 \%)$ in the order of elution. 24: mp $125.0-126.0^{\circ} \mathrm{C}$ (very pale yellow prisms, recrystallized from EtOAc-hexane). IR (KBr): $3315,1739,1649,1483,1408,1238,1047 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.99(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s})$, $2.29-2.54(3 H, m), 2.97-3.09(1 H, m), 3.37\left(1 H, b r s\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.63(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=2.2 \mathrm{~Hz}$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.06(1 \mathrm{H}, \mathrm{td}, J=7.6,1.1 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{ddd}, J=8.3,7.6,1.1$ $\mathrm{Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 64.60 ; \mathrm{H}, 6.20$; N, 10.76. Found: C, $64.50 ;$ H, $6.26 ; \mathrm{N}, 10.63 .25: \mathrm{mp} 196.0-197.0^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{MeOH}-\mathrm{EtOAc})$. IR (KBr): 3342, 3294, 1641, 1483, 1406, $762 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$: $2.28-2.34(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.53-2.63(1 \mathrm{H}, \mathrm{m}), 3.06-3.14(1 \mathrm{H}, \mathrm{m}), 5.25(1 \mathrm{H}, \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{td}$, $J=7.4,1.0 \mathrm{~Hz}), 7.30(1 \mathrm{H}$, ddd, $J=8.3,7.4,1.0 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $66.03 \mathrm{H}, 6.47$; N, 12.84. Found: C, $66.01 ; \mathrm{H}, 6.48 ; \mathrm{N}, 12.82$.
$\mathbf{2 5}$ from 23 - Sat. aq. $\mathrm{NaHCO}_{3}(4.0 \mathrm{~mL}, 4.2 \mathrm{mmol})$ was added to a solution of $\mathbf{2 3}$ ($40.2 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ and the mixture was refluxed for 30 min with stirring. The solvent was evaporated under reduced pressure to leave a solid, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}-\mathrm{AcOH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give 25 ($24.2 \mathrm{mg}, 98 \%$).
(3a,8a-cis)-3a-Acetoxy-1,8-diacetyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (26) from 24 -
$\mathrm{Ac}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added to a solution of $24(18.6 \mathrm{mg}, 0.07 \mathrm{mmol})$ in pyridine $(4.0 \mathrm{~mL})$ and the mixture was stirred at rt for 1 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(98: 2, \mathrm{v} / \mathrm{v} /$) to give 26 ($20.8 \mathrm{mg}, 96 \%$).

26 from 25 - $\mathrm{Ac}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added to a solution of $25(29.7 \mathrm{mg}, 0.14 \mathrm{mmol})$ in pyridine (6.0 mL) and the mixture was stirred at rt for 16 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(98: 2, \mathrm{v} / \mathrm{v} /)$ to give 26 (40.9 mg , 99\%).

26 from Nb -acetyl-1-hydroxytryptamine (27) — NaOAc ($23.9 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added to a solution of $27(31.3 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ and the mixture was stirred at $118-122^{\circ} \mathrm{C}$ for 4.5 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ under ice cooling, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(98: 2$, v/v) to give 26 ($20.5 \mathrm{mg}, 47 \%$). 26: $\mathrm{mp} 190.0-191.0^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from CHCl_{3}-hexane). IR (KBr): 3535, 2875, 1742, $1623,1603,1477,1404,1239,1043,904,789,769 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 6{ }^{\circ} \mathrm{C}\right) \delta: 1.99,(3 \mathrm{H}, \mathrm{s})$, $2.04(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2,43(3 \mathrm{H}, \mathrm{s}), 2.45-2.58(1 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=11.5,4.4 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{m}), 3.84$ $(1 \mathrm{H}, \mathrm{m}), 6.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.86(1 \mathrm{H}$, br s). MS m/z: $302\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 63.56$; H, 6.00; N, 9.27. Found: C, 63.42; H,
6.00; N, 9.17.
(3a,8a-cis)-1-Acetyl-1,2,3,3a,8,8a-hexahydro-3a-hydroxypyrrolo[2,3-b]indole (29) from 8b-(2-acetylaminoethyl)-2,2-dimethyl-4H-1,3-dioxolo[4,5-b]indole (28) - $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($16.6 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added to a solution of $\mathbf{2 8}(6.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ and the mixture was stirred at rt for 45 min. After addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3$, v/v) to give 29 ($4.1 \mathrm{mg}, 80 \%$). 29: colorless oil. IR (film): 3320, 1613, 1470, 1449, 1423, 1060, $752 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.03(3 \mathrm{H}, \mathrm{s}), 2.45(1 \mathrm{H}$, s , disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.41-2.57(2 \mathrm{H}, \mathrm{m}), 3.25-3.33(1 \mathrm{H}, \mathrm{m}), 3.67-3.75(1 \mathrm{H}, \mathrm{m}), 5.27$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.33(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{d}, J=7.6,1.0 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{td}, J=7.6$, $1.0 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{td}, J=7.6,1.2 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{d}, J=7.6,1.2 \mathrm{~Hz})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: 218.1056. Found: 218.1056.

26 from 29 - $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added to a solution of $29(6.5 \mathrm{mg}, 0.03 \mathrm{mmol})$ in pyridine (1.0 mL) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 8 h . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc to give $\mathbf{2 6}$ ($7.2 \mathrm{mg}, 80 \%$).

X-Ray Crystallographic Analysis of 4 - A single crystal ($0.20 \times 0.20 \times 0.20 \mathrm{~mm}$) of $\mathbf{4}$ was obtained by recrystallization from CHCl_{3}. All measurements was made on a Rigaku AFC5R diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). Crystal data: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}, M=454.52$, monoclinic, space group $P 21 / \mathrm{n}(\# 14), a=8.8339$ (5) $\AA, b=12.1938$ (8) $\AA, c=15.7993$ (9) $\AA, \beta=93.072$ (5) ${ }^{\circ}$, $V=1699.4$ (2) $\AA^{3}, Z=4, D$ calc $=1.451 \mathrm{~g} / \mathrm{cm}^{3}, F(000)=768$, and $\mu(\mathrm{Cu} K \alpha)=9.40 \mathrm{~cm}^{-1}$. The structure was solved by direct methods using MITHRIL. ${ }^{14}$ The non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement was based on 1866 observed reflections ($I>3.00 \sigma(I)$, $2 \theta<120.2^{\circ}$) and 308 variable parameters. The final refinement converged with $R=0.046$ and $R \mathrm{w}=0.056$.

Table 2. Positional Parameters and B (eq) for 4

atom	X	y	Z	$\mathbf{B}(\mathbf{e q})$	atom	X	y	Z	
$\mathrm{F}(1)$	$0.8894(4)$	$0.3539(2)$	$-0.0913(1)$	$9.5(2)$	$\mathrm{C}(16)$	$1.2211(5)$	$-0.2951(4)$	$0.3706(3)$	$5.2(2)$
$\mathrm{F}(2)$	$0.9224(3)$	$0.4006(2)$	$0.0360(1)$	$6.9(1)$	$\mathrm{C}(17)$	$1.1484(4)$	$-0.2638(3)$	$0.2948(2)$	$4.2(2)$
$\mathrm{F}(3)$	$0.7035(3)$	$0.3547(2)$	$-0.0115(2)$	$8.4(2)$	$\mathrm{C}(18)$	$1.0776(3)$	$-0.1627(3)$	$0.2925(2)$	$3.2(1)$
$\mathrm{O}(1)$	$0.9367(3)$	$0.1526(2)$	$-0.0456(1)$	$4.5(1)$	$\mathrm{C}(19)$	$0.8815(3)$	$0.2115(3)$	$0.0073(2)$	$3.5(1)$
$\mathrm{N}(1)$	$0.8435(3)$	$0.1775(2)$	$0.0829(1)$	$3.2(1)$	$\mathrm{C}(20)$	$0.8490(5)$	$0.3308(3)$	$-0.0157(2)$	$4.9(2)$
$\mathrm{N}(2)$	$0.7651(3)$	$-0.0136(2)$	$0.0658(2)$	$3.7(1)$	$\mathrm{H}(1)$	$0.659(4)$	$0.235(3)$	$0.141(2)$	$4.85(2)$
$\mathrm{N}(3)$	$0.9933(3)$	$-0.1117(2)$	$0.2279(2)$	$3.3(1)$	$\mathrm{H}(2)$	$0.802(4)$	$0.313(3)$	$0.143(2)$	$4.82(2)$
$\mathrm{C}(1)$	$0.7749(5)$	$0.2386(3)$	$0.1515(2)$	$4.0(2)$	$\mathrm{H}(3)$	$0.775(4)$	$0.191(3)$	$0.278(2)$	$4.65(2)$
$\mathrm{C}(2)$	$0.8370(4)$	$0.1792(3)$	$0.2289(2)$	$3.8(2)$	$\mathrm{H}(4)$	$0.943(4)$	$0.202(3)$	$0.246(2)$	$4.46(2)$
$\mathrm{C}(3)$	$0.8378(3)$	$0.0585(2)$	$0.2022(2)$	$3.0(1)$	$\mathrm{H}(5)$	$0.611(3)$	$0.023(3)$	$0.318(2)$	$4.11(2)$
$\mathrm{C}(4)$	$0.6797(3)$	$0.0077(2)$	$0.1983(2)$	$3.0(1)$	$\mathrm{H}(6)$	$0.377(4)$	$-0.067(3)$	$0.288(2)$	$5.31(2)$
$\mathrm{C}(5)$	$0.5790(4)$	$-0.0033(3)$	$0.2614(2)$	$3.8(2)$	$\mathrm{H}(7)$	$0.319(4)$	$-0.138(3)$	$0.150(2)$	$6.04(2)$
$\mathrm{C}(6)$	$0.4432(4)$	$-0.0568(3)$	$0.2429(3)$	$4.6(2)$	$\mathrm{H}(8)$	$0.489(4)$	$-0.117(3)$	$0.044(2)$	$4.73(2)$
$\mathrm{C}(7)$	$0.4104(4)$	$-0.0976(3)$	$0.1633(3)$	$5.1(2)$	$\mathrm{H}(9)$	$0.755(4)$	$-0.019(3)$	$0.021(2)$	$4.46(2)$
$\mathrm{C}(8)$	$0.5101(4)$	$-0.0868(3)$	$0.0987(3)$	$4.5(2)$	$\mathrm{H}(10)$	$0.972(3)$	$0.038(2)$	$0.097(2)$	$3.09(2)$
$\mathrm{C}(9)$	$0.6449(3)$	$-0.0331(2)$	$0.1181(2)$	$3.3(1)$	$\mathrm{H}(11)$	$0.985(3)$	$-0.136(2)$	$0.175(2)$	$3.58(2)$
$\mathrm{C}(10)$	$0.8709(3)$	$0.0615(2)$	$0.1066(2)$	$3.0(1)$	$\mathrm{H}(12)$	$0.976(3)$	$0.066(3)$	$0.373(2)$	$4.43(2)$
$\mathrm{C}(11)$	$0.9450(3)$	$-0.0108(3)$	$0.2557(2)$	$3.2(1)$	$\mathrm{H}(13)$	$1.156(4)$	$-0.078(3)$	$0.489(2)$	$5.69(2)$
$\mathrm{C}(12)$	$0.9957(4)$	$0.0028(3)$	$0.3377(2)$	$3.8(2)$	$\mathrm{H}(14)$	$1.271(4)$	$-0.249(3)$	$0.494(2)$	$6.35(3)$
$\mathrm{C}(13)$	$1.0796(3)$	$-0.0923(3)$	$0.3630(2)$	$3.6(1)$	$\mathrm{H}(15)$	$1.266(4)$	$-0.362(3)$	$0.373(2)$	$5.70(3)$
$\mathrm{C}(14)$	$1.1544(4)$	$-0.1271(3)$	$0.4388(2)$	$4.7(2)$	$\mathrm{H}(16)$	$1.143(3)$	$-0.310(3)$	$0.246(2)$	$4.57(2)$
$\mathrm{C}(15)$	$1.2235(5)$	$-0.2281(4)$	$0.4415(3)$	$5.4(2)$					

REFERENCES AND NOTES

1. a) This is Part 143 of a series entitled "The Chemistry of Indoles"; b) Part 142: T. Iwaki, Y. Fukui, M. Okigawa, F. Yamada, Y. Nagahama, S. Ogasawara, S. Tanaka, S. Funaki, and M. Somei, Heterocycles, 2016, 93, in press. COM-15-S(T)40 .
2. Professor Emeritus of Kanazawa University. Present address: 56-7 Matsuhidai, Matsudo, Chiba 270-2214, Japan.
3. a) T. Kawasaki, M. Tabata, K. Nakagawa, K. Kobayashi, A. Kodama, T. Kobayashi, M. Hasegawa, K. Tanii, and M. Somei, Heterocycles, 2015, 90, 1038, and references cited therein; b) Recent application of 1-hydroxyindole to the synthesis of benzofuroindolines: T. Tomakinian, C. Kouklovsky, and G. Vincent, Synlett., 2015, 1269.
4. a) F. Yamada, D. Shinmyo, M. Nakajou, and M. Somei, Heterocycles, 2012, 86, 435, and references cited therein. b) K. Yoshino, F. Yamada, and M. Somei, Heterocycles, 2008, 76, 989, and references cited therein.
5. a) M. Somei, Yakugaku Zasshi, 2008, 128, 527, and references cited therein; b) M. Somei, Topics in Heterocyclic Chemistry, Vol. 6, ed. by S. Eguchi, Springer-Verlag, Berlin, 2006, pp. 77-111; c) M. Somei, Advances in Heterocyclic Chemistry, Vol. 82, ed. by A. R. Katritzky, Elsevier Science (USA),

2002, pp. 101—155; d) M. Somei, Heterocycles, 1999, 50, 1157; e) M. Somei, J. Synth. Org. Chem. Jpn, 1991, 49, 205.
6. There is a possibility that the elimination of 1-hydroxy group and an attack by nucleophiles follow a concerted mechanism.
7. F. Yamada, A. Goto, and M. Somei, Heterocycles, 2000, 53, 1255.
8. M. Somei, N. Oshikiri, M. Hasegawa, and F. Yamada, Heterocycles, 1999, 51, 1237.
9. M. Hasegawa, Y. Nagahama, K. Kobayashi, M. Hayashi, and M. Somei, Heterocycles, 2000, 52, 483.
10. H. Minato, M. Matsumoto, and T. Katayama, J. Chem. Soc., Perkin Trans. 1, 1973, 1819.
11. D. Crich, E. Fredette, and W. J. Flosi, Heterocycles, 1998, 48, 545.
12. M. Somei, F. Yamada, A. Goto, M. Hayashi, and M. Hasegawa, Heterocycles, 2000, 53, 2487.
13. C. Takahashi, A. Numata, Y. Ito, E. Matsumura, H. Iwaki, and K. Kushida, J. Chem. Soc., Perkin Trans. 1, 1994, 1859.
14. C. J. Gilmore, J. Appl. Cryst., 1984, 17, 42.

[^0]: \# Dedicated to the 70th birthday of Professor Dr. Masakatsu Shibasaki

