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Relationship between prediction-based motor control during
 loading task and motor learning during lever-pressing task

Tetsuo Ota , Mitsugu Yoneda* , Yui Kikuchi* , Takako Ohno-Shosaku*

Introduction
Motor performance depends on feedback and 

feedforward motor control systems, and can be improved 
through the learning process 1）. A better understanding of 
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Abstract
　Motor performance depends on feedback and feedforward motor control systems, and can 
be improved through learning processes. According to the “feedback error learning” model, 
the feedback of error signals improves “internal models” and refines the feedforward motor 
control. Thus, feedforward motor control plays a key role in improving motor performance.
　Feedforward motor control has been evaluated by measuring predictive components of 
movement in several tasks, including ball-catching, grasping, and weight-loading tasks. In 
the loading task, hand movement just before the start of loading （anticipatory response） is 
observed only when the timing of loading is predictable. Thus, this anticipatory response is 
assumed to reflect prediction-based feedforward motor control. On the other hand, a multi-
lever-pressing task has been used to evaluate motor performance and its improvement by 
analyzing accelerometer signals. Correlation coefficients of accelerometer signals have been 
reported to increase with the number of trials, indicating that this measure can be used as an 
index of motor learning.
　In the present study, we examined the relationship between feedforward motor control 
and motor learning in 18 healthy volunteers using anticipatory responses in a loading task 
and correlation coefficients of accelerometer signals in a three-lever-pressing task. For the 
loading task, we used the Space Interface Device for Artificial Reality （SPIDAR）. The 
subject was asked to hold the ball-shaped grip of SPIDAR. When the subject pressed the 
start button, a force of 4.9 N was applied to the grip. The subject was instructed to maintain 
the initial position during loading. The loading task was repeated 10 times, and the amplitude 
of upward deflection （anticipatory response） just before the start of loading was measured. 
In the three-lever-pressing task, the subject was instructed to press three levers as rapidly 
as possible using the left hand （hand）, the left hand loaded with a weight （weight）, and a 
stick attached to the left hand （stick）. The three-lever-pressing task was repeated 11 times 
in sequence under each condition （hand, weight, stick）. The hand movement was monitored 
using an accelerometer attached to the dorsal surface of the left hand. We found that 
correlation coefficients of accelerometer signals were lower in the stick condition than in the 
other two conditions, indicating that the stick variation of the task requires more learning. 
We also found that the amplitude of anticipatory response was correlated with the correlation 
coefficients of accelerometer signals only in case of the stick variation. These results provide 
evidence for a relationship between prediction-based feedforward motor control and motor 
learning.
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neural mechanisms underlying motor control and motor 
learning can have important clinical implications. One of 
the basal models for motor learning is the “feedback error 
learning” scheme. In this scheme, the feedback of error 
signal improves “internal models,” thereby refining the 
feedforward motor control. Thus, the feedforward motor 
control plays a key role in improving motor performance 2）. 

Feedforward motor control has been evaluated by 
measuring predictive components of movement. When 
catching a falling ball, for example, we predict the weight 
of the ball and the timing of contact, and generate motor 
command before the ball strikes the hand 3）. In a grasping 
task, we predict the timing of perturbation, and increase the 
finger force before self-generated perturbation 4, 5）. These 
predictive components of movements have been reported 
to be sensitive to cerebellar dysfunction 4, 6）, which is 
consistent with the hypothesis that the cerebellum plays a 
key role in feedforward motor control 7）.

In a previous study in our laboratory, the predictive 
component of hand movements （anticipatory responses） 
during a weight-loading task was compared between 
healthy volunteers and patients with schizophrenia 8）. It 
was found that the amplitude of anticipatory responses 
was significantly smaller in the patients than in the healthy 
controls, indicating that the feedforward motor control is 
impaired in schizophrenia. In that study, it was also found 
that there was great individual variability in the amplitude 
of anticipatory responses even in healthy controls. What is 
the functional significance of this individual variability? If 
the anticipatory response reflects the feedforward motor 
control and it is important in motor learning, it is possible 
that the person with larger anticipatory responses shows 
better performance on motor learning tasks. 

To test this possibility, we examined the relationship 
between anticipatory responses in the loading task and 
motor performance on a lever pressing task for 18 healthy 
volunteers. In the lever pressing task, the subject was 
instructed to press three levers as rapidly as possible, by 
using the left hand （hand）, the left hand loaded with weight 

（weight）, and a stick attached to the left hand （stick）. The 
three-lever pressing was repeated, and the hand movement 
was monitored by the accelerometer attached to the 
dorsal surface of the left hand. Correlation coefficients of 
accelerometer signals, which have been reported to increase 
with increased number of trials 9）, were used as an index of 
motor learning. We found that the correlation coefficients 

of accelerometer signals were lower in the stick condition 
than in the other two conditions, and were correlated with 
the amplitude of anticipatory responses in the loading 
task. These results suggest that the individual difference 
of prediction-based feedforward motor control can explain 
partially the individual difference of motor learning. 

Methods
1. Subjects
This study was approved by the Medical Ethics 

Committee of Kanazawa University （No. 740） and was 
performed according to the Declaration of Helsinki. 
Informed consent was obtained from 18 healthy young 
volunteers （20-22 years）. The subjects were all right-
handed female students in the Occupational Therapy 
Course of Kanazawa University. 

2. Predictable loading task
Figure 1 shows experimental set-up and procedures 

used for loading task. To apply a downward force to the 
left hand （loading） and monitor the vertical deflection of 
the hand, we used the Space Interface Device for Artificial 
Reality （SPIDAR）10）, which consists of eight motors and 
strings attached to the grip （Fig. 1A）. The subject was 
comfortably seated with the left elbow on an arm rest, 
and asked to hold a ball-shaped grip of SPIDAR near the 
center of the apparatus. When the subject pressed a start 
button, a force of 4.9 N was applied to the grip （equivalent 
to loading of 500 g weight） （Fig. 1B）. When the subject 
pressed the button again, the force was released. The 
subject was instructed to keep the initial position during 
loading. The vertical movement of the grip was displayed 
on a computer screen （Fig. 1B, ball）, and the vertical 
deflection from the initial position was recorded by 
SPIDAR. The loading task was repeated 10 times, and the 
data acquired between the sixth and the tenth loading 
trials were used for analysis 8）. 

3. Lever pressing
Figure 2 shows experimental set-up and procedures 

used for lever pressing. The subject was seated in front 
of three levers （A-C）. The left （A）, center （B） and right 

（C） levers were positioned as shown in Figure 2A, and 
the B-lever was set 17.5 cm higher than the other two 
levers. The subject was instructed to press three levers 
in the order of A-B-C as rapidly as possible, by using 
the left hand （hand）, the left hand loaded with weight 

（weight）, and a stick attached to the left hand （stick） 
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（Fig. 2B）. The three-lever pressing was repeated 11 
times in sequence under each condition （hand, weight, 
or stick）, and the data acquired between the first and 
the tenth trials were used for analysis. We expected that 
the weight would affect vertical movements of the hand, 
whereas using the stick would disturb movements in all 
directions. The weight 500 g in the weight condition, the 
extension length 20 cm in the stick condition （Fig. 2B）, 
and the trial number 11 were decided based on the results 
of preliminary experiments. All subjects performed the 
task under these three conditions in the order of hand, 
weight, and stick. The lever signal was recorded by Vital 

Recorder II （Kissei Comtec Co., Ltd., Matsumoto, Japan） 
installed in a personal computer. Hand movement of 
the subject was monitored by an accelerometer （WAA-
006, ATR-Promotions. Inc., Kyoto, Japan） attached to the 
dorsal surface of the left hand. Accelerometer signal was 
recorded at a sampling frequency of 200 Hz by Accel Real 
Time 2 （ATR-Promotions. Inc., Kyoto, Japan）. 

4. Data analysis
Results are presented as means ± SD or SEM in 

figures as noted in figure legends. Statistical significance 
was assessed by one-way analysis of variance （ANOVA）, 
two-way ANOVA, and Student's t-test with the Bonferroni 
correction. Similarity of two accelerometer signals was 
evaluated by using Pearson's correlation coefficient （Table 
1）. The relationship between two different variables was 
assessed by using Pearson's correlation coefficient （Fig. 
9） or Spearman’s correlation coefficient （Fig. 10, Table 
2, Table 3）. P values less than 0.05 were considered 
statistically significant. Single and double asterisks in 
figures indicate P < 0.05 and P < 0.01, respectively. The P 
value, effect size （d）, and power （1−β） were obtained 
with Statcel 4 software. 

Results
1. Predictable loading task 
Figure 3 shows representative data obtained from 

one person in loading task. Five traces （Fig. 3A）, each 
showing vertical hand movement during a loading 
trial, were averaged （Fig. 3B）, and the amplitudes of 
downward deflection during loading （Fig. 3B, P-down） 
and upward deflection just before the start of loading 

（Fig. 3C, P-up） were measured. P-down and P-up reflect 
feedback and feedforward motor control, respectively. We 
also measured a rise time from 1/2 peak to peak （Fig. 
3D, t 1/2）. Figure 4 shows individual and averaged data for 
P-down, P-up, and t1/2 obtained from 18 participants. The 
P-down ranged from 4.6 to 15.9 mm. The P-up was highly 
variable, ranging from 0.27 to 2.19 mm. The t 1/2 was less 
variable, and ranged from 21 to 62 ms except for one 
person.

2. Lever pressing
Figure 5 shows an example of the data for accelerometer 

signal of one axis （vertical） obtained from one person in 
three-lever pressing trials under one condition （“hand”）. 
Using the lever signal, we picked up the accelerometer 
signal from the time of A-lever press to the time of C-lever 

Figure 1．�Experimental set-up for loading task. A: A photograph 
of SPIDAR, which consists of eight motors and strings 
attached to a ball-shaped grip. B: Loading starts when 
a start button is pressed by the subject. The vertical 
movement of the grip is displayed on a computer 
screen.

Figure 2．�Experimental set-up for lever pressing task. A: A 
photograph of three levers （A, B, C）. The B-lever is 
set 17.5 cm higher than the other two levers. B: The 
subject was asked to press three levers in the order of 
A-B-C using the left hand （hand）, the left hand loaded 
with weight （weight）, and a stick attached to the left 
hand （stick）. 

y

x
z
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Figure 3．�Representative data obtained from one person in loading task. A: Five traces of vertical hand movements obtained from 
repeated loading task （from the sixth to tenth trials）. B: The averaged hand movement obtained from five traces shown in A. 
P-down is the difference between the initial position on the vertical axis 200 ms before the start of loading and the peak of 
downward deflection. C: A part of the trace shown in B is vertically expanded. P-up is the difference between the initial position 
on the vertical axis 200 ms before the start of loading and the peak of upward deflection. D: The amplitude of P-up was 
normalized, and a rise time from 1/2 peak to peak （t1/2） was measured. 

Figure 5．�An example of the data for accelerometer signal of one axis （z） obtained from one person in three-lever pressing trials under 
one condition （“hand”）. A: Lever signal （upper） and accelerometer signal （bottom） obtained during one trial of three-lever 
pressing. B: Ten raw traces of accelerometer signal obtained from ten trials. C: Ten resampled traces.

Figure 4．�Individual and averaged data for P-down （A）, P-up （B）, and t1/2 （C） obtained from 18 participants. Vertical bars mean SD. The 
data show that the amplitude of P-up was highly variable.
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release （Fig. 5A）. Ten raw traces obtained from ten trials 
（Fig. 5B） were resampled to yield the same length of data 
points （150 points） （Fig. 5C）. Correlation coefficients （CC） 
between two resampled traces were then calculated for all 
combinations, producing 45 CC values （Table 1）. CC（i-1） 
and CC（i-2） were used to designate the CC between one 
trace and the next trace （Table 1, dark gray）, and the CC 
between one trace and the trace after next （Table 1, light 
gray）, respectively. CC, CC（i-1）, and CC（i-2） were used to 
designate the mean values of all 45 CC values, 9 CC（i-1） 
values, and 8 CC（i-2） values, respectively （Table 1）.

Figure 6 shows averaged time courses of the change 
in CC（i-1） for accelerometer signals of three axes （x, y, 
z） obtained from 18 participants under three conditions 

（hand, weight, stick）. Accelerometer signals of x, y, 
and z axes reflect the hand movements in left-right 
horizontal axis, front-back horizontal axis, and vertical axis, 
respectively. In the hand condition, CC（i-1） increased 
with increased number of trials in all three axes. In the 
weight condition, CC（i-1） was high at the beginning 
and remained relatively stable with slight decrease in 
the end. In the stick condition, CC（i-1） was low at the 
beginning, especially for x axis, increased during several 
trials, and then decreased slightly. For the x axis, a two-
way ANOVA （time×condition） showed no significant 
interaction effect of time and condition （P = 0.81）, and 
significant main effects of both time （P < 0.01） and 
condition （P < 0.01） （Fig. 6A）. For the y axis, a two-way 
ANOVA showed no significant interaction effect of time 
and condition （P = 0.09）, and a significant main effect of 
condition （P < 0.01）, but not time （P = 0.10） （Fig. 6B）. 
For the z axis, a two-way ANOVA showed a significant 
interaction effect of time and condition （P < 0.05） （Fig. 
6C）.

Figure 7 shows individual and averaged data for CC. 

A one-way ANOVA showed statistically significant 
difference between conditions for x and z axes （P < 0.01 
for x, P < 0.05 for z）. The CC in x axis was higher in the 
weight condition （P < 0.01, d = 0.76, 1−β= 0.78）, and 
lower in the stick condition （P < 0.01, d = 0.72, 1−β

Table 1. An example of the data for correlation coefficients of accelerometer signals.

Figure 6．�Averaged time courses of the change in CC（i-1） 
obtained from 18 participants. Mean CC（i-1） values 
for x （A）, y （B）, and z axis （C） were plotted against 
the paired trial numbers obtained in the hand （filled 
circles）, weight （gray triangles）, and stick （open 
squares） variations of the task. Vertical bars mean 
SEM.
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Figure 7．�Individual （left） and averaged （right） data for CC obtained from 18 participants. The CC values for x （A）, y （B）, and z axis （C） 
were obtained in the hand （dark gray）, weight （light gray）, and stick （white） variations of lever pressing task. The results from 
the same person are connected by lines. Vertical bars mean SEM.

Figure 8．�Individual （left） and averaged （right） data for the time tA-C obtained from 18 participants under the hand （dark gray）, weight （light 
gray）, and stick condition （white）. The results from the same person are connected by lines. Vertical bars mean SEM.
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= 0.74） than in the hand condition. The difference in CC 
between weight and stick conditions was also significant 

（P < 0.01, d = 0.89, 1−β= 0.90） （Fig. 7A）. The CC in z 
axis was higher in the weight condition （P < 0.05, d = 
0.64, 1−β= 0.63）, and lower in the stick condition （P < 
0.01, d = 0.66, 1−β= 0.66） than in the hand condition. The 
difference in CC between weight and stick conditions was 
also significant （P < 0.01, d = 0.85, 1−β= 0.85） （Fig. 7C）. 
These results indicate that subjects were not familiar with 
the stick variation of the task, and needed to adjust the 
hand movement, especially their left-right movement.

Figure 8 shows individual and averaged data for tA-C, 
which is the time between the start of A-lever press and the 
time of C-lever release. Each symbol represents the value of 
tA-C averaged from 10 trials obtained with each subject in 
each condition （hand, weight, stick）. A one-way ANOVA 

showed statistically significant difference between 
conditions （P < 0.01）. The time tA-C was comparable in 
the hand and weight conditions, but significantly longer 
in the stick condition （P < 0.01, d = 0.80, 1−β= 0.83 vs 
hand, P < 0.01, d = 0.85, 1−β= 0.87 vs weight）. These 
data confirmed that pressing levers with the stick was 
difficult for subjects, compared with the hand and weight 
variations of the task.

We then examined the relationship between tA-C and 
CC （Table 2）. In the hand and weight conditions, there 
was no correlation between tA-C and CC（rs < 0.4）. In 
the stick condition, a mild correlation （rs= 0.46）, which 
was statistically insignificant （P = 0.059, 1−β= 0.52）, 
was observed between tA-C and CC for z axis. We also 
examined the relationship between CC（i-1） and the 
change of tA-C （Fig. 9）. Negative correlations （r < -0.4, P < 

x y z

Figure 9．�Relationships between CC（i-1） values and the corresponding changes of tA-C for three axes in three variations of lever pressing 
task. Each point represents the data obtained from two consecutive trials in the same person. One graph contains 162 points （9 
CC（i-1） × 18 participants）.

Table 2. Spearman correlation coefficients （rs） between tA-C and CC for three 
axes in three conditions. 
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0.01, 1−β= 1.00） were seen for all three axes in all three 
variations, indicating that higher CC（i-1） values were 
obtained when tA-C did not fluctuate from trial to trial. 

3. Relationship between P-up and CC
Next we examined the relationships between the data 

obtained from loading task and the data obtained from 
lever pressing task. We used P-down, P-up, and t1/2 from 
loading task, and CC, CC（i-1）, CC（i-2）, and tA-C from 
lever pressing task. The correlation coefficients （rs） of all 
combinations are shown in Table 3 and the values larger 

than 0.4 are highlighted. Correlations （rs > 0.4） between 
P-up and CC values were observed only in the stick 
condition, and the correlated CC values were mostly seen 
in x axis.

Figure 10 shows the relationship between P-up in the 
loading task and CC（i-2） for x axis in the stick version 
of lever pressing task. The values of rs and P were 0.488 
and 0.044 （1−β= 0.61）, respectively, indicating that 
this correlation was statistically significant. The other 

correlations were not statistically significant.

Discussion 
In the present study on healthy volunteers, we examined 

the relationship between prediction-based feedforward 
motor control and motor learning. We used anticipatory 
responses （P-up） in predictable loading task as an index 
of prediction-based feedforward motor control 8）, and 
correlation coefficients between two accelerometer signals 

（CC） in lever pressing task as an index of motor learning 9）. 
The lever pressing task was conducted in three conditions 

（hand, weight, and stick）. We found that CC was lower 
in the stick condition than in the other two, indicating 
that the hand movement in the stick condition was more 
fluctuated, namely, less controlled. We found also that 
the amplitude of anticipatory responses was correlated 
with CC only in the stick condition. These results provide 
evidence that prediction-based feedforward motor control 
is crucial for better performance in difficult motor task.

We prepared the weight variation in order to make 
the task harder. Thus, we expected that CC values in the 
weight condition should be lower than those in the hand 
condition. However, opposite results were obtained. The 
CC in the weight condition was even higher than that in 
the hand condition. The better performance in the weight 
condition might be caused by the order of variations during 
experiments. All participants conducted the three variations 
in the fixed hand-weight-stick order. Thus, the participants 
might be already accustomed to the lever pressing task in 
the weight condition. The time courses of the change in CC

（i-1） support this possibility. In the hand condition, CC（i-1） 
was low at the beginning and increased gradually. In the 

Figure 10．�The relationship between P-up in loading task and  
CC（i-2） for x axis in the stick variation of lever 
pressing task. Table 3. �Spearman correlation coefficients （rs） between the data 

from loading task （P-down, P-up, t1/2） and the data from 
lever pressing task （CC, CC（i-1）, CC（i-2）, tA-C）.
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weight condition, CC（i-1） was high at the beginning and 
remained almost stable. When compared at the end of each 
variation of the task, CC（i-1） values were comparable 
between the hand and weight variations, indicating that in 
terms of difficulty these variations are similar. 

Our CC data indicated that the stick variation is more 
difficult than the weight variation. In the stick condition, 
failure of lever pressing was seen occasionally, and 
decreased the CC values. Considering our activities of 
daily living, this is not surprising. We have had many 
opportunities to carry heavy objects, and probably have 
already created the internal model for it. On the other 
hand, using a stick as a tool was relatively rare. When 
we use a tool to reach for a distant object, specific neural 
networks holding "body schema" change as if our own 
hand is elongated to the tip of the tool 11）. The training 
in the stick condition （11 trials） is not enough to change 
the networks. The number of trials required for motor 
learning depends on the difficulty or the type of tasks. In 
the case of cerebellum-dependent motor learning such as 
prism adaptation, the performance was rapidly improved 
and became constant after about 20 trials 12, 13）. Thus, the 
performance on the stick variation of lever-pressing task 
might be improved more if we set the number of trials to 
20 instead of 11. However, we preferred to use 11 trials, 
because our preliminary experiments showed that more 
trials induced fatigue, especially in the weight condition. 
In addition to the CC values, our tA-C data also showed 
the difficulty of the stick condition. The time tA-C was 
significantly longer in the stick condition than in the hand 
and weight conditions. The longer tA-C can be explained 
if visual feedback is used more frequently in the stick 
condition. Proprioceptive information is important for 
fine movement, and expected to be used for monitoring 
the hand position in the lever-pressing task. In the stick 
condition, however, proprioceptive information is not 
enough, or even impossible, for monitoring the position of 
the stick tip. Visual feedback would be used to adjust the 
position of the stick tip during the stick variation of lever-
pressing task. 

Correlations with rs values larger than 0.4 between 
P-up and CC values were observed only in the stick 
condition. Since P-up and CC values reflect prediction-
based motor control and motor learning, respectively, our 
data suggest that prediction-based motor control is more 
important for better performance in difficult motor task. 

Interestingly, CC values were not correlated with P-down 
in any conditions （Table 3）. If P-down depends solely 
on feedback motor control, our data might indicate that 
the feedback control is not as critical as the feedforward 
control in motor learning. However, the amplitude of 
P-down is influenced also by other factors such as stiffness. 
Thus, interpretation of the results is difficult.

A gradual decrease in motor learning occurs with 
aging, and is related to brain structural, functional, and 
biochemical changes 14）. The age-related changes in motor 
learning have been linked to decreased volume in the 
dorsolateral prefrontal cortex （DLPFC）, striatum （caudate 
and putamen）, cerebellum, and hippocampus 15）, decreased 
integrity in the caudate-DLPFC tract 16）, and disruptions 
in the dopaminergic system 17, 18）. Although these changes 
are associated with learning deficits in older adults, the 
specific influence of each of the changes on motor learning 
is not fully understood 19, 20）. 

Age-related changes in feedforward motor control 
have also been reported, including decreased anticipation 
in rapid self-paced movement 21）, decreased feedforward 
adjustments of multi-finger synergies 22）, decreased 
ability to use feedforward adjustments to self-triggered 
perturbations 23）, decreased reliance on the feedforward 
control 24）, and decreased amplitude of anticipatory 
responses during predictable loading task 8）. The above-
mentioned studies suggest that elderly people use different 
strategies for motor control. Although aging is associated 
with changes in motor learning and feedforward motor 
control, the relationship between them has not been fully 
elucidated. 

Similarly, changes in motor learning and feedforward 
motor control have been reported in the patients with 
various diseases. A previous study in our laboratory using 
the lever pressing task （hand condition） reported that CC 
values were lower in the patients with schizophrenia than 
in healthy controls 25）. Another study in our laboratory 
using the loading task showed that the amplitude of P-up 
was smaller in the patients with schizophrenia than in age-
matched healthy controls 8）. 

Limitations of this study and future challenges
In the present study, we examined the relationship 

between prediction-based feedforward motor control 
and motor learning using only healthy young volunteers. 
Further studies are needed to determine if our findings 
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obtained from healthy young volunteers can apply to other 
populations, including healthy elderly people and patients 
with various neurological and psychiatric disorders. 

Conclusion
In the present study on healthy young volunteers, 

we examined the relationship between prediction-based 
feedforward motor control and motor learning. We used 
the amplitude of anticipatory responses （P-up） during 
loading task as an index of prediction-based motor control, 
and CC values of accelerometer signals during lever 

pressing task as an index of motor learning. Our data 
show that P-up is correlated with the CC values only 
in a difficult variation （stick） of the lever pressing task, 
providing evidence that prediction-based motor control is 
crucial for better performance in difficult motor task.
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重り負荷課題の予測に基づく運動制御とレバー押し課題の運動学習の関係

太田　哲生，米田　　貢 *，菊池　ゆひ *，少作　隆子 *

要　　　旨
　運動をなめらかに行うためには、フィードバックおよびフィードフォワードの運動制御が
必要である。運動学習と運動制御の仕組みを説明する現在の仮説は、誤差情報をフィードバッ
クすることにより内部モデルを修正し、フィードフォワード制御の精度を上げる、というも
のであり、運動の上達においてフィードフォワード制御は重要な要素と考えられている。
　フィードフォワード制御を評価する課題の１つとして、重りの負荷課題がある。予測が可
能な条件で見られる、負荷の直前の手の動き（先行反応）は、予測に基づくフィードフォワー
ド制御を反映するものと考えられている。一方、マルチレバー押し課題は、レバーを押す上
肢の動きを加速度計で計測することで、上肢の運動制御を客観的に評価できる課題である。
また、レバー押しを繰り返した時の加速度波形の類似性（波形間の相関係数）は、動作の習
熟に伴い高くなることが報告されており、動作の習熟度を評価する指標として用いることが
できる。本研究では、健常者 18 名を対象とし、重りの負荷課題と３レバー押し課題の手の
動きを解析し、フィードフォワード制御と運動の習熟との関係を調べた。左手で直接レバー
を押す場合は、先行反応の大きさと加速度波形の類似性との間には相関はみられなかったが、
左手に取り付けた棒でレバーを押す課題では、左右軸の動きに関して中程度の正の相関がみ
られた。以上の結果は、フィードフォワード制御と不慣れな運動の習熟との間に関係がある
可能性を示唆している。


