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Relationship between prediction-based motor control during
 loading task and motor learning during lever-pressing task

Tetsuo	Ota	,	Mitsugu	Yoneda*	,	Yui	Kikuchi*	,	Takako	Ohno-Shosaku*

Introduction
Motor	 performance	 depends	 on	 feedback	 and	

feedforward	motor	control	systems,	and	can	be	improved	
through	the	learning	process	1）.	A	better	understanding	of	
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Abstract
　Motor	performance	depends	on	feedback	and	feedforward	motor	control	systems,	and	can	
be	improved	through	learning	processes.	According	to	the	“feedback	error	learning”	model,	
the	feedback	of	error	signals	improves	“internal	models”	and	refines	the	feedforward	motor	
control.	Thus,	feedforward	motor	control	plays	a	key	role	in	improving	motor	performance.
　Feedforward	motor	control	has	been	evaluated	by	measuring	predictive	components	of	
movement	in	several	tasks,	 including	ball-catching,	grasping,	and	weight-loading	tasks.	In	
the	loading	task,	hand	movement	just	before	the	start	of	loading	（anticipatory	response）	is	
observed	only	when	the	timing	of	loading	is	predictable.	Thus,	this	anticipatory	response	is	
assumed	to	reflect	prediction-based	feedforward	motor	control.	On	the	other	hand,	a	multi-
lever-pressing	task	has	been	used	to	evaluate	motor	performance	and	its	improvement	by	
analyzing	accelerometer	signals.	Correlation	coefficients	of	accelerometer	signals	have	been	
reported	to	increase	with	the	number	of	trials,	indicating	that	this	measure	can	be	used	as	an	
index	of	motor	learning.
　In	the	present	study,	we	examined	the	relationship	between	feedforward	motor	control	
and	motor	learning	in	18	healthy	volunteers	using	anticipatory	responses	in	a	loading	task	
and	correlation	coefficients	of	accelerometer	signals	in	a	three-lever-pressing	task.	For	the	
loading	task,	we	used	the	Space	Interface	Device	 for	Artificial	Reality	（SPIDAR）.	The	
subject	was	asked	to	hold	the	ball-shaped	grip	of	SPIDAR.	When	the	subject	pressed	the	
start	button,	a	force	of	4.9	N	was	applied	to	the	grip.	The	subject	was	instructed	to	maintain	
the	initial	position	during	loading.	The	loading	task	was	repeated	10	times,	and	the	amplitude	
of	upward	deflection	（anticipatory	response）	just	before	the	start	of	loading	was	measured.	
In	the	three-lever-pressing	task,	the	subject	was	instructed	to	press	three	levers	as	rapidly	
as	possible	using	the	left	hand	（hand）,	the	left	hand	loaded	with	a	weight	（weight）,	and	a	
stick	attached	to	the	left	hand	（stick）.	The	three-lever-pressing	task	was	repeated	11	times	
in	sequence	under	each	condition	（hand,	weight,	stick）.	The	hand	movement	was	monitored	
using	an	accelerometer	attached	to	the	dorsal	surface	of	 the	 left	hand.	We	found	that	
correlation	coefficients	of	accelerometer	signals	were	lower	in	the	stick	condition	than	in	the	
other	two	conditions,	indicating	that	the	stick	variation	of	the	task	requires	more	learning.	
We	also	found	that	the	amplitude	of	anticipatory	response	was	correlated	with	the	correlation	
coefficients	of	accelerometer	signals	only	in	case	of	the	stick	variation.	These	results	provide	
evidence	for	a	relationship	between	prediction-based	feedforward	motor	control	and	motor	
learning.
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neural	mechanisms	underlying	motor	control	and	motor	
learning	can	have	important	clinical	 implications.	One	of	
the	basal	models	for	motor	learning	is	the	“feedback	error	
learning”	scheme.	In	this	scheme,	the	feedback	of	error	
signal	 improves	“internal	models,”	thereby	refining	the	
feedforward	motor	control.	Thus,	the	feedforward	motor	
control	plays	a	key	role	in	improving	motor	performance	2）.	

Feedforward	motor	control	has	been	evaluated	by	
measuring	predictive	components	of	movement.	When	
catching	a	falling	ball,	for	example,	we	predict	the	weight	
of	the	ball	and	the	timing	of	contact,	and	generate	motor	
command	before	the	ball	strikes	the	hand	3）.	In	a	grasping	
task,	we	predict	the	timing	of	perturbation,	and	increase	the	
finger	force	before	self-generated	perturbation	4,	5）.	These	
predictive	components	of	movements	have	been	reported	
to	be	sensitive	 to	cerebellar	dysfunction	4,	 6）,	which	 is	
consistent	with	the	hypothesis	that	the	cerebellum	plays	a	
key	role	in	feedforward	motor	control	7）.

In	a	previous	study	in	our	 laboratory,	 the	predictive	
component	of	hand	movements	（anticipatory	responses）	
during	a	weight-loading	task	was	compared	between	
healthy	volunteers	and	patients	with	schizophrenia	8）.	It	
was	found	that	the	amplitude	of	anticipatory	responses	
was	significantly	smaller	in	the	patients	than	in	the	healthy	
controls,	 indicating	that	the	feedforward	motor	control	is	
impaired	in	schizophrenia.	In	that	study,	it	was	also	found	
that	there	was	great	individual	variability	in	the	amplitude	
of	anticipatory	responses	even	in	healthy	controls.	What	is	
the	functional	significance	of	this	individual	variability?	If	
the	anticipatory	response	reflects	the	feedforward	motor	
control	and	it	is	important	in	motor	learning,	it	is	possible	
that	the	person	with	larger	anticipatory	responses	shows	
better	performance	on	motor	learning	tasks.	

To	test	this	possibility,	we	examined	the	relationship	
between	anticipatory	responses	 in	the	 loading	task	and	
motor	performance	on	a	lever	pressing	task	for	18	healthy	
volunteers.	 In	the	 lever	pressing	task,	 the	subject	was	
instructed	to	press	three	levers	as	rapidly	as	possible,	by	
using	the	left	hand	（hand）,	the	left	hand	loaded	with	weight	

（weight）,	and	a	stick	attached	to	the	left	hand	（stick）.	The	
three-lever	pressing	was	repeated,	and	the	hand	movement	
was	monitored	by	 the	accelerometer	attached	 to	 the	
dorsal	surface	of	the	left	hand.	Correlation	coefficients	of	
accelerometer	signals,	which	have	been	reported	to	increase	
with	increased	number	of	trials	9）,	were	used	as	an	index	of	
motor	learning.	We	found	that	the	correlation	coefficients	

of	accelerometer	signals	were	lower	in	the	stick	condition	
than	in	the	other	two	conditions,	and	were	correlated	with	
the	amplitude	of	anticipatory	responses	 in	the	 loading	
task.	These	results	suggest	that	the	individual	difference	
of	prediction-based	feedforward	motor	control	can	explain	
partially	the	individual	difference	of	motor	learning.	

Methods
1.	Subjects
This	 study	was	 approved	by	 the	Medical	Ethics	

Committee	of	Kanazawa	University	（No.	740）	and	was	
performed	according	 to	 the	Declaration	of	Helsinki.	
Informed	consent	was	obtained	from	18	healthy	young	
volunteers	（20-22	years）.	The	subjects	were	all	 right-
handed	 female	students	 in	 the	Occupational	Therapy	
Course	of	Kanazawa	University.	

2.	Predictable	loading	task
Figure	1	shows	experimental	set-up	and	procedures	

used	for	loading	task.	To	apply	a	downward	force	to	the	
left	hand	（loading）	and	monitor	the	vertical	deflection	of	
the	hand,	we	used	the	Space	Interface	Device	for	Artificial	
Reality	（SPIDAR）10）,	which	consists	of	eight	motors	and	
strings	attached	to	the	grip	（Fig.	1A）.	The	subject	was	
comfortably	seated	with	the	left	elbow	on	an	arm	rest,	
and	asked	to	hold	a	ball-shaped	grip	of	SPIDAR	near	the	
center	of	the	apparatus.	When	the	subject	pressed	a	start	
button,	a	force	of	4.9	N	was	applied	to	the	grip	（equivalent	
to	loading	of	500	g	weight）	（Fig.	1B）.	When	the	subject	
pressed	the	button	again,	 the	 force	was	released.	The	
subject	was	instructed	to	keep	the	initial	position	during	
loading.	The	vertical	movement	of	the	grip	was	displayed	
on	a	computer	screen	（Fig.	1B,	ball）,	and	the	vertical	
deflection	 from	 the	 initial	 position	was	 recorded	by	
SPIDAR.	The	loading	task	was	repeated	10	times,	and	the	
data	acquired	between	the	sixth	and	the	tenth	loading	
trials	were	used	for	analysis	8）.	

3.	Lever	pressing
Figure	2	shows	experimental	set-up	and	procedures	

used	for	lever	pressing.	The	subject	was	seated	in	front	
of	three	levers	（A-C）.	The	left	（A）,	center	（B）	and	right	

（C）	levers	were	positioned	as	shown	in	Figure	2A,	and	
the	B-lever	was	set	17.5	cm	higher	than	the	other	two	
levers.	The	subject	was	instructed	to	press	three	levers	
in	the	order	of	A-B-C	as	rapidly	as	possible,	by	using	
the	 left	hand	（hand）,	the	 left	hand	loaded	with	weight	

（weight）,	and	a	stick	attached	to	the	 left	hand	（stick）	
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（Fig.	2B）.	The	 three-lever	pressing	was	repeated	11	
times	 in	sequence	under	each	condition	（hand,	weight,	
or	stick）,	and	the	data	acquired	between	the	first	and	
the	tenth	trials	were	used	for	analysis.	We	expected	that	
the	weight	would	affect	vertical	movements	of	the	hand,	
whereas	using	the	stick	would	disturb	movements	in	all	
directions.	The	weight	500	g	in	the	weight	condition,	the	
extension	length	20	cm	in	the	stick	condition	（Fig.	2B）,	
and	the	trial	number	11	were	decided	based	on	the	results	
of	preliminary	experiments.	All	subjects	performed	the	
task	under	these	three	conditions	 in	the	order	of	hand,	
weight,	and	stick.	The	lever	signal	was	recorded	by	Vital	

Recorder	II	（Kissei	Comtec	Co.,	Ltd.,	Matsumoto,	Japan）	
installed	 in	a	personal	computer.	Hand	movement	of	
the	subject	was	monitored	by	an	accelerometer	（WAA-
006,	ATR-Promotions.	Inc.,	Kyoto,	Japan）	attached	to	the	
dorsal	surface	of	the	left	hand.	Accelerometer	signal	was	
recorded	at	a	sampling	frequency	of	200	Hz	by	Accel	Real	
Time	2	（ATR-Promotions.	Inc.,	Kyoto,	Japan）.	

4.	Data	analysis
Results	 are	presented	as	means	±	SD	or	SEM	 in	

figures	as	noted	in	figure	legends.	Statistical	significance	
was	assessed	by	one-way	analysis	of	variance	（ANOVA）,	
two-way	ANOVA,	and	Student's	t-test	with	the	Bonferroni	
correction.	Similarity	of	two	accelerometer	signals	was	
evaluated	by	using	Pearson's	correlation	coefficient	（Table	
1）.	The	relationship	between	two	different	variables	was	
assessed	by	using	Pearson's	correlation	coefficient	（Fig.	
9）	or	Spearman’s	correlation	coefficient	（Fig.	10,	Table	
2,	Table	3）.	P	values	 less	 than	0.05	were	considered	
statistically	significant.	Single	and	double	asterisks	 in	
figures	indicate	P	<	0.05	and	P	<	0.01,	respectively.	The	P	
value,	effect	size	（d）,	and	power	（1－β）	were	obtained	
with	Statcel	4	software.	

Results
1.	Predictable	loading	task	
Figure	3	 shows	representative	data	obtained	 from	

one	person	in	 loading	task.	Five	traces	（Fig.	3A）,	each	
showing	vertical	 hand	movement	during	 a	 loading	
trial,	were	averaged	（Fig.	3B）,	and	the	amplitudes	of	
downward	deflection	during	 loading	（Fig.	3B,	P-down）	
and	upward	deflection	 just	before	the	start	of	 loading	

（Fig.	3C,	P-up）	were	measured.	P-down	and	P-up	reflect	
feedback	and	feedforward	motor	control,	respectively.	We	
also	measured	a	rise	time	from	1/2	peak	to	peak	（Fig.	
3D,	t	1/2）.	Figure	4	shows	individual	and	averaged	data	for	
P-down,	P-up,	and	t1/2	obtained	from	18	participants.	The	
P-down	ranged	from	4.6	to	15.9	mm.	The	P-up	was	highly	
variable,	ranging	from	0.27	to	2.19	mm.	The	t	1/2	was	less	
variable,	and	ranged	from	21	to	62	ms	except	 for	one	
person.

2.	Lever	pressing
Figure	5	shows	an	example	of	the	data	for	accelerometer	

signal	of	one	axis	（vertical）	obtained	from	one	person	in	
three-lever	pressing	trials	under	one	condition	（“hand”）.	
Using	the	 lever	signal,	we	picked	up	the	accelerometer	
signal	from	the	time	of	A-lever	press	to	the	time	of	C-lever	

Figure 1． Experimental set-up for loading task. A: A photograph 
of SPIDAR, which consists of eight motors and strings 
attached to a ball-shaped grip. B: Loading starts when 
a start button is pressed by the subject. The vertical 
movement of the grip is displayed on a computer 
screen.

Figure 2． Experimental set-up for lever pressing task. A: A 
photograph of three levers （A, B, C）. The B-lever is 
set 17.5 cm higher than the other two levers. B: The 
subject was asked to press three levers in the order of 
A-B-C using the left hand （hand）, the left hand loaded 
with weight （weight）, and a stick attached to the left 
hand （stick）. 

y

x
z
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Figure 3． Representative data obtained from one person in loading task. A: Five traces of vertical hand movements obtained from 
repeated loading task （from the sixth to tenth trials）. B: The averaged hand movement obtained from five traces shown in A. 
P-down is the difference between the initial position on the vertical axis 200 ms before the start of loading and the peak of 
downward deflection. C: A part of the trace shown in B is vertically expanded. P-up is the difference between the initial position 
on the vertical axis 200 ms before the start of loading and the peak of upward deflection. D: The amplitude of P-up was 
normalized, and a rise time from 1/2 peak to peak （t1/2） was measured. 

Figure 5． An example of the data for accelerometer signal of one axis （z） obtained from one person in three-lever pressing trials under 
one condition （“hand”）. A: Lever signal （upper） and accelerometer signal （bottom） obtained during one trial of three-lever 
pressing. B: Ten raw traces of accelerometer signal obtained from ten trials. C: Ten resampled traces.

Figure 4． Individual and averaged data for P-down （A）, P-up （B）, and t1/2 （C） obtained from 18 participants. Vertical bars mean SD. The 
data show that the amplitude of P-up was highly variable.
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release	（Fig.	5A）.	Ten	raw	traces	obtained	from	ten	trials	
（Fig.	5B）	were	resampled	to	yield	the	same	length	of	data	
points	（150	points）	（Fig.	5C）.	Correlation	coefficients	（CC）	
between	two	resampled	traces	were	then	calculated	for	all	
combinations,	producing	45	CC	values	（Table	1）.	CC（i-1）	
and	CC（i-2）	were	used	to	designate	the	CC	between	one	
trace	and	the	next	trace	（Table	1,	dark	gray）,	and	the	CC	
between	one	trace	and	the	trace	after	next	（Table	1,	light	
gray）,	respectively.	CC,	CC（i-1）,	and	CC（i-2）	were	used	to	
designate	the	mean	values	of	all	45	CC	values,	9	CC（i-1）	
values,	and	8	CC（i-2）	values,	respectively	（Table	1）.

Figure	6	shows	averaged	time	courses	of	the	change	
in	CC（i-1）	for	accelerometer	signals	of	three	axes	（x,	y,	
z）	obtained	from	18	participants	under	three	conditions	

（hand,	weight,	 stick）.	Accelerometer	 signals	of	x,	y,	
and	z	axes	 reflect	 the	hand	movements	 in	 left-right	
horizontal	axis,	front-back	horizontal	axis,	and	vertical	axis,	
respectively.	In	the	hand	condition,	CC（i-1）	increased	
with	increased	number	of	trials	in	all	three	axes.	In	the	
weight	condition,	CC（i-1）	was	high	at	 the	beginning	
and	remained	relatively	stable	with	slight	decrease	 in	
the	end.	In	the	stick	condition,	CC（i-1）	was	low	at	the	
beginning,	especially	for	x	axis,	 increased	during	several	
trials,	and	then	decreased	slightly.	For	the	x	axis,	a	two-
way	ANOVA	（time×condition）	showed	no	significant	
interaction	effect	of	time	and	condition	（P	=	0.81）,	and	
significant	main	effects	of	both	 time	（P	<	0.01）	and	
condition	（P	<	0.01）	（Fig.	6A）.	For	the	y	axis,	a	two-way	
ANOVA	showed	no	significant	interaction	effect	of	time	
and	condition	（P	=	0.09）,	and	a	significant	main	effect	of	
condition	（P	<	0.01）,	but	not	time	（P	=	0.10）	（Fig.	6B）.	
For	the	z	axis,	a	two-way	ANOVA	showed	a	significant	
interaction	effect	of	time	and	condition	（P	<	0.05）	（Fig.	
6C）.

Figure	7	shows	individual	and	averaged	data	for	CC.	

A	one-way	ANOVA	showed	 statistically	 significant	
difference	between	conditions	for	x	and	z	axes	（P	<	0.01	
for	x,	P	<	0.05	for	z）.	The	CC	in	x	axis	was	higher	in	the	
weight	condition	（P	<	0.01,	d	=	0.76,	1－β=	0.78）,	and	
lower	 in	the	stick	condition	（P	<	0.01,	d	=	0.72,	1－β

Table 1. An example of the data for correlation coefficients of accelerometer signals.

Figure 6． Averaged time courses of the change in CC（i-1） 
obtained from 18 participants. Mean CC（i-1） values 
for x （A）, y （B）, and z axis （C） were plotted against 
the paired trial numbers obtained in the hand （filled 
circles）, weight （gray triangles）, and stick （open 
squares） variations of the task. Vertical bars mean 
SEM.
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Figure 7． Individual （left） and averaged （right） data for CC obtained from 18 participants. The CC values for x （A）, y （B）, and z axis （C） 
were obtained in the hand （dark gray）, weight （light gray）, and stick （white） variations of lever pressing task. The results from 
the same person are connected by lines. Vertical bars mean SEM.

Figure 8． Individual （left） and averaged （right） data for the time tA-C obtained from 18 participants under the hand （dark gray）, weight （light 
gray）, and stick condition （white）. The results from the same person are connected by lines. Vertical bars mean SEM.



− 43 −

Relationship between prediction-based motor control during
 loading task and motor learning during lever-pressing task

=	0.74）	than	in	the	hand	condition.	The	difference	in	CC	
between	weight	and	stick	conditions	was	also	significant	

（P	<	0.01,	d	=	0.89,	1－β=	0.90）	（Fig.	7A）.	The	CC	in	z	
axis	was	higher	 in	the	weight	condition	（P	<	0.05,	d	=	
0.64,	1－β=	0.63）,	and	lower	in	the	stick	condition	（P	<	
0.01,	d	=	0.66,	1－β=	0.66）	than	in	the	hand	condition.	The	
difference	in	CC	between	weight	and	stick	conditions	was	
also	significant	（P	<	0.01,	d	=	0.85,	1－β=	0.85）	（Fig.	7C）.	
These	results	indicate	that	subjects	were	not	familiar	with	
the	stick	variation	of	the	task,	and	needed	to	adjust	the	
hand	movement,	especially	their	left-right	movement.

Figure	8	shows	individual	and	averaged	data	for	tA-C,	
which	is	the	time	between	the	start	of	A-lever	press	and	the	
time	of	C-lever	release.	Each	symbol	represents	the	value	of	
tA-C	averaged	from	10	trials	obtained	with	each	subject	in	
each	condition	（hand,	weight,	stick）.	A	one-way	ANOVA	

showed	 statistically	 significant	 difference	 between	
conditions	（P	<	0.01）.	The	time	tA-C	was	comparable	 in	
the	hand	and	weight	conditions,	but	significantly	 longer	
in	the	stick	condition	（P	<	0.01,	d	=	0.80,	1－β=	0.83	vs	
hand,	P	<	0.01,	d	=	0.85,	1－β=	0.87	vs	weight）.	These	
data	confirmed	that	pressing	levers	with	the	stick	was	
difficult	for	subjects,	compared	with	the	hand	and	weight	
variations	of	the	task.

We	then	examined	the	relationship	between	tA-C	and	
CC	（Table	2）.	In	the	hand	and	weight	conditions,	there	
was	no	correlation	between	tA-C	and	CC（rs	<	0.4）.	In	
the	stick	condition,	a	mild	correlation	（rs=	0.46）,	which	
was	statistically	 insignificant	（P	=	0.059,	1－β=	0.52）,	
was	observed	between	tA-C	and	CC	for	z	axis.	We	also	
examined	 the	relationship	between	CC（i-1）	and	 the	
change	of	tA-C	（Fig.	9）.	Negative	correlations	（r	<	-0.4,	P	<	

x y z

Figure 9． Relationships between CC（i-1） values and the corresponding changes of tA-C for three axes in three variations of lever pressing 
task. Each point represents the data obtained from two consecutive trials in the same person. One graph contains 162 points （9 
CC（i-1） × 18 participants）.

Table 2. Spearman correlation coefficients （rs） between tA-C and CC for three 
axes in three conditions. 
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0.01,	1－β=	1.00）	were	seen	for	all	three	axes	in	all	three	
variations,	 indicating	that	higher	CC（i-1）	values	were	
obtained	when	tA-C	did	not	fluctuate	from	trial	to	trial.	

3.	Relationship	between	P-up	and	CC
Next	we	examined	the	relationships	between	the	data	

obtained	from	loading	task	and	the	data	obtained	from	
lever	pressing	task.	We	used	P-down,	P-up,	and	t1/2	from	
loading	 task,	 and	CC,	CC（i-1）,	CC（i-2）,	 and	 tA-C	 from	
lever	pressing	task.	The	correlation	coefficients	（rs）	of	all	
combinations	are	shown	in	Table	3	and	the	values	larger	

than	0.4	are	highlighted.	Correlations	（rs	>	0.4）	between	
P-up	and	CC	values	were	observed	only	 in	 the	stick	
condition,	and	the	correlated	CC	values	were	mostly	seen	
in	x	axis.

Figure	10	shows	the	relationship	between	P-up	in	the	
loading	task	and	CC（i-2）	for	x	axis	 in	the	stick	version	
of	lever	pressing	task.	The	values	of	rs	and	P	were	0.488	
and	0.044	（1－β=	0.61）,	 respectively,	 indicating	 that	
this	correlation	was	statistically	significant.	The	other	

correlations	were	not	statistically	significant.

Discussion 
In	the	present	study	on	healthy	volunteers,	we	examined	

the	relationship	between	prediction-based	 feedforward	
motor	control	and	motor	 learning.	We	used	anticipatory	
responses	（P-up）	in	predictable	loading	task	as	an	index	
of	prediction-based	 feedforward	motor	control	 8）,	 and	
correlation	coefficients	between	two	accelerometer	signals	

（CC）	in	lever	pressing	task	as	an	index	of	motor	learning	9）.	
The	lever	pressing	task	was	conducted	in	three	conditions	

（hand,	weight,	and	stick）.	We	found	that	CC	was	lower	
in	the	stick	condition	than	 in	the	other	two,	 indicating	
that	the	hand	movement	in	the	stick	condition	was	more	
fluctuated,	namely,	 less	controlled.	We	found	also	that	
the	amplitude	of	anticipatory	responses	was	correlated	
with	CC	only	in	the	stick	condition.	These	results	provide	
evidence	that	prediction-based	feedforward	motor	control	
is	crucial	for	better	performance	in	difficult	motor	task.

We	prepared	the	weight	variation	 in	order	to	make	
the	task	harder.	Thus,	we	expected	that	CC	values	in	the	
weight	condition	should	be	lower	than	those	in	the	hand	
condition.	However,	opposite	results	were	obtained.	The	
CC	in	the	weight	condition	was	even	higher	than	that	in	
the	hand	condition.	The	better	performance	in	the	weight	
condition	might	be	caused	by	the	order	of	variations	during	
experiments.	All	participants	conducted	the	three	variations	
in	the	fixed	hand-weight-stick	order.	Thus,	the	participants	
might	be	already	accustomed	to	the	lever	pressing	task	in	
the	weight	condition.	The	time	courses	of	the	change	in	CC

（i-1）	support	this	possibility.	In	the	hand	condition,	CC（i-1）	
was	low	at	the	beginning	and	increased	gradually.	In	the	

Figure 10． The relationship between P-up in loading task and  
CC（i-2） for x axis in the stick variation of lever 
pressing task. Table 3.  Spearman correlation coefficients （rs） between the data 

from loading task （P-down, P-up, t1/2） and the data from 
lever pressing task （CC, CC（i-1）, CC（i-2）, tA-C）.
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weight	condition,	CC（i-1）	was	high	at	the	beginning	and	
remained	almost	stable.	When	compared	at	the	end	of	each	
variation	of	the	task,	CC（i-1）	values	were	comparable	
between	the	hand	and	weight	variations,	indicating	that	in	
terms	of	difficulty	these	variations	are	similar.	

Our	CC	data	indicated	that	the	stick	variation	is	more	
difficult	than	the	weight	variation.	In	the	stick	condition,	
failure	 of	 lever	pressing	was	 seen	occasionally,	 and	
decreased	the	CC	values.	Considering	our	activities	of	
daily	 living,	 this	 is	not	surprising.	We	have	had	many	
opportunities	to	carry	heavy	objects,	and	probably	have	
already	created	the	 internal	model	 for	 it.	On	the	other	
hand,	using	a	stick	as	a	tool	was	relatively	rare.	When	
we	use	a	tool	to	reach	for	a	distant	object,	specific	neural	
networks	holding	"body	schema"	change	as	 if	our	own	
hand	is	elongated	to	the	tip	of	the	tool	11）.	The	training	
in	the	stick	condition	（11	trials）	is	not	enough	to	change	
the	networks.	The	number	of	trials	required	for	motor	
learning	depends	on	the	difficulty	or	the	type	of	tasks.	In	
the	case	of	cerebellum-dependent	motor	learning	such	as	
prism	adaptation,	the	performance	was	rapidly	improved	
and	became	constant	after	about	20	trials	12,	13）.	Thus,	the	
performance	on	the	stick	variation	of	lever-pressing	task	
might	be	improved	more	if	we	set	the	number	of	trials	to	
20	instead	of	11.	However,	we	preferred	to	use	11	trials,	
because	our	preliminary	experiments	showed	that	more	
trials	induced	fatigue,	especially	in	the	weight	condition.	
In	addition	to	the	CC	values,	our	tA-C	data	also	showed	
the	difficulty	of	 the	stick	condition.	The	time	tA-C	was	
significantly	longer	in	the	stick	condition	than	in	the	hand	
and	weight	conditions.	The	longer	tA-C	can	be	explained	
if	visual	 feedback	 is	used	more	frequently	 in	the	stick	
condition.	Proprioceptive	 information	 is	 important	 for	
fine	movement,	and	expected	to	be	used	for	monitoring	
the	hand	position	in	the	lever-pressing	task.	In	the	stick	
condition,	however,	proprioceptive	 information	 is	not	
enough,	or	even	impossible,	for	monitoring	the	position	of	
the	stick	tip.	Visual	feedback	would	be	used	to	adjust	the	
position	of	the	stick	tip	during	the	stick	variation	of	lever-
pressing	task.	

Correlations	with	rs	values	 larger	 than	0.4	between	
P-up	and	CC	values	were	observed	only	 in	 the	stick	
condition.	Since	P-up	and	CC	values	reflect	prediction-
based	motor	control	and	motor	learning,	respectively,	our	
data	suggest	that	prediction-based	motor	control	is	more	
important	for	better	performance	in	difficult	motor	task.	

Interestingly,	CC	values	were	not	correlated	with	P-down	
in	any	conditions	（Table	3）.	If	P-down	depends	solely	
on	feedback	motor	control,	our	data	might	indicate	that	
the	feedback	control	is	not	as	critical	as	the	feedforward	
control	 in	motor	 learning.	However,	 the	amplitude	of	
P-down	is	influenced	also	by	other	factors	such	as	stiffness.	
Thus,	interpretation	of	the	results	is	difficult.

A	gradual	decrease	 in	motor	 learning	occurs	with	
aging,	and	is	related	to	brain	structural,	 functional,	and	
biochemical	changes	14）.	The	age-related	changes	in	motor	
learning	have	been	 linked	to	decreased	volume	 in	the	
dorsolateral	prefrontal	cortex	（DLPFC）,	striatum	（caudate	
and	putamen）,	cerebellum,	and	hippocampus	15）,	decreased	
integrity	in	the	caudate-DLPFC	tract	16）,	and	disruptions	
in	the	dopaminergic	system	17,	18）.	Although	these	changes	
are	associated	with	learning	deficits	 in	older	adults,	the	
specific	influence	of	each	of	the	changes	on	motor	learning	
is	not	fully	understood	19,	20）.	

Age-related	changes	 in	 feedforward	motor	control	
have	also	been	reported,	including	decreased	anticipation	
in	rapid	self-paced	movement	21）,	decreased	feedforward	
adjustments	 of	multi-finger	 synergies	 22）,	 decreased	
ability	to	use	feedforward	adjustments	to	self-triggered	
perturbations	23）,	decreased	reliance	on	the	feedforward	
control	 24）,	 and	decreased	 amplitude	 of	 anticipatory	
responses	during	predictable	loading	task	8）.	The	above-
mentioned	studies	suggest	that	elderly	people	use	different	
strategies	for	motor	control.	Although	aging	is	associated	
with	changes	 in	motor	 learning	and	feedforward	motor	
control,	the	relationship	between	them	has	not	been	fully	
elucidated.	

Similarly,	changes	in	motor	learning	and	feedforward	
motor	control	have	been	reported	 in	the	patients	with	
various	diseases.	A	previous	study	in	our	laboratory	using	
the	lever	pressing	task	（hand	condition）	reported	that	CC	
values	were	lower	in	the	patients	with	schizophrenia	than	
in	healthy	controls	25）.	Another	study	in	our	 laboratory	
using	the	loading	task	showed	that	the	amplitude	of	P-up	
was	smaller	in	the	patients	with	schizophrenia	than	in	age-
matched	healthy	controls	8）.	

Limitations of this study and future challenges
In	the	present	study,	we	examined	the	relationship	

between	prediction-based	 feedforward	motor	control	
and	motor	learning	using	only	healthy	young	volunteers.	
Further	studies	are	needed	to	determine	if	our	findings	



− 46 −

Tetsuo Ota, et al.

obtained	from	healthy	young	volunteers	can	apply	to	other	
populations,	including	healthy	elderly	people	and	patients	
with	various	neurological	and	psychiatric	disorders.	

Conclusion
In	 the	present	study	on	healthy	young	volunteers,	

we	examined	the	relationship	between	prediction-based	
feedforward	motor	control	and	motor	learning.	We	used	
the	amplitude	of	anticipatory	responses	（P-up）	during	
loading	task	as	an	index	of	prediction-based	motor	control,	
and	CC	values	of	accelerometer	 signals	during	 lever	

pressing	task	as	an	 index	of	motor	 learning.	Our	data	
show	that	P-up	 is	correlated	with	the	CC	values	only	
in	a	difficult	variation	（stick）	of	the	lever	pressing	task,	
providing	evidence	that	prediction-based	motor	control	is	
crucial	for	better	performance	in	difficult	motor	task.
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重り負荷課題の予測に基づく運動制御とレバー押し課題の運動学習の関係

太田　哲生，米田　　貢 *，菊池　ゆひ *，少作　隆子 *

要　　　旨
　運動をなめらかに行うためには、フィードバックおよびフィードフォワードの運動制御が
必要である。運動学習と運動制御の仕組みを説明する現在の仮説は、誤差情報をフィードバッ
クすることにより内部モデルを修正し、フィードフォワード制御の精度を上げる、というも
のであり、運動の上達においてフィードフォワード制御は重要な要素と考えられている。
　フィードフォワード制御を評価する課題の１つとして、重りの負荷課題がある。予測が可
能な条件で見られる、負荷の直前の手の動き（先行反応）は、予測に基づくフィードフォワー
ド制御を反映するものと考えられている。一方、マルチレバー押し課題は、レバーを押す上
肢の動きを加速度計で計測することで、上肢の運動制御を客観的に評価できる課題である。
また、レバー押しを繰り返した時の加速度波形の類似性（波形間の相関係数）は、動作の習
熟に伴い高くなることが報告されており、動作の習熟度を評価する指標として用いることが
できる。本研究では、健常者 18 名を対象とし、重りの負荷課題と３レバー押し課題の手の
動きを解析し、フィードフォワード制御と運動の習熟との関係を調べた。左手で直接レバー
を押す場合は、先行反応の大きさと加速度波形の類似性との間には相関はみられなかったが、
左手に取り付けた棒でレバーを押す課題では、左右軸の動きに関して中程度の正の相関がみ
られた。以上の結果は、フィードフォワード制御と不慣れな運動の習熟との間に関係がある
可能性を示唆している。


