A DISSERTATION
 SUBMITED TO THE DIVITION OF PHARMACEUTICAL SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF DOCTORATE IN PHILOSOPHY

by
MD. RAFIQUL ISLAM

REGISTRATION NO.: 1429012012
ADVISOR: DR. HIROHITO TSUBOI

GRADUATE SCHOOL OF MEDICAL SCIENCE \& TECHNOLOGY KANAZAWA UNIVERSITY KAKUMA, KANAZAWA, JAPAN

JULY, 2017

Ph.D. THESIS

by
MD. RAFIQUL ISLAM

Dissertation
Investigations of the quality medicines distributed in Myanmar and Cambodia, through different surveys

Graduate School of Medical Science \& Technology Kanazawa University
Major Subject: Pharmaceutical Science

School Registration No.: 142912012
Name: Md. Rafiqul Islam

Chief Advisor: Dr. Hirohito Tsuboi

Abstract

Falsified or substandard medicines can present a health hazard to us. We have been attempting to clarify how often we might encounter such medicines and also to identify the specific features of defects to find clues for improvement. Despite of our results, much remains to be studied. Therefore, we reviewed the quality of medicines for lifestyle diseases in Cambodia for three years, and the quality of antimicrobial medicines in Cambodia for four years. In addition, we surveyed counterfeit or substandard medicines in Yangon, Myanmar survey in 2014 for collecting more data.

We conducted a four-year and three-year study to evaluate the quality of selected antimicrobials and lifesaving medicines and to examine the prevalence of falsified or substandard antimicrobial and lifesaving medicines in Cambodia, aiming to promote efforts to improve the quality of medicines. We collected samples of clarithromycin, sulfamethoxazole/trimethoprim, ceftriaxone, cefuroxime, levofloxacin, gentamicin, ciprofloxacin, fluconazole, nalidixic acid, ofloxacin, phenoxymethyl penicillin and roxithromycin medicines as well as cimetidine, amlodipine, esomeprazole, rabeprazole, glibenclamide and metformin from pharmacies, Depot-A, Depot-B, wholesalers and non-licenced drug outlets in five provinces (rural areas) and Phnom Penh (an urban area), during 2011 to 2014 (antimicrobial) and 2011 to 2013 (lifesaving). The authenticity of the collected medicines was investigated, and the medicines were

analyzed to determine whether they met the appropriate pharmacopoeial standards. We collected 647 samples, produced by 179 manufacturers, from 353 outlets. Only 51 (15\%) of the outlets were air-conditioned. We found different-coloured packaging of the same brand (different lots) of products from some manufacturers. The insert information of one sample was different from the package information. Twelve (1.9\%) samples were not officially registered with DDF. In authenticity investigation, 43 of 179 manufacturers replied and confirmed the authenticity of 154 samples (out of 647); also, 18 out of 54 MRAs replied to enquiries about whether products were licensed or not (one was not). Among the samples, 84 (16.5\%), 58 (12.5\%) and 47 (8.1\%) failed in dissolution, content uniformity and quality tests, respectively. Samples of cefuroxime and roxithromycin that failed were significantly cheaper than those that passed. Poorquality antimicrobial medicines were found in Cambodian markets, though no falsified medicines were detected. Manufacturers should be encouraged to improve GMP implementation. Storage conditions in the distribution chain may also need to be improved. Continuous efforts by MRAs are needed to ensure that medicines are properly licensed.

In the case of three-year survey, we found 342 samples (223 from Phnom Penh) were collected from 263 outlets; among them, 32 (9.4\%) had no inserts, and 14 (4.1\%) were not registered with DDF. 38 (11.1\%) were domestically produced. The containers
of one amlodipine and three cimetidine samples were different from those of authentic samples. Nonstandard inserts were found in two samples (amlodipine and metformin). Only 21/81 manufacturers and 16/35 MRAs replied during authenticity investigation. In quality evaluation, $38(11.1 \%), 52(15.2 \%)$ and $48(14 \%)$ samples failed dissolution, content uniformity and quantity tests, respectively. The failure rate in quality tests was significantly associated with the results of visual analysis of samples. Poor-quality medicines were prevalent in Cambodia in 2011-2013. Further surveys should be conducted to monitor the situation. Measures are desirable to improve the quality of domestically manufactured products.

We also investigate the current situation of substandard or counterfeit medicines in Myanmar. Samples of oral medicines, cefuroxime axetil (CXM), donepezil hydrochloride (DN) and omeprazole (OM), and injections, ceftriaxone sodium (CTRX) and gentamicin sulfate (GM), were collected from pharmacies, hospitals and wholesalers in Yangon, Myanmar in 2014. Authenticity and registration were verified. Quality tests of samples were performed according to the pharmacopeia indicated on the label. There were 221 (94%) foreign medicines among 235 samples collected from 75 locations. Five samples of GM and 1DN sample were not registered with Myanmar Food and Drug Administration (MFDA). In quality analysis, 36 samples out of 177 (20.3\%) did not pass quantity tests, 27 samples out of 176 (15.3\%) did not pass content
uniformity tests, and 23 out of 128 samples (18.0\%) did not pass dissolution tests. Three of the unregistered GM samples failed in both identification and microbial assay tests. Counterfeit GM is being sold in Yangon. Also, the quality of OM is a matter of concern, and requires follow-up. Poor-quality medicines were frequently found among the products of a few manufacturers. Regular surveys to monitor counterfeit and substandard medicines in Myanmar are recommended.

We found that poor-quality medicines are the urgent problems in Cambodia and Myanmar, even though the medicines were not counterfeit. Serious dissolution failure is the dominant problem in these countries. It is necessary to collect more information of such medicines, and to analyze the characteristics of the data for preventing health hazards caused by falsified or substandard medicines.

Acknowledgements

I wish to express my indebtedness, sincere appreciation and deepest sense of gratitude to my respected supervisor Dr. Kazuko Kimura, Professor, Institute of Medical, Pharmaceutical \& Health Sciences, Kanazawa University, Japan for her highly valued supervision, solemn instruction, valuable suggestions and constant encouragement during the entire period of this research work and in the preparation of this dissertation.

I accord my heartily reverence to Dr. Hirohito Tsuboi, Associate Professor, Institute of Medical, Pharmaceutical \& Health Sciences, Kanazawa University, Japan for his whole-hearted co-operation, encouragement and enthusiastic suggestion throughout my research work.

I am very much grateful to Dr. Naoko Yoshida, Assistant Professor, Institute of Medical, Pharmaceutical \& Health Sciences, Kanazawa University, Japan for her cordial help with suggestion in my experiment.

I am very much grateful to Dr. Nobuko Tuno, Associate Professor, Department of Ecology, Kanazawa University, Japan for using her laboratory equipment.

I am very much thankful to Dr. Tsv Yashi and others Myanmar FDA staff for their great support during our survey.

I am very much beholden to Heng Bun Kiet and Eav Dararath DDF in Cambodia for their excellent support and providing the idea about other rural in Cambodia

In fine, all praises go to Almighty Allah, the omniscient and the most merciful.

Dedicated to

the memories of

2011 Tōhoku earthquake and tsunami victims

Table of Content

Abstract 7
Acknowledgement 11
Table of content 15
General Introduction 1
Chapter One: An investigation into the quality of medicines in Yangon, Myanmar 2
1.1 Introduction 3
1.2 Aim of This Work 4
1.3 Sample Collection 5
1.3.1 Observation Analysis 6
1.3.2 Sample Authenticity Investigation 6
1.3.3 Samples for Chemically Analysis 7
1.3.4 Samples for Biological Analysis. 25
1.4 Results 37
1.4.1 Sample collection 37
1.4.2 Drug outlets and registration status in Myanmar FDA 37
1.4.3 Observations 39
1.4.4 Authenticity 41
1.4.5 Quality evaluate of samples 44
1.4.6 Factors influencing the outcome of the quality test 52
1.4.7 Effect of air-conditioning 52
1.4.8 To observe again of the unacceptable samples by using new judge which is wider than original (pharmacopeial criteria) 53
1.4.9 Result of fluorescence spectrophotometer analysis 55
1.5 Discussion 59
1.6 Conclusion 63
Chapter two Four-year survey of the quality of antimicrobials in Cambodia 64
2.1 Introduction 65
2.2 Objective 65
2.3 Materials and Methods 66
2.3.1 Selection of sampling areas 66
2.3.2 Samples collected 66
2.3.3 Observation 66
2.3.4 Authenticity 67
2.3.5 Sample chemically analysis 67
2.3.6 Statistical analysis 69
2.4 Results 69
2.4.1 Drug outlets 69
2.4.2 Observations 72
2.4.3 Authenticity 74
2.4.4 Quality investigation of samples 74
2.5 Discussion 79
2.6 Conclusion 81
Chapter three Quality survey of selected medicines in Cambodia, 2011 2013 82
3.1 Introduction 83
3.2 Methods 84
3.2.1 Sample collection 84
3.2.2 Observation 84
3.2.3 Authenticity 85
3.2.4 Quality analysis 85
3.2.5 Statistical analysis 85
3.3 Results 88
3.3.1 Drug Outlets 88
3.3.2 Observations 89
3.3.3 Authenticity 89
3.3.4 Quality evaluation 92
3.4 Discussion 94
3.5 Conclusion 95
Chapter four Comparatively study between Myanmar and Cambodia. 96
Comparatively study between two-countries 97
Conclusion of these surveys 99
References 101
Annex 1.1 111
Annex 1.2 112
Annex 1.3 113
Annex 1.4. 116
Annex 1.5 117
Annex 1.6 119
Annex 1.7 121
Annex 1.8 140
Annex 1.9 154
Annex 2.1 169

List of Tables

Table 1.1 Preparation of the different concentration of endotoxin solution 28
Table 1.2 Outline of samples collection. 38
Table 1.3a Reply from manufacturers with their number of samples 42
Table 1.3b Reply from manufacturers with their number of samples 43
Table 1.4 Reply from MRAs. 44
Table 1.5 Summary of quality test of samples 46
Table 1.6 Association between price and medical quality (CXM, GM, OM and CTRX) 52
Table 1.7 Association between air conditioning and temperature /humidity 52
Table 1.8 Showing of the comparisons of the pharmacopeial quality test between original and newly considered value 53
Table 1.9 are showing the comparisons between original all and new all tests 53
Table 1.10 Compare the results between pharmacopeial guideline and considered new judge 55
Table 2.1 HPLC conditions for pharmacopoeial tests 68
Table 2.2 Outline of sample collection in Cambodia. 70
Table 2.3 Number of sample collected which were produced domestically (Cambodia) foreign samples 71
Table 2.4 Significance association among the drug outlets in quantity test. 72
Table 2.5 Number of abnormal samples were found during observation analysis 73
Table 2.6 Number of unregistered samples in DDF 73
Table 2.7 MRAs and manufacturers replied during the authenticity investigation 75
Table 2.8 Summary of quality test of samples 76
Table 2.9 Comparison between price and result of the quality test in samples 77
Table 2.10 Factors association with quality test found in roxithromycin samples which were originated from Cambodia and other countries 78
Table 3.1 HPLC conditions for pharmacopoeial tests 87
Table 3.2 Number of samples collected from different outlets 88
Table 3.3 Samples without registration or insert 91
Table 3.4 Summary of quality test of samples 92
Table 3.5 Statistical analysis 93

List of Figures and Illustrations

Figure 1.1 Chromatogram of cefuroxime standard. 9
Figure 1.2 Linearity of cefuroxime solution, using acetanilide as an internal standard 10
Figure 1.3 Outline of endotoxin gel test 29
Figure 1.4 Outline of endotoxin test in colorimetric method 33
Figure 1.5 outline of sterility test 36
Figure 1.6 Number of Manufacturers found in the program 40
Figure 1.7 Number of samples collected from that origins. 40
Figure 1.8a Spelling error in CXM samples A-030, 057, 068, 079, 085, 099, B-023, 047, 067, 093, 111 41
Figure 1.8b Spelling error in GM A-020 \& A-077. 41
Figure 1.9 Low volume with different colour (yellow) 41
Figure 1.10 Comparison between pass and fail samples from different countries 47
Figure 1.11 Comparison between CXM pass and fail samples from different countries 48
Figure 1.12 Comparison between OM pass and fail samples from different countries 48
Figure 1.13 Comparison between GM pass and fail samples from different countries 49
Figure 1.14 Comparison between CTRX pass and fail samples from different countries 49
Figure 1.15 Comparison between DN pass and fail samples from different countries 50
Figure 1.16 Chromatogram of GM standard 50
Figure 1.17 Chromatogram of counterfeit GM samples 50
Figure 1.18 Counterfeit gentamicin samples 51
Figure 1.19 Zone of inhibition (microbial assay) are showing between standard concentration and counterfeit GM samples 51
Figure 1.20 Image of fluorescence spectrophotometer of counterfeit samples A-020 (China) 55
Figure 1.21 Image of fluorescence spectrophotometer of counterfeit sample A-069 (China). 55
Figure 1.22 Image of fluorescence spectrophotometer of counterfeit sample A-077 (China) 56
Figure 1.23 Image of fluorescence spectrophotometer of pass sample B-09 (Bangladesh) 56
Figure 1.24 Image of fluorescence spectrophotometer of pass sample of B-072 but colour change white to yellow before expiration (India) 57
Figure 1.25 Image of fluorescence spectrophotometer of pass sample A-024 (Myanmar) 57
Figure 1.26 Image of fluorescence spectrophotometer of pass sample A-040 (Taiwan) 58
Figure 1.27 Image of fluorescence spectrophotometer of pass sample A-090 (Vietnam) 58
Figure 3.1a Different boxes or containers of cimetidine 90
Figure 3.1b Different boxes of amlodipine 90
Figure 3.1c Different tablets of amlodipine 91

General Introduction:

Medicine is one of the most essential elements especially for human being to survive in the in the world. People used different types of plants for their treatments before 5000 years [1] however, now in modern world patients are using biotech medicines like as insulin, interferon, interleukin and so on [2]. Sir Alexander Fleming discovered the benzylpenicillin (Penicillin G) from the mould Penicillium_notatum in 1928 [3], since then patients in the world wants to use particular elements (active ingredient) for their treatments. From the historical reason and requirement in the world manufacturers are producing lot of medicines and supplying to the markets. Some manufacturers are taking a chance and preparing counterfeit or falsified or poor quality medicines and supply to the markets. These types of medicines are accessed in both developed and developing countries [4-6]. One investigation was occurred and found around 1% and 10% in developed and developing countries, respectively [7]. People are suffering and even died due to effect of counterfeit / falsified / substandard / poor quality medicines which evidences were already established in the world [8-10]. Perception from the above of story the governments of Myanmar and Cambodian were started more than one collaborative projects with Kanazawa University investigated to observe their own situations and evaluate the quality of selected medicines through different surveys.

Chapter One:
An investigation into the quality of medicines in Yangon, Myanmar survey in 2014

1.1 Introduction

Medicines are the most essential elements especially for human beings for surviving their lives in this world. It is almost impossible to imagine the remedy of human body from various diseases without taking good quality of medicines. Deliberately, many pharmaceuticals have been producing counterfeit medicines and supply to the patients as well as they are taking a chance to earn more money by producing such detrimental counterfeit medicines and even extending their imposture day by day. This is also happening in both developed and developing countries [4-6]. In this vast sector it is very difficult to optimize the counterfeit medicines. Depending on geographic region the range of counterfeit drugs supply to the developed countries as well as the rising countries are about 1% and 10%, respectively [7]. Another investigation from the World Health Organization (WHO) about 20\%-90\% falsified medicines were found in several Africa countries [11, 12]. The incidence due to counterfeit medicines were estimated in Cambodia with the range of 4\%-90\% from 2001 to 2010 [13-16]. Furthermore, owing to fake medicines around 200 children were died in Bangladesh in 1990-1993 ingesting counterfeit paracetamol that contained diethylene glycol [17].

In Myanmar, a massive investigation occurred by World Health Organization (WHO) in 1999 and caught counterfeit medicines [18]. It is very difficult to identify such
counterfeit medicines however it is also possible to buy good quality medicines. The problem is that the sellers demand extra money for good quality medicines which is illegal and unethical. For this reason, an emergency cases, people suffer or may die for the prevalence of counterfeit drugs [17, 19]. In most cases the patients from developing counties do not want or cannot fulfill antibiotic courses due to their economic crisis. Thus the misuses or inadequate doses of antibiotics may guide them to the advance of resistance [20] while support the extra food demands of the rising population of the world antibiotics are using in husbandry sectors specially in poultry industry as a growth promoter and transmitted to the human that is occurred resistance by several types of microorganisms particularly in bacteria [21, 22].

Counterfeiting or poor quality antibiotic is Worldwide spreading that is one of the biggest and vital factors and is making sub-inhibitory concentrations naturally and enhance the selection of resistant strains from various types of microorganisms [23, 24].

1.2 Aim of This Work

People in low income countries are suffering in counterfeit or poor quality medicines in their daily life. People in this type of country are almost depending on foreign country medicines. In 1999, a massive investigation occurred by WHO to evaluate the quality of medicines and found counterfeit medicines in Myanmar. Since then there
were no systematic survey conducted on medicines in Myanmar. We want to investigate the quality of medicines which associate outlet condition, outlet types, price of medicine, type of medicines (domestically produced or not) and medicines entered in to Myanmar that is needed to fulfil Myanmar government policies. Finally, we suggested to the government of Myanmar how to remove counterfeit or poor quality medicines from Myanmar markets.

1.3 Sample Collection

From the suggestions of Myanmar FDA (MFDA), we selected a populated region as well as from the MFDA essential drugs list, we selected five types of medicines. Samples of oral medicines, cefuroxime axetil (CXM) [25], donepezil hydrochloride (DN) and omeprazole (OM) [26] and injections, ceftriaxone sodium (CTRX) and gentamicin sulfate (GM) [27] were purchased during 27 September- 4 October 2014 by two teams from Yangon, Myanmar (Annex 1.1). Each team consisted of one supervisor from MFDA, one local assistant and one or two Japanese researcher (s). All team members received training before starting the sampling work. During the sampling period, we maintain a sampling form for each number of samples (Annex 1.2). We collected samples from the governmental hospital and private hospital as well as community pharmacies, clinical
pharmacies and wholesalers. Obtained samples were stored at $20-25^{\circ} \mathrm{C}$ before analyzed in Kanazawa University, Japan.

1.3.1 Observation Analysis

During the sampling we observed room conditions like as temperature, humidity and also observed in both internal and external environmental conditions around the surrounding of the retail shops. After sampling, the obtained samples were checked physical shape, size of sample volume or shape, uniform colour, insert, spelling, registration number from MFDA, manufacturing date, expire date, lot no., name of active ingredient, doses form etc. that were utilized in the form of the "Tool for Visual Inspection of Medicines" (Annex 1.3) [28]. For establishing the evidences, photographs were taken for each samples with scanned insert and the sample box.

1.3.2 Sample Authenticity Investigation

The authenticity investigation and registration verification was performed according to the modification method of World Health Organization (WHO) [16]. We asked some questions to the responsible manufacturers by using a form (annex 1.4) with sent scan copy of the samples box, samples photographs and insert of the sample by Email (annex 1.5). At the same time, we asked to the Medicine Regulatory Authority
(MRA) of each country regarding the medicines were registered or not (annex 1.6). While, we asked to the MFDA about obtaining medicines were registered or not.

1.3.3 Samples for Chemical Analysis

Samples were evaluated according to the pharmacopeia that mentioned on the package of the samples. In the following method we used and evaluated our collected samples. Our collected cefuroxime samples 250 mg tablets were performed dissolution, content uniformity and quantity test. To determine the amount of cefuroxime ($\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$) dissolved by employing UV absorption at the wavelength of maximum absorbance at 278 nm on filtered portions of the solution under test, suitably diluted with dissolution medium 0.07 N Hydrochloric Acid; 900 ml , if necessary, in comparison with a standard solution having a known concentration of UPS cefuroxime axetil RS, equivalent to about 0.01 to 0.02 mg of cefuroxime $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}\right)$ per ml , in the same medium. 55 rpm (for test 1) and 100 rpm (for test 2) were used during the dissolution test, while samples considered at 15 and 45 minutes not less than $60 \%, 75 \%$ for $1^{\text {st }}$ stage and $50 \%, 70 \%$ for $2^{\text {nd }}$ stage gradually. 0.2 M monobasic ammonium phosphate (purchased from Nakalai Tesque Kyoto, Japan) dissolve 23.0 gm of monobasic ammonium phosphate in water to preparer 1000 ml of solution. 620 ml solution were taken from 1000 ml and added 380 ml methanol (Wako, Japan) to make 1000 ml mobile phase. 5.4 mg
acetanilide dissolved in per ml methanol to preparer internal standard solution. For Resolution Solution, mix 10.0 ml of a solution of USP cefuroxime axetil RS in methanol containing 1.2 mg per ml then transfer in a 50 ml volumetric flask and including of 5.0 ml of internal standard solution with 3.8 ml of a solution of cefuroxime axetil Delta-3 Isomers RS in a methanol containing 0.16 mg per ml . Finally, to fill with dilute with 0.2 M monobasic ammonium phosphate to make the target the volume, and well mix. For standard preparation, transfer 30 mg of USP cefuroxime axetil RS to a 25 ml volumetric flask dissolve dilute to make the volume. Promptly transferred 10.0 ml of this solution to another 50 ml volumetric flask then added 5.0 ml of internal standard solution and 3.8 ml of methanol, finally added dilute to make the volume. In assay preparation, fine powder not fewer than 10 tablets were accurately counted. Transfer the powder, with the aid of methanol, to a volumetric flask of such capacity that when filled to volume, the solution will contain the equivalent of about 2 mg of cefuroxime $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}\right)$ per ml. Added methanol to fill the volumetric flask to about half of its capacity, and shake by mechanical means for about 10 min . Dilute with methanol to volume, and mix. Filter a portion of this stock mixture, and transfer 5.0 ml of the filtrate to a 50 ml volumetric flask. Add 5.0 ml of internal standard solution and 8.8 ml of methanol dilute with 0.2 M monobasic ammonium phosphate to the volume, and mix. The HPLC system from JASCO (Tokyo,

Japan) were maintained 278 nm UV detector, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm} ; 5 \mu \mathrm{~m}$ packing L13 column, $40^{\circ} \mathrm{C}$ column oven temperature, flow rate $1.2 \mathrm{ml} / \mathrm{min}$ and injection volume $10 \mu \mathrm{l}$. In quantity analysis $90.0 \leqq$ mean $\leqq 110.0$ and content uniformity $\mathrm{AV} \leqq 15.0$ were followed [29], cefuroxime peak observed (Figure 1.1). The linearity of the standard cefuroxime/diluent solution was maintained and analyzed between 0.025 and $0.5 \mathrm{mg} / \mathrm{ml}$ and the 0.6 to 0.5 (Figure 1.2).

Figure 1.1 Chromatogram of cefuroxime (standard) (

Figure 1.2 Linearity of cefuroxime solution, using acetanilide as an internal standard.

For content uniformity test of ceftriaxone for injection (1 gm vial) at first we prepared $\mathrm{P}^{\mathrm{H}} 7.0$ buffer, dissolve 17.415 gm of dibasic potassium phosphate in 500 ml of water and dissolve 13.605 gm of monobasic potassium phosphate in 1000 ml of water. Control the p^{H} of dibasic potassium phosphate solution to $\mathrm{p}^{\mathrm{H}} 7.0$ by using monobasic potassium phosphate solution. $\mathrm{p}^{\mathrm{H}} 5.0$ buffer, dissolved 12.9 gm of sodium citrate in 250 ml of water and dissolved 9.6 gm of citric acid in 500 ml of water. Control the p^{H} of sodium citrate solution to $\mathrm{p}^{\mathrm{H}} 5.0$ by using citric acid solution. Dissolved 3.2 gm of tetraheptyl ammonium bromide were taken in 400 ml of acetonitrile, added 44 ml of p^{H} 7.0 buffer and 4 ml of $\mathrm{p}^{\mathrm{H}} 5.0$ buffer, and added water to make 1000 ml to make the mobile phase. $0.5 \mu \mathrm{~m}$ membrane filter was used then allow to degas. 450 ml Acetonitrile were taken into the 1000 ml volumetric flask then added water up to the volume for diluents as
well as IS preparation 5 mg of diethyl terephthalate were taken to dissolve in diluents and make up to the volume 50 ml . Regarding the standard solution preparation, 5 mg of ceftriaxone sodium RS were transferred to 50 ml volumetric flask, and dilute with diluents to the volume $(0.1 \mathrm{mg} / \mathrm{ml})$ then 2 ml of these solutions were transferred into 10 ml volumetric flask ($20 \mu \mathrm{~g} / \mathrm{ml}$) to make 200%. Mixed 3 ml of $20 \mu \mathrm{~g} / \mathrm{ml}$ solution and 1 ml of diluents ($15 \mu \mathrm{~g} / \mathrm{ml}$) to make 150%. Mixed 2 ml of $20 \mu \mathrm{~g} / \mathrm{ml}$ solution with solution 2 ml diluents ($10 \mu \mathrm{~g} / \mathrm{ml}$) for 100%. Again mixed 2 ml of $10 \mu \mathrm{~g} / \mathrm{ml}$ solution with 2 ml of diluents ($5 \mu \mathrm{~g} / \mathrm{ml}$) to make 50% of the solution. While, mixed 2 ml of $5 \mu \mathrm{~g} / \mathrm{ml}$ solution and 2 ml of diluents then prepared $(2.5 \mu \mathrm{~g} / \mathrm{ml}) 25 \%$ of the samples. Mixed 1 ml of each $(200 \%, 150 \%, 100 \%, 50 \% \& 25 \%)$ of this solution with 1 ml of IS solution for linier carve. During the assay preparation, 1 gm ceftriaxone sodium were transferred to a 100 ml volumetric flask then added diluents to the volume. Transferred 1 ml of this solution to 50 ml volumetric flask and added with diluents to the volume. Mix 0.5 ml of this solution and 2.5 ml of diluents. Mix 1 ml of this solution and 1 ml of IS solution. In chromatographic system 270 nm detector, $4.0 \times 10 \mathrm{~cm}$ column, $2.0 \mathrm{ml} / \mathrm{min}$ flow rate, injection volume and $40^{\circ} \mathrm{C}$ oven temperature were maintained. In quantity analysis $90.0 \leqq$ mean $\leqq 115.0$ and content uniformity $\mathrm{AV} \leqq 15.0$ were followed [30].

Donepezil samples were investigated according to the Japanese Pharmacopoeia 16th edition (JP 16). 2.5 gm of sodium-1 decane sulfonate were dissolved in 650 ml of water, and added 350 ml of acetonitrile, 1 ml of per chloric acid to make mobile phase, then to prepare standard solution and weighed accurately about 50 mg of JP donepezil hydrochloride RS, and dissolved in diluent-1 (Methanol and $0.1 \mathrm{~mol} / \mathrm{L}$ hydrochloride 3:1) to make exactly 25 ml . Transfer 5 ml of this solution to a suitable test tube, added diluent1 to make exactly 50 ml . For assay preparation, one tablet of donepezil hydrochloride with added diluent- 1 so that it contained the concentration about 0.2 mg per ml then sonicate and properly mix until a tablet is disintegrated for 10 min . After sonicate then centrifuge for 4000 rpm for 15 min with continued $25^{\circ} \mathrm{C}$ and supernatant solution were taken. For dissolution test was performed at 50 revolutions per minute according to the puddling method as directed under the dissolution test in JP16, using 900 ml of the dissolution medium. After the dissolution, performed the test with $50 \mu 1$ each of the sample solution and standard solution as directed under Liquid Chromatography in JP16 followed and calculate the ratios of AT and AS, of the peak area of donepezil hydrochloride. 3.4 gm Potassium dihydrogen phosphate and 3.55 gm of sodium dihydrogen phosphate were taken in 1000 ml water to make the phosphate buffer. Phosphate buffer (pH 6.8) and water (1:1) were used as a dissolution medium. Mightysil

RP 18GP $150 \times 4.6 \mathrm{~mm}(5 \mu \mathrm{~m})$ column, wavelength $271 \mathrm{~nm}, 35^{\circ} \mathrm{C}$ in column temperature, $1.0 \mathrm{ml} / \mathrm{min}$ flow rate, $50 \mu \mathrm{l}$ injection volume, mobile phase: water, acetonitrile and per chloric acid (650:350:1) were used in this test. To make the standard solution we weighed accurately about 20 mg of JP donepezil hydrochloride RS with dissolve in diluent-1 to make exactly 20 ml .1 ml of this solution were transferred to a suitable test tube then added with the dissolution medium to make exactly 100 ml . In addition, transferred 5 ml of this solution to a suitable test tube and added the dissolution medium to make exactly 10 ml solution. The sample solution was withdrawal not less than 20 ml of the medium at 15 min , after starting the test and filtered with a membrane filter which contained the pore size of $0.45 \mu \mathrm{~m}$. Discard the first 10 ml filtrate of the sample then transfer the subsequent filtrate to a suitable test tube. Not less than 80% of the labeled amount of donepezil hydrochloride $(\mathrm{C} 24 \mathrm{H} 29 \mathrm{NO} 3 \cdot \mathrm{HCl})$ is dissolved in 15 min were considered [31].

Identification was performed on the gentamicin samples. 1 gm of ophthalaldehyde in 5 ml of methanol and added 95 ml of 0.4 M boric acid that previously adjusted with 8 N potassium hydroxide to a p^{H} of 10.4 and 2 ml of thioglycolic acid. Adjust, obtained of the solution with 8 N potassium hydroxide to a pH of 10.4. To prepare the mobile phase and maintained the ratio of methanol, water and glacial acetic acid
(68:27:5) as well as 5 gm of sodium 1-heptanesulfonate were added per liter to this solution. Then standard solution was prepared to use of USP gentamicin sulfate RS in water to make the concentration of 0.65 mg per ml .10 ml of this solution were transferred to a suitable test tube and added of 5 ml of isopropyl alcohol with 4 ml of o-phthalaldehyde solution then properly mix and finally isopropyl alcohol were added to obtain 25 ml of solution. At $60^{\circ} \mathrm{C}$ tempereture were maintained in a water bath for 15 minutes then cool. In the case of sample solution preparation, 1 ml of the sample were taken and mix with 60.5 ml of water. Taken 10 ml from the mixture transfer to a suitable test tube with added 5 ml of isopropyl alcohol as well as 4 ml of o-phthalaldehyde solution then properly mix and finally added isopropyl alcohol to obtain 25 ml of solution. At $60^{\circ} \mathrm{C}$ tempereture were maintained in a water bath for 15 minutes then cool. Phenomenex Luna C18 L1 150×4.6 (mm) column, $1.0 \mathrm{ml} / \mathrm{min}$ flow rate, 330 nm UV detector and $20 \mu \mathrm{l}$ injection volume were used in the chromatographic system. In analysis part, we compared the peak of the sample with that of the RS to quantitate GM, and determine whether any impurity peaks appear in the chromatogram [32].

Content uniformity test in omeprazole at first to make for the solution A (1L) 10.454 gm tri-sodium phosphate 12 -water and 15.616 gm disodium hydrogen phosphate were taken in a 1000 ml volumetric flask. Suitable amount of distill water were added
and sonicate to dissolve it. Adjust the volume with distill water then adjust the p^{H} to 11.0 ± 0.05 with 10 M sodium hydroxide or orthophosphoric acid were used. For solution B $(500 \mathrm{ml}) 5 \mathrm{ml}$ of 10 M NaOH were taken in 500 ml volumetric flask. To make the volume of 500 ml with 0.05 M phosphate buffer solution $\mathrm{p}^{\mathrm{H}} 4.5$ and well mix. In 1 L phosphate 6.8 gm potassium dihydrogen were taken in a 1000 ml volumetric flask and added suitable amount of distill water to dissolve and used a sonicate, adjust the volume and then filter by a vacuum filter and degas it. 210 ml of 0.05 M phosphate buffer solution ($\mathrm{p}^{\mathrm{H}} 4.5$) with 60 ml of solution B were mixed, from it 200 ml solution were taken in a 1000 ml volumetric flask and make volume with solution A. Finally, this solution used for diluent. Regarding the mobile phase, 1.17 gm of sodium dihydrogen phosphate dihydrate $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ were taken in a 500 ml volumetric flask, allow to the sonicator for dissolved and added with dilute to the volume. In another 500 ml volumetric flask was taken and transferred 1.06 gm of disodium hydrogen phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ dissolve in diluent and make sure the volume. Transferred the $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution to a 1000 ml beaker and adjust the p^{H} to 7.6 ± 0.05 with $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution in a p^{H} meter. For 1 Liter of mobile phase 600 ml of this solution were taken in a 1000 ml volumetric flask and added 400 ml of acetonitrile (60:40 ratio). Filtered the solution in a suction filter and then degas the mixture in a sonicator for 30 minute. For standard solution preparation 10 mg
of omeprazole RS were weighted and dissolve to a 50 ml volumetric flask with medium in a sonicator than sure to make the final volume and properly mix which was 200% (solution concentration $0.2 \mathrm{mg} / \mathrm{ml}$). From this concentration of the solution with medium to make $150 \%, 100 \%, 50 \%$ and 25% of solution. while weighted accurately about 10 mg of lansoprazole were dissolved to a 100 ml volumetric flask with medium in a sonicator, make final volume and mix for IS preparation ($0.1 \mathrm{mg} / \mathrm{ml}$). Transferred 1 ml of 200% ~ 25% to each test tube with 1 ml IS added to each mix then allow to filter and put it in 1 ml vial. For assay preparation in content uniformity, 10 capsules granules were transferred in 50 ml volumetric flask. Dissolved the capsules with diluent in a sonicator and continue sonication until it dissolves. Transferred 1 ml from each to 10 test tube and added 3 ml of diluent and mix then filtered of the sample by $0.45 \mu \mathrm{~m}$ filter paper, 1 ml of this solution was taken and added 1 ml of IS solution with well mix and transferred to 1 ml vial. $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$ column (C 18) column, 302 nm wavelength, $30^{\circ} \mathrm{C}$ column oven temperature, $0.5 \mathrm{ml} / \mathrm{min}$ flow rate and $10 \mu \mathrm{l}$ injection volume were maintained in chromatographic system. In quantity analysis $95.0 \leqq$ mean $\leqq 105.0$ for BP as well as $90.0 \leqq$ mean $\leqq 110.0$ for USP and content uniformity were followed in $\mathrm{AV} \leqq 15.0$ [33-35]. In dissolution test for omeprazole samples were performed according to BP and USP that were mentioned on the package label. Regarding the dissolution test in BP, solution A
and solution B were used as well as to prepare solution C with 1.170 gm Sodium dihydrogen phosphate dihydrate and 1.061 gm disodium hydrogen phosphate were taken in a separate 500 ml volumetric flask. Suitable amount of distil water were used then allow for sonicate to dissolve and then adjust volume. Added 400 ml of disodium hydrogen phosphate to 500 ml of sodium dihydrogen phosphate dihydrate and adjust p^{H} to 7.6 ± 0.05. We prepared the mobile phase and 400 ml acetonitrile with 600 ml of solution C were properly mixed ($\mathrm{p}^{\mathrm{H}} 7.6 \pm 0.05$) then filter it in a vacuum filter and degas it for 30 minute in a sonicator. At that time, we prepared this solvent, 13.6 gm potassium dihydrogen phosphate were taken in a 2000 ml volumetric flask with added distil water to dissolve in a sonicator (about 10 min), adjust the volume and allow for filter by a vacuum filter then degas it. For the first stage, 0.05 M phosphate buffer solution $\mathrm{p}^{\mathrm{H}} 4.5$ and solution $\mathrm{A}(1: 4, \mathrm{v} / \mathrm{v})$ as well as in the final stage, 0.05 M phosphate buffer solution $p^{H} 7.6$ and solution $A(1: 4, v / v)$ were mixed to make the diluent. In the dissolution tester water were transferred before test, to keep warmed to $37 \pm 0.5^{\circ} \mathrm{C}$. Measure the degassed solvent 700 ml in a graduated cylinder and put it in the vessel. Filled all the six vessels following the first one. Mount the paddle up, then lower it to the original position when temperature reaches to the desired level, set rotational speed to 100 rpm . Put the weighed samples, in each vessel in 1 min interval. In acid stage ($\mathrm{p}^{\mathrm{H}} 4.5$), after 45-minute elution,

5 ml medium were withdrawal and filter the aliquot of dilute to 25 ml with solution A in a 25 ml volumetric flask then transferred 1 ml of this test solution to a test tube with added 1 ml IS solution to it and properly mixed. Proceed immediately to the final stage. Preparation of standard we used, 1) 40 ml of 0.05 M phosphate buffer solution ($\mathrm{p}^{\mathrm{H}} 4.5$) were taken in a 200 ml volumetric flask and fill it up to the mark with solution A (Solution D). 2) Accurately weigh 5 mg of lansoprazole IS were put in 50 ml a volumetric flask, added a suitable amount of Solution D, sonicate for 10 minutes to dissolve and then make it up to 50 ml with solution $\mathrm{D}(0.1 \mathrm{mg} / \mathrm{ml})$. Taken 1 ml of this solution to place it in a volumetric flask of 10 ml and filled up with Solution D (IS solution with $10 \mu \mathrm{~g} / \mathrm{ml}$). 3) Accurately weigh 5 mg of Omeprazole RS and put in a volumetric flask of 50 ml , add an appropriate amount of Solution D, sonicate for 10 minutes to dissolve, and make volume $(0.1 \mathrm{mg} / \mathrm{ml}) .2 \mathrm{ml}$ of this solution were transferred to 10 ml volumetric flask and dilute it up to the mark with solution D 200% solution (concentration of $20 \mu \mathrm{~g} / \mathrm{ml}$). From this concentration of this solution with diluent to make $150 \%, 100 \%, 50 \%$ and 25% of the solution. Transferred 1 ml from solution $200 \% \sim 25 \%$ to each test tube and added 1 mL IS to each with mix then filter and put it in 1 ml vial. For the buffer stage (pH 6.8), within 5 minutes of the 200 ml of solution B at $37 \pm 0.5^{0} \mathrm{C}$ were added to each vessel. The rotation speed at 100 revolutions per minute was controlled and continue to operate the apparatus
for 45 minutes as well as again 5 ml of the dissolution medium were withdrawn 45 minutes, after starting the test and transferred to a 25 ml volumetric flask, make sure to the volume with dilute then 1 ml of above test solution were transferred to a test tube and added 1 ml of IS solution with well mix. Regarding the buffer stage again we prepared for standard, 1) 21 ml of 0.05 M phosphate buffer solution ($\mathrm{p}^{\mathrm{H}} 4.5$) were mixed with 6 ml of Solution B, from this solution 20 ml were transferred in a 100 ml volumetric flask and make volume with solution A (Solution E). 2) 5 mg Lansoprazole were transferred in a 50 ml volumetric flask with added the suitable amount of solution E and sonicate for 10 minutes to dissolve then actual make the volume $(0.1 \mathrm{mg} / \mathrm{ml})$. Taken 1 ml from it to a 10 ml volumetric flask then make volume with solution E that was IS solution. 3) 5 mg omeprazole RS were put in a 50 ml volumetric flask, added a suitable amount of solution E and sonicate for 10 minutes to dissolve then make volume $(0.1 \mathrm{mg} / \mathrm{ml})$. From this volume 2 ml were placed in a 10 ml volumetric flask and filled it up with Solution E $(20 \mu \mathrm{~g} / \mathrm{ml})$ and obtained 200% solution. From 200% solution with diluent used to make $150 \%, 100 \%, 50 \%$ and 25% of the solution. Transferred 1 ml from solution 200\% ~ 25\% to each test tube and added 1 ml of IS to each with mix then allow to filter and put it in 1 ml vial. In chromatographic system 302 nm detector, Gemini-NX column, $0.5 \mathrm{ml} / \mathrm{min}$ flow rate, $30^{\circ} \mathrm{C}$ temperature and $10 \mu \mathrm{l}$ injection were used. In acid stage, no individual
unit exceeds 10% dissolved and buffer stage no unit is less than $\mathrm{Q}+5 \%(\mathrm{Q}=65 \%)$ were considered. According to the USP dissolution method, for the mobile phase we used 340 ml of Acetonitrile to a 1000 ml volumetric flask, dilute with $\mathrm{p}^{\mathrm{H}} 7.6$ phosphate buffer to the volume then allow for filtration through membrane filter then degas for 30 minutes. 1) For Acid Resistance Stage, 40 ml of 5 N HCl were measured exactly and placed it in a 2000 ml volumetric flask dilute were used to make the volume (0.1 NHCl). 2) pH 10.4 , 0.235M disodium hydrogen phosphate (For 1L) 2.4 L for Buffer Stage 33.36 g of disodium hydrogen phosphate were dissolved in 1000 ml of water and adjust with 2 N sodium hydroxide for p^{H} of 10.4 ± 0.1. 3) pH 6.8 phosphate buffer $(900 \mathrm{~mL}), 500 \mathrm{ml}$ of 0.1 N hydrochloric acid were added with 400 ml of disodium hydrogen phosphate $\mathrm{p}^{\mathrm{H}} 10.4$. 0.235 M dibasic sodium phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\right)$ were used to adjust with 2 N hydrochloric acid or 2 N sodium hydroxide, if necessary to the contain of p^{H} of 6.8 ± 0.05. 4) $\mathrm{p}^{\mathrm{H}} 7.6$ phosphate buffer (1L) for the mobile phase, 0.178 gm sodium dihydrogen phosphate and 1.12 gm disodium hydrogen phosphate were transferred in a 250 ml volumetric flask and dissolve it with distilled water. If necessary, adjust to $\mathrm{p}^{\mathrm{H}} 7.6 \pm 0.1$ with utilized 2 N sodium hydroxide or 2 N hydrochloric acid. Total solution was transferred to 1000 ml volumetric flask and make the volume with dilute. 5) For 0.01M sodium borate solution (1L), 3.8137 gm of Sodium tetra-borate decahydrate (Borax) were
taken in a 1000 ml volumetric flask and make the volume with distilled water. Regarding the dissolution of the Sample, water was pre-fill to the dissolution tester and to keep warm to $37.0 \pm 0.5^{\circ} \mathrm{C} .500 \mathrm{ml}$ of media $(0.1 \mathrm{~N} \mathrm{HCl})$ were placed in each of the six dissolution vessels. The apparatus was assembled and warm the media to $37^{\circ} \pm 0.5^{\circ} \mathrm{C}$. Weigh and place pellets equivalent to 20 mg omeprazole were maintaining one-minute interval in each vessel and immerse paddle in media to a distance of $2.5 \pm 0.2 \mathrm{~cm}$ between the paddle and bottom of the vessel. Analyze the sample by the following HPLC method. For the acid resistance stage in standard solution, 40 ml methanol were transferred in 200 ml volumetric flask than added with 160 ml of 0.01 M sodium borate solution for diluent preparation. To prepare the IS solution, 5 mg Lansoprazole RS were used and put it in a 50 ml volumetric flask as well as added a suitable amount of diluent allow to sonicate for 10 minutes for dissolving and then make it up to 50 ml with diluent $(0.1 \mathrm{mg} / \mathrm{ml})$. From this solution 1 ml were taken and placed in a10 ml volumetric flask with filled up with solution D. To make the WS solution, put 5 mg of accurately weighed omeprazole RS into 50 ml volumetric flask with added an appropriate amount of diluent to allow sonicate for 10 minutes then filled the volume with diluent. 4 ml solution were put in a10 ml volumetric flask of and make up to volume with diluent for 200\%) Solution. From 200\% solution with diluent to make $150 \%, 100 \%, 50 \%$ and 25% of the solution. Transferred 1
ml from solution $200 \% \sim 25 \%$ to each test tube and added 1 ml IS to each as well as mix to allow filter and put it in 1 ml vial. In the case of test solution, after 2 hours filtered the dissolution medium which were containing the pellets through a sieve with an aperture not more than 0.2 mm . Collected the pellets on the sieve and rinse them with water and were using approximately 60 ml of 0.01 M sodium borate solutions with carefully transfer the pellets quantitatively to a 100 ml volumetric flask then sonicate for about 20 minute until the pellets are broken up. Added 20 ml of methanol to the flask with dilute of 0.01 M sodium borate solution to volume and properly mix. Dilute an appropriate amount of this solution with 0.01 M sodium borate solutions were obtained a solution which having a concentration of about 0.02 mg per ml. Filter the solution through Whatman No. 42 or equivalent omeprazole filter paper were used. Then filter the filtrate again done through syringe filter of 0.20 micron. During the buffer stage, proceed as directed for Acid resistance stage with accurately weighed fresh pellets from the same batch. After 2 hours 400 ml of 0.235 M dibasic sodium phosphate were added to the 500 ml of 0.1 N hydrochloric acid medium in the vessel as well as of adjust, if necessary, with 2 N hydrochloric acid or 2 N sodium hydroxide to a p^{H} of 6.8 ± 0.05 were used. At the end of 30 minutes, determine the amount of omeprazole dissolved in $\mathrm{p}^{\mathrm{H}} 6.8$-phosphate buffer. Regarding the test solution (for 20 mg display of capsule), after dissolution for 30
minutes, immediately transferred 5 ml of the solution under test to a test tube which containing 1 ml of 0.25 M sodium hydroxide, well mix well and filter the solution through Whatman No. 42 or equivalent filter paper. Then filter the filtrate again through syringe filter of 0.20 micron. To prepare the standard solution, $200 \mathrm{ml} \mathrm{p}^{\mathrm{H}} 6.8$ phosphate buffer with 40 ml 0.25 M sodium hydroxide were used for diluent as well as in the IS solution, accurately 5 mg Lansoprazole RS were weighed and put it in a volumetric flask of 50 ml with added a suitable amount of the diluent then sonicate for 10 minutes to dissolve with the making for 50 ml which containing of the diluent, from this solution taken for 1 ml and placed it in a volumetric flask of 10 ml fill up with solution D . Then we were making the WS solution and put 5 mg of accurately weighed omeprazole RS into 50 mL volumetric flask with added an appropriate amount of diluent then allow for sonicate for 10 minutes finally to prepare the volume with diluent. Transferred 4 ml solution in a volumetric flask of 10 ml and filled the volume with diluent which was 200% solution. From this solution (200\%) with diluent to make $150 \%, 100 \%, 50 \%$ and 25% of the solution. Transferred 1 ml from the solution of $200 \% \sim 25 \%$ to each test tube and were added 1 ml of the IS solution to each and well mix allow to filter and put it in 1 ml vial. In chromatographic system 280 nm detector, $4.0 \mathrm{~mm} \times 12.5 \mathrm{~cm}$ including packing L 7 of $5 \mu \mathrm{~m}$ of column, $1.0 \mathrm{ml} / \mathrm{min}$ flow rate and $10 \mu \mathrm{l}$ injection volume were used. In acid
resistance stage tolerance, level L1 individual data will not exceed 15% of the omeprazole dissolved, for the level L2 of 12 average units within 20% dissolved omeprazole in individual data will not exceed 35\% omeprazole dissolved. Regarding the level L3of 24 within 20% of the average dissolution omeprazole units, greater than 35% of the maximum in also dissolved within 2 units is omeprazole, individual units is not greater than 45% of omeprazole dissolved. While in the case of buffer stage, level B1 Each unit is not less than $\mathrm{Q}+5 \%(\mathrm{Q}=75 \%)$ and the level B 2 average of 12 units was equal to or greater than Q and no individual unit were less than $\mathrm{Q}-15 \%$, finally the level B3 average of 24 units is equal to or greater than Q and not more than 2 units were less than $\mathrm{Q}-15 \%$ and no unit was then Q-25\%.

In our investigation, we caught counterfeit gentamicin samples. For this reason, we further investigation in this way to use fluorescence spectrophotometer and observed and compare in pass and counterfeit samples. In fluorescence spectrometry both an excitation spectrum (the light that is absorbed by the sample) and/or an emission spectrum (the light emitted by the sample) can be measured. The concentration of the analyte is directly proportional with the intensity of the emission with excitation of wavelength.

1.3.4 Samples for Biological Analysis

Our collected gentamicin samples (injection) which were performed in microbial assay according to the analysis of USP. Regarding this test, Staphylococcus epidermidis ATCC 12228 strain were performed during this test. We used Base layer media which consists of peptone, pancreatic digest of casein, yeast extract, beef extract, dextrose, agar and water (12:8:6:3:2:32:2000) and controlled the $\mathrm{p}^{\mathrm{H}} 6.6 \pm 0.1$. culture organisms were transferred in this media. $16.73 \mathrm{gm} / \mathrm{l}$ of diabasic potassium phosphate and $0.523 \mathrm{~g} / \mathrm{L}$ of monobasic potassium phosphate were mixed to make 0.1 M buffer with adjust the pH to 8.0 ± 0.1 with 18 N phosphoric acid or 10 N potassium hydroxide. Microorganisms were suspend in 10 ml saline and adjust the solution to give a transmittance of around 1.0% at 580 nm as a solution. For the standard solution, we weighted 10 mg of gentamicin RS and dissolve in 10 ml of the buffer solution. From the serial dilution we prepared the standard solution $5(4.0 \mathrm{gm} / \mathrm{ml})$, solution $4(3.0 \mathrm{gm} / \mathrm{ml})$, solution $3(2.286 \mathrm{gm} / \mathrm{ml})$, solution $2(1.0 \mathrm{gm} / \mathrm{ml})$ and solution $1(0.5 \mathrm{gm} / \mathrm{ml})$. Also, prepared a control solution which were containing $2.0 \mathrm{gm} / \mathrm{ml}$ ($=590 \mathrm{ug} / \mathrm{mg}$ as potency) of gentamicin RS. To make the sample solution, 1 ml of the solution from the ampoule (sample) were taken and added to a flask with adjust to 17576 fold dilution of buffer $(=2.2758 \mathrm{gm} / \mathrm{ml})$ then transferred the
solution to a clean bench, allow for filter and place it a 2 ml tube. In this method we maintain the following procedure, at first we injected 100 ml of microrganism solution on the base layer, and spread with a turn table and spreader. At least five test plates are needed to make the standard curve. Second, place four cylinder-cups on each plate. Third, injected 250 ml of one of the standard solutions 1 to 5 and control solution on each plate. Put control solution in one cylinder on each plate and fill the remaining cylinders as follows. 1) Plate 1 has one control and three cylinders of solution1. 2) Plate 2 has one control and three cylinders of solution 2. 3) Plate 3 has one control and three cylinders of solution 3. 4) Plate 4 has one control and three cylinders of solution 4. 5) Plate 5 has one control and three cylinders of solution 5. 6) Plate 6 has one control and three cylinders of sample (1). 7) Plate 7 has one control and three cylinders of sample (2). Fourth, place all the test plates were in an incubator at $35^{\circ} \mathrm{C}$ and cultivate for twenty hours [36].

According to the USP (our collected samples) the endotoxin and sterility tests were applicable in both cefteriaxone (for injection) and gentamicin (injection) samples. For endotoxin test were performed in two ways one for gel-clot thecnique and another was chromogenic technique. In gel-clot technique, at first 5 ml pure water were injected into the Limulus Ambocyte Lysate (LAL) vial. For another 10 ml pure water were injected into the standard endotoxin which concentration $1000 \mathrm{EU} / \mathrm{ml}$ and then vortex.

From this concentration to prepare $100,10,1,0.1,0.6(2 \lambda), 0.03(\lambda), 0.015(0.5 \lambda)$ and $0.0075(0.25 \lambda)$ (Table 1.1). Each step was done for vortex in one minute and solutions were keep into an ice box. 10 ml pure water were used with sample and vortex for 1 minute, to make the sample solution. 0.6 ml were taken from the stoke solution with 5.4 ml pure water then vortex for 1 minute to make for dilute stoke solution. For the positive control, 1 ml from stoke solution with 1 ml from $100 \mathrm{EU} / \mathrm{ml}$ solution and then added 8 ml pure water to allow for vortex to make $10 \mathrm{EU} / \mathrm{ml}$ solution 1.1 ml from the solution 1 with 9 ml pure water were used for $1 \mathrm{EU} / \mathrm{ml}$ solution 2.0 .3 ml solution 2 were taken and added 4.7 ml pure water for 2λ solution 3.1 ml from solution 3 with 7 ml of pure water were used to make 0.25λ solution 4 . A total 44 bottles were taken and transferred 0.1 ml of LAL reagent. Three bottles were used in each of the sample solution, positive control $10 \mathrm{EU} / \mathrm{ml}$, standard endotoxin concentration $10 \mathrm{EU} / \mathrm{ml}$ and pure water as well as 1 battle was used for normal water. For an another case four bottle were used in each of the sample solution, positive control $10 \mathrm{EU} / \mathrm{ml}, 1 \mathrm{EU} / \mathrm{ml}, 2 \lambda$ and 0.25λ. While two battles were used in each of the standard concentration $10 \mathrm{EU} / \mathrm{ml}, 1 \mathrm{EU} / \mathrm{ml}, 2 \lambda, 0.25 \lambda$ and pure water. After one an hour incubation and we observed about the positive control of $10 \mathrm{EU} / \mathrm{ml}$ and $1 \mathrm{EU} / \mathrm{ml}$, standard concentration $10 \mathrm{EU} / \mathrm{ml}$ and $1 \mathrm{EU} / \mathrm{ml}$ solution with normal water
containing were solid in the bottles and rest of the bottles were liquid (Fig 1.3a \& 1.3b) [37].

Table 1.1 Preparation of the different concentration of endotoxin solution

Concentration taken from the amount	Pure water	Concentration
From 1000 to 2 ml	18 ml	100
From 100 to 1 ml	9 ml	10
From 10 to 1 ml	9 ml	1
From 1 to 1 ml	9 ml	0.1
From 0.1 to 9 ml	6 ml	$0.06(2 \lambda)$
From 2λ to 4 ml	4 ml	$0.03(\lambda)$
From λ to 4 ml	4 ml	$0.015(0.5 \lambda)$
From 0.5λ to 5 ml	5 ml	$0.0075(0.25 \lambda)$

In colorimetric methods, 5 ml were taken from $1000 \mathrm{EU} / \mathrm{ml}$ and 5 ml PW were added to make the concentration $500 \mathrm{EU} / \mathrm{ml}$ then to prepare $100 \mathrm{EU} / \mathrm{ml}, 50 \mathrm{EU} / \mathrm{ml}, 10$ $\mathrm{EU} / \mathrm{ml}, 5 \mathrm{EU} / \mathrm{ml}, 1 \mathrm{EU} / \mathrm{ml}, 0.5 \mathrm{EU} / \mathrm{ml}, 0.1 \mathrm{EU} / \mathrm{ml}, 0.05 \mathrm{EU} / \mathrm{ml}, 0.025 \mathrm{EU} / \mathrm{ml}$ and 0.00625 $\mathrm{EU} / \mathrm{ml}$ of the solution for calibration curve. 10 ml PW were injected into the sample for the sample stock solution (SS). For the making of sample solution, 0.1 ml were taken from the sample stock solution and added 9.9 ml PW were added as well as for the positive control of the solution, 0.1 ml taken from the stock solution and 0.5 ml were from standard concentration $0.1 \mathrm{EU} / \mathrm{ml}$ solution then 9.4 ml PW were added in a test tube. While PW were used as a negative control. 7 LAL bottles were taken and keep into the ice box with aluminum cap then marking for sample, positive control, negative control, standard concentration $0.1 \mathrm{EU} / \mathrm{ml}, 0.05 \mathrm{EU} / \mathrm{ml}, 0.025 \mathrm{EU} / \mathrm{ml}$ and $0.0065 \mathrm{EU} / \mathrm{ml} .0 .2 \mathrm{ml}$ of buffer solution were added into each LAL battle (pipetting with no bubble). Each of 0.2 ml of the solutions sample, positive control, negative control, standard concentration $0.1 \mathrm{EU} / \mathrm{ml}$, $0.05 \mathrm{EU} / \mathrm{ml}, 0.025 \mathrm{EU} / \mathrm{ml}$ and $0.0065 \mathrm{EU} / \mathrm{ml}$ were transferred into the representative LAL bottles and keep into the water bath for 30 minutes. During the bath preparation we were taken Pyrocolour MP which were containing 1, 1A, 2, 3, 3A kits. Just, solutions of the kit 1A were transferred into the kit 1 (sodium nitrite) as well as solutions of the kit $3 \mathrm{~A}(\mathrm{~N}-$ Methyl- 2- pyrrolidone) were transferred into the kit 3 (N - (1-Napthyl) ethylenediamine
dihydrochloride). 4 ml Water were added into the kit 2 which containing Ammonium sulfamate. 7 LAL bottle were picked up from the water bath and put into the ice box. Each 0.5 ml solutions were taken from the prepared solutions 1, 2 and 3 and added of the seven bottles then allow for measuring spectrophotometer with 545 nm wavelength. After the measurement calculates the average concentration of endotoxin based on the calibration curve. Expected the absolute value of the correlation coefficient of the calibration curve is 0.98 or more (Figure $1.4 \mathrm{a} \& 1.4 \mathrm{~b}$). Whether the measurement results of the water for injection (negative control) does not exceed the limit of the blank test, which is set in the lysate reagent, bellow the detection limit of endotoxin. For positive control and is based on the difference between the endotoxin concentration of the sample solution that, the recovery rate is calculated and it is in the range of 50\% to 200\% (Figure 1.4b). Based on the average endotoxin concentration of the sample solution to determine the endotoxin concentration of the sample, when meeting the endotoxin standards that value is defined, and pass the endotoxin test [38].

Regarding the sterility test were performed in both ceftriaxone and gentamicin samples. In this types of samples (injectable) must be contained in sterile condition. According to the pharmacopeia we were investigated on these types of samples. At first 10 ml pure water were injected into the samples. Steritest EZ Devices were clamped on the stand and tubes were properly griped in the Fluid Transfer Pump (FTP). Dehydration tubes were attached with the bottom side of the both kits. Fluid A were transferred into the both kits. Red caps were attached at the top side of the kites then the fluids were dehydrated by the using of dehydration tubes then red caps were leaved from the kites. Prepared samples were transferred in both kits and dehydration with red caps. Again fluid A were transferred into the both kits for washing and dehydration with red caps. The dehydration tubes and red caps were removed and yellow caps were attached with the bottom side of the kits. The tubes of the kits which were griped in the FTP, among one tube was blocked by the clip and other was open and tryptic soy broth medium transferred into the one kit. Similarly, other tube which was used to blocked and one tube opened, then fluid Thioglycollate medium were transferred to the kit. Both kits were picked from the stand. Tryptic soy broth medium containing kit was transferred an incubator which maintained at $21-25^{\circ} \mathrm{C}$ as well as fluid Thioglycollate medium containing kit was transferred another incubator which was maintaining at $37^{\circ} \mathrm{C}$ (Figure 1.5). Finally, we
observed both kits under 14 days for visible any particles, if the samples were contaminated by microorganisms [39].

Figure 1.5 outline of sterility test

Dehydration tubes were rem-oved and attached yellow caps

1.4 Results:

1.4.1 Sample collection:

Outline of the samples collected in this study was summarized in Table 1.2. In our survey we collected 235 samples from 63 manufacturers with 71 different brand products. 14 (6\%) samples were produced domestically. 49 (20.9\%) Samples were ceftriaxone (1 $\mathrm{gm} / \mathrm{vial}$), $60(25.5 \%)$ samples were cefuroxime (250 mg) [25], 58 (42.7%) samples were gentamicin ($80 \mathrm{mg} / \mathrm{ml}$) [27], 65 (27.7\%) samples were omeprazole (20 mg) [26] and 3 (1.3%) samples were donepezil hydrochloride (5 mg) collected from Yangon, Myanmar.

1.4.2 Drug outlets and registration status in Myanmar FDA

We sampled 103 samples from community Pharmacy, 47 samples were governmental hospital, 42 samples were private hospital, 28 samples were clinic and 15 samples obtained from five different wholesalers as well as 6 (2.6\%) samples were not registered in Myanmar FDA (Table 1.2).

Table 1.2 Outline of samples collection

Items	Government hospitals	Private hospitals	Community pharmacies	clinical pharmacies	wholesalers	No. of samples registered in Myanmar FDA	No. of samples unregistered in Myanmar FDA
Ceftriaxone(49)	9	11	18	7	4	0	
Cefuroxime(60)	14	12	22	9	3	69	0
Donepezil	-	-	-	1	2	1	
Hydrochloride(3)							
Gentamicin(58)	11	7	31	6	3	53	
Omeprazole(65)	13	12	30	6	4	65	0
Total (235)	$47(20 \%)$	$42(17.9 \%)$	$103(43.8 \%)$	$28(11.9 \%)$	$15(6.4 \%)$	$229(97.4 \%)$	$6(2.6 \%)$

1.4.3 Observations

In our observation 71 manufacturers were participated in this survey. While 8 manufacturers were repeated in more than one item of the medicines. We observed 41 manufacturers which were Indian originated (Figure 1.6). A total 235 samples were collected from Myanmar. Among of 149 samples out of 235 were found from Indian manufacturers (Figure 1.7). Mentioned on the label of each sample should be stored at \leq $25-30^{\circ} \mathrm{C}$ with dry place. Only twenty-nine out of 74 retail shops (39.2%) are airconditioning. 36 (15.5%) Out of 235 samples did not contain package inserts. We had collected two samples which did not found box (loos samples). While one sample of address was showing different in the label and insert. One cefuroxime sample of blister was torn in a hole and another manufacturer from Indian origin and their one sample was existed two different types of colour of the tablet in a strip. All ceftriaxone, cefuroxime and omeprazole samples were registered but one donepezil hydrochloride sample out of $3(33 \%)$ which was Indian origin and 5 gentamicin samples out of 58 (8.6%) from two Chinese companies were not registered in Myanmar FDA (Table 1.3). 11 CXM and 2 GM samples were found which showing error spelling (Figure $1.8 \mathrm{a} \& 1.8 \mathrm{~b}$). One GM sample was showing unequal volume with yellow colour (Figure 1.9).

Figure 1.6 Number of Manufacturers found in the program

Figure 1.7 Number of samples collected from that origins

Figure 1.8a Spelling error in CXM samples A-030, 057, 068, 079, 085, 099, B-023, 047, 067, 093, 111

Figure 1.8b Spelling error in GM A-020 \& A-077

1.4.4 Authenticity

Authenticity investigation with the response from the manufacturers side were quite low. We received, 6 Manufacturers replied out of 19 that were represented of 8 samples out of 235 with agree as a genuine product (Table 1.3a \& 1.3b), while 3 MRAs out of 12 MRAs in manufacturing countries informed about manufacturers licenses (Table 1.4). We obtained information from Myanmar, Switzerland and Bangladesh MRAs, but Bangladesh did not reply the questionnaire.

Table 1．3a Reply from manufacturers with their number of samples

Country	Manufacturer＇s name	Replied	Number of samples	Number of Brands	Reply on samples$(\mathrm{N}=235)$		Authentic	
					Yes	No	Yes	No
Bangladesh	Aristo Pharma Ltd．	\checkmark	2	1	0	0		
	Jayson Pharmaceutical Ltd．		1	1	0	0		
	Renata Limited		1	1	0	0		
	Square Pharmaceutical Ltd．		6	3	0	0		
	Subtotal		10	6	0	0		
China	Shenzhen Zhijun Pharmaceutical Co．Ltd		1	1	0	0		
	Beverly Henan Pharmaceutical Co．Ltd		1	1	0	0		
	Henan Dekang Pharma Actual Co；Ltd		2	1	0	0		
	Kunming Pharmaceutical Corp		2	1	0	0		
	Shanghai Modern Hasan Pharmaceutical Co． Ltd		2	1	0	0		
	Tianjin Pharmaceutical Group Xinzheng Co． Ltd		4	1	0	0		
	Zhanfeng Pharma．Factory，Long Chuan， Yunnan		4	1	0	0		
	河南龙源药业股份有限公司		1	1	0	0		
	Subtotal		17	8	0	0		
Japan	Eisai Co．Ltd	\checkmark	2	1	0	0		
	Subtotal		2	1	0	0		
Korea	Korea Pharma Co．Ltd		2	1	0	0		
	Shin Poong Pharm．Co．Ltd		4	1	0	0		
	Subtotal		6	2	0	0		
Myanmar	Myanmar Pharmaceutical Factory		6	2	0	0		
	No．（1）Pharmaceutical Factory		2	1	0	0		
	No．（2）Pharmaceutical Factory		6	1	0	0		
	Subtotal		14	4	0	0		
Pakistan	CCL Pharmaceuticals（Pvt）Ltd．		2	2	0	0		
	Subtotal		2	2	0	0		
Singapore	Golden Kabaw Pte．Ltd		1	1	0	0		
	Subtotal		1	1	0	0		
Switzerland	F．Hoffmann－LaRoche Ltd．		1	1	0	0		
	Subtotal		1	1	0	0		
Taiwan	Siu Guan Chem，Ind．Co．Ltd		14	1	0	0		
	Subtotal		14	1	0	0		
Thailand	The United Drug Co．，Ltd．		3	1	0	0		
	Subtotal		3	1	0	0		
UK	Glaxo Smith Kline		11	1	0	0		
	Subtotal		11	1	0	0		
Vietnam	Domesco Medical Import Export Joint Stock Corp		1	1	0	0		
	Fresenlus Kabi Bidiphar Jolnt－Stock Company	\checkmark	3	1	3	0	3	
	Pharbaco Central Pharmaceuticals J．S．C No1		1	1	0	0		
	Subtotal		5	3	3	0	3	

Table 1.3b Reply from manufacturers with their number of samples

Country	Manufacturer's name	Replied	Number of samples	Number of Brands	$\begin{array}{r} \text { Reply on } \\ \text { samples (} \mathrm{N}=\text {) } \end{array}$		Authentic	
					Yes	No	Yes	No
India	Alkem Laboratories Ltd		20	1	0	0		
	AMN Life Science Pvt. Ltd		2	1	0	0		
	Asmoh Laboratories Ltd.		1	1	0	0		
	Belco Pharma		1	1	0	0		
	Blue Cross Laboratories Ltd		2	1	0	0		
	Brawn Laboratories Ltd		2	1	0	0		
	Cadila Health Limited		12	2	0	0		
	Cipla Ltd.		4	1	0	0		
	Dr. Reddy`s Laboratories Ltd		18	1	0	0		
	Eisai Pharmatechnology and Manufacturing Pvt	\checkmark	1	1	1	0	1	
	Emcure Pharmaceuticals		4	2	0	0		
	Fourrts Laboratories Pvt. Ltd		2	1	0	0		
	Galpha Laboratories Ltd		2	1	0	0		
	Global Pharma Healthcare Pvt. Ltd		13	2	0	0		
	Great Himalayan Pte. Ltd		1	1	0	0		
	Intas Pharmaceuticals Ltd	\checkmark	2	1	2	0	2	
	Lupin Ltd		5	2	0	0		
	Lyka Labs Limited		5	1	0	0		
	MDC Pharmaceuticals (P) Ltd		6	1	0	0		
	Mercury Laboratories Ltd		3	1	0	0		
	M. J. Biopharm Private Limited		2	1	0	0		
	Nectar Lifescience Ltd		8	1	0	0		
	Orchid Healthcare		4	1	0	0		
	Rainbow Life Sciences Pvt. Ltd		1	1	0	0		
	Ranbaxy Laboratories Limited		11	1	0	0		
	Regain Laboratories	\checkmark	2	1	0	0		
	Rhydburg Pharmaceuticals Ltd		1	1	0	0		
	Saviour Pharmaceuticals		2	1	0	0		
	Stallina Laboratories Pvt. Ltd		1	1	0	0		
	SRS Pharmaceutical Pvt. Ltd		1	1	0	0		
	Toqure Pharmaceutical		1	1	0	0		
	Umedica Laboratories Ltd		3	1	0	0		
	Universal Pharmaceuticals Limited		1	1	0	0		
	Virchow Healthcare Private Limited		1	1	0	0		
	Wockhard Limited		2	1	0	0		
	XL Laboratories Pvt. Ltd.		2	1	0	0		
	Subtotal		149	40	3	0	3	

Table 1.4 Reply from MRAs

Country	Organization	Reply	Manufacturer		Sample			
			Legitimate	Nonapproval suspected	Legitimate	Nonapproval suspected		
Bangladesh ($\mathrm{n}=4$, 10 samples)	The Directorate General of Drug Administration Ministry of Health \& Family Welfare	YES	uk	uk	uk	uk		
$\begin{aligned} & \text { China (} n=8, \quad 17 \\ & \text { sample) } \end{aligned}$	Department of Drug Registration State Food and Drug Administration, P.R. China the department of Drug \& Cosmetics Registration	NO	-	-	-	-		
$\begin{aligned} & \text { India (} \mathrm{n}=36,149 \\ & \text { sample) } \end{aligned}$	Drugs Controller General of India r Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health and Family Welfare New Delhi, India	NO	-	-	-	-		
Korea ($\mathrm{n}=2$, 6 sample)	Ministry of Food and Drug SAFETY	NO	-	-	-	-		
$\begin{aligned} & \text { Myanmar } \quad(\mathrm{n}=3 \text {, } \\ & 14) \end{aligned}$	Food Drug Administration of Myanmar	YES	3	0	14	0		
$\begin{aligned} & \hline \text { Pakistan (} \mathrm{n}=1, \\ & 2 \text { samples) } \end{aligned}$	Director General Health\| Drug Control Organization	Ministry of Health	Government of Pakistan	NO	-	-	-	-
Singapore ($\mathrm{n}=1$, 1 samples)	Ministry of Health	NO	-	-	-	-		
Switzerland ($\mathrm{n}=1$, 1 samples)	Swiss medic (Swiss Agency for Therapeutic Products)	YES	1	0	1	0		
$\begin{aligned} & \hline \text { Taiwan }(\mathrm{n}=1, \\ & 13 \text { sample) } \\ & \hline \end{aligned}$	Food and Drug Administration (FDA)	NO	-	-	-	-		
$\text { Thailand (} \mathrm{n}=1 \text {, }$ $3 \text { sample) }$	Food and Drug Administration	NO	-	-	-	-		
$\begin{aligned} & \text { United Kingdom } \\ & (\mathrm{n}=2, \\ & 11 \text { sample }) \\ & \hline \end{aligned}$	MHRA	NO	-	-	-	-		
$\begin{aligned} & \text { Vietnam (n=3, } \\ & 5 \text { samples) } \end{aligned}$	Cổngthông tin điệntửBộ Y tế (MOH)	NO	-	-	-	-		

*We found two samples from a Japanese manufacturer. We confirmed about the license of the Japanese manufacture's from online.

1.4.5 Quality evaluate of samples

The results of the samples are showing in Annex 1.7 and Annex 1.8 as well as the summary of the results of quantity test is shown in Table 1.5. In the quality test 36 samples were unacceptable out of 177 samples. Among 176 samples were analyzed that finally confirmed, 27 samples were unacceptable in content uniformity tests as well as in the case for dissolution tests 23 samples were unacceptable out of 128 samples. In the case of omeprazole 23 (35.4%), 9 (13.8%) and 17 (26.2\%) samples were unacceptable in quantity, content uniformity and dissolution test respectively [26]. In our investigation, we found 149 samples out of 235 from Indian origin. Among of the Indian 49 samples
were failed in any test out of 149 samples (Figure 1.10). Particularly, any fail of the all cefuroxime and omeprazole (except one from Bangladesh) samples came from India [2526], while three counterfeit gentamicin samples were found from China (Figure 1.11, $1.12,1.13,1.14 \& 1.15)$. We had collected 12 cefuroxime samples which manufacturer was Global Pharma Healthcare Pvt. Ltd, India. Among of them 10 samples were failed out of 12 [25]. Both endotoxin and sterility tests in ceftriaxone and gentamicin were satisfactory but in this case of unregistered three gentamicin samples out of 58 were failed in identification and during the analysis there were no peak appeared against standard solution at that moment (Fig. 1.16 \& 1.17). While in the case of microbial assay test these three counterfeit gentamicin samples were not showing the zone of inhibition (Fig. 1.18). Myanmar Government announced three gentamicin samples from two Chinese manufacturers were counterfeited [27].

Table 1.5 Summary of quality test of samples

Items (n)	Assay test		Content uniformity test		Dissolution test		Endotoxin test		Sterility test		Identification		Microbial Assay	
	Pass	Fail												
Ceftriaxone (49)	47	2	46	3	-	-	49	0	49	0	49	0	-	-
Cefuroxime (60*)	49	11	44	15	54	6	-	-	-	-	60	0	-	-
Donepezil Hydrochloride (3)	3	0	3	0	3	0	-	-	-	-	3	0	-	-
Gentamicin (58)	-	-	-	-	-	-	58	0	58	0	55	3	55	3
Omeprazole (65)	42	23	56	9	48	17	-	-	-	-	65	0	-	-
Total (235)	141	36	149	27	105	23	107	0	107	0	232	3	55	3

*Result pending due to insufficient of samples

Figure 1.10 Comparison between pass and fail samples of origin

Figure 1.11 Comparison between CXM pass and fail samples of origin

Figure 1.12 Comparison between OM pass and fail samples of origin

Figure 1.13 Comparison between GM pass and fail samples of origin

Figure 1.14 Comparison between CTRX pass and fail samples of origin

Figure 1.15 Comparison between DN pass and fail samples of origin

Figure 1.16 Chromatogram of GM standard

Figure 1.17 Chromatogram of counterfeit GM samples

Figure 1.18 Counterfeit gentamicin samples

Figure 1.19 Zone of inhibition (microbial assay) are showing between standard concentration and counterfeit GM samples

1.4.6 Factors influencing the outcome of the price

There was significant difference in the average price of passed and failed samples of cefuroxime (Student's t-test, $p<0.05$). In the samples of gentamicin, failed sample (identification, microbial assay) were significantly cheaper than passed samples (Student's t-test, $p<0.05$) and falsified ones were cheaper than other samples (Table 1.6).

1.4.7 Effect of air-conditioning

In the table 1.7, we also observed in significance that associated between air conditioning and temperature (t-test, $p<0.01$).

Table 1.6 Association between price and medical quality (CXM, GM, OM and CTRX)

		n	Mean(Kyat****) ${ }^{\text {S }}$ S .	p (t-test)
CXM	all pass fail*	$\begin{aligned} & \hline 44 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 654.9 \pm 206.7 \\ & 374.8 \pm 122.6 \\ & \hline \end{aligned}$	$] \mathrm{P}<0.05$
GM	$\begin{gathered} \hline \text { Pass } \\ \text { Fail }^{* *} \end{gathered}$	$\begin{gathered} \hline 55 \\ 3 \end{gathered}$	$\begin{aligned} & 145.1 \pm 73.0 \\ & 38.3 \pm 10.4 \end{aligned}$	$\square \mathrm{P}<0.05$
OM	all pass fail*	$\begin{gathered} 32 \\ 32 * * * \end{gathered}$	$\begin{aligned} & 49.0 \pm 31.5 \\ & 49.2 \pm 30.6 \end{aligned}$	$] \text { n.s. }$
CTRX	all pass fail	$\begin{gathered} 46 \\ 3 \end{gathered}$	$\begin{gathered} 1634.1 \pm 1039.2 \\ 1650 \pm 650 \end{gathered}$	\square n.s.

*Fail includes first, second and permanent fails.
** Counterfeit
**Excluded B-008 (free gift)
*** 1 Kyat $\Leftrightarrow 0.00076 \$$
Table 1.7 Association between air conditioning and temperature /humidity

Air-conditioning	n	Average temperature $\left({ }^{\circ} \mathrm{C}\right) \pm$ SD.	p (t-test)
yes	29	28.6 ± 2.6	$\mathrm{P}<0.01$
no	44	30.8 ± 2.2	
		Average Humidity $(\%) \pm$ SD.	
yes	29	67.9 ± 12.4	
no	44	69.3 ± 8.7	

1.4.8 To observe again of the unacceptable samples by using new judge which is wider than original (pharmacopeial criteria)

In Myanmar some samples were unacceptable, according to pharmacopeial test. We want to see, if the restricted value considers than original value how many samples are pass or fail. In dissolution test, we considered and calculated 80% of Q value of cefuroxime 75%, donepezil hydrochloride 80%, omeprazole 10% acid stage and 65% for buffer stage. For example, if Q value 75% so that, consider new value is $75 * 0.8=60$. In this case, the samples are containing ≤ 60 consider as a pass samples. In the case of content uniformity test the acceptance value (AV) is 15 . In this case we consider 120%. Our new value is $15^{*} 1.2=18$. The samples which are containing AV bellow 18 consider as a pass samples in regarding this test. While quantity tests we multiply 0.8 with lower limit and upper value with $1.2(80 \%-120 \%)$. The following tables 1.6 and 1.7 are showing the summary of comparisons between original and new value on pass and fail samples. While annex 1.8 are showing broadly of the results.

Table 1.8 Showing the comparisons of the pharmacopeial quality test between original and newly considered value.

Name of sample	DS originaltest		$\begin{gathered} \mathrm{DS} \\ \text { consider } \end{gathered}$		$\begin{gathered} \text { QTY } \\ \text { original } \end{gathered}$		$\begin{gathered} \text { QTY } \\ \text { consider } \end{gathered}$		$\begin{gathered} \mathrm{CU} \\ \text { original } \end{gathered}$		$\begin{gathered} \mathrm{CU} \\ \text { consider } \end{gathered}$	
	Pass	Fail										
Cefuroxime(60*)	54	6	60	0	49	11	51	9	44	15	48	11
Omeprazole(65)	48	17	51	14	42	23	64	1	56	9	59	6
Ceftriaxone(49)	-	-	-	-	47	2	49	0	46	3	46	3

Table 1.9 are showing the comparisons between original all and new all tests.

Name of sample	Original all		New all	
	Pass	Fail	Pass	Fail
Cefuroxime(60)	44	16	49	11
Omeprazole(65)	33	32	45	20
Ceftriaxone(49)	46	3	46	3

Cefuroxime samples were analyzed in dissolution and 4 samples were finally failed. But when it was done $1^{\text {st }}$ stage 12 sample were fail. To consider and apply new judge in cefuroxime samples $(75 * 0.8=60 \%)$ all sample pass in this test in first stage and need not to go for $2^{\text {nd }}$ stage. Insert new judge for quantity test $80 \%-132 \%$ were considered. To apply new judge on 11 fail samples which were in $1^{\text {st }}$ stage and all samples are pass in this stage and need not to go for $2^{\text {nd }}$ stage in quantity test. In content uniformity to use new $\mathrm{AV}=18$, 4 samples pass in this stage and need not to go for $2^{\text {nd }}$ stage. Though all cefuroxime samples are not pass in content uniformity but we can say the results of dissolution and quantity test are satisfactory by using new judge.

In omeprazole samples in dissolution acid first stage to use new judge (12\%) 2 fail samples and buffer stage $(\mathrm{Q}=57 \%) 18$ samples pass in this stage and need not to go for $2^{\text {nd }}$ stage. In the case of USP consider $\mathrm{Q}=65 \%$ pass 2 sample. In the same way when we judge in $2^{\text {nd }}$ stage finally 14 samples are fail which were smaller than the original number. In quantity test all sample is pass except one when we use the new judge in $1^{\text {st }}$ stage. In content uniformity 7 samples are fail when we use new judge that is lower than the actual number. In this case we can say quantity test of this samples are all most satisfactory but not in dissolution and content uniformity.

In ceftriaxone injection samples all samples are pass in quantity in $1^{\text {st }}$ stage when use wider interval 72-138 and need not to go for $2^{\text {nd }}$ stage. But in content uniformity test 3 fail samples are not changed if we apply new judge $A V=18$. Though all samples are not pass in CU but the result of quantity test are satisfactory. Summary of the results are showing in table 1.10 and broadly in annex 1.9 .

Table 1.10 Compare the results between pharmacopeial guideline and considered new judge

Name of sample	Original all		New all	
	Pass	Fail	Pass	Fail
Cefuroxime (60)	44	16	49	11
Omeprazole (65)	33	32	45	20
Ceftriaxone (49)	46	3	46	3

* Gentamicin three samples were failed in both identification and microbial assay which were not applicable for considered new judge, while all of Donepezil Hydrochloride were pass and need not to new judge.

1.4.9 Results of fluorescence spectrophotometer

We analyzed the excipient of gentamicin samples. We did not get any peak for samples of gentamicin and low peak observed of the samples which were showing in yellow colour of the samples as well as the samples which were pass found peak in the following figures.

Figure 1.20 counterfeit samples A-020 (China)
Figure 1.21 counterfeit sample A-069 (China)

Figure 1.22 counterfeit sample A-077 (China)

Figure 1.23 Pass sample B-09 (Bangladesh)

Figure 1.24 pass sample of B-072 but colour change white to yellow before the expiration (India)

Figure 1.25 pass sample A-024 (Myanmar)

Figure 1.26 pass sample A-040 (Taiwan)

Figure 1.27 pass sample A-090 (Vietnam)

1.5 Discussion

We selected Yangon the commercial city of Myanmar, considered of population density and number of drug outlets. In this city, our survey and 235 samples were collected from pharmacy, governmental hospital, private hospital, clinic and also 15 (6.4\%) samples were taken from wholesalers. Medicines must be stored at optimum temperature that mentioned on the label. Temperature is the most critical factors for degrading medicines not only in shop but also it can affect medicines during the distribution time [40-42]. Our all sampled medicines that mentioned on the label and should be keeping in $\leq 25-30^{\circ} \mathrm{C}$ with dry place, but air conditioner was set in fewer than half the number of retail shops visited. Under such situation in Myanmar good pharmacy practice, distribution practice and storage practice are not having satisfactory. Temperature and humidity parameters can be affected and decline the quality of product during the storage or distribution time. To obtain the better quality medicines it will be needed to develop the storage condition at the drug outlets. Most of the omeprazole samples were failed in quantity test as well as dissolution test. These products might be quality and eventually lead to adverse effect of health. This is similar to the high unacceptable ratio in dissolution of omeprazole samples collected in the Cambodian pharmaceutical markets [43].

Antibiotics have been prescribing against infectious diseases that are occurring by microorganisms. The roles of antibiotics in the world are able to kill or inhibit the growth of different types of infectious microorganisms and finally overcome from diseases by its proper uses. Unfortunately, misusing of antibiotic or counterfeiting from manufacturers end side that are increasing to resistance by microorganisms. Resistance to third generation cephalosporin series and aminoglycoside series have been established worldwide. Especially, resistance to third generation cephalosporin by Klebsiella pneumoniae and Neisseria gonorrhoeae were documented at 60% and 18% respectively in Myanmar [44, 45]. Sixty percent of Acinetobacter species, 60% of E. coli, 55% of Klebsiella species, 60% of Pseudomonas and 36% of Staphlococcal species were resistance to gentamicin at North Okkalapa General Hospital in Myanmar [46]. Better qualities of antimicrobials drugs are key issue to prevent microbial resistance. We analyzed and observed in gentamicin samples but three samples out of 58 did not get the zone or low potency from the samples which were counterfeiting (Fig.1.19) as well as did not have peaks during the identification investigation (Fig. 1.17). In fluorescence spectrophotometer we farther investigate about the excipient of GM samples, we did not get any peak for the excipient during the investigation (Fig. 1.20-1.22). We found GM samples (injection) in vial which were low volume and some were yellow colour. During this investigation we observed the low peak for excipient which were yellow colour than
the white colour of the samples (Fig. 1.24). In our survey, we observed a strategy that was associated for spreading counterfeit samples. They made a plan and counterfeit samples were placed only to the community pharmacy. Though, we collected samples from community pharmacy, private hospital, government hospital and clinical pharmacy but the counterfeit samples of gentamicin that were collected from only community pharmacy and these counterfeit medicines produced by Chinese manufacturers who were not registered in Myanmar FDA. In the case of two nonregistered Chinese manufacturers were produced gentamicin, Myanmar government announced their products were counterfeited. Obviously it is compulsory to include antibiotic after any surgical operation to tackle infection from microorganisms.

In our studied, though analytical tests were satisfactory except five gentamicin samples while in the case of cefuroxime and ceftriaxone some samples were not satisfactory in pharmacopeias test. Even we observed one cefuroxime sample was showing torn in a hole of blister and another cefuroxime sample from Indian origin showing different colour in a same strip which were unexpected. Though ceftriaxone and gentamicin all samples were acceptable both sterility and endotoxin tests. Unacceptable cefuroxime tended to cost almost a half price of the pass products. Gentamicin belongs to the class of aminoglycoside antibiotics medicines which is killed or inhibits the growth of bacteria. The price of counterfeit gentamicin is one fourth cheaper than that of good-
quality products, even though no clear relation between unacceptable and price were observed in omeprazole and ceftriaxone products; we should be carefully to buy very cheap products compared to normal price of the domestic markets. Though the counterfeit medicines were very cheaper than the pass samples but other fail samples which were also cheaper as a poor quality not counterfeit. Thus, if cheaper medicines will import in future it must confirm the quality from manufacturers. Deliberately, the manufacturers were not only producing counterfeit medicines but also in manufacturing purpose they were using inexperienced manpower for more money saving. In this case we found spelling errors, different volume in the ampoule were not uniform of the solution (Fig. $1.8 \mathrm{a}, 1.8 \mathrm{~b} \& 1.9)$. Probably, this is the first report of counterfeit gentamicin in Myanmar. During the critical period the patients have been suffering these types of mistake and cannot separate from the authentic drugs. More overdue to lack of awareness general customers were confused these types of messages usually in the crucial time and entered to the danger zone. Spreading the drugs which are unregistered and distributed by unknown wholesaler or company is increasing the percentage of counterfeit to the markets. In this survey we found counterfeit gentamicin samples were unregistered in Myanmar FDA that above mentioned.

Investigation of this survey may not indicate the overall situation of Myanmar because we had several limitations like as region of sample collection, inadequate sample
size, random sampling and budgetary limitations. In authenticity investigation, we tried to communicate to the manufacturers and medicine regulatory authority of each country over telephone or by email which were involved in this program but, the response from the manufacturers side were quite low and there were no manufacturers to reply who were produced counterfeit drugs.

In Myanmar counterfeit medicines have been existing because survey was not conducted for long time. In our survey, we found counterfeit gentamicin which is a matter of serious concern, while chipper samples were more problematic than high price of the samples. For this reason, it is needed to evaluate the quality of medicines regularly in future. Any kind of medicine must be registered in country FDA with maintain actual protocol for storages and distribution time.

1.6 Conclusion

Counterfeit GM is being sold in Yangon. The quality of OM is a matter of concern, and requires follow-up. We found that a few specific manufacturers tend to produce poorquality medicines. Regular surveys to monitor counterfeit and substandard medicines in Myanmar are recommended.

Chapter two Four-year survey of the quality of antimicrobials in Cambodia

2.1 Introduction

Poor quality or falsified medicines are a serious problem which introduce the global issue especially in low-income countries from a public health point of view [4, 5, 47]. In particular, poor-quality antibiotics and antiparasitic agents may lead not only to treatment failure, but also to development of drug resistance [12,18,48,49,50]. For example, low concentrations of antibiotics accelerated the acquisition of resistance by Salmonella typhimurium LT2 strain, and the effect lasted for over 700 generations in vitro [51]. This problem is exacerbated by the use of antibiotics in the livestock sector as a growth promoter, with resistant strains being passed to humans [22]. The quality problem is not confined to antibiotics, however; in a study of 104 samples of anti-malarials in Southeast Asia in 2001, 38% were found to be substandard or falsified [52]. In Cambodia in 1999, substandard or falsified artesunate containing sulfadoxine-pyrimethamine caused the death of at least 30 people [53]. Falsified paracetamol that contained diethylene glycol killed more than 200 children in Bangladesh in 1990-1993 [17].

In Cambodia, the prevalence of falsified and substandard antibiotics has been reported to range from 4% to 90%, according to the Ministry of Health and our earlier surveys [13-16, 43]. In this paper, we describe a 4-year consecutive investigation of medicines distributed in Cambodia, designed to investigate the quality of antimicrobial medicines in Cambodia, as well as to promote efforts to improve the quality of medicines on sale there in the future.

2.2 Objective

In Cambodia, the prevalence of falsified and substandard medicines has been reported to range from 4% to 90%, according to the Ministry of Health and our earlier surveys. As a part of Cambodia's continuing efforts to eliminate falsified medicines, the

Ministry of Health of Cambodia in collaboration with Kanazawa University carried out a further survey designed to evaluate the quality of selected key medicines in the country as well as to promote efforts to improve the quality of both antimicrobial and lifesaving medicines on sale there in the future.

2.3 Materials and Methods

2.3.1 Selection of sampling areas

In consultation with the Department of Drugs and Food (DDF), Cambodia, we selected six sampling areas in the provinces of Battambang, Kandal, Kampong Speu and Takeo (rural areas) and in Phnom Penh, the capital of Cambodia (urban area) (Annex 2.1).

2.3.2 Sample collection

Samples of clarithromycin [54] and sulfamethoxazole/trimethoprim (June 2011) [55]; ceftriaxone (June 2012) [56]; cefuroxime [25], levofloxacin, gentamicin (August 2013) [57]; ciprofloxacin [58], fluconazole, nalidixic acid, ofloxacin, phenoxymethyl penicillin and roxithromycin (August2014) [59] were collected by two teams, each containing one or two Japanese researcher(s), one local assistant and one supervisor from DDF. Samples were collected from pharmacies, Depot-A, Depot-B, non-licenced drug outlets and wholesalers. Depot-A was defined as a site having a pharmacist with at least three years' pharmacy training, while Depot-B was defined as a site having a doctor or retired nurse in attendance.

2.3.3 Observation

The obtained samples were checked with reference to "Tool for Visual Inspection of Medicines" [28]. Packages, tablets and blisters of collected samples were observed
carefully for package data, packaging condition, Cambodian registration number on the label, and insert of each sample. Photographs were taken of each sample. During sampling, we also observed the environment of the drug outlets.

2.3.4 Authenticity

Authenticity investigation and registration verification were adopted from the World Health Organization procedures [16, 18, 48, 60, 61]. E-mail, contact address and telephone numbers were collected from each manufacturer with Medicine Regulatory Authority (MRA) from their web site. We sent photographs of samples with short questionnaires to the manufacturers to check authenticity and asked MRAs whether manufacturers were licensed or not. We also asked the DDF about sample registration in Cambodia.

2.3.5 Sample chemical analysis

The quality of samples was evaluated according to the pharmacopeia indicated on the sample package. For the quantity test, an HPLC method was adopted. A Shim-pack CLC-ODS (M) 15 cm column (Shimadzu, Kyoto, Japan) was used for clarithromycin, ceftriaxone, ciprofloxacin, fluconazole, nalidixic acid, ofloxacin, roxithromycin and gentamicin samples. A Shim-pack CLC-ODS (M) 25 cm column (Shimadzu, Kyoto, Japan) column was used for cefuroxime and levofloxacin samples, while a 30 cm column was used for sulfamethoxazole/trimethoprim samples. An NTR-VS6P dissolution tester (Toyama, Osaka, Japan) was used in dissolution test for all samples except in the cases of ceftriaxone for injection and gentamicin injection. All tests followed on pharmacopeial (according to the package information).

Table 2.1 HPLC conditions for pharmacopoeial tests

Items	Brand name of HPLC system	Column size	Wavelength	Oven temperature	AV§	$\begin{gathered} \text { Quantity } \\ \% \end{gathered}$	Q value for 30 min . in dissolution
Clarithromycin	Hitachi, Japan	$4.6 \mathrm{mmX1} 15 \mathrm{~cm}$	210 nm	$50^{\circ} \mathrm{C}$	15	90-110	$\geq 80 \%$
Sulfamethoxazole/ Trimethoprim	Shimadzu, Japan	4.6 mmX30 cm	254 nm	$40^{\circ} \mathrm{C}$	15	90-110	$\geq 70 \%$
Levofloxacin	Shimadzu, Japan	4.6 mmX 25 cm	260 nm	$45^{\circ} \mathrm{C}$	15	90-110	$\geq 75 \%$
Ciprofloxacin	Waters, USA	$4.6 \mathrm{mmX1} 15 \mathrm{~cm}$	278 nm	$30^{\circ} \mathrm{C}$	15	90-110	$\geq 75 \%$
Fluconazole	Shimadzu, Japan	$3.9 \mathrm{mmX15} \mathrm{~cm}$	261 nm	$40^{\circ} \mathrm{C}$	15	90-110	$\geq 75 \%$
Nalidixic Acid	Shimadzu, Japan	$4.6 \mathrm{mmX1} 15 \mathrm{~cm}$	254 nm	$25^{\circ} \mathrm{C}$	15	90-110	$\geq 80 \%$
Ofloxacin	Waters, USA	$4.6 \mathrm{mmX1} 15 \mathrm{~cm}$	294 nm	$25^{\circ} \mathrm{C}$	15	90-110	$\geq 80 \%$
Phenoxymethylpenicillin	Shimadzu, Japan	$4.6 \mathrm{mmX2} 25 \mathrm{~cm}$	254 nm	$50^{\circ} \mathrm{C}$	-	90-120	$\begin{aligned} & \geq 75 \% \\ & \text { (45min.) } \end{aligned}$
Roxithromycin	Shimadzu, Japan	$4.6 \mathrm{mmX1} 15 \mathrm{~cm}$	205 nm	$30^{\circ} \mathrm{C}$	15	90-110	$\geq 75 \%$

*Ceftriaxone and gentamicin samples were analyzed previous way.

2.3.6 Statistical analysis

Data analysis was performed using SPSS 19.0.0 (SPSS Inc, Chicago, IL, USA). Student's t-test was used to determine the significance of differences in scale data. Statistical significance was assessed at 5\% level.

2.4 Results

Collected samples are summarized in table 2.2. During the four-year survey, we collected 647 samples, produced by 179 manufacturers, involving 247 different brand products: 50 clarithromycin ($\mathrm{n}=24500 \mathrm{mg}, \mathrm{n}=26250 \mathrm{mg}$ tablet) (7.7\%) [54], 72 sulfamethoxazole/trimethoprim ($\mathrm{n}=24800 / 160 \mathrm{mg}, \mathrm{n}=48400 / 80 \mathrm{mg}$ tablet) (11.1%) [55], 61 ceftriaxone (1 gm vial) (9.4%) [56], 53 cefuroxime (250 mg tablet) (8.2%) [25], 60 levofloxacin ($\mathrm{n}=53500 \mathrm{mg}, \mathrm{n}=7250 \mathrm{mg}$ tablet) (9.3%), 59 gentamicin ($\mathrm{n}=5180 \mathrm{mg} / 2 \mathrm{ml}$ ampoule, $\mathrm{n}=880 \mathrm{mg} / 2 \mathrm{ml}$ vial) (9.1%) [57], 56 ciprofloxacin (500 mg tablets) (8.7%) [58], 57 fluconazole ($\mathrm{n}=5150 \mathrm{mg}, \mathrm{n}=52150 \mathrm{mg}$ capsule) (8.8%), 9 nalidixic acid ($\mathrm{n}=3$ $1000 \mathrm{mg}, \mathrm{n}=6500 \mathrm{mg}$ tablet) (1.4%), 57 ofloxacin (200 mg tablet) (8.8%), 56 phenoxymethyl penicillin ($\mathrm{n}=13250 \mathrm{mg}$, $\mathrm{n}=181000000 \mathrm{IU}$, $\mathrm{n}=6400000 \mathrm{IU}, \mathrm{n}=19$ 500000 IU tablet) (8.7%) and 57 roxithromycin (150 mg tablet) (8.8%) samples [59], from Battambang, Kandal, Kampong Speu, Takeo and Phnom Penh. In these surveys we collected $390(60.3 \%)$ samples from urban areas and the rest ($257,39.7 \%$) from rural areas. We found that $138(21.3 \%)$ of 647 samples were domestically produced by 28 (15.6%) manufacturers among the total of 179 manufacturers (Table 2.3).

2.4.1 Drug outlets

We collected 371 (57.3%) samples from pharmacies, 86 (13.3\%) from Depot-A, 142 (21.9%) from Depot-B, 45 (7%) from wholesalers and 3 (0.5%) from non-licensed drug outlets (Table 2.1). There was no significance association among of these outlets in the quality test of pass and fail samples (Table 2.4).

Table 2.2 Outline of samples collection in Cambodia

Year	Antibiotic	No. of samples	Types of area		Type of drug outlet					Price/unit (\$) mean \pm SD
			Urban area no. of sample\%	Rural area no. of sample\%	Pharmacy no. of sample\%	Depot-A no. of sample\%	Depot-B no. of sample\%	Wholesaler no. of sample\%	non-licensed no. of sample\%	
2011	Clarithromycin	50	28 (56\%)	22(44\%)	26 (52\%)	5 (10\%)	17 (34\%)	2 (4\%)	-	0.321 ± 0.198
	Sulfamethoxazol e/ Trimethoprim	72	42 (58\%)	30 (32\%)	23 (32\%)	15 (21\%)	29 (40\%)	4 (5\%)	1 (2\%)	0.039 ± 0.029
2012	Ceftriaxone	61	32 (52\%)	29 (48\%)	26 (43\%)	10 (16\%)	19 (31\%)	4 (7\%)	2 (3\%)	1.086 ± 1.386
2013	Cefuroxime	53	37 (70\%)	16 (30\%)	34 (64\%)	3 (6\%)	10 (19\%)	6 (11\%)	-	0.468 ± 0.198
	Levofloxacin	60	35 (58\%)	25 (32\%)	30 (50\%)	6 (10\%)	18 (30\%)	6 (10\%)	-	0.384 ± 0.294
	Gentamicin	59	35 (59\%)	24 (31\%)	26 (44\%)	11 (19\%)	17 (29\%)	5 (8\%)	-	0.069 ± 0.032
2014	Ciprofloxacin	56	36 (64\%)	20 (36\%)	40 (71\%)	7 (13\%)	5 (9\%)	4 (7\%)	-	0.075 ± 0.120
	Fluconazole	57	35 (61\%)	22 (29\%)	36 (63\%)	4 (7\%)	9 (16\%)	8 (14\%)	-	0.427 ± 0.312
	Nalidixic Acid	9	6 (66\%)	3 (34\%)	6 (66\%)	2 (22\%)	1 (2\%)	-	-	0.102 ± 0.072
	Ofloxacin	57	33 (58\%)	24 (32\%)	41 (72\%)	6 (10\%)	9 (16\%)	1 (2\%)	-	0.078 ± 0.039
	Phenoxymethyl penicillin	56	33 (59\%)	23 (31\%)	42 (75\%)	8 (15\%)	3 (5\%)	3 (5\%)	-	0.063 ± 0.112
	Roxithromycin	57	38 (66\%)	19 (34\%)	41 (72\%)	9 (16\%)	5 (9\%)	2 (3\%)	-	0.091 ± 0.092
	Total	647 (100\%)	390 (60\%)	257 (40\%)	371 (57\%)	86 (13\%)	142 (22\%)	45 (7\%)	3 (1\%)	

Urban area: The capital of Cambodia (Phnom Penh)
Rural area: Other provinces (Battambang, Kandal, Kampong Speu and Takeo) which are located outsides of capital city
Depot-A: Depot-A outlet by an assistant pharmacist (who received 3 years' pharmacy training)
Depot-B: Depot-B outlet by a doctor or retired nurse

Table 2.3 Number of samples collected which were produced domestically (Cambodia) foreign samples

Name of sample	Number of Cambodian samples	Number of Cambodian manufacturers	Number of foreign samples	Number of foreign manufacturers
Clarithromycin	14	2	36	8
Sulfamethoxazole/ Trimethoprim	42	6	30	9
Ceftriaxone	0	0	61	17
Cefuroxime	0	0	53	15
Levofloxacin	0	0	60	19
Gentamicin	0	0	59	12
Ciprofloxacin	18	5	38	15
Fluconazole	10	1	47	16
Nalidixic Acid	6	1	3	3
Ofloxacin	14	6	43	15
Phenoxymethyl penicillin	24	3	32	3
Roxithromycin	10	4	47	19
Total	138	28	509	151

Table 2.4 Significance association among the drug outlets in quality test

Outlet	Number of	Quality test		p (Fisher's
	samples	Pass	Fail	
Pharmacy	371	269	102	
Depot-A	86	64	22	
Depot-B	142	94	48	
Wholesaler	45	36	9	
Non-licensed	3	2	1	$*$

*Due to few samples not calculated in statistically

2.4.2 Observations

During the collection of samples, we observed that 51 shops out of 353 were airconditioned. 85 (13.1\%) samples lacked an insert, while insert information of one sample which was found in the package and package information about the medicine was not match during the observation. Five samples showed variations of package colour. Two lots of tablets and one ampoule showed different colours from others of the same brands. The blister which was picked from the package and it’s information did not match the package (which carry blister) information for one sample (Table 2.5). We collected 12 (1.9\%) samples that were not registered with the DDF (Table 2.6). We found one cefuroxime sample that was a physician sample (this was mentioned on the box) [25], and one sulfamethoxazole/trimethoprim sample that had passed its expiration date [55].

Table 2.5 Number of abnormal samples were found during observation analysis.

Name of samples	Number of samples	Number of insert missing of the samples	Insert information not match to the package	Blister information did not match with container	Different package colour in same lot	Different colour of tablet/ ampoule
Clarithromycin	50	0	1	0	4	1
Sulfamethoxazole/	72	24	0	1	1	0
Trimethoprim						
Ceftriaxone	61	2	0	0	0	0
Cefuroxime	53	2	0	0	0	0
Levofloxacin	60	0	0	0	0	0
Gentamicin	59	4	0	0	0	1
Ciprofloxacin	56	4	0	0	0	0
Fluconazole	57	4	0	0	0	0
Nalidixic Acid	9	3	0	0	0	0
Ofloxacin	57	8	0	0	0	0
Phenoxymethyl	56	32	0	0	0	0
penicillin			2	0	0	0
Roxithromycin	57	647	$85(13.1 \%)$	$1(0.15 \%)$	$1(0.15 \%)$	$5(0.8 \%)$

Table 2.6 Number of unregistered samples in DDF

Name of medicine	Number of samples	Samples were unregistered in DDF
Clarithromycin	50	0
Sulfamethoxazole/	72	2
Trimethoprim		
Ceftriaxone	61	2
Cefuroxime	53	2
Levofloxacin	60	0
Gentamicin	59	2
Ciprofloxacin	56	1
Fluconazole	57	0
Nalidixic Acid	9	3
Ofloxacin	57	0
Phenoxymethyl	56	0
penicillin		
Roxithromycin	57	0
Total	647	$12(1.9 \%)$

2.4.3 Authenticity

In 2011, 11 manufacturers replied about 60 samples; in 2012, 4 manufacturers replied about 17 samples; in 2013, 15 manufacturers replied about 51 samples, and in 2014, 13 manufacturers replied about 26 samples, confirming that those samples were authentic. On the other hand, 18 MRAs out of 40 replied about manufacturer licenses and branded products (Table 2.7). The MRA in Germany replied that one manufacturer was not licensed.

2.4.4 Quality investigation of samples

The results of quality evaluation of collected samples are summarized in Table 2.8. In the quantity test, $533(90.6 \%)$ out of 588 samples passed. Among 472 samples analyzed for content uniformity, 406 (86\%) passed. In the dissolution test, 424 (80.4\%) out of 527 samples passed. Identification, microbial assay, sterility and endotoxin tests were satisfactory. In the content uniformity test, the average price of failed samples of cefuroxime was significantly cheaper than that of passed samples (Student's t-test, $\mathrm{p}<0.05$). In the dissolution test, failed samples of roxithromycin were significantly cheaper than passed samples (Table 2.9) (Student's t -test, $\mathrm{p}<0.05$). In the dissolution test, there was a significant difference between the pass and fail rates of Cambodian-produced samples and foreign-produced samples (Table 2.10) (Fisher's exact test, $\mathrm{p}<0.05$).

Table 2.7 MRAs and manufacturers replied during the authenticity investigation

Country	Participated year	MRAs replied year	Number of manufacturers participated	Number of samples	Number of manufacturers replied	Manufacturers confirmed all samples were genuine
Austria	2013 \& 2014	20013\& 2014	2	17	Not replied	-
Bangladesh	$\begin{aligned} & 2011,2012,2013 \& \\ & 2014 \end{aligned}$	-	14	30	2 Replied in 2013	5
Cambodia	2011, 2014	2011 \& 2014	16	128	16 in 2011	128
China	2013	2013	8	43	Not replied	-
Cyprus	2011, 2013 \& 2014	2011	3	7	Not replied	-
France	2011 \& 2014	2011	3	10	1 replied 2011	1
Germany	2013 \& 2014	2011 \& 2014	2	10	1 in 2013 \& 1 I 2014	1
India	$\begin{aligned} & 2011,2012,2013 \& \\ & 2014 \end{aligned}$	2011 \& 2012	83	257	9 in 2013	-
Indonesia	2013 \& 2014	-	4	5	1 in 2013	-
Korea	2011, 2014	2011	13	36	1 in 2011 \& 1 in 2014	7
Malaysia	2011, 2013 \& 2014	2011	3	10	1 in 2014	-
Pakistan	$\begin{aligned} & 2011,2012,2013 \& \\ & 2014 \end{aligned}$	2011 \& 2012	11	38	$\begin{aligned} & 1 \text { in } 2011,4 \text { in } 2012 \& 1 \\ & \text { in } 2013 \end{aligned}$	8
Singapore	2014	-	1	1	Not replied	-
Sweden	2012	2012	1	3	Replied	3
Thailand	2011, 2013 \& 2014	2011	7	33	2 in 2011	1
United Kingdom	2013	2013	1	10	Not replied	
Vietnam	2011, 2013 \& 2014	-	7	9	Not replied	-

Table 2.8 Summary of quality test of samples

Antibiotic	Total no. of samples	Dissolution		Content uniformity		Quantity		Identification		Sterility		Endotoxin		Microbial assay	
		Pass	Fail												
Clarithromycin	50	36	14	43	7	49	1	50	0	-	-	-	-	-	-
Sulfamethoxazole/ Trimethoprim	72	62	10	70	2	53	19	72	0	-	-	-	-	-	-
Ceftriaxone	61	-	-	46	15	48	13	61	0	61	0	61	0	-	-
Cefuroxime	53	53	0	43	10	51	2	53	0	-	-	-	-	-	-
Levofloxacin	60	42	18	-	-	57	3	60	0	-	-	-	-	-	-
Gentamicin	59	-	-	-	-	-	-	59	0	59	0	59	0	59	0
Ciprofloxacin	56	54	2	56	0	54	2	56	0	-	-	-	-	-	-
Fluconazole	57	29	28	40	17	54	3	57	0	-	-	-	-	-	-
Nalidixic Acid	9	3	6	9	0	9	0	9	0	-	-	-	-	-	-
Ofloxacin	57	49	8	44	13	46	11	57	0	-	-	-	-	-	-
Phenoxymethylpenicillin	56	56	0	-	-	55	1	56	0	-	-	-	-	-	-
Roxithromycin	57	40	17	55	2	57	0	57	0	-	-	-	-	-	-
Total	647	424	103	406	66	533	55	647	0	120	0	120	0	59	0

Table 2.9 Comparison between price and result of the quality test in samples

Name of sample	Test	Result	Number of samples	Price/unit (\$) mean \pm SD	t-test
Clarithromycin	Dissolution	$\begin{gathered} \hline \text { Pass } \\ \text { Fail } \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.355 \pm 0.199 \\ & 0.235 \pm 0.174 \\ & \hline \end{aligned}$	n.s
	Content uniformity	Pass Fail	$\begin{gathered} 43 \\ 7 \end{gathered}$	$\begin{aligned} & \hline 0.340 \pm 0.207 \\ & 0.209 \pm 0.159 \\ & \hline \end{aligned}$	n.s
	Quantity	Pass Fail	$\begin{gathered} 49 \\ 1 \end{gathered}$	$\begin{aligned} & 0.324 \pm 0.20 \\ & 0.20 \\ & \hline \end{aligned}$	-
Sulfamethoxazole/ Trimethoprim	Dissolution	Pass Fail	$\begin{aligned} & 62 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.041 \pm 0.031 \\ & 0.028 \pm 0.011 \end{aligned}$	n.s
	Content uniformity	Pass Fail	$\begin{gathered} 70 \\ 2 \end{gathered}$	$\begin{aligned} & 0.040 \pm 0.029 \\ & 0.42 \pm 0.14 \\ & \hline \end{aligned}$	n.s
	Quantity	Pass Fail	$\begin{aligned} & 53 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.04 \pm 0.024 \\ & 0.038 \pm 0.407 \end{aligned}$	n.s
Ceftriaxone	Content uniformity	Pass Fail	$\begin{aligned} & 46 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.970 \pm 0.524 \\ & 0.661 \pm 0.339 \end{aligned}$	n.s
	Quantity	Pass Fail	$\begin{aligned} & 48 \\ & 13 \end{aligned}$	$\begin{aligned} & 0.970 \pm 0.533 \\ & 0.69 \pm 0.360 \end{aligned}$	n.s
Cefuroxime	Dissolution	Pass Fail	$\begin{gathered} 53 \\ 0 \end{gathered}$	0.468 ± 0.198	-
	Content uniformity	Pass Fail	$\begin{aligned} & 43 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.360 \pm 0.210 \\ & 0.510 \pm 0.180 \\ & \hline \end{aligned}$	$\mathrm{p}<0.05$
	Quantity	Pass Fail	$\begin{gathered} 51 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & 0.462 \pm 0.198 \\ & 0.615 \pm 0.190 \\ & \hline \end{aligned}$	n.s
Levofloxacin	Dissolution	Pass Fail	$\begin{aligned} & 42 \\ & 18 \end{aligned}$	$\begin{aligned} & 0.421 \pm 0.339 \\ & 0.303 \pm 0.228 \\ & \hline \end{aligned}$	n.s
	Quantity	Pass Fail	$\begin{gathered} 59 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.391 \pm 0.300 \\ & 0.247 \pm 0.024 \\ & \hline \end{aligned}$	n.s
Gentamicin	All test	Pass Fail	$\begin{gathered} 59 \\ 0 \\ \hline \end{gathered}$	0.069 ± 0.032	-
Ciprofloxacin	Dissolution	$\begin{gathered} \hline \text { Pass } \\ \text { Fail } \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.076 \pm 0.123 \\ & 0.049 \pm 0.016 \\ & \hline \end{aligned}$	n.s
	Content uniformity	Pass Fail	$\begin{gathered} 56 \\ 0 \end{gathered}$	0.075 ± 0.016	-
	Quantity	Pass Fail	$\begin{gathered} 54 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 0.0758 \pm 0.123 \\ & 0.668 \pm 0.0102 \\ & \hline \end{aligned}$	n.s
Fluconazole	Dissolution	Pass Fail	$\begin{aligned} & 29 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.448 \pm 0.348 \\ & 0.406 \pm 0.274 \\ & \hline \end{aligned}$	n.s
	Content uniformity	Pass Fail	$\begin{aligned} & 40 \\ & 17 \end{aligned}$	$\begin{aligned} & 0.419 \pm 0.319 \\ & 0.447 \pm 0.302 \\ & \hline \end{aligned}$	n.s
	Quantity	Pass Fail	$\begin{gathered} 54 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & 0.426 \pm 0.317 \\ & 0.463 \pm 0.028 \end{aligned}$	n.s
Nalidixic Acid	Dissolution	Pass Fail	$\begin{aligned} & 3 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.088 \pm 0.0411 \\ & 0.109 \pm 0.086 \\ & \hline \end{aligned}$	n.s
	Content uniformity	Pass Fail	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	0.102 ± 0.024	-
	Quantity	Pass Fail	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	0.102 ± 0.024	-
Ofloxacin	Dissolution	Pass Fail	$\begin{gathered} 49 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & 0.072 \pm 0.318 \\ & 0.118 \pm 0.502 \\ & \hline \end{aligned}$	n.s
	Content uniformity	Pass Fail	$\begin{aligned} & 44 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.078 \pm 0.039 \\ & 0.079 \pm 0.038 \\ & \hline \end{aligned}$	n.s
	Quantity	Pass Fail	$\begin{aligned} & 46 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.076 \pm 0.040 \\ & 0.88 \pm 0.034 \\ & \hline \end{aligned}$	n.s
Phenoxymethylpenicillin	Dissolution	Pass Fail	$\begin{gathered} 56 \\ 0 \\ \hline \end{gathered}$	0.063 ± 0.112	-
	Quantity	Pass Fail	$\begin{gathered} 55 \\ 1 \end{gathered}$	$\begin{aligned} & 0.064 \pm 0.113 \\ & 0.05 \end{aligned}$	-
Roxithromycin	Dissolution	Pass Fail	$\begin{aligned} & 40 \\ & 17 \end{aligned}$	$\begin{aligned} & 0.0952 \pm 0.014 \\ & 0.082 \pm 0.022 \\ & \hline \end{aligned}$	$\mathrm{p}<0.05$
	Content uniformity	Pass Fail	$\begin{gathered} 55 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 0.080 \pm 0.088 \\ & 0.785 \pm 0.048 \\ & \hline \end{aligned}$	n.s
	Quantity	Pass Fail	$\begin{gathered} 57 \\ 0 \end{gathered}$	0.091 ± 0.0921	-

Table 2.10 Factors associated with quality test found in roxithromycin samples which were originated from Cambodia and other countries

Factors		Manufactured Country	Number of samples	Test Result		p (Fisher's exact test)	
		Pass		Fail			
Ciprofloxacin	Content uniformity		Cambodia	18	18	0	-
		other	38	38	0		
	Quantity	Cambodia	18	18	0	-	
		other	38	36	2		
	Dissolution	Cambodia	18	18	0	-	
		other	38	36	2		
Fluconazole	Content uniformity	Cambodia	10	7	3	n.s	
		other	47	33	14		
	Quantity	Cambodia	10	10	0	-	
		other	47	44	3		
	Dissolution	Cambodia	10	5	5	n.s	
		other	47	24	23		
Nalidixic Acid	Content uniformity	Cambodia	6	6	0	-	
		other	3	3	0		
	Quantity	Cambodia	6	6	0	-	
		other	3	3	0		
	Dissolution	Cambodia	6	1	5	n.s	
		other	3	2	1		
Ofloxacin	Content uniformity	Cambodia	13	11	2	n.s	
		other	42	33	9		
	Quantity	Cambodia	13	11	2	n.s	
		other	42	35	7		
	Dissolution	Cambodia	13	12	1	n.s	
		other	42	37	5		
Phenoxymethyl penicillin	Quantity	Cambodia	24	23	1	-	
		other	32	32	0		
	Dissolution	Cambodia	24	24	0	-	
		other	32	32	0		
Roxithromycin	Content uniformity	Cambodia	10	10	0	-	
		other	45	45	0		
	Quantity	Cambodia	10	10	0	-	
		other	47	47	0		
	Dissolution	Cambodia	10	3	7	$\mathrm{p}<0.05$	
		other	47	37	10		
Clarithromycin	Content uniformity	Cambodia	14	12	2		
		other	36	31	5		
	Quantity	Cambodia	14	13	1	-	
		other	36	36	0		
	Dissolution	Cambodia	14	9	5	n.s	
		other	36	27	9		
Sulfamethoxazole/ Trimethoprim	Content uniformity	Cambodia	42	40	2	-	
		other	30	30	0		
	Quantity	Cambodia	42	32	10	n.s	
		other	30	21	9		
	Dissolution	Cambodia	42	36	6	n.s	
		other	30	26	4		

2.5 Discussion

Falsified antibiotics have been found in previous surveys in Cambodia [43]. For this reason, our four-year survey covered a range of different regions in the country. Overall, we found that 424 (80.5%), 406 (86%), 533 (90.6%), 647 (100%), 120 (100%), $120(100 \%)$ and $59(100 \%)$ samples passed the dissolution, content uniformity, quantity, identification, sterility, endotoxin, and microbial assay tests respectively (Table 2.8). Thus, poor-quality medicines were still available in Cambodia during the study period. Possible reasons include poor GMP implementation by manufacturers and inadequate storage conditions in outlets in Cambodia. Only 51 of 353 outlets were air-conditioned. Cambodia is situated in a tropical region, and the summer season is hot and humid. Our statistical investigation we did not get significance association, the effect of temperature on pass or fail samples of medicines compare with those outlets containing airconditioning. But it is well established that these conditions can markedly impair the quality of medicines [40-42]. In our investigation, failed samples were significantly cheaper than passed samples in the cases of cefuroxime and roxithromycin. Thus, it may be important to focus quality checks especially on cheaper medicines (Table 2.9). Foreign manufacturers not only supply poor quality medicines in the markets but also domestic manufactures were produced and supply this type of medicines to the markets. We found 10 roxithromycin products which were produced domestically. Significance was associated in number of pass and fail samples which compared with the foreign products (Table 2.10). We also found one expired sample, and this could present a health hazard to patients. About medicine indication information get from insert which must compulsory inside of box or container. We found 13.1% samples did not contain insert. Unregistered samples which may causes to increase poor quality medicines in the markets.

We found 1.9% samples were not registered in DDF (Table 2.6). In our investigation maximum unregistered samples did not pass according to their pharmacopoeial test.

Non-licenced drug outlets were found in Cambodia in previous studies [13, 16, $43,60]$, but have since been almost completely closed down, and only permitted clinics continue to sell medicines, thanks to the vigorous efforts of the Cambodian government to strengthen pharmaceutical control (Table 2.2). But, our statistical analysis among of these outlets did not get any significance (Table 2.4)

More than 10% of the antibiotics sampled failed in various tests, except for levofloxacin, ciprofloxacin and phenoxymethyl penicillin (table 2.8). Among the failures, 28% of clarithromycin and 49.1% of fluconazole samples failed only in the dissolution test. On the other hand, 20% of ofloxacin and 26.4% of sulfamethoxazole/trimethoprim samples failed in content uniformity and quality tests, respectively. These results are unsatisfactory from the viewpoint of public health, and are also likely to promote bacterial resistance to antibiotics [12]. This is a serious issue, because it has been reported that 60% and 18% of Klebsiella pneumonia and Neisseria gonorrhea, respectively, have developed resistance even to third-generation cephalosporin [44, 45]. In North Okkalapa General Hospital in Myanmar, 60% of Acinetobacter species, 60% of E. coli, 55% of Klebsiella, 60% of Pseudomonas and 36% of Staphylococcus species were resistant to gentamicin [46]. In addition, resistance to old quinolones such as nalidixic acid, fluoroquinolones such as ciprofloxacin and ofloxacin, penicillins such as phenoxymethyl penicillin, macrolides such as roxithromycin and triazole antifungal drugs such as fluconazole has been documented globally. According to the 2014 WHO report, E. coli and Shigella
strains resistant to fluoroquinolones amounted to $31-32 \%$ and 11.8%, respectively, in Cambodia. Streptococcus pneumoniae resistant to penicillin has also been detected at a rate of 64% in Cambodia [45]. However, action against substandard or falsified medicines has improved the quality of medicines in recent years [13, 15,16]. In our four-year investigation we found poor-quality medicines, but we did not find any falsified medicines, which is consistent with the view that the quality of medicines in Cambodian markets has improved. The results of registration verification from DDF were also satisfactory.

The prevalence of poor-quality medicines found in our investigation is broadly consistent with that in other lower-income countries [62]. But, although no falsified medicine has been identified among the collected samples, it has not been possible to confirm the authenticity of all the samples.

2.6 Conclusion

Poor-quality antibiotics remained prevalent in Cambodia during 2011 to 2014. Efforts are needed to encourage manufacturers to follow GMP, and to ensure proper handling of medicines throughout the supply chain. Also, continuous monitoring of manufacturers' products by MRAs is needed to ensure all products are licensed.

Chapter three Quality survey of selected medicines in Cambodia, 2011-2013

3.1 Introduction

Poor quality medicines are a serious issue for public health; for example, 200 children died in a Bangladesh hospital in 1990-93 after being given counterfeit paracetamol that had been substituted by diethylene glycol [17,19]. In 2016, the Supreme Court of Bangladesh ordered about twenty pharmaceutical companies identified as responsible for production of substandard drugs to cease operation [63]. Counterfeit medicines impact not only developing countries, but also high-income countries [64-68], although it has been estimated that 30% of counterfeit drugs are distributed in Africa, Asia, Middle East, compared with less than 1% in the USA and European countries [5, 69-71]. In addition to counterfeit medicines, substandard medicines are also an important issue; for example, in 1999 more than 30 people died after being given substandard sulfadoxine-pyrimethamine as an anti-malarial [53].

Since the 1990s, the Ministry of Health and law-enforcement agencies in Cambodia have been trying to identify and suppress the distribution of falsified medicines, in cooperation with various international organizations, including the World Health Organization (WHO), INTERPOL, USAID, US Pharmacopeial Convention (USP), and Japan Pharmaceutical Manufacturers Association (JPMA) [13, 60, 72-76]. Various surveys have found that the prevalence of counterfeit and substandard medicines in Cambodia ranged from 4% to 90% [13-16]. In a previous survey in 2010, we also found falsified and poor quality medicines in Cambodian markets [43, 62].

As a part of Cambodia's continuing efforts to eliminate falsified medicines, the Ministry of Health of Cambodia in collaboration with Kanazawa University carried out a further survey designed to evaluate the quality of selected key medicines in the country.

3.2 Methods

3.2.1 Sample collection

We decided to collect samples from regions of high population density, border regions and locations along national highways. In consultation with the Department of Drugs and Food (DDF), we selected Phnom Penh as an urban area, and Battambang, Kandal, Takeo, Kampong speu and Svay rieng as rural areas. A list of licensed drug outlets was obtained from DDF. The selected target drugs were cimetidine in 2011, amlodipine [77]; esomeprazole and rabeprazole [78] in 2012, glibenclamide [79] and metformin [80] in 2013. Samples were collected from four types of drug outlets: pharmacies, Depot-A, Depot-B and non-licensed drug outlets. Depot-A was defined as an outlet with a pharmacist who had at least 3 years' pharmacy training, and Depot-B was defined as an outlet that contained a doctor or retired nurse [81]. Some samples were also collected from wholesalers. Each of the two sampling teams contained a research investigator, a local officer who had received training, and a sampling assistant. A sampling form was used to record information about each sample at the time of purchase, and samples were keep $20-25^{\circ} \mathrm{C}$ until analyzed.

3.2.2 Observation

The condition of each package, the colour of the box, the appearance of the medicines, and the insert in each package were carefully examined at Kanazawa University, and compared with those of other samples of the same brand, and the logo on the box was compared with that on the labeled supplier's internet home page. The manufacturing date, expiry date, lot number, license number, and Cambodian registration
number were also recorded. Samples were photographed, and scans of the box and insert were made.

3.2.3 Authenticity

Authenticity investigation was conducted according to the recommendations of the World Health Organization (WHO) [16, 48]. Information on the label, photographs of samples, scans of the box and insert, and a short questionnaire were sent to manufacturers by E-mail, and manufacturers were also contacted by telephone using the number on their internet home page. We asked the responsible MRAs whether or not the manufacturers were registered. We also asked the DDF whether or not the collected medicines were registered in Cambodia.

3.2.4 Quality analysis

Sample quality was evaluated according to the Pharmacopeia stated on the label, using the USP 34, USP 35 and BP 2012 versions of the pharmacopeias [82-84]. Content uniformity tests were performed with 10 tablets/capsules of all samples. The HPLC columns and parameters used during the content uniformity tests are listed in Table 3.1. Quantity and dissolution tests followed the relevant pharmacopeial descriptions. Dissolution tests for all samples were performed with 6 tablets/capsules by using an NTRVS6P dissolution tester (Toyama, Osaka, Japan).

3.2.5 Statistical analysis

Data analysis was performed using SPSS release 19.0.0 (Chicago: SPSS Inc.). When appropriate, Fisher's exact test was performed to identify significant relationships among variables. Statistical significance was evaluated at 5\% level.

Table 3.1 HPLC conditions for pharmacopoeial tests

Items	Brand name of HPLC system	Column size	Wave- length	Oven temperature	AV	Quantity \%	Q value for 30 min. in dissolution
Amlodipine	Hitachi, Japan	$4.6 \mathrm{mmX15} \mathrm{~cm}$	237 nm	$40^{\circ} \mathrm{C}$	15	$90-110$	$\geq 75 \%$
Cimetidine	Shimadzu, Japan	4.6 mmX 25 cm	220 nm	$40^{\circ} \mathrm{C}$	15	$90-110$	$\geq 80 \%$
Esomeprazole	Shimadzu, Japan	$4.0 \mathrm{mmX10cm}$	302 nm	$30^{\circ} \mathrm{C}$	15	$90-110$	$\geq 75 \%$
Glibenclamide	Waters, USA	$4.6 \mathrm{mmX15} \mathrm{~cm}$	254 nm	$25^{\circ} \mathrm{C}$	15	$90-110$	$\geq 70 \%$
Metformin	Shimadzu, Japan	4.6 mmX 25 cm	218 nm	$30^{\circ} \mathrm{C}$	15	$90-110$	$\geq 70 \%$
Rabeprazole	Waters, USA	$4.6 \mathrm{mmX15} \mathrm{~cm}$	290 nm	$30^{\circ} \mathrm{C}$	15	$90-110$	$\geq 75 \%$

3.3 Results

As summarized in Table 3.2, we collected 86 (25.1\%) samples of cimetidine (40 mg tablet), 79 (23.1\%) amlodipine ($\mathrm{n}=310 \mathrm{mg}$ capsule \& n=76 5 mg tablet) [77], 54 (15.8\%) esomeprazole ($20 \mathrm{mg} \mathrm{n}=14$ capsule \& $\mathrm{n}=12$ tablets; 40 mg tablet $\mathrm{n}=16$ \& $\mathrm{n}=12$ capsule), 11 (3.2%) rabeprazole ($10 \mathrm{mg} \mathrm{n}=1$ capsule \& $20 \mathrm{mg} \mathrm{n}=10$ tablet) [78], 60 (17.5\%) metformin (500 mg tablet) [80] and 52 (15.2\%) glibenclamide (5 mg tablet) [79]. Most of the samples (223, 65.2\%) were collected from Phnom Penh, and the others (119, 34.8%) were collected from rural areas.

3.3.1 Drug Outlets

We collected total 342 samples from 263 drug outlets in the investigated regions.
We obtained 156 (45.6\%) from pharmacies, 62 (18.1\%) from Depot-A, 96 (28.1\%) from Depot-B, and 30 (8.2\%) from wholesalers (Table 3.2).

Table 3.2 Number of samples collected from different outlets

Year/Name of samples	No. of samples	Area		Type of drug outlet			
		Urban	Rural	Pharmacy	Depot-A	Depot-B	Wholesaler
2011							
Cimetidine	86	57	29	30	19	34	3
2012							
Amlodipine	79	45	34	33	12	27	7
Esomeprazole	54	38	16	28	4	13	9
Rabeprazole	11	10	1	8	0	2	1
2013							
Glibenclamide	52	33	19	25	14	10	3
Metformin	60	40	20	32	13	10	5
Total	342	223	119	156	62	96	28

3.3.2 Observations

Among 263 outlets, only 18 were air-conditioned. The samples originated from 78 manufacturers, and 38 (11.1\%) were domestically produced. Three samples of cimetidine and one of amlodipine were in boxes or containers of nonstandard colour (Fig. $1 \mathrm{a}, 1 \mathrm{~b})$. The colour of the tablets in two different samples did not match among the samples of cimetidine and amlodipine (Fig. 1c). The inserts in the two samples did not match those in other samples of the same brand. In addition, 32 (9.4\%) samples had no insert.

3.3.3 Authenticity

The DDF reported that 14 samples out of 342 were not registered (Table 3.3). Replies stating that products were authentic were received from 8 out of 27 manufacturers in 2011, 7 out of 35 manufacturers in 2012 and 6 out of 19 manufacturers in 2013. Thus, the response rate was quite poor. On the other hand, we received replies from 7 out of 12 MRAs in 2011, 7 out of 13 MRAs in 2012 and 2 out of 10 MRAs in 2013, stating that manufacturers were registered in their country.

Figure 3.1

a: Different boxes or containers of cimetidine.
a.

b: Different colour of the box of amlodipine sample

c: Different tablets of amlodipine

Table 3.3 Samples without registration or insert

Items	Unregistered	No insert in box
Cimetidine	3	23
Amlodipine	7	3
Esomeprazole	1	2
Rabeprazole	0	0
Glibenclamide	1	1
Metformin	2	3
Total	14	32

3.3.4 Quality evaluation

The test results for the 342 samples are summarized in Table 3.4. We found that 38 (11.1\%) samples failed the dissolution test, and 52 (15.2%) failed the content uniformity test. In addition, 48 (14\%) samples out of 342 failed the quantity test. In the case of rabeprazole, 11 samples originated from Japan passed all the tests, whereas 16 (42.1%) samples out of 38 produced domestically failed in one or more tests. Failure rates in quality tests were significantly associated with anomalies in visual observation of the samples (Fisher`s exact test, $\mathrm{p}<0.01 \& \mathrm{p}<0.05$) (Table 3.5).

Table 3.4 Summary of quality test of samples

Sample name	No. of samples	Dissolution		Content uniformity		Quantity	
		Pass	Fail	Pass	Fail	Pass	Fail
Cimetidine	86	79	7	65	21	71	15
Amlodipine	79	77	2	73	6	78	1
Esomeprazole	54*	31	22	32	22	33	21
Rabeprazole	11	11	0	11	0	11	0
Glibenclamide	52	47	5	49	3	46	6
Metformin	60	58	2	60	0	55	5
Total	342	303	38	290	52	294	48

[^0]Table 3.5 Statistical analysis

3.5 Discussion

Cambodia lies in a tropical region, and is very hot and humid in the summer season. These factors can seriously impact on the quality of improperly stored medicines [40-42]. Among the outlets from which samples were collected, we found that all the wholesalers were equipped with air-conditioning, but very few other outlets had airconditioning. There seems to be a clear need to improve the storage conditions in retail outlets in order to improve the quality of medicines.

We observed some samples of boxes that had been imported, but showed a different colour compared with other samples of the same brand. The fact that these were on sale suggests that customers were not necessarily familiar with the authentic products. On the other hand, printing technology makes it quite easy to prepare packages for falsified medicines that resemble authentic products [47, 85]. In our investigation we also found two samples of tablets that had nonstandard colours. Among samples from both foreign and domestic manufacturers, we found that 32 (9.4\%) lacked sample inserts in the box, although it was not clear whether inserts had been omitted by the manufacturers or removed by retailers. Among 14 samples that had been imported but not registered with the DDF (Table 3.3), 4 (28.6\%) failed pharmacopoeial tests in Kanazawa University. A major issue in authenticity investigation was the poor response rate from manufacturers. We could not get any responses from 57 manufacturers, although 86 samples were confirmed to be genuine by 21 manufacturers.

Among all the samples collected, 38, 52 and 48 samples failed in dissolution, content uniformity and/or quality tests at Kanazawa University. Most of the esomeprazole samples failed in all tests (Table 3.4). In the case of amlodipine, which is used to treat
hypertension and chest pain in adults or children, and we found that 6 samples failed the content uniformity test. It is noteworthy that 14 (42.1\%) out of 38 samples of domestically produced rabeprazole were of poor quality. Thus, the manufacturers (Cambodian) which are produced poor quality medicines should avoid and imported good quality medicines from the manufacturers.

Finally, it should be noted that our survey had a number of limitations. In particular, budgetary restrictions limited the number of samples that could be collected and the number of outlets that could be sampled. We did not visit all of the same sites in each of the 3 years. Nevertheless, our survey clearly shows that substandard and counterfeit medicines are widely available in Cambodia.

3.6 Conclusion

Poor-quality medicines were still prevalent in Cambodia during 2011-2013. It is desirable to conduct further surveys to continue monitoring the situation. Measures are also needed to improve the quality of domestically manufactured products.

Chapter four
 Comparative study between Myanmar and Cambodia

Comparative study between two-countries

According to pharmacopoeial analysis, from the investigation samples in Myanmar we found that $79.7 \%, 84.7 \%, 82 \%, 100 \%, 100 \%, 98.7 \%$, and 94.8% samples were passed in assay, content uniformity, dissolution, endotoxin, sterility, identification and microbial assay test respectively (Table 1.5). In the case of antimicrobial samples from Cambodia we found that $90.6 \%, 86 \%, 80.4 \%, 100 \%, 100 \%, 100 \%, 100 \%$ samples were passed in assay, content uniformity, dissolution, endotoxin, sterility, identification and microbial assay test respectively (Table 2.8). While in the case in Cambodian lifesaving medicines we found that $86 \%, 84.8 \%$ and 88.9% samples were passed in assay, content uniformity and dissolution test respectively (Table3.4). In Myanmar three GM samples which were failed in both identification and microbial assay test which were counterfeited. Myanmar government confirmed it and announced.

- In our one-year investigation, we found counterfeit GM medicines which were sold in Yangon a commercial city in Myanmar. While in Cambodia we conducted above these surveys which included Phnom Penh the capital of Cambodia with five different provinces. In Cambodia we found only poor quality medicines but counterfeit medicines were not detected. It is our hypothesis regarding these surveys, since 1999 there were no systematic survey occurred in Myanmar. Manufacturers took this opportunity and to supply of these type of medicines in Myanmar. In the case in Cambodia regular survey monitoring was in there. We have been reporting each year to the Cambodian authority. Robust action from the Cambodian authority and comparatively better quality of medicines were found in Cambodian markets.
- Statistically we found that the average price of failed samples was significantly cheaper than that of passed samples in both of these countries. Manufacturers who did follow GMP might sell these products cheaper than those produced in comply with GMP.
- Previously we stablished the evidences about the relationship between the quality of medicines and environmental conditions like as temperature and humidity. These conditions directly enhanced to decrease the quality of medicines. In our investigations, air-conditioning system of drug outlets in both countries were not satisfactory. Above evidences to obtain good quality medicines, it is highly necessary to improve airconditioning in any type of drug outlet.
- We found some samples which were not registered in DDF, Cambodia and Myanmar FDA. But in the case of unregistered samples (all most) from Myanmar were counterfeited which were showing spelling errors on the package of the box. Unregister samples should not be allowed for use in future.
- We had collected GM injection from both countries. In Cambodia we found all GM were ampoules. But in the case of Myanmar samples which were collected and some were ampoules and some were vials. We found counterfeit three gentamicin sample which were in ampoule. But, about the vial samples we observed that the samples colour were changed white to yellow before the expiration date. We also observed that the volume of samples were not equal (vial sample). In our laboratory investigation, we realized the samples which containing in to the vials were not properly shield. In this type of medicines should not be used to the patients.
- Investigations to Myanmar, we were collected samples from government hospital, privet hospital, community pharmacies, clinical pharmacies and wholesalers. We found counterfeit samples which were keep into only community pharmacies outlets. In this type of drug outlets must be needed special monitoring.

Conclusion of these surveys:

Our surveys were occurred in two low income countries. We found lot of foreign medicines from different manufacturers and countries. In these surveys we found lot of problems such as spelling error on the box, low volume, different package colour, insert messing in a sample box, insert information and package information not matching, loose samples, colour changed before the expiration, not registered samples and non-licenced samples were observed during the observation of samples. In authenticity investigation, from few manufacturers and MRAs replied to us. From both countries, we found huge amounts of poor quality or substandard medicines of samples those were produced in both foreign and domestically. It is our assumption that counterfeit medicine was not found in Cambodia because we have been investigating continuously in this country. But in the case of Myanmar we found counterfeit gentamicin (foreign manufacturers) from their markets and there was no survey occurred in Myanmar from the long time. We observed fail samples were cheaper in both countries than the pass samples.

People not only in this two countries but also all developing countries can get good quality medicines in the future as well as remove counterfeit or poor quality medicines from their markets could be the following ways. If it will occur continuously monitoring (surveys for the evaluation of medicines) or manufacturers which are
producing cheaper medicines cordially must follow actual guideline as well as drug outlets are needed to maintain air-conditioning.

References

1. Kelly K. History of medicine. New York: Facts on file; 2009. pp. 29-50.
2. Michael Bliss, The Discovery of Insulin (25th anniversary edition), published 2007
3. Hugh TB (2002). "Howard Florey, Alexander Fleming and the fairy tale of penicillin". The Medical journal of Australia. 177 (1): 52-53; author 53 53. PMID 12436980.
4. World Health Organization: Counterfeit drugs, report of a joint WHO/IFPMA Workshop, 1-3 April 1992. Geneva, Switzerland: WHO; 1992.
5. World Health Organization: Substandard/spurious/falsely-labelled/falsified/counterfeit medical products: report of the Working Group of Member States. 2012. http://apps.who.int/gb/ebwha/pdf_files/WHA65/A65_23-en.pdf (accessed 20 Mar 2014)
6. Mackey TK, Liang BA. Improving global health governance to combat counterfeit medicines: a proposal for a UNODC-WHO-Interpol trilateral mechanism. BMC Med 2013,11:233.
7. World Health Organization: Counterfeit medicines. Fact sheet revised on November 14, 2006. [http://www.who.int/medicines/services/counterfeit/impact/ImpactF_S/en/]
8. Newton PN, McGready R, Fernandez F, Green MD, Sunjio M, Bruneton C, Phanouvong S, Millet P, Whitty CJ, Talisuna AO, Proux S, Christophel EM, Malenga G, Singhasivanon P, Bojang K, Kaur H, Palmer K, Day NP, Greenwood BM, Nosten F, White NJ: Manslaughter by fake artesunate in Asia-will Africa be next? PLoS Med 2006, 3:e197 [http://www.plosmedicine. org/article/info\%3Adoi\%2F10.1371\%2 Fjournal.pmed.0030197]
9. Cheng MM: Is the drugstore safe? Counterfeit diabetes products on the shelves. J Diabetes Sci Technol 2009, 3:1516-20.
10. Kao SL, Chan CL, Tan B, Lim CC, Dalan R, Gardner D, Pratt E, Lee M, Lee KO: An unusual outbreak of hypoglycemia. N Engl J Med 2009, 360:734-6.
11. Surendran A. World agencies try to stem flood of fake drugs. Nat Med 2004;10:111.
12. Kelesidis T, Kelesidis I, Rafailidis PI, et al. Counterfeit or substandard antimicrobial drugs: a review of the scientific evidence. J Antimicrob Chemother 2007;60:214e36.
13. Ministry of Health. Study report on counterfeit and substandard drugs in Cambodia. Phnom Penh, 2001, 2004.
14. Lon CT, Tsuyuoka R, Phanouvong S, Nivanna N, Socheat D, Sokhan C, et al. Counterfeit and substandard antimalarial drugs in Cambodia. Trans R Soc Trop Med Hyg. 2006;100:1019-24.
15. Yang D, Plianbangchang P, Visavarungroj N, Rujivipat S. Quality of pharmaceutical items available from drugstores in Phnom Penh, Cambodia. Southeast Asian J Trop Med Public Health. 2004;35:741-7.
16. Khan MH, Okumura J, Sovannarith T, Nivanna N, Akazawa M, Kimura K. Prevalence of counterfeit anti-helminthic medicines: a cross-sectional survey in Cambodia (doi:10.1111/j.1365-3156.2010.02494.X). Trop Med Int Health. 2010;15:639-44.
17. Hanif M, Mobarak MR, Ronan A, Rahman D, Donovan JJ Jr, Bennish ML: Fatal renal failure caused by diethylene glycol in paracetamol elixir: the Bangladesh epidemic. Br Med J 1995, 311:88-91.
18. World Health Organization: Counterfeit and Substandard drugs in Myanmar and Viet Nam, 1999. Geneva, Switzerland: WHO; 1999.
19. Keoluangkhot V, Green M, Nyadong L, Fernandez F, Mayxay M, Newton P: Impaired clinical response in a patient with uncomplicated falciparum malaria who received poor-quality and underdosed intramuscular artemether. Am J Trop Med Hyg 2008, 78:552-555.
20. Kelesidis T, Kelesidis I, Rafailidis PI, Falagas ME: Counterfeit or substandard antimicrobial drugs: a review of the scientific evidence. J Antimicrob Chemother 2007, 60:214-236.
21. White N Antimalarial drug resistance and combination chemotherapy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1999; 354, 739-749.
22. E. van den Bogaard A, Stobberingh EE. Epidemiology of resistance to antibiotics Links between animals and humans. International Journal of Antimicrobial Agents. 2000; 14: 327-335.
23. Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Michael MT, Estaban JE, Currier RW, Smith K, Thu KM and McGeehin M. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci Total Environ. 2002; 299: 89-95.
24. Iruka N, Okeke, Lamikanra A and Edelman R. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerging Infectious Diseases. 1999; 5: 18-27.
25. S. Kumada. Survey on cefuroxime axetil of the quality of distribution products in Cambodia, Myanmar. Graduation thesis, Kanazawa University; 2016
26. M. S. Rahman, N. Yoshida, H. Tsuboi, T. Keila, T. Sovannarith, H. B. Kiet, E. Dararth, T. Zin, T. Tanimoto, and K. Kimura. Erroneous formulation of delayed-release omeprazole capsules: alert for importing countries. BMC Pharmacolo Toxicolo,18:3, 120117
27. Jamei. E. Survey on quality of gentamicin injection drug distribute in Myanmar \& Cambodia. Graduation thesis, Kanazawa University; 2016
28. FIP (International Pharmaceutical Federation): Tool for Visual Inspection of Medicines,2014. https://www.fip.org/files/fip/counterfeit/VisualInspection/A\ tool\ for\ visu al\%20inspection\%20of\%20medicines\%20EN.pdf\#search=\%27Tool+for+Visual+In spection+of+Medicines+WHO\%27. accessed 28 Sep 2016.
29. United States Pharmacopeia 35, 2012, NF 30, Volume 2, p. 2578-2580
30. The United States Pharmacopoeial Convention, USP 37 NF 32, Volume 2, 2240-2242, Rockville: the USPC Board of Trustees, 2014
31. Japanese Pharmacopoeial Convention, JP $16^{\text {th }}$ edition texts by section 745-749
32. The United States Pharmacopoeial Convention, USP 37 NF 32, Volume 2, 3138-3140
33. The United States Pharmacopoeial Convention, USP 37 NF 32, Volume 3, 4063-4067, Rockville: the USPC Board of Trustees, 2014
34. British Pharmacopeia Commission, British Pharmacopoeia 2015 Volume III, 913 915 \& 917-918, 2015.
35. Ministry of Health, Labour and Welfare, THE JAPANESE PHARMACOPOEIA SIXTEENTH EDITION SUPPLEMENT I, 2461-2462: Tokyo: 2012.
36. The United States Pharmacopoeial Convention, USP 37 NF 32, Volume 1, 57-71
37. The United States Pharmacopoeial Convention, USP 37 NF 32, Volume 1, 93-95
38. The United States Pharmacopoeial Convention, USP 37 NF 32, Volume 1, 95-96
39. The United States Pharmacopoeial Convention, USP 37 NF 32, Volume 1, 71-77
40. Kayumba PC, Risha PG, Shewiyo D, Msami A, Masuki G, Ameye D, Vergote G, Ntawukuliryayo JD, Remon JP, Vervaet C: The quality of essential antimicrobial and antimalarial drugs marketed in Rwanda and Tanzania: influence of tropical storage conditions on in vitro dissolution. J ClinPharmTher 2004, 29:331-8.
41. Baratta F, Germano A, Brusa P: Diffusion of counterfeit drugs in developing countries and stability of galenics stored for months under different conditions of temperature and relative humidity. Croat Med J 2012, 53:173-84.
42. Khan MH, Hatanaka K, Sovannarith T, Nivanna N, Casas LC, Yoshida N, Tsuboi H, Tanimoto T, Kimura K: Effects of packaging and storage conditions on the quality of amoxicillin-clavulanic acid - an analysis of Cambodian samples. BMC PharmacolToxicol 2013, 14:33 [http://www. biomedcentral.com/2050-6511/14/33].
43. Yoshida N., Khan M.H., Tabata H., Dararath E., Tey S., Kiet H.B., Nam N., Akazawa M., Tsuboi H., Tanimoto T., Kimura K., A cross-sectional investigation of the quality of selected medicines in Cambodia year 2010,BMC Pharmacology and Toxicology 15:13 2014
44. Ali I., Kumar N., Ahmed S., Dasti J.I., Antibiotic Resistance in Uropathogenic E. Coli Strains Isolated from Non-Hospitalized Patients in Pakistan, Journal of Clinical and Diagnostic Research, Vol 8(9), DC01-DC04, Sep. 2014
45. World Health Organization, Antimicrobial resistance: global report on surveillance 2014 :
http://www.who.int/drugresistance/documents/surveillancereport/en/accessed on 3/ 20/2015
46. World Health Organization, report of Regional Workshop on Antimicrobial Resistance, SEA-CD-258, p19-20, 2012, India.
47. World Health Organization: Growing threat from counterfeit medicines. Bull World Health Organ 2010; 88:247-8.
48. WHO. Counterfeit Drugs: Guidelines for the Development of Measures to Combat Counterfeit Drugs. Geneva: WHO; 1999: 1-60.
49. Frankish H. WHO steps up campaign on counterfeit drugs. Lancet. 2003; 362: 1730.
50. Lopez E, Blazquez J: Effect of subinhibitory concentrations of antibiotics on intrachromosamal homologous recombination in Escherichia coli. Antimicrob Agents Chemother. 2009; 53:3411-3415.
51. Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, Andersson DI. Selection of resistant bacteria at very low antibiotic concentrations. Plos Pathog. 2011;7: e1002158.
52. Newton P, Proux S, Green M, Smithuis F, Rozendaal J, Prakongpan S, Chotivanich K, Mayxay M, Looareesuwan S, Farrar J, Nosten F, White NJ. Fake artesunate in Southeast Asia. Lancet. 2001, 357:1948-50.
53. Rassool GH. Substandard and counterfeit medicines. J Adv Nurs. 2004, 46:338-9.
54. Mami. Quality survey on clarithromycin in Cambodia. Graduation thesis, Kanazawa University; 2012
55. Yuka Kotusji. Survey on quality of sulfamethoxazole-trimethoprim combination drug circulating in Cambodia in developing countries. Graduation thesis, Kanazawa University; 2012
56. E. Murata. Quality survey on ceftriaxone for injection and cimetidine in Cambodia. Graduation thesis, Kanazawa University; 2013
57. M. Hanada. Survey on quality of gentamicin injection drug distributed in Cambodia. Graduation thesis, Kanazawa University; 2017
58. M. Sakuda. Survey on quality of medical products ciprofloxacin distributed in Cambodia. Graduation thesis, Kanazawa University; 2017
59. Takashi Takaoka. Survey on roxithromycin quality of pharmaceuticals distributed in Cambodia. Graduation thesis, Kanazawa University; 2017
60. Khan MH, Okumura J, Sovannarith T, Nivanna N, Nagai H, Taga M, Yoshida N, Akazawa M, Tanimoto T, Kimura K: Counterfeit medicines in Cambodia-possible causes. Pharm Res. 2011; 28:484-9.
61. Khan MH, Tanimoto T, Nakanishi Y, Yoshida N, Tsuboi H, Kimura K: Public health concerns for anti-obesity medicines imported for personal use through the internet: a cross-sectional study. BMJ Open 2012; 2:3
62. Newton PN, Lee SJ, Goodman C, Fernandez FM, Yeung S, Phanouvong S, Kaur H, Amin AA, Whitty CJM, Kokwaro GO, Lindegardh N, Lukulay P, White LJ, Day NPJ, Green MD, White NJ. Guidelines for field surveys of the quality of medicines: A proposal. Plos Med. 2009; 6:3
63.http://www.thedailystar.net/health/sc-upholds-stop-order-20-drug-companies-

1239976
64. Caudron JM, Ford N, Henkens M, et al. Substandard medicines in resource-poor settings: a problem that can no longer be ignored. Trop Med Int Health 2008;13:106272.
65. Newton PN, Green MD, Fernández FM. Impact of poor-quality medicines in the ‘developing’ world. Trends Pharmacol Sci 2010;31:99-101.
66. Mackey TK, Liang BA. The global counterfeit drug trade: patient safety and public health risks. J Pharm Sci 2011;100:4571-9.
67. Liang B. Fade to black: importation and counterfeit drugs. Am J Law Med 2006;32:279-323.
68. European Commission. Report on EU customs enforcement of intellectual property rights: results at the EU border. 2011. http://ec. europa.eu/taxation customs/resources/documents/customs/ customs_controls/counterfeit_piracy/statistics/2012_ipr_statistics_en. pdf (accessed 23 May 2013).
69. Putze E, Conway E, Reilly M, et al. The Deadly World of Fake Drugs. http://www.aei.org/files/2012/02/27/-appendix-a-master-2_ 170026856632.pdf (accessed 3 Apr 2014).
70. Faucon B. No cure for fake drugs. The Wall Street Journal 15 February 2010. http://online.wsj.com/news/articles/SB10001424052748 704533204575047282075703998 (accessed 3 April 2014).
71. WHO. What are substandard medicines?
http://www.who.int/medicines/services/counterfeit/ faqs/06/en/(accessed 23 May 2013).
72. Police across Southeast Asia target counterfeit medicines in multiagency operation. [http://www.interpol.int/Public/ICPO/PressReleases/ PR2008/PR200865.asp].
73. MSH: Access to Essential Medicines: Cambodia 2001. Washington DC Center for Pharmaceutical Management, Management Sciences for Health; 2003.
74. USP: Cambodian Officials Identify, Pull Counterfeit Drugs from Market. Rockville, MD: The United States Pharmacopeial Convention; 2011.
75. MOH: Drug Quality Assurance: TLC Project Report - Cambodia. Phnom Penh: Department of Drugs and Food; 2006.
76. Aldhous P: Counterfeit pharmaceuticals: Murder by medicine. Nature 2005, 434:132136.
77. T. Itoh. Survey on the spread of amlodipine counterfeit and poor quality medicines in the Republic of the Philippines and Kingdom of Cambodia. Graduation thesis, Kanazawa University; 2012
78. J. Matsuo. Quality survey of esomeprazole and rabeprazole imported in Cambodia. Graduation thesis, Kanazawa University; 2013
79. A. Kosugi. Survey on quality of oral hypoglycemic agent of glibenclamide preparation distribute in Philippines and Cambodia. Graduation thesis, Kanazawa University; 2014
80. Y. Sanami. Survey on quality of metformin preparation in the Philippines and Cambodia. Graduation thesis, Kanazawa University; 2014
81. Anonymous. Situational analysis pharmaceutical sector in Cambodia. Phnom Penh2004 [updated 10 Jun 2009; cited 200928 September]; 1 Jun 2003:[Available from: http://rc.racha.org.kh/ docDetails.asp?resourceID=339\&categoryID=19.
82. USP: The United States Pharmacopeia (USP 30/NF 25). 12601 Twinbrook Parkway, Rockville, MD 20852: The United States Pharmacopeial Convention; 2007.
83. The United States Pharmacopeial Convention, United States Pharmacopeia 35, Rockville: the USPC Board of Trustees,2012
84. British Pharmacopeia Commission, British Pharmacopoeia 2012, London, The Stationary Office
85. Newton PN, Fernández FM, Plançon A, Mildenhall DC, Green MD, Ziyong L, Christophel EM, Phanouvong S, Howells S, McIntosh E, Laurin P, Blum N, Hampton CY, Faure K, Nyadong L, Soong CW, Santoso B, Zhiguang W, Newton J, Palmer K: A collaborative epidemiological investigation into the criminal fake artesunate trade in South East Asia. PLoS Med 2008, 5:e32 [http://www.plosmedicine.org/article/info:doi/10.1371/journal. pmed.0050032]

Annex 1.1 Map of Myanmar

Annex 1.2 Sampling form

Annex 1.3 Tool for Visual Inspection of Medicines

1.2.4 The manufacturer's full address	${ }^{-}$	${ }^{-}$	
Is the manufacturer's full address legible and correct?			
Has this company or its agent registered the product in the country?			
1.2.5 The medicine strength (mg/unit)			
Is the strength - the amount of active ingredient per unit - clearly stated on the label?			
For blister or foil strip packed products, is the medicine strength indelibly impressed or imprinted onto the strip?			
1.2.6 The dosage form (e.g., tablet/capsule)			
Is the dosage form clearly indicated on the container label?			
Does the dosage form stated on the label match the actual dosage form of the medication?			
Is the indicated madicine under this dosage form registered and authorised for sale in the country?			
1.2.7 The number of units per container			
Does the number of dosage units listed on the label match the number of dosage units staated on the container?			
1.2.8 Dosage statement (if appropriate)			
Is the dosage clearly indicated on the label?			
Is the dosage stated on the label appropriate for the madicine in this form and strength?			
Is the product registered and authorised for sale in the country with this dosage?			
1.2.9 The batch (or lot) number			
Does the numbering system on the package correspond to that of the producting company?			
For blister or foil strip packed medicines, is the batch number indelibly impressed or imprinted onto the strip?			
1.2.10 The date of manufacture and the expiry date		$>$	
Are the manufacture and expiry dates clearly indicated on the label?			
For blister or foil strip packed products, is the expiry date indelibly impressed or imprinted onto the strip?			

1.2.11 Storage information			
Are the storage conditions indicated on the label?			
Has the product been properly stored?			
1.3 Leaflet or package insert			
Is the package insert printed on the same coloured or same quality paper as the original (If available to compare) or does it look familiar?			
Is the ink on the package insert or packaging smudge-proof?			
Does the informationb on the package insert match the information on the product container?			
2. PHYSICAL CHARACTERISTICS OF			
Does the medicine smell the same as the original (If available)? Does it smell peculiar?			
TABLETS/CAPSULES			

Annex 1.4 Authenticity form for manufactures

KANAZAWA University Institute of Medical, Pharmaceutical and Health Sciences

QUESTIONNAIRE FOR AUTHENTICITY INVESTIGATION

 MANUFACTURER:Scope: The purpose of this questionnaire is to authenticate a medicinal sample/s collected in conjunction with the anti-counterfeit initiatives of the Ministry Health, Myanmar

Instructions:

- Please refer to the attached sample(s) or photos and check appropriate boxes $\sqrt{ }$ for your answer.
- Please provide detailed information whenever it is required

REGISTRATION

Do you have a License Number in the manufacturing country issued by the Medicine Regulatory Authority?
\square Yes/ Detailed number; \qquad \square No

2 Are you certified on Good Manufacturing Practices?
םYes
\square No
3 If certified, please detail the name of certifying authority.

PACKAGING AND MARKETING

Are these packages/containers of the samples made by your company originally?
If you checked 'No' for the above question, please let us know who prepare the package:

CONTACT INFORMATION			
Responded by-	Date:		
Name:			
Professional affiliation/position:			
Company full address:			
Tel / Fax:	E-mail:		

Annex 1.5 authenticity form for sample

If you checked 'Counterfeit' for the above question, please indicate the details about the difference of Genuine product and the Counterfeit one

MARKETING IN SAMPLING COUNTRY

Is the sample medicine approved by the Drug Regulatory Authority in the manufacturing country?
\square Yes / Provide approval / registration number: \qquad
\square No
22 Is the sample medicine approved for marketing in Myanmar? \square Yes \square No

23 If you checked ' $N o$ ' to the above question, please answer following two additional questions: i. Please write the countries where this medicine is approved for marketing.
\qquad
ii. Do you know that this medicine is sold in Myanmar? \square Yes \square No

Pictures of Sample:

Annex 1.6 authenticity e-mail to MRAs

KANAZAWA UNIVERSITY
Institute of Medical, Pharmaceutical and Health Sciences $23^{\text {rd }}$ Dec, 2014

To

Subject: Medicine Authentication for Medicine Regulatory Authority of the Project on Counterfeit Program in Myanmar, 2014

Dear whom it may concern,
Greetings from Japan. In reference to the above subject, I am taking the opportunity to brief you that the Department of Drug Management and Policy, Kanazawa University, Japan have been collaborating on a project with the Food and Drug Administration, Myanmar, with the objectives of improving pharmaceutical situation and more specifically to combat counterfeit medicines. As the crisis of counterfeit medicines is a worldwide phenomenon, cooperation from the medicine regulatory authorities and other relevant agencies are crucial to counteract against this public health problem.

We are requesting medicine regulatory authorities of relevant countries to cooperate us in verifying legitimacy of the manufacturers and their products, which were being identified during our surveys in Myanmar, 2014. Currently, we are checking legitimacy of the manufacturers and their medicines which were collected in 2014. Among them, we have medicine samples of "Name of manufacturers" from Pakistan.

It would be much appreciated, if you could confirm approval of the manufacturers and their samples, mentioned in the attached questionnaire and send us back your comments, preferably by 6 th Jan 2015.

Thanking you in advance and we are looking forward to hearing from you.

Sincerely yours,
Kazuko KIMURA, PhD
Professor
Drug Management \& Policy, Kanazawa University
Kakuma-machi, Kanazawa city, Ishikawa, Japan 920-1192
http://www.p.kanazawa-u.ac.jp/e/lab/kokusai.html
Tel./Fax: +8176234 4402/+81762646286
Email: dmpc10@p.kanazawa-u.ac.jp

KANAZAWA UNIVERSITY
Institute of Medical, Pharmaceutical and Health Sciences $23^{\text {rd }}$ Dec, 2014

MEDICINE AUTHENTICATION FORM

For Drug Regulatory Authority of Manufacturing Country

Please provide necessary information for each of the manufacturers and their medicine products mentioned below. If you have additional information that might be important to judge whether the medicine is counterfeit or not, please indicate such in the remarks column

| Name of the Manufacturer: |
| :--- | :--- | :--- |
| Country: |
| 1. Is this manufacturer licensed by the Drug Regulatory Authority of your country?
 2. If Yes, please mention manufacturer's License Number:
 3. Is this a GMP qualified manufacturer of your country?
 Products
 Please check an appropriate box, if the regulatory authority of your country approves the manufacturer to
 produce mentioned medicine(s).
 Trade Name, strength, form |

Thank you very much for your kind cooperation

Annex 1.7 Result of quantity test and content uniformity test (1 ${ }^{\text {st }}$ stage) [CXM]

Content uniformity test for second stage (CXM)

Cefuroxime tablets Myanmar project 2014

 が

Result of quantity test and content uniformity test [OM] 1st stage- BP

Result of quantity test and content uniformity test [OM] 1st stage- USP

Result of quantity test and content uniformity test [OM] 2nd stage-BP**

Omeprazole Dissolution 1st Stage-BP

Omeprazole Dissolution $1^{\text {st }}$ Stage-USP

1.NW	MAMHWMHYOMW:		116	111	1 lb	18	131	1.14	113	18	6.1	88	09	94,	485	91.6	21.	88	911	39	41	18	\%
9,402.			20	4.6	$3]$	0	18	4	3.1	16	31	88	81	954	457	03	80	131	92.	4	4	18	18
12.104			117	3.	18	11.	13	98	87	4	4.45	88	88	89	88	9.15	4.1	95	971	30	41	188	48
314.1.			171	11.	78	176	167	37	4	3	171	\|id	81	71.6	N0.	18.6	7.3	75	8.4	1.	15	Fial	fil
1380.2			4.3	81	6.	9	19	8.	7.4	20	16	88	18	978	938		27	916	83	18	3.	88	18
14.10 .6	BMbunuty		10.1	10.8	40	18	88	6	7.4	35	48	88	04	78	W5	976	21.	05	0.3	18	10	188	18
168N3	AW3) Whaty		98	83	4	1.	4.	4	6.	4	86	88	0.1	48.	43.	8.9	9.1	9.9	W6	24	11	88	98
10 PNW			0	18	16	31.	4	6	36	15	70.1	\% 8	834	81	88	8.	85	M	88.	2	15	8%	7%
19880			1.6	115	6	1.1	48	11	6.	46	71.	8%	$\mathbb{4}$	03	88.4	815	33	8.8	M8	24	41	8%	88
1880/V			4.3	11.	4	10.1	4.	14.4	13	1.	11.	8%	7.1.	81	80.	78	84	7.1	78.4	1.	4	Fibl	\|ib
W10.V8	PWIMMUHMOM:		1.	1.	3	4	1.	131	3	4	112	88	6.6	01	86	815	M	8.6	8.1	16	18	78	818

Omeprazole Dissolution 2 ${ }^{\text {nd }}$ Stage-BP

Omeprazole Dissolution $2^{\text {nd }}$ Stage-USP

Omeprazole Dissolution 3rdStage-BP

Result of Quantity and content uniformity test:

Result of quality test（DN）

														M 5 Smix ${ }^{\text {a }}$		
												$\$$	10	Jutay	Nall IV． saity｜ bx ｜ $\mathrm{tax} \mid$	Jdy
	4.4	4010	480	104	40	480	10．3	44N	10780	960	4，40	19	19	明	4，	吆
	\％ 40	104	10010	104）	140 ${ }^{\text {d }}$	104	1040	10	1910	14040	14.10	18	10	max	10.10	媛
	10：3	4，	（40）	1010	（193）	（50）	104	\％ 4	19.5	40	100	4	44	\％	100	檢

Result of dissolution test（DN）

Result of Identification test [GM]

Sample code 5
\qquad
 20140628 GENTAMICIN SULLFATE INUE zzzzzzzz

GENTAMYOIN SULLATE INUE
近

2
0
0
0
0
2

140603
${ }_{1}^{140602}$
13032802
-

$$
y_{0}^{2}
$$

** All GM samples were passed in sterility and endotoxin tests

Annex 1.8

CXM dissolution test

ID Serial No.	. Sample Code \quadTrade name of the product	Name of Manufacturer	Manufacturing Country	$\%$ of Quantity	$\begin{gathered} \text { \% of } \\ \text { Quantity } \end{gathered}$	$\%$ of Quantity	\% of Quantity	\% of Quantity	\% of Quantity	Mean \% of Quantity	\% of Quantity	\% of Quantity	Initial Judge	New Judge
	\checkmark -	$\checkmark 1$	\checkmark	-	\bigcirc	\square	,	\checkmark	-	\checkmark	\checkmark			\checkmark
3 A-005	A005/MM14/YG/01/HG/ SPIZEF	Orchid HEALTHCA	India	101.01	96.57	95.96	96.92	99.78	95.69	97.65	2.2	2.26	Pass	
4 A-006	A006/MM14/YG/01/HG/ Zinnat	GlaxoSmithKline	UK	77.86	86.26	87.94	87.54	91.17	91.77	87.09	5.01	5.75	Pass	
5 A-007	A007/MM14/YG/01/HG/ ZIFTUM 250	Alkem Laboratoril	India	94.80	96.21	95.20	98.97	95.40	97.02	96.27	1.54	1.60	Pass	
6 A-016	A016/MM14/YG/01/HG/ ZiNNASAV-250	SAVIOUR PHARMA	India	86.13	86.73	80.62	77.52	85.79	82.70	83.25	3.66	4.39	Pass	
$7 \mathrm{~A}-017$	A017/MM14/YG/01/HG/ ZIFATIL-250	Galpha Laborato II	India	108.91	95.81	110.33	106.09	107.70	113.48	107.05	6.06	5.66	Pass	
8 A-018	A018/MM14/YG/01/HG/ CETIL	LUPIN LTD.	India	100.74	93.64	93.71	101.42	102.10	97.87	98.25	3.82	3.89	Pass	
$9 \mathrm{~A}-019$	A019/MM14/YG/01/HG/ FUROCEF	renata limited	Bangladesh	69.59	77.86	74.23	86.87	83.51	82.50	79.09	6.43	8.13	Pass	
10 A-025	A025/MM14/YG/04/C/CX SPIZEF	Orchid Healthca	India	84.11	96.75	94.19	78.87	95.81	91.57	90.22	7.18	7.96	Pass	
11 A-030	A030/MM14/YG/02/C/CX RUFEX-250	Global Pharma H	India	80.68	87.20	71.81	60.60	86.93	77.86	77.52	10.11	13.05	Fail	Pass
12 A-036	A036/MM14/YG/01/Ocl , ZIFTUM 250	Alkem Laboratoril	India	100.40	94.87	87.70	95.28	92.61	92.96	93.97	4.15	4.41	Pass	
13 A-037	A037/MM14/YG/01/Ocl/ Cefusan 250	SRS pharmaceutil	India	94.46	94.66	96.71	95.89	95.55	93.84	95.19	1.05	1.11	Pass	
14 A-048	A048/MM14/YG/06/C/CX RUFEX-250	Global Pharma H	India	66.77	63.95	65.56	66.37	66.57	68.99	66.37	1.65	2.48	Fail	Pass
15 A-052	A052/MM14/vG/02/HG/ ZIFTUM 250	Alkem Laboratori	India	96.81	97.35	98.50	97.22	100.85	101.05	98.63	1.88	1.91	Pass	
16 A-054	A054/MM14/YG/02/C/CXZIFTUM 250	Alkem Laboratoril	India	96.88	100.24	93.79	97.82	98.63	98.83	97.70	2.22	2.27	Pass	
17 A-057	A057/MM14/YG/01/HP/(RUFEX-250	Global Pharma H	India	51.24	71.52	79.71	71.72	79.92	72.54	71.11	10.48	14.73	Fail	Pass
18 A-058	A058/MM14/YG/HP/CXN Zinnat	GlaxoSmithKline	UK	94.19	91.57	91.17	88.14	96.81	93.39	92.55	2.96	3.20	Pass	
19 A-063	A063/MM14/YG/01/Ocl/ZIFTUM 250	ALKEM LABORATO	India	101.01	93.84	91.59	92.00	94.39	95.89	94.79	3.43	3.62	Pass	
20 A-068	A068/MM14/YG/02/C/C R RUFEX-250	Global Pharma H	India	78.46	80.68	70.40	63.34	69.59	71.61	72.35	6.32	8.74	Fail	Pass
21 A-071	A071/MM14/YG/01/HG/ ZIFTUM 250	ALKEM LABORATO	India	96.61	96.68	104.14	97.82	92.78	94.40	97.07	3.91	4.03	Pass	
22 A-074	A074/MM14/YG/01/C/CXZIFTUM 250	ALKEM Laborato		90.77	91.98	87.74	91.17	88.88	86.73	89.54	2.08	2.32	Pass	
23 A-079	A079/MM14/YG/02/OCl/ RUFEX-250	Global Pharma H		64.69	62.27	63.95	81.09	58.91	62.00	65.48	7.90	12.07	Fail	Pass
24 A-085	A085/MM14/YG/02/HP/(RUFEX-250	Global Pharma H	India	64.35	59.23	66.88	59.03	63.94	70.22	63.94	4.35	6.80	Fail	Pass
25 A-086	A086/MM14/YG/02/HP/(Zinnat	GlaxoSmithKline	UK	82.97	81.89	85.32	89.62	85.12	87.94	85.48	2.92	3.41	Pass	
26 A-089	A089/MM14/YG/01/W/C Cefotil	SQUARE PHARMAI	Bangladesh	BP	-	-	-	-	-	-	-	-	-	
27 A-095	A095/MM14/VG/03/W/CKEFROX	CCL Pharmaceutic	Pakistan	BP	-	-	-	-	-	-	-	-	-	
28 A-099	A099/MM14/YG/01/HG/RUFEX-500	Global Pharma H	India	65.56	57.43	52.65	66.16	62.13	64.55	61.41	5.34	8.70	Fail	Pass
29 A-102	A102/MM14/YG/01/OCl/ CETIL	LUPIN LTD.	India	73.42	72.28	70.60	76.05	70.80	69.66	72.14	2.33	3.24	Pass	
30 A-104	A104/MM14/YG/02/HP/(ZIFTUM 250	ALKEM LABORATO	India	106.90	103.07	100.65	105.99	99.03	106.29	103.65	3.28	3.16	Pass	
32 B-002	B-002/MM14/YG/01/HP/ZIFTUM 250	Alkem Laboratori	India	126.66	131.50	131.09	122.42	131.30	136.54	129.92	4.83	3.71	Pass	
$33 \mathrm{~B}-003$	B-003/MM14/YG/01/HP/SPIZEF	Orchid HEALTHCA	India	98.43	96.21	94.60	92.78	96.41	94.19	95.44	1.99	2.08	Pass	
34 B-004	B-004/MM14/YG/01/HP/CETIL	LUPIN LTD.	India	73.42	74.84	73.89	75.31	80.48	74.23	75.36	2.60	3.44	Pass	
35 B-023	B-023/MM14/YG/07/C/C RUFEX	Global Pharma H	India	62.33	64.15	62.13	65.36	65.09	63.34	63.73	1.37	2.14	Fail	Pass
36 B-027	B-027/MM14/YG/01/C/C Zinnat	GlaxoSmithKline	UK	91.77	93.19	89.96	87.74	94.19	93.59	91.74	2.48	2.70	Pass	
37 B-029	B-029/MM14/YG/02/C/C ZIFTUM 250	Alkem Laboratoril		80.88	82.50	81.15	89.62	85.12	87.94	84.54	3.65	4.32	Pass	
38 B-030	B-030/MM14/VG/08/C/C Zinnat	GlaxoSmithKline	UK	89.54	79.58	89.54	84.29	86.06	82.99	85.33	3.89	4.56	Pass	
$39 \mathrm{~B}-031$	B-031/MM14/YG/08/C/C ZIFTUM 250	Alkem Laboratoril	India	98.83	97.02	97.42	97.22	101.25	96.41	98.02	1.77	1.81	Pass	
40 B-034	B-034/MM14/YG/01/HP/ZIFTUM 250	Alkem Laboratoril	India	95.14	97.46	98.14	92.41	96.51	96.92	96.10	2.07	2.15	Pass	
41 B-038	B-038/MM14/YG/01/HP/ZIFTUM 250	Alkem Laboratori	India	127.26	122.02	127.47	124.04	122.09	123.84	124.45	2.41	1.94	Pass	
$42 \mathrm{~B}-042$	B-042/MM14/VG/01/HG , ZIFATIL	Galpha Laborato I	India	88.93	88.31	84.83	87.43	90.36	90.77	88.44	2.16	2.45	Pass	
43 B-044	B-044/MM14/YG/01/HG, Zinmax	DOMESCO MEDICA	VietNam	90.77	91.17	92.38	88.55	89.15	89.56	90.26	1.43	1.58	Pass	
$44 \mathrm{~B}-047$	B-047/MM14/YG/01/C/C RUFEX	Global Pharma H	India	60.52	59.51	59.71	62.94	60.52	60.32	60.59	1.23	2.03	Fail	Pass
45 B-052	B-052/MM14/YG/01/HP/ CETIL	LUPIN LTD.	India	109.12	107.50	103.74	100.18	112.14	105.89	106.43	4.19	3.93	Pass	
46 B-053	B-053/MM14/YG/01/HP/Zinnat	GlaxoSmithKline	UK	88.75	94.19	86.13	79.67	74.43	88.35	85.25	7.08	8.31	Pass	
47 B-063	B-063/MM14/YG/01/O(C ZIFTUM 250	Alkem Laboratori	India	93.43	88.93	105.52	98.14	93.23	103.13	97.06	6.38	6.57	Pass	
48 B-066	B-066/MM14/YG/01/C/C ZIFTUM 250	Alkem Laboratoril		91.59	87.90	96.92	95.69	94.25	100.60	94.49	4.39	4.65	Pass	
$49 \mathrm{~B}-067$	B-067/MM14/YG/01/C/C RUFEX-250	Global Pharma H	India	84.92	72.82	78.46	81.96	77.66	79.67	79.25	4.10	5.18	Pass	
50 B-076	B-076/MM14/YG/01/HG, ZIFTUM 250	Alkem Laboratoril		99.23	92.98	93.99	95.60	94.19	96.21	95.37	2.22	2.33	Pass	
51 B-079	B-079/MM14/YG/01/O(CZIFTUM 250	Alkem Laboratori	India	93.39	93.99	90.36	91.57	92.98	95.47	92.96	1.80	1.94	Pass	
$52 \mathrm{~B}-080$	B-080/Mm14/YG/01/00c Zinnat	GlaxoSmithKline		91.37	89.76	83.10	91.77	86.33	90.97	88.88	3.45	3.88	Pass	
$53 \mathrm{~B}-086$	B-086/MM14/YG/03/C/C Zinnat	GlaxoSmithKline		77.26	88.61	85.19	80.88	82.50	81.15	82.60	3.91	4.73	Pass	
54 B-089	B-089/MM14/YG/04/W/Zinnat	GlaxoSmithKline	UK	77.66	89.89	75.64	81.69	73.02	78.67	79.43	5.89	7.42	Pass	
55 B-093	B-093/MM14/vG/01/C/C RUFEX	Global Pharma H		65.56	64.75	87.54	85.12	81.49	89.76	79.04	11.10	14.04	Fail	Pass
56 B-100	B-100/MM14/YG/04/C/C ZIFTUM 250	Alkem Laboratori	India	100.04	98.43	100.04	98.83	96.41	102.06	99.30	1.90	1.91	Pass	
57 B -101	B-101/MM14/VG/05/C/C Zinnat	GlaxoSmithKline		89.15	85.52	92.51	88.35	89.15	91.17	89.31	2.41	2.70	Pass	
58 B-102	B-102/MM14/YG/02/C/C Zinnat	GlaxoSmithKline		83.91	89.62	87.81	88.28	95.60	91.37	89.43	3.91	4.37	Pass	
$59 \mathrm{~B}-104$	B104/MM14/vG/01/HG/ ZIFTUM 250	Alkem Laboratoril	India	94.80	98.23	90.36	93.99	96.01	92.18	94.26	2.78	2.95	Pass	
60 B-111	B111/MM14/YG/02/C/Cx RUFEX-250	Global Pharma H	India	76.91	67.63	74.18	89.13	89.13	85.99	80.50	8.92	11.08	Pass	
1 PA-001	PA001/MM14/YG/01/C/CZIFTUM 250	Alkem Laboratori	India	158.05	134.52	153.14	152.94	136.54	146.22	146.90	9.60	6.53	Pass	
2 PA-002	PA002/MM14/VG/01/C/CSPIZEF	Orchid Healthca	India	73.83	98.97	100.24	97.22	85.79	83.04	89.85	10.63	11.83	Pass	
31 PB-001	PB-001/MM14/YG/01/O(ZINNASAV-250	SAVIOUR Pharmal	India	75.96	82.78	83.19	85.86	82.58	81.35	81.95	3.29	4.02	Pass	

CXM content uniformity $1^{\text {st }}$ stage

\% of Quantity Tablet 1	\% of Quantity Tablet 2	\% of Quantity Tablet 3	\% of Quantity Tablet 4	$\%$ of Quantity Tablet 5	$\%$ of Quantity Tablet 6	\% of Quantity Tablet 7		\% of Quantity Tablet 9	$\begin{gathered} \text { \% of } \\ \text { Quantity } \end{gathered}$ $\text { Tablet } 10$	Mean \% of Quantity	\% of Quantity SD	\% of Quantity \%CV	AV (Acceptance Value)	Judge	New Judge $\mathrm{AV}=18$
104.92	104.54	100.00	102.70	95.88	99.40	94.86	105.87	101.22	96.94	100.6	3.9	3.9	9.372893126	Pass	
104.21	103.39	98.63	97.51	93.65	103.10	106.08	98.50	95.83	102.27	100.3	4.1	4.0	9.731768808	Pass	
102.27	103.86	100.48	102.58	98.18	97.12	100.36	100.98	97.48	92.73	99.6	3.3	3.3	7.89	Pass	
92.41	93.57	91.85	95.51	95.75	90.01	89.77	84.34	88.41	101.55	92.3	4.7	5.1	17.48	Fail	Pass
84.42	99.25	100.84	85.26	90.85	90.97	97.08	91.92	93.14	92.91	92.7	5.4	5.8	18.72	Fail	Fail
85.61	97.53	104.85	104.61	90.77	107.86	98.31	94.87	97.54	98.02	98.0	6.7	6.8	16.58	Fail	Pass
99.58	97.87	93.20	95.87	93.71	103.43	100.62	95.39	98.09	95.14	97.3	3.2	3.3	9.00	Pass	
94.08	101.01	89.89	94.86	93.99	95.64	99.03	101.53	94.92	92.86	95.8	3.7	3.8	11.55	Pass	
92.98	91.66	89.14	90.87	92.74	88.74	88.45	86.30	82.74	82.84	88.6	3.7	4.2	18.76	Fail	Fail
104.08	102.32	92.47	95.41	111.73	93.88	93.39	101.14	92.26	94.69	98.1	6.4	6.6	15.45	Fail	Pass
91.27	93.27	96.13	88.28	98.09	91.63	91.59	94.10	87.74	79.11	91.1	5.3	5.8	20.06	Fail	Fail
95.65	100.96	82.79	86.92	84.50	92.64	87.53	87.83	84.09	83.79	88.7	5.9	6.7	24.08	Fail	Fail
92.28	99.85	94.71	96.54	95.82	98.57	99.74	103.67	107.73	105.66	99.5	5.0	5.0	11.90	Pass	
101.48	100.22	91.88	103.28	95.38	105.52	97.11	98.08	92.65	95.07	98.1	4.5	4.6	11.28	Pass	
87.87	87.87	87.65	82.96	87.90	82.50	85.36	79.08	77.86	80.46	84.0	3.9	4.7	23.95	Fail	Fail
95.38	104.18	100.01	98.10	103.39	99.45	93.58	100.25	90.67	91.76	97.7	4.7	4.8	12.04	Pass	
99.58	95.59	96.90	102.68	100.60	103.08	94.12	99.93	98.40	95.48	98.6	3.1	3.1	7.38	Pass	
85.13	80.97	74.62	-	-	-	-	-	-	-	80.2	-	-	-	-	
107.29	97.04	100.25	99.21	101.42	104.80	95.76	99.53	94.60	89.71	99.0	5.1	5.1	12.13	Pass	
105.17	99.99	101.85	103.65	98.37	100.92	98.68	93.11	93.86	98.67	99.4	3.8	3.9	9.21	Pass	
86.23	86.08	82.00	86.17	84.76	88.14	83.31	89.02	81.19	82.07	84.9	2.7	3.2	20.05	Fail	Fail
98.68	88.40	99.10	101.87	98.65	93.01	98.22	95.66	96.45	97.29	96.7	3.7	3.9	10.77	Pass	
94.85	92.47	90.91	95.96	99.71	94.09	96.69	97.74	93.76	94.46	95.1	2.6	2.7	9.60	Pass	
97.95	97.60	93.43	92.10	101.08	87.19	96.73	96.72	93.55	94.45	95.1	3.8	4.0	12.63	Pass	
89.41	99.51	95.97	94.42	103.65	96.10	90.11	97.75	94.44	90.99	95.2	4.4	4.6	13.88	Pass	
79.62	80.37	82.34	80.60	76.43	78.62	81.50	79.29	78.70	75.53	79.3	2.1	2.7	24.28	Fail	Fail
98.44	99.04	95.46	93.58	98.00	95.74	100.25	97.12	98.56	87.30	96.3	3.7	3.9	11.12	Pass	
103.02	98.07	99.18	103.84	101.83	103.11	94.54	97.96	102.81	97.01	100.1	3.2	3.2	7.67	Pass	
96.55	104.47	106.58	100.60	100.41	102.25	90.34	103.61	96.69	99.31	100.1	4.7	4.7	11.27	Pass	
94.9	96.3	96.4	94.2	99.8	100.9	95.0	95.7	91.2	103.1	96.7	3.5	3.6	10.22	Pass	
98.99	100.25	99.81	95.66	94.94	97.36	89.83	90.59	94.11	93.58	95.5	3.6	3.8	11.71	Pass	
86.47	88.94	86.99	95.59	93.94	92.55	73.24	90.08	89.30	82.01	87.9	6.5	7.4	26.13	Fail	Fail
96.26	93.06	95.03	91.98	95.18	90.38	93.66	86.06	98.76	92.34	93.3	3.5	3.7	13.57	Pass	
98.08	99.17	97.64	88.44	89.52	93.13	83.94	84.61	78.65	95.15	90.8	6.9	7.6	24.34	Fail	Fail
97.84	98.27	109.33	101.97	98.36	104.72	97.52	111.74	108.12	93.15	102.1	6.1	6.0	15.27	Pass	
96.67	101.02	94.08	96.38	93.86	95.06	93.75	96.25	96.24	97.52	96.1	2.2	2.3	7.63	Pass	
101.07	100.73	104.94	106.81	101.49	97.11	102.96	106.33	102.82	102.79	102.7	2.9	2.8	8.11	Pass	
105.30	92.74	104.55	105.08	97.92	98.05	98.24	100.54	98.83	98.10	99.9	4.0	4.0	9.59	Pass	
83.66	84.52	86.32	91.22	84.44	85.86	91.58	84.65	93.10	80.82	86.6	4.0	4.6	21.48	Fail	Fail
102.47	102.35	102.44	104.48	103.97	103.72	102.78	98.97	97.20	96.30	101.5	2.9	2.9	6.98	Pass	
71.12	69.88	88.62	76.65	74.10	77.86	88.15	85.61	73.36	74.00	77.9	7.0	9.0	37.37	Fail	Fail
91.71	97.36	88.44	93.86	88.52	96.88	92.86	90.31	92.94	92.51	92.5	3.0	3.3	13.24	Pass	
104.46	85.18	85.58	83.73	90.96	104.88	89.09	90.42	102.98	103.08	94.0	8.8	9.3	25.50	Fail	Fail
98.72	91.94	97.51	92.91	97.18	91.92	109.19	92.38	98.29	102.77	97.3	5.5	5.7	14.50	Pass	
97.47	99.41	97.77	99.32	92.59	92.40	94.94	95.56	96.13	101.41	96.7	2.9	3.0	8.88	Pass	
97.63	100.15	107.00	101.46	107.64	106.13	101.37	101.88	100.85	101.86	102.6	3.2	3.2	8.89	Pass	
97.22	96.14	92.13	89.04	90.90	91.00	95.82	93.73	84.56	92.74	92.3	3.8	4.1	15.21	Pass	
101.08	94.44	98.21	99.11	103.97	102.67	97.27	97.77	97.49	97.75	99.0	2.8	2.9	6.80	Pass	
97.64	99.42	97.71	100.36	97.58	96.02	98.42	96.52	96.50	96.74	97.7	1.4	1.4	4.12	Pass	
92.29	98.58	98.56	91.81	102.01	90.37	90.05	93.33	92.23	94.00	94.3	4.0	4.3	13.81	Pass	
109.93	105.57	104.26	115.00	103.68	107.96	107.55	110.73	101.57	102.22	106.8	4.2	4.0	15.48	Pass	
88.76	91.12	80.84	80.41	75.56	87.75	83.93	82.01	89.50	86.58	84.6	4.9	5.8	25.68	Fail	Fail
93.01	94.13	107.34	91.54	94.24	102.22	93.05	92.89	89.85	90.01	94.8	5.6	5.9	17.08	Fail	Pass
101.68	103.63	103.61	99.44	102.50	115.40	101.56	97.35	95.65	98.59	101.9	5.4	5.3	13.47	Pass	
94.09	96.03	98.31	97.15	93.26	92.67	95.69	99.97	95.30	96.11	95.9	2.2	2.3	8.01	Pass	
99.74	105.46	105.23	100.22	101.84	95.14	97.11	101.63	90.14	102.08	99.9	4.7	4.7	11.22	Pass	
77.76	80.96	83.08	77.55	76.53	76.92	78.97	79.20	74.70	77.48	78.3	2.4	3.0	25.88	Fail	Fail
93.01	94.13	101.56	91.54	94.24	102.22	93.05	92.89	89.85	90.01	94.3	4.3	4.6	14.57	Pass	
103.65	100.90	102.00	99.25	97.83	96.97	102.27	102.52	93.13	99.91	99.8	3.2	3.2	7.64	Pass	
88.20	90.25	93.58	92.14	90.62	79.25	94.40	95.94	85.54	88.40	89.83	4.87	5.42	20.36	Fail	Fail

OM Dissolution test BP: 1st stage acid resistance stage

ID Serial No.	Sample Code	Trade name of the Name of Manufacturer		Manufact	\% of Quantity Capsule 1	$\%$ of Quantity Capsule 2	$\%$ of Quantity Capsule 3	$\%$ of Quantity Capsule 4	$\%$ of Quantity Capsule 5	\% of Quantity Capsule 6	Mean \% of Quantity	\% of Quantity SD	\% of Quantity SCV	Judge	New Judge $10 \% * 1.2=$ 12\% dissolved
27 A-096	A096/MM14/YG/	Omep-20	ARISTOPHARMA LTD.	Banglade	22.3	10.4	8.9	11.6	9.6	10.2	12.2	5.0	41.4	Fail	Fail
189 B-065	B-065/MM14/YG,		ARISTOPHARMA LTD.	Banglade	11.1	11.3	10.9	11.0	11.2	10.9	11.1	0.2	1.7	Fail	Pass
23 A-076	A076/MM14/YG/	ASMOZOL-20	ASMOH LABORATORIES LTD.	India	1.4	1.4	1.4	1.4	1.4	1.4	1.4	0.0	0.0	Pass	
215 B-092	B-092/MM14/YG,	OMEPREN	BLUE CROSS LABORATORIES LTD.	India	2.5	2.4	1.8	1.1	1.2	1.2	1.7	0.6	36.5	Pass	
221 B-098	B-098/MM14/YG,	OMEPREN	blue Cross laboratories lid.	India	2.4	2.3	2.5	2.4	2.2	2.4	2.3	0.1	4.6	Pass	
129 B-005	B-005/MM14/YG,		Cadila Health Limited	India	6.0	3.6	3.6	3.9	5.8	4.1	4.5	1.1	24.6	Pass	
135 B-011	B-011/MM14/YG,		Cadila Health Limited	India	5.3	4.0	7.2	4.4	7.2	5.4	5.6	1.4	24.2	Pass	
194 B-070	B-070/MM14/YG,		Cadila Health Limited	India	3.7	3.9	3.8	2.5	3.1	2.5	3.3	0.6	19.7	Pass	
$213 \mathrm{~B}-090$	B-090/MM14/YG,		Cadila Health Limited	India	2.2	1.9	1.9	2.0	2.0	2.0	2.0	0.1	6.4	Pass	
3 PA-006	PA006/MM14/VG		Cadila Healthcare Limited	India	5.4	4.0	7.2	4.4	7.2	5.5	5.6	1.4	24.2	Pass	
5 A-002	A002/MM14/YG/	OCID	Cadila Healthcare Limited	India	3.0	2.7	2.6	2.6	2.5	4.0	2.9	0.6	19.1	Pass	
10 A-026	A026/MM14/YG/	OCID	Cadila Healthcare Limited	India	9.6	3.6	3.6	3.9	5.8	4.1	5.1	2.3	46.0	Pass	
16 A-042	A042/MM14/YG/	OCID	Cadila Healthcare Limited	India	5.6	5.0	3.6	3.8	5.0	5.4	4.7	0.8	17.2	Pass	
18 A-060	A060/MM14/YG/	OCID	Cadila Healthcare Limited	India	2.4	2.5	4.4	2.9	2.9	2.6	2.9	0.7	24.9	Pass	
25 A-084	A084/MM14/YG/	OCID	Cadila Healthcare Limited	India	9.9	9.5	7.3	9.6	9.7	10.0	9.3	1.0	10.8	Pass	
12 A-034	A034/MM14/YG/	LOMAC-20	Cipla Ltd.	India	26.9	27.7	27.7	27.3	28.1	23.5	26.9	1.7	6.3	Fail	Fail
13 A-038	A038/MM14/YG/	LOMAC-20	Cipla Ltd.	India	12.5	11.6	12.6	13.0	14.1	15.1	13.1	1.2	9.5	Fail	Fail
131 B-007	B-007/MM14/YG,	LOMAC	Cipla Ltd.	India	39.9	38.1	42.5	40.3	39.5	42.3	40.4	1.7	4.2	Fail	Fail
233 B-110	B110/MM14/YG/	LOMAC	Cipla Ltd.	India	24.4	25.4	25.1	24.7	25.4	21.1	24.4	1.7	6.8	Fail	Fail
124 PB-003	PB-003/MM14/YC	OMEZ	Dr. REDDY'S LABORATORIES	India	9.0	8.9	8.9	5.7	3.4	5.1	6.8	2.4	35.4	Pass	
$130 \mathrm{~B}-006$	B-006/MM14/YG,	OMEZ	Dr. REDDY'S LABORATORIES	India	5.8	2.9	5.3	9.1	8.8	8.7	6.8	2.5	37.1	Pass	
$132 \mathrm{~B}-008$	B-008/MM14/YG,	OMEZ	Dr. REDDY'S LABORATORIES	India	14.4	13.3	14.5	14.4	8.4	11.0	12.7	2.5	19.6	Fail	Fail
$137 \mathrm{~B}-013$	B-013/MM14/YG,	OMEZ	Dr. REDDY'S Laboratories	India	16.5	15.9	8.5	15.0	10.6	15.9	13.7	3.4	24.4	Fail	Fail
160 B-036	B-036/MM14/YG,	OMEZ	Dr. REDDY'S LABORATORIES	India	8.8	7.6	1.0	1.2	0.9	8.0	4.6	3.9	85.4	Pass	
178 B-054	B-054/MM14/YG,		Dr. REDDY'S LABORATORIES	India	22.8	26.4	28.2	24.0	25.3	27.4	25.7	2.1	8.0	Fail	Fail
$229 \mathrm{~B}-106$	B106/MM14/YG/	OMEZ	Dr. REDDY'S LABORATORIES	India	12.4	7.6	14.8	20.7	19.3	20.7	15.9	5.3	33.1	Fail	Fail
2 PA-005	PA005/MM14/YG	OMEZ	Dr.REDDY'S LABORATORIES LTD.	India	26.9	9.3	15.9	26.6	9.3	15.7	17.3	7.9	45.6	Fail	Fail
4 A-001	A001/MM14/YG/	OMEZ	Dr.REDDY'S LABORATORIES LTD.	India	9.8	5.9	7.5	9.3	6.9	7.4	7.8	1.5	19.1	Pass	
8 A-015	A015/MM14/YG/	OMEZ	Dr.REDDY'S LABORATORIES LTD.	India	14.3	9.3	16.8	15.2	15.9	9.7	13.5	3.2	23.9	Fail	Fail
14 A-039	A039/MM14/YG/	OMEZ	Dr.REDDY'S LABORATORIES LTD.	India	9.5	8.5	14.7	14.6	13.1	14.5	12.5	2.8	22.1	Fail	Fail
17 A-050	A050/MM14/YG/	OMEZ	Dr.REDDY'S LABORATORIES LTD.	India	10.5	9.2	20.2	17.3	17.9	24.3	16.6	5.8	34.9	Fail	Fail
19 A-061	A061/MM14/YG/	OMEZ	Dr.REDDY's LABORATORIES LTD.	India	9.9	9.5	9.5	9.1	9.9	9.9	9.6	0.3	3.5	Pass	
20 A-065	A065/MM14/YG/	OMEZ	Dr.REDDY's LABORATORIES LTD.	India	9.2	9.2	9.1	9.8	7.0	7.4	8.6	1.1	13.3	Pass	
29 A-101	A101/MM14/YG/	OMEz	Dr.REDDY'S LABORATORIES LTD.	India	8.9	12.5	9.4	14.3	11.1	14.1	11.7	2.3	19.8	Fail	Pass
30 A-106	A106/MM14/YG/	OMEz	Dr.REDDY'S LABORATORIES LTD.	India	1.9	1.9	1.9	1.9	1.9	1.9	1.9	0.0	0.0	Pass	
31 A-107	A107/MM14/YG/	OMEZ	Dr.REDDY's LABORATORIES LTD.	India	4.8	4.7	4.6	4.5	4.6	4.4	4.6	0.1	3.3	Pass	
33 A-114	A114/MM14/YG/	OMEZ	Dr.REDDY's LABORATORIES LTD.	India	1.9	1.9	1.9	1.9	1.9	1.9	1.9	0.0	0.0	Pass	
7 A-012	A012/MM14/YG/	Zosec	Emcure PHARMACETICALS LTD.	India	7.2	5.7	5.0	7.1	5.8	5.0	6.0	1.0	16.2	Pass	
141 B-017	B-017/MM14/YG,	Zosec	Emcure PHARMACEUTICAL LTD.	India	2.6	2.4	1.8	1.3	1.2	1.0	1.7	0.6	37.4	Pass	
161 B-037	B-037/MM14/YG,	OMFIL	Fourrts Laboratories Pvt Ltd,	India	3.5	7.1	5.1	4.2	6.8	5.0	5.3	1.4	26.7	Pass	
11 A.033	A033/MM14/YG/	OMFIL 20	Fourrts Laboratories Pvt.Ltd.	India	8.3	8.4	8.3	8.6	8.9	8.7	8.5	0.3	3.0	Pass	
169 B-045	B-045/MM14/YG,	OMPREZ	Global Pharma Healthcare Pvt, L	-India	2.6	3.0	4.4	2.5	2.8	4.4	3.3	0.9	26.6	Pass	
15 A-041	A041/MM14/YG/	TRISEC	GREAT HIMALAYAN PTE LTD.	India	12.0	25.0	11.5	11.8	24.9	11.6	16.1	6.8	42.4	Fail	Fail
201 B-077	B-077/MM14/YG,	Ometab	Intas Pharmaceutical Ltd.	India	1.4	1.4	1.4	1.4	1.4	1.4	1.4	0.0	0.0	Pass	
231 B-108	B108/MM14/YG/	Ometab	Intas Pharmaceutical Ltd.	India	3.5	7.2	4.9	4.2	6.9	4.9	5.3	1.5	28.3	Pass	
123 PB-002	PB-002/MM14/YC	Ome-M	Rainbow Life Sciences Pvt. Ltd.	India	11.0	18.1	11.0	17.7	18.2	11.2	14.5	3.8	26.1	Fail	Fail
24 A-078	A078/MM14/YG/	Reloc-20	Rhydburg Pharmaceuticals Ltd.	India	23.0	34.4	17.1	23.3	33.1	16.6	24.6	7.6	31.1	Fail	Fail
6 A-011	A011/MM14/YG/	Omesec	The United Drug (1996) Co,ltd.	Thailand	2.7	2.6	3.1	2.7	2.9	3.0	2.8	0.2	7.0	Pass	
26 A-091	A091/MM14/YG/	Omesec	The United Drug (1996) Co,ltd.	Thailand	2.7	3.2	4.7	4.7	2.8	3.3	3.6	0.9	24.7	Pass	
183 B-059	B-059/MM14/YG,	Omesec	The United Drug(1996) CO., Ltd	Thailand	2.3	2.2	2.7	2.3	2.5	2.6	2.4	0.2	8.2	Pass	
28 A-097	A097/MM14/YG/	Omesafe	UNIVERSAL PHARMACEUTICALS LII		2.8	2.7	6.7	2.6	2.7	3.6	3.5	1.6	46.1	Pass	
173 B-049	B-049/MM14/MG,	Virom	Virchow Healthcare Drivate Limi		2.3	2.5	2.7	0.9	0.9	0.9	1.7	0.9	54.1	Pass	
$139 \mathrm{~B}-015$	B-015/MM14/MG,		XL LABORATORIES PVT. LTD.	India	17.9	17.2	17.7	18.0	17.5	17.7	17.7	0.3	1.7	Fail	Fail
22 A-067	A067/MM14/YG/	HYCID	XL LABORATORIES PVT.LTD.	India	3.3	9.0	9.0	8.0	5.1	9.1	7.3	2.5	33.8	Pass	

Dissolution test BP: Buffer Stage

\% of Quantity Capsule 1	\% of Quantity Capsule 2	\% of Quantity Capsule 3	\% of Quantity Capsule 4	\% of Quantity Capsule 5	\% of Quantity Capsule 6	Mean \% of Quantity	\% of Quantity SD	\% of Quantity \%CV	Judge	Disso Final Initial Judge	Disso Final New Judge $\begin{gathered} Q=65 * 0.8+ \\ 5 \%=57 \end{gathered}$	Disso New Final Judge
51.3	79.2	76.0	65.2	77.9	70.0	70.0	10.5	15.1	Fail	Fail	Pass	Fail
56.0	52.7	47.6	56.4	54.1	48.6	52.6	3.7	7.1	Fail	Fail	Fail	Fail
82.7	94.3	95.4	96.0	95.4	96.1	93.3	5.2	5.6	Pass	Pass		
92.8	95.2	98.8	97.5	97.3	94.7	96.0	2.2	2.3	Pass	Pass		
81.6	92.7	89.7	83.0	93.3	91.8	88.7	5.1	5.8	Pass	Pass		
96.0	92.6	95.2	91.6	94.0	95.8	94.2	1.8	1.9	Pass	Pass		
96.6	97.9	98.3	66.4	98.5	97.3	92.5	12.8	13.9	Pass	Pass		
82.7	94.3	93.5	94.2	95.4	95.7	92.7	4.9	5.3	Pass	Pass		
77.0	79.8	80.1	81.4	80.1	77.2	79.3	1.8	2.2	Pass	Pass		
83.1	84.9	82.2	82.7	83.6	82.1	83.1	1.0	1.2	Pass	pass		
96.9	99.5	98.2	96.1	96.4	98.4	97.6	1.3	1.4	Pass	pass		
86.9	72.9	75.2	76.9	75.4	86.8	79.0	6.2	7.9	Pass	Pass		
97.9	95.6	97.7	95.1	96.2	95.7	96.4	1.2	1.2	Pass	Pass		
99.3	98.1	98.6	95.4	99.0	98.0	98.1	1.4	1.4	Pass	Pass		
77.0	79.8	80.1	94.3	94.4	95.4	86.8	8.7	10.0	Pass	Pass		
52.1	53.8	47.6	51.8	50.9	48.5	50.8	2.3	4.6	Fail	Fail	Fail	Fail
85.4	84.1	83.3	81.7	85.2	83.6	83.9	1.3	1.6	Pass	Fail		Fail
49.5	49.7	63.4	55.7	50.7	50.7	53.3	5.5	10.2	Fail	Fail	Fail	Fail
53.6	62.8	62.1	52.8	53.4	62.6	57.9	5.1	8.8	Fail	Fail	Pass	Fail
30.7	34.4	26.5	54.9	71.2	57.6	45.9	17.9	39.0	Fail	Fail	Fail	Fail
54.7	72.7	57.1	31.1	34.2	27.9	46.3	17.9	38.7	Fail	Fail	Fail	Fail
70.3	67.7	73.1	72.3	77.4	74.8	72.6	3.4	4.7	Fail	Fail	Pass	Fail
50.2	47.5	80.7	58.6	68.2	56.9	60.4	12.3	20.4	Fail	Fail	Pass	Fail
78.3	70.7	78.4	69.3	68.3	66.6	71.9	5.1	7.1	Fail	Fail	Pass	Fail
31.4	32.1	35.5	31.8	73.9	73.2	46.3	21.2	45.7	Fail	Fail	Fail	Fail
49.7	47.1	79.3	48.8	77.9	77.0	63.3	16.2	25.6	Fail	Fail	Pass	Fail
60.1	65.2	61.7	60.1	65.1	61.7	62.3	2.3	3.7	Fail	Fail	Pass	Fail
73.8	79.3	71.4	72.4	71.1	70.8	73.1	3.9	5.4	Pass	pass		
56.6	70.7	55.2	54.5	48.1	74.7	60.0	10.4	17.3	Fail	Fail	Pass	Fail
73.9	77.7	62.1	75.0	60.7	60.8	68.4	8.0	11.6	Fail	Fail	Pass	Fail
75.3	75.8	60.7	73.7	63.2	74.1	70.5	6.7	9.5	Fail	Fail	Pass	Fail
76.8	68.0	70.6	76.9	71.1	76.5	73.3	3.9	5.3	Fail	Fail	Pass	Pass
72.5	72.1	67.3	67.6	73.4	72.5	70.9	2.7	3.8	Fail	Fail	Pass	Pass
77.6	69.5	77.7	55.7	66.9	53.7	66.9	10.4	15.5	Fail	Fail	Pass	Pass
69.0	73.1	66.6	71.7	67.5	72.5	70.1	2.8	3.9	Fail	Fail	Pass	Pass
18.3	19.5	17.9	18.5	18.9	18.3	18.6	0.6	3.0	Fail	Fail	Fail	Fail
69.4	67.9	75.2	67.4	67.6	72.5	70.0	3.2	4.5	Fail	Fail	Pass	Pass
80.0	74.7	91.1	80.0	76.4	90.3	82.1	7.0	8.5	Pass	pass		
99.6	98.6	98.8	97.7	97.4	94.6	97.8	1.8	1.8	Pass	Pass		
92.2	86.9	87.1	91.1	88.9	92.9	89.9	2.6	2.9	Pass	Pass		
67.6	81.2	79.8	80.6	68.5	68.2	74.3	6.8	9.2	Fail	Fail	Pass	Pass
71.7	94.3	86.6	73.1	93.9	86.8	84.4	9.9	11.7	Pass	Pass		
59.7	98.8	61.0	59.7	98.7	61.4	73.2	19.8	27.1	Fail	Fail	Pass	Fail
87.1	86.9	87.2	86.4	88.0	87.9	87.2	0.6	0.7	Pass	Pass		
92.2	87.5	87.3	91.2	88.4	92.3	89.8	2.3	2.6	Pass	Pass		
51.5	60.6	59.9	50.7	51.3	60.4	55.7	5.0	9.0	Fail	Fail	Fail	Fail
49.4	43.5	50.8	49.9	44.1	50.9	48.1	3.4	7.1	Fail	Fail	Fail	Fail
93.5	91.0	92.9	89.3	92.8	94.3	92.3	1.8	2.0	Pass	pass		
89.9	93.5	95.8	99.9	95.9	98.2	95.5	3.5	3.7	Pass	Pass		
93.9	97.7	99.8	93.3	93.4	91.2	94.9	3.2	3.4	Pass	Pass		
94.6	95.2	78.9	96.5	80.6	82.9	88.1	8.1	9.2	Pass	Pass		
66.4	85.3	84.9	65.6	83.7	66.3	75.4	10.2	13.5	Fail	Fail	Pass	Fail
39.7	38.5	42.8	39.8	38.9	42.6	40.4	1.9	4.6	Fail	Fail	Fail	Fail
82.2	71.8	73.5	86.2	70.2	76.3	76.7	6.3	8.2	Pass	Pass		

2nd Stage-Acid Stage

\% of Quantity Capsule 1	\% of Quantity capsule 2	$\%$ of Quantity Capsule 3	\% of Quantity capsule 4	\% of Quantity Capsule 5	\% of Quantity capsule 6	Mean \% of Quantity	$\begin{aligned} & \text { \% of } \\ & \text { Quantity } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { \% of } \\ & \text { Quantity } \\ & \text { \%CV } \end{aligned}$	Judge	$\begin{gathered} \text { New Judge } \\ 10 \% * 1.2= \\ 12 \% \\ \text { dissolved } \end{gathered}$
10.2	8.7	3.0	8.9	8.7	10.5	10.3	4.4	42.4	Pass	
7.8	8.3	6.8	7.7	6.8	9.5	9.4	1.8	19.4	Pass	
33.7	31.6	34.5	34.8	35.5	39.3	24.0	11.5	47.9	Fail	Fail
25.0	25.8	22.1	26.5	27.9	32.4	25.5	2.8	11.1	Fail	Fail
7.0	6.5	8.8	4.3	6.9	8.4	9.8	3.6	36.4	Pass	
3.8	6.8	3.9	5.1	3.6	4.6	9.2	5.3	58.0	Pass	
8.8	10.7	9.1	10.0	8.2	12.8	7.3	4.0	55.2	Pass	
12.0	16.3	11.1	12.1	14.2	11.2	14.4	4.1	28.8	Fail	Fail
4.4	3.9	4.0	5.7	18.3	6.8	10.4	5.4	52.6	Pass	
1.3	5.6	6.8	4.1	4.5	3.8	8.4	4.8	57.0	Pass	
3.7	4.3	6.6	3.8	3.3	5.1	10.5	7.5	71.0	Fail	Pass
15.6	11.1	11.7	13.1	11.7	12.7	14.4	5.1	35.2	Fail	Fail
11.6	3.0	13.5	12.7	11.0	12.3	12.6	4.2	33.0	Fail	Fail
8.0	7.5	6.8	6.7	6.4	7.8	4.4	3.0	67.2	Pass	

2nd Stage-Buffer

\% of Quantity Capsule 1	\% of Quantity Capsule 2	\% of Quantity Capsule 3	\% of Quantity Capsule 4	$\%$ of Quantity Capsule 5	\% of Quantity Capsule 6	Mean \% of Quantity	$\begin{gathered} \% \text { of } \\ \text { Quantity } \\ \text { SD } \end{gathered}$	$\begin{gathered} \% \text { of } \\ \text { Quantity } \\ \% \mathrm{CV} \end{gathered}$	Initial Judge	Disso Initial Fina Judge	New Judge Q=52	Disso New Final Judge
63.5	71.2	102.5	64.7	76.4	46.9	70.4	14.3	20.3	Pass	Pass		
71.2	64.9	74.5	64.9	73.3	61.8	60.5	9.4	15.5	Fail	Fail	Pass	Pass
37.1	49.6	41.5	37.8	49.6	40.3	63.2	21.9	34.6	Fail	Fail	Pass	Fail
35.2	34.1	32.5	34.1	35.7	37.1	46.3	12.6	27.2	Fail	Fail	Fail	Fail
63.3	52.7	60.6	51.7	42.5	50.0	63.0	11.4	18.2	Fail	Fail	Pass	Pass
65.6	54.7	62.1	63.1	63.3	64.9	61.3	8.8	14.3	Fail	Fail	Pass	Pass
74.9	64.9	61.2	65.5	62.3	75.3	69.6	5.9	8.5	Pass	Pass		
34.0	27.7	31.1	32.4	28.6	26.2	46.6	20.7	44.3	Fail	Fail	Fail	Fail
58.8	81.4	72.6	67.6	73.9	64.5	64.9	10.2	15.7	Pass	Pass		
80.5	74.6	75.1	60.4	64.0	67.9	69.4	7.5	10.8	Pass	Pass		
67.2	52.1	62.3	79.2	65.7	76.5	68.8	8.2	12.0	Pass	Fail		Pass
38.4	71.2	56.3	41.9	38.2	69.0	62.9	15.2	24.1	Fail	Fail	Pass	Pass
60.6	41.1	48.6	52.5	64.5	50.4	61.9	11.1	18.0	Fail	Fail	Pass	Pass
69.8	61.6	66.0	53.7	60.9	68.5	65.1	8.3	12.7	Pass	Pass		
39.2	67.8	56.7	43.5	41.6	69.6	61.6	12.9	20.9	Fail	Fail	Pass	Pass
53.0	69.8	66.7	60.4	61.1	66.8	66.5	5.9	8.9	Pass	Pass		
61.7	78.7	77.4	71.1	81.4	81.0	74.8	6.9	9.2	Pass	Pass		
24.3	18.1	29.6	19.4	22.9	18.6	47.7	30.0	62.9	Fail	Fail	Fail	Fail
61.8	90.6	60.5	64.9	57.5	53.4	60.2	10.7	17.7	Fail	Fail	Pass	Fail
65.6	72.1	81.4	78.6	78.2	80.4	75.7	8.0	10.5	Pass	Pass		

Content uniformity test BP (1st stage)

\% of Quantity Capsule 1	\% of Quantity Capsule 2	\% of Quantity Capsule 3	\% of Quantity Capsule 4	\% of Quantity Capsule 5	8 of Quantity Capsule 6	$\%$ of Quantity Capsule 7	\% of Quantity Capsule 8	\% of Quantity Capsule 9	\% of Quantity Capsule 10	Mean \% of Quantity	$\begin{gathered} \text { \% of } \\ \text { Quantity } \\ \text { SD } \end{gathered}$	\% of Quantity SCV	AV (Acceptano e Value)	Judge	New Judge $A V=18$	Mean \% of Quantity	Judge	New Judge BP $76.0 \leqq_{\text {mea }}$ $n \leqq 126$
98.4	103.4	96.8	103.9	100.1	99.0	94.2	99.7	98.1	95.7	98.9	3.1	3.1	7.4	Pass		98.9	Pass	
90.5	91.9	91.6	95.1	95.2	96.6	91.0	90.8	91.1	96.5	93.0	2.5	2.7	11.5	Pass		93.0	Fail	Pass
88.2	87.8	86.7	97.1	83.7	84.2	88.3	93.3	85.2	105.7	90.0	6.9	7.6	25.0	Fail	Fail	90.0	Fail	Pass
99.9	103.1	98.4	102.9	105.9	94.3	102.8	101.5	98.1	103.8	101.1	3.4	3.4	8.2	Pass		101.1	Pass	
97.5	95.4	81.2	90.8	100.2	98.4	100.1	94.5	93.9	101.2	95.3	6.0	6.2	17.5	Fail	Pass	95.3	Pass	
99.1	108.0	100.1	99.8	99.6	106.5	103.0	100.4	104.1	107.9	102.9	3.6	3.5	7.2	Pass		102.9	Pass	
102.7	102.6	105.7	101.5	96.8	106.0	106.1	105.5	101.0	106.7	103.5	3.1	3.0	5.6	Pass		103.5	Pass	
95.9	94.0	97.5	91.8	91.4	90.8	99.0	100.9	96.1	104.8	96.2	4.5	4.7	13.0	Pass		96.2	Pass	
97.1	94.1	95.2	100.0	99.5	100.9	92.6	105.0	97.8	102.7	98.5	3.9	4.0	9.4	Pass		98.5	Pass	
107.7	105.9	104.9	101.8	99.9	104.6	103.2	104.3	107.8	105.1	104.5	2.4	2.3	2.8	Pass		104.5	Pass	
101.6	106.5	107.0	106.7	106.5	105.2	106.5	104.5	109.7	109.8	106.4	2.4	2.2	0.8	Pass		106.4	Fail	Pass
101.4	106.5	106.8	106.7	106.5	105.1	107.9	107.4	109.2	109.7	106.7	2.3	2.2	0.3	Pass		106.7	Fail	Pass
99.5	107.6	104.4	106.9	104.4	109.8	107.9	109.4	108.3	105.4	106.4	3.1	2.9	2.5	Pass		106.4	Fail	Pass
99.6	108.0	99.8	98.9	106.3	105.3	104.0	99.5	100.2	102.9	102.4	3.3	3.2	7.0	Pass		102.4	Pass	
99.8	107.9	104.5	107.2	104.5	109.8	107.8	109.6	108.4	105.8	106.5	3.0	2.8	2.2	Pass		106.5	Fail	Pass
91.1	91.6	92.7	97.9	99.0	97.1	94.9	96.7	93.7	93.8	94.9	2.7	2.9	10.2	Pass		94.9	Pass	
89.8	92.1	89.0	88.8	90.8	93.0	92.2	93.5	90.0	84.7	90.4	2.6	2.9	14.3	Pass		90.4	Fail	Pass
89.8	92.1	89.1	88.9	91.0	93.0	92.3	93.5	89.9	84.8	90.4	2.6	2.9	14.2	Pass		90.4	Fail	Pass
87.9	89.2	89.3	87.9	90.6	87.9	88.6	85.5	91.0	93.8	89.2	2.2	2.5	5.4	Pass		89.2	Fail	Pass
92.1	96.0	90.3	91.2	92.0	95.0	94.2	93.6	95.9	96.5	93.7	2.2	2.3	10.1	Pass		93.7	Fail	Pass
96.4	94.7	95.8	91.6	97.6	92.5	97.6	96.6	98.5	98.0	95.9	2.3	2.4	8.2	Pass		95.9	Pass	
102.0	95.8	110.0	107.2	107.8	108.5	106.7	98.2	105.6	105.3	104.7	4.6	4.4	7.9	Pass		104.7	Pass	
90.7	95.5	93.6	91.0	99.3	90.8	96.0	91.3	98.0	91.7	93.8	3.2	3.4	12.4	Pass		93.8	Fail	Pass
96.2	97.8	99.7	95.8	98.9	94.6	93.0	93.6	98.6	90.6	95.9	2.9	3.1	9.7	Pass		95.9	Pass	
93.5	94.2	102.0	93.3	96.1	93.1	98.5	100.9	92.9	93.8	95.8	3.4	3.6	10.9	Pass		95.8	Pass	
98.9	93.0	95.9	96.4	100.3	99.5	92.0	96.3	100.5	103.6	97.6	3.6	3.7	9.5	Pass		97.6	Pass	
96.3	101.6	92.5	98.5	99.4	96.6	97.9	96.6	100.0	98.2	97.8	2.5	2.5	6.7	Pass		97.8	Pass	
101.2	94.0	105.6	98.6	101.9	98.5	95.0	95.6	102.6	102.7	99.6	3.8	3.9	8.2	Pass		99.6	Pass	
90.0	90.9	92.3	92.2	95.9	95.4	92.5	94.4	93.4	92.2	92.9	1.9	2.0	10.1	Pass		92.9	Fail	Pass
93.2	98.1	96.6	99.7	95.5	94.3	97.0	97.2	96.9	101.7	97.0	2.5	2.5	7.4	Pass		97.0	Pass	
90.1	95.5	92.5	95.0	96.7	103.7	98.3	90.8	95.4	97.0	95.5	3.9	4.1	12.4	Pass		95.5	Pass	
92.1	102.4	99.3	96.7	92.8	98.1	95.1	100.4	98.0	98.5	97.3	3.3	3.4	9.0	Pass		97.3	Pass	
92.3	94.7	98.9	100.1	99.6	95.7	93.9	95.3	92.7	97.2	96.0	2.8	2.9	9.1	Pass		96.0	Pass	
95.2	90.3	96.8	103.7	95.0	92.6	98.2	90.7	95.9	97.1	95.5	3.9	4.1	12.4	Pass		95.5	Pass	
92.5	92.6	96.1	92.2	92.3	90.0	91.1	93.6	94.5	95.4	93.0	1.9	2.0	10.0	Pass		93.0	Fail	Pass
94.8	92.6	97.8	98.2	97.0	92.0	98.3	96.7	99.3	96.0	96.3	2.5	2.6	8.2	Pass		96.3	Pass	
97.1	93.7	96.7	97.7	94.0	93.4	94.0	96.9	91.6	93.9	94.9	2.0	2.1	8.5	Pass		94.9	Pass	
56.5	47.1	95.7	99.2	77.9	47.6	83.0	72.5	85.2	99.6	76.4	20.1	26.4	70.4	Fail	Fail	76.4	Fail	Pass
89.0	91.5	96.7	95.8	98.8	100.1	88.1	90.3	93.3	92.7	93.6	4.1	4.4	14.7	Pass		93.6	Fail	Pass
92.4	93.0	94.0	99.5	100.6	98.6	96.3	98.2	94.8	95.2	96.3	2.8	3.0	9.1	Pass		96.3	Pass	
75.6	84.7	81.9	86.5	101.0	80.1	99.1	100.1	95.9	91.3	89.6	9.1	10.2	30.8	Fail	Fail	89.6	Fail	Pass
93.0	78.3	77.4	76.2	89.1	94.1	91.4	97.8	82.9	87.6	86.8	7.7	8.8	30.1	Fail	Fail	86.8	Fail	Pass
109.2	107.2	107.9	106.3	102.1	105.1	104.5	105.3	106.4	100.3	105.4	2.7	2.5	2.4	Pass		105.4	Pass	
86.1	91.8	87.7	83.8	90.4	86.5	88.2	89.4	84.2	90.7	87.9	2.7	3.1	17.2	Fail	Pass	87.9	Fail	Pass
101.2	101.4	98.2	99.3	96.9	96.9	98.6	96.0	99.1	101.5	98.9	2.0	2.0	4.7	Pass		98.9	Pass	
90.9	81.7	99.9	92.7	93.5	85.0	85.6	87.3	85.5	86.5	88.8	5.4	6.0	22.5	Fail	Fail	88.8	Fail	Pass
99.8	94.0	62.2	62.5	76.6	45.5	73.8	90.3	76.0	78.7	75.9	16.4	21.5	61.8	Fail	Fail	75.9	Fail	Fail
100.0	93.9	99.7	95.4	96.7	97.9	98.4	98.9	104.0	103.3	98.8	3.2	3.2	7.6	Pass		98.8	Pass	
93.3	94.5	96.5	91.2	96.4	95.7	93.8	92.6	98.3	98.7	95.1	2.4	2.6	9.3	Pass		95.1	Pass	
98.3	90.0	97.8	90.3	99.0	101.3	101.6	104.2	103.4	103.3	98.9	5.1	5.2	12.2	Pass		98.9	Pass	
94.1	103.4	99.3	101.9	96.4	104.2	97.3	103.5	98.6	104.0	100.3	3.6	3.6	8.7	Pass		100.3	Pass	
80.6	69.2	77.8	80.0	89.5	78.4	85.0	85.6	82.6	83.4	81.2	5.5	6.8	30.5	Fail	Fail	81.2	Fail	Pass
98.6	113.1	90.3	98.3	116.2	96.6	100.7	108.9	113.3	113.5	104.9	9.1	8.6	18.3	Fail	Fail	104.9	Pass	
88.1	99.5	100.1	94.7	95.0	89.9	98.0	87.3	90.8	91.6	93.5	4.7	5.0	16.2	Fail	Pass	93.5	Fail	Pass

Content uniformity test BP (2nd stage)

$\begin{aligned} & \text { Sof } \\ & \text { Quarity } \end{aligned}$	$\begin{aligned} & \text { Bof } \\ & \text { Qalarity } \end{aligned}$	$\begin{aligned} & \text { Sof } \\ & \text { Cararity } \end{aligned}$	$\begin{aligned} & \text { Sof } \\ & \text { Quartity } \end{aligned}$	$\begin{aligned} & \text { Sof } \\ & \text { Qamitity } \end{aligned}$	$\begin{gathered} \text { Sof } \\ \text { Quartity } \end{gathered}$	$\begin{aligned} & \text { Sof } \\ & \text { Quarnity } \end{aligned}$	$\begin{aligned} & \text { lof } \\ & \text { Cantity } \end{aligned}$	$\begin{gathered} \text { sof } \\ \text { Caratity } \end{gathered}$					$\begin{gathered} \text { Sof } \\ \text { Caratity } \end{gathered}$								of lof	$\begin{aligned} & \text { sof } \\ & \text { Cararity } \end{aligned}$			Judse	Neen ulige
Cassule 1	Capsule?	Capsile 3	Capasie 4	Capsule 5	Capasule 6	Capasule 7	Capsule 8	Capsule 9	Cansule 10	Capsule 11	Cassuse 12	Cansile 13	Caspuie 14	Capsile 15	Capsule 16	Capavie 17	$1{ }^{18}$	de 19	mosule 20		So	40V		(elve)		
																								7.4	Pass	
																								115	Pass	
88.9	85.0	897	878	10.7	973	989	10.5	97.1	90.5	926	929	88.6	95.2	98.7	1089	96.7	8.17	95.7	95.7	93.2	73	7.8	985	199	fail	fail
																								8.2	Pass	
																								175	Pass	
																								7.2	Pass	
																								5.6	Pass	
																								13.0	Pass	
																								9.4	Pass	
																								28	Pass	
																								0.8	Pass	
																								03	Pass	
																								25	Pass	
																								7.0	Pass	
																								2.2	Pass	
																								10.2	Pass	
																								14.3	Pass	
																								14.2	Pass	
																								54	Pass	
																								10.1	Pass	
																								8.2	Pass	
																								79	Pass	
																								124	Pass	
																								9.7	Pass	
																								109	Pass	
																								95	Pass	
																								6.7	Pass	
																								8.2	Pass	
																								10.1	Pass	
																								7.4	Pass	
																								124	Pass	
																								9.0	Pass	
																								9.1	Pass	
																								124	Pass	
																								10.0	Pass	
																								8.	Pass	
																								85	Pass	
																								00.4	fail	${ }_{\text {fail }}$
																								14.7	Pass	
																								9.1	Pass	
1092	95.3	93.1	914	975	98.6	1099	98.7	943	89.2	927	1031	958	90.7	90.1	88.0	993	88.9	853	98.8	935	79	8.4	985	208	${ }^{\text {fail }}$	${ }_{\text {fail }}$
799	911	909	95.6	95.4	1043	12.6	1043	87.3	91.6	918	934	969	898	938	94.0	85.5	95.2	955	97.6	915	73	7.9	98.5	21.6	${ }^{\text {fail }}$	fail
																								24	Pass	
90.0	90.2	87.1	939	90.6	922	223	945	924	93.0	939	940	90.7	95.6	915	943	920	93.7	927	93.5	909	3.1	3.4	985	138	Pass	
																								4.7	Pass	
98.8	10.9	939	89.2	884	925	936	10.4	90.5	966	1027	94.0	959	10.6	98.1	929	1044	928	969	10.1	938	6.0	6.4	985	16.7	Fail	Pass
																								61.8	${ }^{\text {fail }}$	fail
																								7.6	Pass	
																								93	Pass	
																								12.2	Pass	
																								8.7	Pass	
																								305	${ }^{\text {fail }}$	${ }_{\text {fil }}$
106.1	96.1	1097	1111	98.0	10.1	1065	923	975	1082	1074	1085	1087	1076	1075	98.5	1109	99.6	1086	107.2	104.7	68	65	10.5	104	Pass	
90.3	96.0	1020	980	10.1	93.0	924	1016	1400	951	980	1035	935	96.2	979	87.3	883	220	97.4	81.7	950	50	53	985	13.6	Pass	

Comparisons the results BP in QTY, DS and all test

Kanazawa Univ. Quantity test (10 caps)	Judixe	New Judge	DS Final Judice	DS New Final Judge	All test pass or any fail	New All test pass or amy fail
98.9	pass		Pass		pass	
93.0	Fall	Pass	Fall	Pass	Fail	Fail
90.0	Fall	Pass	Pass		Fail	Fail
101.1	pass		Pass		pass	
95.3	Pass		Pass		Pass	
102.9	Pass		Pass		Pass	
103.5	pass		Pass		Pass	
96.2	Pass		Pass		Pass	
98.5	Pass		Pass		Pass	
104.5	Pass		Pass		pass	
106.4	Fall	Pass	Pass		Fail	Pass
106.7	Fall	Pass	Pass		Fail	Pass
106.4	Fall	Pass	Pass		Fail	Pass
102.4	pass		Pass		pass	
106.5	Fall	Pass	Pass		Fail	pass
94.9	pass		Fall	Fail	Fail	Fail
90.4	Fall	Pass	Fall	Fall	Fail	Fall
90.4	Fall	Pass	Fall	Fall	Fail	Fall
89.2	Fall	Pass	Fall	Fall	Fail	Fall
93.7	Fall	Pass	Fall	Fall	Fail	Fall
95.9	pass		Fall	Fall	Fail	Fall
104.7	Pass		pass		pass	
93.8	Fall	Pass	Pass		Fail	Pass
95.9	pass		Pass		pass	
95.8	Pass		Fall	Fall	Fail	Fall
97.6	pass		Fall	Fall	Fail	Fall
97.8	pass		Fall	Fall	Fail	Fall
99.6	pass		Pass		pass	
92.9	Fall	Pass	Pass		Fail	pass
97.0	pass		Pass		pass	
95.5	pass		Pass		Pass	
97.3	pass		Fall	Pass	Fail	pass
96.0	pass		Pass		pass	
95.5	pass		Pass		pass	
93.0	Fall	Pass	Fall	Pass	Fail	pass
96.3	pass		Fall	Fall	Fail	Fall
94.9	Pass		Pass		pass	
76.4	Fall	Pass	Pass		Fail	pass
93.6	Fall	Pass	Pass		Fail	Pass
96.3	pass		Pass		pass	
89.6	Fall	Pass	Pass		Fail	Fall
86.8	Fall	Pass	Pass		Fail	Fall
105.4	pass		Fall	Fall	Fail	Fall
87.9	Fall	Pass	Pass		Fail	pass
98.9	pass		Pass		pass	
88.8	Fall	Pass	Fall	Fall	Fail	Fall
75.9	Fall	Fall	Fall	Fail	Fail	Fall
98.8	pass		Pass		pass	
95.1	pass		Pass		Pass	
98.9	pass		Pass		Pass	
100.3	pass		Pass		Pass	
81.2	Fall	Pass	Pass		Fail	Fall
104.9	pass		Fall	Fall	Fail	Fall
93.5	Fall	Pass	Pass		Fail	pass

Serial No.	Sample Code Trade name of	Nane of Manufacturer	Manufact	\%of Quantity Capsule 1	$\begin{aligned} & \text { Yof } \\ & \text { Quantity } \\ & \text { Capsule } 2 \end{aligned}$	$\begin{aligned} & \text { Yof } \\ & \text { Quantity } \\ & \text { Capsule } 3 \end{aligned}$	$\begin{aligned} & \text { Y of } \\ & \text { Quantity } \\ & \text { Capsule } 4 \end{aligned}$	$\begin{aligned} & \text { Yof } \\ & \text { Quaratity } \\ & \text { Capsule } 5 \end{aligned}$	$\begin{aligned} & \text { \% of } \\ & \text { Quantity } \\ & \text { Capsule } 6 \end{aligned}$	$\begin{aligned} & \text { Mean \% of } \\ & \text { Quantity } \end{aligned}$	$\begin{aligned} & \text { Sof } \\ & \text { Quantiy } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { Yof } \\ & \text { Quaratity } \\ & \text { Yov } \end{aligned}$	Jugge	New Judge $10 \% * 1.2=$ 120 dissolved
8.016	B.016/MML1/GGSunicef	AWW Life Sience Pit Lto.,	India	10.9	10.8	4.0	2.8	8.9	6.9	7.4	3.5	46.8	Pass	
8.443	B.0.3//MM14/GG Sumicef	AWW Life Sience Pritto.,	India	5.8	8.3	4.0	1.6	14.0	4.4	6.3	4.3	68.4	Pass	
A.021	AO21/MML1/GG/ OMAPN/ 20	Braw Laboratores LT.	India	2.0	4.6	3.7	0.5	2.9	4.5	3.0	1.6	52.7	Pass	
8.0.12	B.012/MML1/GG, OMAPN	Braw Laboratores LT.	India	4.3	8.4	6.1	9.8	7.9	8.0	7.4	2.0	26.3	Pass	
8.074	8.074/M114/G, OMEPPRZOLE	GOLDEN MBAA PTE. LTD	Singapor	14.3	113	14.3	10.7	14.1	14.4	13.2	1.7	12.9	Pass	
8.446	B.06//MM14/GGOMAC	MDCPHARMACEUTICALS (P)\|Ld	India	0.8	1.8	1.6	5.8	4.5	6.9	3.6	2.5	70.0	Pass	
8.071	B.071/MM12/GGOMAC	MOCPHARMACEUTICALS (P)\|Ld	India	0.6	12.5	6.3	10.1	4.8	2.2	6.1	4.6	75.1	Pass	
B.078	B.078/MM14/G/ OMAC	MDCPHARMACEUTICALS PP\|LLd	India	1.2	1.3	3.4	2.7	1.4	13.5	3.9	4.8	122.3	Pass	
PA-O4	PaOO/MML//G ${ }^{\text {OMAC }}$	mDCPharnaceuticalsp lid.	India	12.6	11.2	12.6	12.8	13.2	11.4	12.3	0.8	6.7	Pass	
A.066	AO66/[M11//G/ OMAC	MDCPHARMACEUTICCLSIP LTD.	India	11.7	5.3	1.8	12.2	11.3	9.8	8.7	4.2	48.5	Pass	
A.113	A113/MM14//G/ OMAC	MOCPHARMACEUTICCLISP [LTD.	India	17.1	11.2	7.8	17.6	16.7	15.3	14.3	3.9	27.6	Fail	Fail

					咨						＂
					珮						㿻
	染	吕	$\begin{aligned} & \text { 容 } \\ & \hline \end{aligned}$	望	픈	䍗	$\begin{aligned} & \text { 峟 } \end{aligned}$	珮	㕸	㿻	$\overline{\bar{\sim}}$
－	㿻	会	望	资	＂	㟔	资	綅	㿻	凬	$\overline{\bar{i}}$
	이	స	¢	잉	J	む	ה	9	7	\％	ฟ
	\cdots	N	\％		9	ন	\pm	$\stackrel{\square}{-1}$	$\stackrel{\text { m }}{ }$	\％	\because
	关	ゅ.	曻	\％	宫	ö	$\underset{\AA}{\infty}$	$\stackrel{\substack{0}}{ }$	\％	İ	员
	染	영	ल̈	Øั	$\stackrel{\text { F }}{ }$	\％	$\stackrel{\infty}{\infty}$	$\stackrel{\varrho}{\infty}$	宮	응	\％
	สี	$\stackrel{3}{8}$	Oi	ส̇	$\stackrel{\square}{\infty}$	$\check{\infty}$	\%	응	ฐ̃	ने	$\stackrel{\cong}{亡}$
	®í	¢	$\ddot{8}$	\％	ゅ.	O	$\underset{\infty}{\infty}$	$\underset{\infty}{\infty}$	$\stackrel{\circ}{\text { ®i }}$	웅	$\stackrel{\infty}{\text { ® }}$
	隔	\%í	표	\%	O.	용	$\stackrel{\text { ¢ }}{\infty}$	$\stackrel{\curvearrowleft}{\infty}$	に!	\%	응
	$\underset{\infty}{9}$	용	曻	ํㅡㅇ	$\stackrel{\sqrt{\prime}}{1}$	$\stackrel{\rightharpoonup}{\infty}$	¢్	\％	令	표	$\stackrel{\oplus}{\stackrel{1}{2}}$
	灾	\％i8	$\overrightarrow{\mathbf{o}}$	สั	\vec{F}	$\underset{\infty}{\mathbb{\infty}}$	\％	川i	灾	$\underset{\infty}{\infty}$	\％

Content uniformity $1^{\text {st }}$ considered range USP

				溪						
突	忿	桬	㿽	푼	盆	空	通	嵒	突	愛
乭	을	옹	合	产	合	$\stackrel{\infty}{\infty}$	®	兑	888	웅
				$\overline{\overline{\text { ¢ }}}$						
突	发	资	辰	$\overline{\overline{\text { ¢ }}}$	遃	荌	遃	遂	荢	辰
$\stackrel{\rightharpoonup}{\infty}$	∞	䂞	$=$	$\stackrel{5}{5}$	\sqsupset	열	Ξ	＠	刍	Ξ
$\%$	\bigcirc	\because	\cdots	I	2	\cdots	F	\bigcirc	¢	5
\ni	\mp	家	\because	\cong	$\stackrel{\rightharpoonup}{\sim}$	F	F	$\stackrel{\infty}{\square}$	¢	2
乭	을	응	亳	$\stackrel{\text { ¢ }}{\text { ¢ }}$	을	$\stackrel{\infty}{5}$	犮	兑	8	응
을	宫	㝓	兑	공	号	※	중	咨	\％	®
$\underset{\text { ® }}{\text { ® }}$	管	5	兑	퐁	㐌	亏	骂	뇽	®	F
\％	害	$\underset{ঞ}{\circ}$	8	을	岩	召	家	家	®	퐁
痤	®	示	$\stackrel{\infty}{\text { ® }}$	응	莒	귱	چ̈	兑	®	옹
응	응	宫	哭	F	吕	률	$\stackrel{8}{8}$	宫	ন	F
응	吡	玉	을	\％	兑	兑	꾱	F	亳	救
㐁	宫	$\stackrel{\rightharpoonup}{\circ}$	喜	\＃	喜	喜	\％	合	咢	$\overline{\%}$
※	宫	※	兑	\cong	\％	\％	을	管	䂞	B
劀	兑	S	중	8	®	亏	F	율	F	喜
宫	宵	5	ミ	\％	兑	8	$\stackrel{3}{5}$	官	을	$\stackrel{\square}{\infty}$

Annex 1.9 To observed unacceptable samples with new (considered) judge

Cefuroxime tablets Myanmar project 2014

ID Serial No.	Trade name of the product	Name of Manufacturer	Manufacturing Country		$\begin{gathered} \text { \% of } \\ \text { Quantity } \\ \text { Tablet } 2 \end{gathered}$	$\begin{aligned} & \text { \% of } \\ & \text { Quantity } \\ & \text { Tablet 3 } \end{aligned}$	$\begin{aligned} & \text { \% of } \\ & \text { Quantity } \\ & \text { Tablet } 4 \end{aligned}$	\% of Quantity Tablet 5	\% of Quantity Tablet 6	Mean \% of Quantity	$\%$ of Quantity SD \qquad	$\begin{aligned} & \text { \% of } \\ & \text { Quantity } \\ & \text { YCV } \end{aligned}$	Initial Judge	New Judge
\checkmark	\checkmark -	\checkmark	\checkmark	-	,	\square	\square	\checkmark	-	\checkmark	\square		\checkmark	\checkmark
3 A-005	A005/MM14/YG/01/HG/ SPIZEF	Orchid HEALTHCA	IIndia	101.01	96.57	95.96	96.92	99.78	95.69	97.65	2.2	2.26	Pass	
4 A-006	A006/MM14/VG/01/HG/Zinnat	GlaxoSmithKline		77.86	86.26	87.94	87.54	91.17	91.77	87.09	5.01	5.75	Pass	
5 A-007	A007/MM14/YG/01/HG/ZIFTUM 250	Alkem Laboratori	ilndia	94.80	96.21	95.20	98.97	95.40	97.02	96.27	1.54	1.60	Pass	
6 A-016	A016/MM14/YG/01/HG/ZiNNASAV-250 S	SAVIOUR PHARMA	AIndia	86.13	86.73	80.62	77.52	85.79	82.70	83.25	3.66	4.39	Pass	
7 A-017	A017/MM14/YG/01/HG/ ZIFATLL-250	Galpha Laborato	India	108.91	95.81	110.33	106.09	107.70	113.48	107.05	6.06	5.66	Pass	
8 A-018	A018/MM14/YG/01/HG/ CETIL	LUPIN LTD.	India	100.74	93.64	93.71	101.42	102.10	97.87	98.25	3.82	3.89	Pass	
$9 \mathrm{~A}-019$	A019/MM14/YG/01/HG/FUROCEF	Renata limited	Bangladesh	69.59	77.86	74.23	86.87	83.51	82.50	79.09	6.43	8.13	Pass	
10 A-025	A025/MM14/YG/04/C/CX SPIZEF	Orchid HEALTHCA	IIndia	84.11	96.75	94.19	78.87	95.81	91.57	90.22	7.18	7.96	Pass	
11 A-030	A030/MM14/YG/02/C/CX RUFEX-250	Global Pharma H	India	80.68	87.20	71.81	60.60	86.93	77.86	77.52	10.11	13.05	Fail	Pass
$12 \mathrm{~A}-036$	A036/MM14/YG/01/Ocl , ZIFTUM 250	Alkem Laboratori	ilndia	100.40	94.87	87.70	95.28	92.61	92.96	93.97	4.15	4.41	Pass	
13 A-037	A037/MM14/YG/01/Ocl/Cefusan 250	SRS pharmaceuti	IIIdia	94.46	94.66	96.71	95.89	95.55	93.84	95.19	1.05	1.11	Pass	
14 A-048	A048/MM14/YG/06/C/Cx RUFEX-250	Global Pharma H	India	66.77	63.95	65.56	66.37	66.57	68.99	66.37	1.65	2.48	Fail	Pass
15 A-052	A052/MM14/YG/02/HG/ZIFTUM 250	Alkem Laboratori	ilndia	96.81	97.35	98.50	97.22	100.85	101.05	98.63	1.88	1.91	Pass	
16 A-054	A054/MM14/VG/02/C/CXIIFTUM 250	Alkem Laboratori	ilndia	96.88	100.24	93.79	97.82	98.63	98.83	97.70	2.22	2.27	Pass	
$17 \mathrm{~A}-057$	A057/MM14/YG/01/HP/R RUFEX-250	Global Pharma H	India	51.24	71.52	79.71	71.72	79.92	72.54	71.11	10.48	14.73	Fail	Pass
18 A-058	A058/MM14/YG/HP/CXN Zinnat	GlaxoSmithKline		94.19	91.57	91.17	88.14	96.81	93.39	92.55	2.96	3.20	Pass	
19 A-063	A063/MM14/YG/01/OCl/ZIFTUM 250	alkem laborato	India	101.01	93.84	91.59	92.00	94.39	95.89	94.79	3.43	3.62	Pass	
20 A-068	A068/MM14/YG/02/C/CX RUFEX-250	Global Pharma H	4 India	78.46	80.68	70.40	63.34	69.59	71.61	72.35	6.32	8.74	Fail	Pass
21 A-071	A071/MM14/YG/01/HG/ZIFTUM 250	alkem laborato	India	96.61	96.68	104.14	97.82	92.78	94.40	97.07	3.91	4.03	Pass	
$22 \mathrm{~A}-074$	A074/MM14/YG/01/C/CX ZIFTUM 250	ALKEM Laborato	India	90.77	91.98	87.74	91.17	88.88	86.73	89.54	2.08	2.32	Pass	
23 A-079	A079/MM14/YG/02/Ocl/RUFEX-250	Global Pharma H	India	64.69	62.27	63.95	81.09	58.91	62.00	65.48	7.90	12.07	Fail	Pass
24 A-085	A085/MM14/VG/02/HP//RUFEX-250	Global Pharma H	India	64.35	59.23	66.88	59.03	63.94	70.22	63.94	4.35	6.80	Fail	Pass
25 A-086	A086/MM14/VG/02/HP//Zinnat	GlaxoSmithkline		82.97	81.89	85.32	89.62	85.12	87.94	85.48	2.92	3.41	Pass	
26 A-089	A089/MM14/YG/01/W/C Cefotil	SQUARE PHARMA	(Bangladesh	BP	-	-	-	-	-	-	-	-	-	
27 A-095	A095/MM14/YG/03/W/C KEFROX	CCL Pharmaceutic	CPakistan	BP	-	-	-	-	-	-	-	-	-	
28 A-099	A099/MM14/YG/01/HG/RUFEX-500	Global Pharma H	India	65.56	57.43	52.65	66.16	62.13	64.55	61.41	5.34	8.70	Fail	Pass
29 A-102	A102/MM14/YG/01/OCl/ CETIL	LUPIN LTD.	India	73.42	72.28	70.60	76.05	70.80	69.66	72.14	2.33	3.24	Pass	
30 A-104	A104/MM14/YG/02/HP/(ZIFTUM 250	ALKEM Laborato	India	106.90	103.07	100.65	105.99	99.03	106.29	103.65	3.28	3.16	Pass	
32 B-002	B-002/MM14/YG/01/HP/ZIFTUM 250	Alkem Laboratori	ilndia	126.66	131.50	131.09	122.42	131.30	136.54	129.92	4.83	3.71	Pass	
33 B-003	B-003/MM14/YG/01/HP/ SPIZEF	Orchid HEALTHCA	IIndia	98.43	96.21	94.60	92.78	96.41	94.19	95.44	1.99	2.08	Pass	
34 B-004	B-004/MM14/YG/01/HP/ CETIL	LUPIN LTD.	India	73.42	74.84	73.89	75.31	80.48	74.23	75.36	2.60	3.44	Pass	
35 B-023	B-023/MM14/YG/07/C/C RUFEX	Global Pharma H	India	62.33	64.15	62.13	65.36	65.09	63.34	63.73	1.37	2.14	Fail	Pass
36 B-027	B-027/MM14/YG/01/C/C Zinnat	GlaxoSmithKline		91.77	93.19	89.96	87.74	94.19	93.59	91.74	2.48	2.70	Pass	
$37 \mathrm{~B}-029$	B-029/MM14/YG/02/C/C ZIFTUM 250	Alkem Laboratori	i India	80.88	82.50	81.15	89.62	85.12	87.94	84.54	3.65	4.32	Pass	
38 B-030	B-030/MM14/YG/88/C/C Zinnat	GlaxoSmithkline		89.54	79.58	89.54	84.29	86.06	82.99	85.33	3.89	4.56	Pass	
$39 \mathrm{~B}-031$	B-031/MM14/YG/08/C/CZIFTUM 250	Alkem Laboratori	ilndia	98.83	97.02	97.42	97.22	101.25	96.41	98.02	1.77	1.81	Pass	
$40 \mathrm{~B}-034$	B-034/MM14/YG/01/HP/ZIFTUM 250	Alkem Laboratori	ilndia	95.14	97.46	98.14	92.41	96.51	96.92	96.10	2.07	2.15	Pass	
41 B-038	B-038/MM14/YG/01/HP/ZIFTUM 250	Alkem Laboratori	ilndia	127.26	122.02	127.47	124.04	122.09	123.84	124.45	2.41	1.94	Pass	
$42 \mathrm{~B}-042$	B-042/MM14/YG/01/HG,ZIFATIL	Galpha Laborato	India	88.93	88.31	84.83	87.43	90.36	90.77	88.44	2.16	2.45	Pass	
$43 \mathrm{~B}-044$	B-044/MM14/YG/01/HG,Zinmax	DOMESCO MEDIC	VietNam	90.77	91.17	92.38	88.55	89.15	89.56	90.26	1.43	1.58	Pass	
44 B-047	B-047/MM14/YG/01/C/C RUFEX	Global Pharma H	India	60.52	59.51	59.71	62.94	60.52	60.32	60.59	1.23	2.03	Fail	Pass
45 B-052	B-052/MM14/YG/01/HP/ CETIL	LUPIN LTD.	India	109.12	107.50	103.74	100.18	112.14	105.89	106.43	4.19	3.93	Pass	
46 B-053	B-053/MM14/YG/01/HP/Zinnat	GlaxoSmithKline		88.75	94.19	86.13	79.67	74.43	88.35	85.25	7.08	8.31	Pass	
47 B-063	B-063/MM14/YG/01/O(C ZIFTUM 250	Alkem Laboratori	ilndia	93.43	88.93	105.52	98.14	93.23	103.13	97.06	6.38	6.57	Pass	
48 B-066	B-066/MM14/YG/01/C/C ZIFTUM 250	Alkem Laboratori	ilndia	91.59	87.90	96.92	95.69	94.25	100.60	94.49	4.39	4.65	Pass	
$49 \mathrm{~B}-067$	B-067/MM14/YG/01/C/C RUFEX-250	Global Pharma H	India	84.92	72.82	78.46	81.96	77.66	79.67	79.25	4.10	5.18	Pass	
50 B-076	B-076/MM14/YG/01/HG, ZIFTUM 250	Alkem Laboratori	ilndia	99.23	92.98	93.99	95.60	94.19	96.21	95.37	2.22	2.33	Pass	
51 B-079	B-079/MM14/YG/01/OCC ClFTUM 250	Alkem Laboratori	ilndia	93.39	93.99	90.36	91.57	92.98	95.47	92.96	1.80	1.94	Pass	
$52 \mathrm{~B}-080$	B-080/MM14/YG/01/O(cZinnat	GlaxoSmithkline		91.37	89.76	83.10	91.77	86.33	90.97	88.88	3.45	3.88	Pass	
$53 \mathrm{~B}-086$	B-086/MM14/YG/03/C/C Zinnat	GlaxoSmithkline		77.26	88.61	85.19	80.88	82.50	81.15	82.60	3.91	4.73	Pass	
54 B-089	B-089/MM14/YG/04/W/Zinnat	GlaxoSmithkline		77.66	89.89	75.64	81.69	73.02	78.67	79.43	5.89	7.42	Pass	
55 B-093	B-093/MM14/YG/01/C/C RUFEX	Global Pharma H	India	65.56	64.75	87.54	85.12	81.49	89.76	79.04	11.10	14.04	Fail	Pass
$56 \mathrm{~B}-100$	B-100/MM14/YG/00/C/C ZIFTUM 250	Alkem Laboratori	ilndia	100.04	98.43	100.04	98.83	96.41	102.06	99.30	1.90	1.91	Pass	
57 B-101	B-101/MM14/YG/05/C/CZinnat	GlaxoSmithkline		89.15	85.52	92.51	88.35	89.15	91.17	89.31	2.41	2.70	Pass	
58 B-102	B-102/MM14/YG/02/C/C Zinnat	GlaxoSmithKline		83.91	89.62	87.81	88.28	95.60	91.37	89.43	3.91	4.37	Pass	
$59 \mathrm{~B}-104$	B104/MM14/YG/01/HG/ ZIFTUM 250	Alkem Laboratori	ilndia	94.80	98.23	90.36	93.99	96.01	92.18	94.26	2.78	2.95	Pass	
60 B-111	B111/MM14/YG/02/C/CX RUFEX-250	Global Pharma H	India	76.91	67.63	74.18	89.13	89.13	85.99	80.50	8.92	11.08	Pass	
1 PA-001	PA001/MM14/YG/01/C/CZIFTUM 250	Alkem Laboratori	ilndia	158.05	134.52	153.14	152.94	136.54	146.22	146.90	9.60	6.53	Pass	
2 PA-002	PA002/MM14/YG/01/C/CSPIZEF	Orchid HEALTHCA	India	73.83	98.97	100.24	97.22	85.79	83.04	89.85	10.63	11.83	Pass	
31 PB-001	PB-001/MM14/YG/01/O(ZINNASAV-250 S	SAVIOUR PHARMA	AIndia	75.96	82.78	83.19	85.86	82.58	81.35	81.95	3.29	4.02	Pass	

\% of Quantity Tablet 1	\% of Quantity Tablet 2	\% of Quantity Tablet 3	\% of Quantity Tablet 4	\% of Quantity Tablet 5	\% of Quantity Tablet 6	\% of Quantity Tablet 7	\% of Quantity Tablet 8	\% of Quantity Tablet 9	\% of Quantity Tablet 10	Mean \% of Quantity	\% of Quantity SD	\% of Quantity \%CV	AV (Acceptance Value)	Judge	New Judge $\mathrm{AV}=18$
104.92	104.54	100.00	102.70	95.88	99.40	94.86	105.87	101.22	96.94	100.6	3.9	3.9	9.372893126	Pass	
104.21	103.39	98.63	97.51	93.65	103.10	106.08	98.50	95.83	102.27	100.3	4.1	4.0	9.731768808	Pass	
102.27	103.86	100.48	102.58	98.18	97.12	100.36	100.98	97.48	92.73	99.6	3.3	3.3	7.89	Pass	
92.41	93.57	91.85	95.51	95.75	90.01	89.77	84.34	88.41	101.55	92.3	4.7	5.1	17.48	Fail	Pass
84.42	99.25	100.84	85.26	90.85	90.97	97.08	91.92	93.14	92.91	92.7	5.4	5.8	18.72	Fail	Fail
85.61	97.53	104.85	104.61	90.77	107.86	98.31	94.87	97.54	98.02	98.0	6.7	6.8	16.58	Fail	Pass
99.58	97.87	93.20	95.87	93.71	103.43	100.62	95.39	98.09	95.14	97.3	3.2	3.3	9.00	Pass	
94.08	101.01	89.89	94.86	93.99	95.64	99.03	101.53	94.92	92.86	95.8	3.7	3.8	11.55	Pass	
92.98	91.66	89.14	90.87	92.74	88.74	88.45	86.30	82.74	82.84	88.6	3.7	4.2	18.76	Fail	Fail
104.08	102.32	92.47	95.41	111.73	93.88	93.39	101.14	92.26	94.69	98.1	6.4	6.6	15.45	Fail	Pass
91.27	93.27	96.13	88.28	98.09	91.63	91.59	94.10	87.74	79.11	91.1	5.3	5.8	20.06	Fail	Fail
95.65	100.96	82.79	86.92	84.50	92.64	87.53	87.83	84.09	83.79	88.7	5.9	6.7	24.08	Fail	Fail
92.28	99.85	94.71	96.54	95.82	98.57	99.74	103.67	107.73	105.66	99.5	5.0	5.0	11.90	Pass	
101.48	100.22	91.88	103.28	95.38	105.52	97.11	98.08	92.65	95.07	98.1	4.5	4.6	11.28	Pass	
87.87	87.87	87.65	82.96	87.90	82.50	85.36	79.08	77.86	80.46	84.0	3.9	4.7	23.95	Fail	Fail
95.38	104.18	100.01	98.10	103.39	99.45	93.58	100.25	90.67	91.76	97.7	4.7	4.8	12.04	Pass	
99.58	95.59	96.90	102.68	100.60	103.08	94.12	99.93	98.40	95.48	98.6	3.1	3.1	7.38	Pass	
85.13	80.97	74.62	-	-	-	-	-	-	-	80.2	-	-	-	-	
107.29	97.04	100.25	99.21	101.42	104.80	95.76	99.53	94.60	89.71	99.0	5.1	5.1	12.13	Pass	
105.17	99.99	101.85	103.65	98.37	100.92	98.68	93.11	93.86	98.67	99.4	3.8	3.9	9.21	Pass	
86.23	86.08	82.00	86.17	84.76	88.14	83.31	89.02	81.19	82.07	84.9	2.7	3.2	20.05	Fail	Fail
98.68	88.40	99.10	101.87	98.65	93.01	98.22	95.66	96.45	97.29	96.7	3.7	3.9	10.77	Pass	
94.85	92.47	90.91	95.96	99.71	94.09	96.69	97.74	93.76	94.46	95.1	2.6	2.7	9.60	Pass	
97.95	97.60	93.43	92.10	101.08	87.19	96.73	96.72	93.55	94.45	95.1	3.8	4.0	12.63	Pass	
89.41	99.51	95.97	94.42	103.65	96.10	90.11	97.75	94.44	90.99	95.2	4.4	4.6	13.88	Pass	
79.62	80.37	82.34	80.60	76.43	78.62	81.50	79.29	78.70	75.53	79.3	2.1	2.7	24.28	Fail	Fail
98.44	99.04	95.46	93.58	98.00	95.74	100.25	97.12	98.56	87.30	96.3	3.7	3.9	11.12	Pass	
103.02	98.07	99.18	103.84	101.83	103.11	94.54	97.96	102.81	97.01	100.1	3.2	3.2	7.67	Pass	
96.55	104.47	106.58	100.60	100.41	102.25	90.34	103.61	96.69	99.31	100.1	4.7	4.7	11.27	Pass	
94.9	96.3	96.4	94.2	99.8	100.9	95.0	95.7	91.2	103.1	96.7	3.5	3.6	10.22	Pass	
98.99	100.25	99.81	95.66	94.94	97.36	89.83	90.59	94.11	93.58	95.5	3.6	3.8	11.71	Pass	
86.47	88.94	86.99	95.59	93.94	92.55	73.24	90.08	89.30	82.01	87.9	6.5	7.4	26.13	Fail	Fail
96.26	93.06	95.03	91.98	95.18	90.38	93.66	86.06	98.76	92.34	93.3	3.5	3.7	13.57	Pass	
98.08	99.17	97.64	88.44	89.52	93.13	83.94	84.61	78.65	95.15	90.8	6.9	7.6	24.34	Fail	Fail
97.84	98.27	109.33	101.97	98.36	104.72	97.52	111.74	108.12	93.15	102.1	6.1	6.0	15.27	Pass	
96.67	101.02	94.08	96.38	93.86	95.06	93.75	96.25	96.24	97.52	96.1	2.2	2.3	7.63	Pass	
101.07	100.73	104.94	106.81	101.49	97.11	102.96	106.33	102.82	102.79	102.7	2.9	2.8	8.11	Pass	
105.30	92.74	104.55	105.08	97.92	98.05	98.24	100.54	98.83	98.10	99.9	4.0	4.0	9.59	Pass	
83.66	84.52	86.32	91.22	84.44	85.86	91.58	84.65	93.10	80.82	86.6	4.0	4.6	21.48	Fail	Fail
102.47	102.35	102.44	104.48	103.97	103.72	102.78	98.97	97.20	96.30	101.5	2.9	2.9	6.98	Pass	
71.12	69.88	88.62	76.65	74.10	77.86	88.15	85.61	73.36	74.00	77.9	7.0	9.0	37.37	Fail	Fail
91.71	97.36	88.44	93.86	88.52	96.88	92.86	90.31	92.94	92.51	92.5	3.0	3.3	13.24	Pass	
104.46	85.18	85.58	83.73	90.96	104.88	89.09	90.42	102.98	103.08	94.0	8.8	9.3	25.50	Fail	Fail
98.72	91.94	97.51	92.91	97.18	91.92	109.19	92.38	98.29	102.77	97.3	5.5	5.7	14.50	Pass	
97.47	99.41	97.77	99.32	92.59	92.40	94.94	95.56	96.13	101.41	96.7	2.9	3.0	8.88	Pass	
97.63	100.15	107.00	101.46	107.64	106.13	101.37	101.88	100.85	101.86	102.6	3.2	3.2	8.89	Pass	
97.22	96.14	92.13	89.04	90.90	91.00	95.82	93.73	84.56	92.74	92.3	3.8	4.1	15.21	Pass	
101.08	94.44	98.21	99.11	103.97	102.67	97.27	97.77	97.49	97.75	99.0	2.8	2.9	6.80	Pass	
97.64	99.42	97.71	100.36	97.58	96.02	98.42	96.52	96.50	96.74	97.7	1.4	1.4	4.12	Pass	
92.29	98.58	98.56	91.81	102.01	90.37	90.05	93.33	92.23	94.00	94.3	4.0	4.3	13.81	Pass	
109.93	105.57	104.26	115.00	103.68	107.96	107.55	110.73	101.57	102.22	106.8	4.2	4.0	15.48	Pass	
88.76	91.12	80.84	80.41	75.56	87.75	83.93	82.01	89.50	86.58	84.6	4.9	5.8	25.68	Fail	Fail
93.01	94.13	107.34	91.54	94.24	102.22	93.05	92.89	89.85	90.01	94.8	5.6	5.9	17.08	Fail	Pass
101.68	103.63	103.61	99.44	102.50	115.40	101.56	97.35	95.65	98.59	101.9	5.4	5.3	13.47	Pass	
94.09	96.03	98.31	97.15	93.26	92.67	95.69	99.97	95.30	96.11	95.9	2.2	2.3	8.01	Pass	
99.74	105.46	105.23	100.22	101.84	95.14	97.11	101.63	90.14	102.08	99.9	4.7	4.7	11.22	Pass	
77.76	80.96	83.08	77.55	76.53	76.92	78.97	79.20	74.70	77.48	78.3	2.4	3.0	25.88	Fail	Fail
93.01	94.13	101.56	91.54	94.24	102.22	93.05	92.89	89.85	90.01	94.3	4.3	4.6	14.57	Pass	
103.65	100.90	102.00	99.25	97.83	96.97	102.27	102.52	93.13	99.91	99.8	3.2	3.2	7.64	Pass	
88.20	90.25	93.58	92.14	90.62	79.25	94.40	95.94	85.54	88.40	89.83	4.87	5.42	20.36	Fail	Fail

Yof Quantity Tablet 1	Yof Quantity Tablet2	Yof Quantity Tablet 3	Yof Quantity Tablet 4	Yof Quantity Tablet 5	Yof Quantity Tablet 6	Yof Quantity Tablet 7	Yof Quantity Tablet 8	Yof Quantity Tablet 9	Yof Quantity Tablet 10	hof Quantity Tablet 11	hof Quantity Tablet 12	Sof Quantity Tablet 13	Bof Quantity Tablet 14	Sof Quantity Tablet 15	Sof Quantity Tablet 16	Sof Quantity Tablet 17	Sof Quantity Tablet 18	Sof Quantity Tablet 19	Sof Quantity ,	Mean 1 of Quantity \qquad	bof Quantity SO \qquad	bof vantity SCV	AV (Acceptance Value) ₹	Judge for Content Uniformity	New Judge for Content Uniform
																								Pass	
																								Pass	
																								Pass	
																								Pass	
-	.	-	.	-	-	.	-	-	.	\cdot	.				,	Fail	Fail
.	-	.	-	- P	Pass	
																								Pass	
																								Pass	
92.27	92.42	92.10	92.27	92.68	91.66	88.43	90.69	83.91	80.84	91.06	90.78	85.74	8597	87.09	82.13	85.49	81.53	88.53	89.05	88.51	3.94	4.46	17.88 Fa		Pass
																								Pass	
103.74	97.31	100.95	96.99	97.34	94.32	93.53	99.38	94.32	10071	97.08	90.13	99.63	93.98	97.15	83.28	93.22	92.56	90.18	97.62	94.15	5.19	5.51	14.72 P		
106.26	97.80	10.148	92.52	10054	10.06	10.164	85.36	10.57	99.83	88.92	9443	94.28	95.97	91.60	9493	95.01	93.71	10.98	91.35	94.22	6.92	7.34	18.11 F		Fail
																								Pass	
																								Pass	
80.29	84.28	77.86	84.57	81.54	82.89	80.56	76.34	77.11	77.13	83.49	83.87	86.29	80.73	85.28	83.90	86.82	8335	82.47	86.22	82.88	3.48	4.20	22.58 Fa		Fail
																								Pass	
																								Pass	
																								Fail	
																								Pass	
																								Pass	
93.91	93.25	92.28	91.09	92.01	8891	88.93	87.13	85.26	84.35	80.02	81.23	81.78	80.43	80.19	85.20	83.08	81.62	79.76	82.18	85.72	4.24	4.95	21.27 F		Fail
																								Pass	
																								Pass	
																								Pass	
																								Pass	
.	.	.	.	-	.	-	.	.	-	.	.	.	-	.	.	-	-	.	.	.		-	- Fir	Fail	Fail
																								Pass	
																								Pass	
																								Pass	
																								Pass	
																								Pass	
																								Fail	Fail
																								Pass	
10455	10439	10.58	105.96	95.19	105.45	10.98	10.07	103.88	95.14	107.70	105.54	10.46	96.45	103.95	10.83	102.13	10.19	99.40	103.23	98.84	6.98	7.06	13.96	Pass	
																								Pass	
																								Pass	
																								Pass	
																								Pass	
-	.	-	-	-	-	- Fir	Fail	Fail
																								Pass	
																								Fail	Fail
																								Pass	
10632	96.25	95.82	97.59	99.85	102.09	97.49	91.39	98.72	96.62	92.69	93.54	91.32	91.09	96.74	99.63	93.44	97.31	92.81	97.83	95.20	6.01	6.31	15.32 P	Pass	
																								Pass	
																								Pass	
																								Pass	
																								Pass	
																								Pass	
																								Pass	
																								Pass	
																								Pass	
92.16	91.21	87.91	88.03	88.11	86.34	86.50	83.10	88.83	91.62	84.15	84.91	76.84	79.15	85.28	78.81	85.54	81.09	78.4	82.78	85.26	4.52	5.31	22.29 F		Fail
.	-	.	-	.	-	-	-	-	.	-	-	-	-	-	-	-	-	-	-					Fail	Pass
																								Pass	
																								Pass	
																								Pass	
93.21	89.27	87.18	90.76	86.50	86.94	88.76	92.50	88.72	82.25	85.54	8332	82.14	75.51	85.60	78.09	77.83	79.58	81.52	83.49	82.84	5.17	6.25	26.01 F		Fail
																								Pass	
																								Pass	
85.84	88.33	10.07	89.15	94.20	89.80	87.21	89.31	87.72	84.92	90.39	84.84	89.99	95.62	94.75	9933	94.43	79.50	89.28	96.57	90.56	5.58	6.16	19.11 F		Fail

Kanazawa Univ. Quantity test	Judge	New Judge	Kanazawa Univ. Quantity test	FinalJudge	FinalJud		I	New	
\checkmark	\sim	\checkmark		\checkmark	\checkmark		-		-
100.63	Pass		-	Pass		Pass			
100.32	Pass		-	Pass		Pass			
99.60	Pass		-	Pass		Pass			
92.32	Pass		88.96	Fail	Pass	Fail		Pass	
92.66	Pass		-	Pass		Fail		Fail	
98.00	Pass		-	Pass		Fail		Pass	
97.29	Pass		-	Pass		Pass			
95.78	Pass		-	Pass		Pass			
88.65	Fail	Pass	88.51	Fail	Pass	Fail		Pass	
98.14	Pass		101.90	Pass		Pass			
91.12	Pass		94.15	Pass		Pass			
88.67	Fail	Pass	94.22	Pass		Fail		Fail	
99.46	Pass		-	Pass		Pass			
98.07	Pass		-	Pass		Pass			
83.95	Fail	Pass	82.88	Fail	Pass	Fail		Fail	
97.68	Pass		-	Pass		Pass			
98.64	Pass		-	Pass		Pass			
80.24	Fail	Pass	-	Fail	Pass	Fail		Pass	
98.96	Pass		-	Pass		Pass			
99.43	Pass		-	Pass		Pass			
84.90	Fail	Pass	85.72	Fail	Pass	Fail		Fail	
96.73	Pass		-	Pass		Pass			
95.06	Pass		-	Pass		Pass			
95.08	Pass		-	Pass		Pass			
95.24	Pass		-	Pass		Pass			
79.30	Fail	Pass	79.30	Fail	Pass	Fail		Fail	
96.35	Pass		-	Pass		Pass			
100.14	Pass		-	Pass		Pass			
100.08	Pass		-	Pass		Pass			
96.72	Pass		-	Pass		Pass			
95.51	Pass		-	Pass		Pass			
87.91	Fail	Pass	87.91	Fail	Pass	Fail		Fail	
93.27	Pass		-	Pass		Pass			
90.84	Pass		98.84	Pass		Pass			
102.10	Pass		-	Pass		Pass			
96.08	Pass		-	Pass		Pass			
102.71	Pass		-	Pass		Pass			
99.93	Pass		-	Pass		Pass			
86.61	Fail	Pass	86.61	Fail	Pass	Fail		Fail	
101.47	Pass		-	Pass		Pass			
77.93	Fail	Pass	77.93	Fail	Pass	Fail		Fail	
92.54	Pass		-	Pass		Pass			
94.04	Pass		95.20	Pass		Pass			
97.28	Pass		-	Pass		Pass			
96.70	Pass		-	Pass		Pass			
102.60	Pass		-	Pass		Pass			
92.33	Pass		-	Pass		Pass			
98.98	Pass		-	Pass		Pass			
97.69	Pass		-	Pass		Pass			
94.32	Pass		-	Pass		Pass			
106.85	Pass		-	Pass		Pass			
84.65	Fail	Pass	85.26	Fail	Pass	Fail		Fail	
94.83	Pass		-	Pass		Fail		Pass	
101.94	Pass		-	Pass		Pass			
95.14	Pass		-	Pass		Pass			
99.86	Pass		-	Pass		Pass			
78.32	Fail	Pass	82.84	Fail	Pass	Fail		Fail	
94.25	Pass		-	Pass		Pass			
99.84	Pass		-	Pass		Pass			
89.83	Pass		90.56	Pass		Fail		Fail	

Omeprazole BP

Serial No.	Sample Code	Trade name of the Name of Manufacturer		Manufact\|	$\%$ of Quantity Capsule 1	\% of Quantity Capsule 2	\% of Quantity Capsule 3	$\%$ of Quantity Capsule 4	\% of Quantity Capsule 5	\% of Quantity Capsule 6	Mean \% of Quantity	$\begin{aligned} & \text { \% of } \\ & \text { Quantity } \\ & \text { SD } \end{aligned}$	\% of Quantity SCV	Judge	New Judge $10 \% * 1.2=$ 12\% dissolved
A-096	A096/MM14/YG/	Omep-20	ARISTOPHARMA LTD.	Banglade	22.3	10.4	8.9	11.6	9.6	10.2	12.2	5.0	41.4	Fail	Fail
B-065	B-065/MM14/YG		ARISTOPHARMA LTD.	Banglade	11.1	11.3	10.9	11.0	11.2	10.9	11.1	0.2	1.7	Fail	Pass
A-076	A076/MM14/YG/	(ASMOZOL-20	ASMOH LABORATORIES LTD.	India	1.4	1.4	1.4	1.4	1.4	1.4	1.4	0.0	0.0	Pass	
B-092	B-092/MM14/VG,	, OMEPREN	BLUE CROSS LABORATORIES LTD.	India	2.5	2.4	1.8	1.1	1.2	1.2	1.7	0.6	36.5	Pass	
B-098	B-098/MM14/YG	, OMEPREN	BLUE CROSS LABORATORIES LTD.	India	2.4	2.3	2.5	2.4	2.2	2.4	2.3	0.1	4.6	Pass	
B-005	B-005/MM14/YG,		Cadila Health Limited	India	6.0	3.6	3.6	3.9	5.8	4.1	4.5	1.1	24.6	Pass	
B-011	B-011/MM14/vG,		Cadila Health Limited	India	5.3	4.0	7.2	4.4	7.2	5.4	5.6	1.4	24.2	Pass	
B-070	B-070/MM14/VG,		Cadila Health Limited	India	3.7	3.9	3.8	2.5	3.1	2.5	3.3	0.6	19.7	Pass	
B-090	B-090/Mm14/VG,		Cadila Health Limited	India	2.2	1.9	1.9	2.0	2.0	2.0	2.0	0.1	6.4	Pass	
PA-006	PA006/MM14/YG		Cadila Healthcare Limited	India	5.4	4.0	7.2	4.4	7.2	5.5	5.6	1.4	24.2	Pass	
A-002	A002/MM14/YG/		Cadila Healthcare Limited	India	3.0	2.7	2.6	2.6	2.5	4.0	2.9	0.6	19.1	Pass	
A-026	A026/MM14/YG/		Cadila Healthcare Limited	India	9.6	3.6	3.6	3.9	5.8	4.1	5.1	2.3	46.0	Pass	
A-042	A042/MM14/YG/		Cadila Healthcare Limited	India	5.6	5.0	3.6	3.8	5.0	5.4	4.7	0.8	17.2	Pass	
A-060	A060/MM14/VG/		Cadila Healthcare Limited	India	2.4	2.5	4.4	2.9	2.9	2.6	2.9	0.7	24.9	Pass	
A-084	A084/MM14/VG/		Cadila Healthcare Limited	India	9.9	9.5	7.3	9.6	9.7	10.0	9.3	1.0	10.8	Pass	
A-034	A034/MM14/VG/	LOMAC-20	Cipla Ltd.	India	26.9	27.7	27.7	27.3	28.1	23.5	26.9	1.7	6.3	Fail	Fail
A-038	A038/MM14/VG/	LOMAC-20	Cipla Ltd.	India	12.5	11.6	12.6	13.0	14.1	15.1	13.1	1.2	9.5	Fail	Fail
B-007	B-007/MM14/YG,	LOMAC	Cipla Ltd.	India	39.9	38.1	42.5	40.3	39.5	42.3	40.4	1.7	4.2	Fail	Fail
B-110	B110/MM14/VG/	LOMAC	Cipla Ltd.	India	24.4	25.4	25.1	24.7	25.4	21.1	24.4	1.7	6.8	Fail	Fail
PB-003	PB-003/MM14/YC		Dr. REDDY'S LABORATORIES	India	9.0	8.9	8.9	5.7	3.4	5.1	6.8	2.4	35.4	Pass	
B-006	B-006/MM14/YG,		Dr. REDDY'S LABORATORIES	India	5.8	2.9	5.3	9.1	8.8	8.7	6.8	2.5	37.1	Pass	
B-008	B-008/MM14/YG,		Dr. REDDY'S Laboratories	India	14.4	13.3	14.5	14.4	8.4	11.0	12.7	2.5	19.6	Fail	Fail
B-013	B-013/MM14/vG,		Dr. Reddr's laboratories	India	16.5	15.9	8.5	15.0	10.6	15.9	13.7	3.4	24.4	Fail	Fail
B-036	B-036/MM14/vG,		Dr. REDDY'S LABORATORIES	India	8.8	7.6	1.0	1.2	0.9	8.0	4.6	3.9	85.4	Pass	
B-054	B-054/MM14/YG,		Dr. REDDY'S LABORATORIES	India	22.8	26.4	28.2	24.0	25.3	27.4	25.7	2.1	8.0	Fail	Fail
B-106	B106/MM14/VG/		Dr. REDDV'S LABORATORIES	India	12.4	7.6	14.8	20.7	19.3	20.7	15.9	5.3	33.1	Fail	Fail
PA-005	PA005/MM14/VG		Dr.REDDY'S Laboratories ltd.	India	26.9	9.3	15.9	26.6	9.3	15.7	17.3	7.9	45.6	Fail	Fail
A-001	A001/MM14/VG/		Dr.REDDY'S Laboratories ltd.	India	9.8	5.9	7.5	9.3	6.9	7.4	7.8	1.5	19.1	Pass	
A-015	A015/MM14/VG/		Dr.REDDY'S LABORATORIES LTD.	India	14.3	9.3	16.8	15.2	15.9	9.7	13.5	3.2	23.9	Fail	Fail
A-039	A039/MM14/VG/		Dr.REDDY'S LABORATORIES LTD.	India	9.5	8.5	14.7	14.6	13.1	14.5	12.5	2.8	22.1	Fail	Fail
A-050	A050/MM14/YG/		Dr.REDDY'S LABORATORIES LTD.	India	10.5	9.2	20.2	17.3	17.9	24.3	16.6	5.8	34.9	Fail	Fail
A-061	A061/MM14/YG/		Dr.REDDY'S LABORATORIES LTD.	India	9.9	9.5	9.5	9.1	9.9	9.9	9.6	0.3	3.5	Pass	
A-065	A065/MM14/YG/		Dr.REDDY'S LABORATORIES LTD.	India	9.2	9.2	9.1	9.8	7.0	7.4	8.6	1.1	13.3	Pass	
A-101	A101/MM14/YG/		Dr.REDDY'S LABORATORIES LTD.	India	8.9	12.5	9.4	14.3	11.1	14.1	11.7	2.3	19.8	Fail	Pass
A-106	A106/MM14/YG/		Dr.REDDY'S LABORATORIES LTD.	India	1.9	1.9	1.9	1.9	1.9	1.9	1.9	0.0	0.0	Pass	
A-107	A107/MM14/YG/		Dr.REDDY'S LABORATORIES LTD.	India	4.8	4.7	4.6	4.5	4.6	4.4	4.6	0.1	3.3	Pass	
A-114	A114/MM14/YG/		Dr.REDDY'S LABORATORIES LTD.	India	1.9	1.9	1.9	1.9	1.9	1.9	1.9	0.0	0.0	Pass	
A-012	A012/MM14/YG/		Emcure PHARMACETICALS LTD.	India	7.2	5.7	5.0	7.1	5.8	5.0	6.0	1.0	16.2	Pass	
B-017	B-017/MM14/YG,		Emcure PHARMACEUTICAL LTD.	India	2.6	2.4	1.8	1.3	1.2	1.0	1.7	0.6	37.4	Pass	
B-037	B-037/MM14/YG,	OMFIL	Fourrts Laboratories Pvt Ltd,	India	3.5	7.1	5.1	4.2	6.8	5.0	5.3	1.4	26.7	Pass	
A-033	A033/MM14/VG/	OMFIL 20	Fourrts Laboratories Pvut.Ltd.	India	8.3	8.4	8.3	8.6	8.9	8.7	8.5	0.3	3.0	Pass	
B-045	B-045/MM14/YG,	OMPREZ	Global Pharma Healthcare Pvt, L-		2.6	3.0	4.4	2.5	2.8	4.4	3.3	0.9	26.6	Pass	
A-041	A041/MM14/VG/	TRISEC	GREAT HIMALAYAN PTE LTD.	India	12.0	25.0	11.5	11.8	24.9	11.6	16.1	6.8	42.4	Fail	Fail
B-077	B-077/MM14/YG,	Ometab	Intas Pharmaceutical Ltd.	India	1.4	1.4	1.4	1.4	1.4	1.4	1.4	0.0	0.0	Pass	
B-108	B108/MM14/VG/	Ometab	Intas Pharmaceutical Ltd.	India	3.5	7.2	4.9	4.2	6.9	4.9	5.3	1.5	28.3	Pass	
PB-002	PB-002/MM14/YC	Ome-M	Rainbow Life Sciences Put. Ltd.	India	11.0	18.1	11.0	17.7	18.2	11.2	14.5	3.8	26.1	Fail	Fail
A-078	A078/MM14/VG/	Reloc-20	Rhydburg Pharmaceuticals Ltd.	India	23.0	34.4	17.1	23.3	33.1	16.6	24.6	7.6	31.1	Fail	Fail
A-011	A011/MM14/VG/	Omesec	The United Drug (1996) Co,Ltd.	Thailand	2.7	2.6	3.1	2.7	2.9	3.0	2.8	0.2	7.0	Pass	
A-091	A091/MM14/VG/	Omesec	The United Drug (1996) Co,Ltd.	Thailand	2.7	3.2	4.7	4.7	2.8	3.3	3.6	0.9	24.7	Pass	
B-059	B-059/MM14/YG	Omesec	The United Drug(1996) Co., Ltd	Thailand	2.3	2.2	2.7	2.3	2.5	2.6	2.4	0.2	8.2	Pass	
A-097	A097/MM14/VG/	Omesafe	UNIVERSAL PHARMACEUTICALS LII	India	2.8	2.7	6.7	2.6	2.7	3.6	3.5	1.6	46.1	Pass	
B.049	B-049/MM14/YG,	Virom	Virchow Healthcare Drivate Limi	India	2.3	2.5	2.7	0.9	0.9	0.9	1.7	0.9	54.1	Pass	
B-015	B-015/MM14/YG,	HYClD	XL LABORATORIES PVT. LTD.	India	17.9	17.2	17.7	18.0	17.5	17.7	17.7	0.3	1.7	Fail	Fail
A-067	A067/MM14/YG/	HYClD	XL LABORATORIES PVT.LTD.	India	3.3	9.0	9.0	8.0	5.1	9.1	7.3	2.5	33.8	Pass	

\% of Quantity Capsule 1	\% of Quantity Capsule 2	\% of Quantity Capsule 3	\% of Quantity Capsule 4	\% of Quantity Capsule 5	\% of Quantity Capsule 6	Mean \% of Quantity	\% of Quantity SD	\% of Quantity \%CV	Judge	Disso Final Initial Judge	Disso Final New Judge $\begin{gathered} Q=65 * 0.8+ \\ 5 \%=57 \end{gathered}$	Disso New Final Judge
51.3	79.2	76.0	65.2	77.9	70.0	70.0	10.5	15.1	Fail	Fail	Pass	Fail
56.0	52.7	47.6	56.4	54.1	48.6	52.6	3.7	7.1	Fail	Fail	Fail	Fail
82.7	94.3	95.4	96.0	95.4	96.1	93.3	5.2	5.6	Pass	Pass		
92.8	95.2	98.8	97.5	97.3	94.7	96.0	2.2	2.3	Pass	Pass		
81.6	92.7	89.7	83.0	93.3	91.8	88.7	5.1	5.8	Pass	Pass		
96.0	92.6	95.2	91.6	94.0	95.8	94.2	1.8	1.9	Pass	Pass		
96.6	97.9	98.3	66.4	98.5	97.3	92.5	12.8	13.9	Pass	Pass		
82.7	94.3	93.5	94.2	95.4	95.7	92.7	4.9	5.3	Pass	Pass		
77.0	79.8	80.1	81.4	80.1	77.2	79.3	1.8	2.2	Pass	Pass		
83.1	84.9	82.2	82.7	83.6	82.1	83.1	1.0	1.2	Pass	pass		
96.9	99.5	98.2	96.1	96.4	98.4	97.6	1.3	1.4	Pass	pass		
86.9	72.9	75.2	76.9	75.4	86.8	79.0	6.2	7.9	Pass	Pass		
97.9	95.6	97.7	95.1	96.2	95.7	96.4	1.2	1.2	Pass	Pass		
99.3	98.1	98.6	95.4	99.0	98.0	98.1	1.4	1.4	Pass	Pass		
77.0	79.8	80.1	94.3	94.4	95.4	86.8	8.7	10.0	Pass	Pass		
52.1	53.8	47.6	51.8	50.9	48.5	50.8	2.3	4.6	Fail	Fail	Fail	Fail
85.4	84.1	83.3	81.7	85.2	83.6	83.9	1.3	1.6	Pass	Fail		Fail
49.5	49.7	63.4	55.7	50.7	50.7	53.3	5.5	10.2	Fail	Fail	Fail	Fail
53.6	62.8	62.1	52.8	53.4	62.6	57.9	5.1	8.8	Fail	Fail	Pass	Fail
30.7	34.4	26.5	54.9	71.2	57.6	45.9	17.9	39.0	Fail	Fail	Fail	Fail
54.7	72.7	57.1	31.1	34.2	27.9	46.3	17.9	38.7	Fail	Fail	Fail	Fail
70.3	67.7	73.1	72.3	77.4	74.8	72.6	3.4	4.7	Fail	Fail	Pass	Fail
50.2	47.5	80.7	58.6	68.2	56.9	60.4	12.3	20.4	Fail	Fail	Pass	Fail
78.3	70.7	78.4	69.3	68.3	66.6	71.9	5.1	7.1	Fail	Fail	Pass	Fail
31.4	32.1	35.5	31.8	73.9	73.2	46.3	21.2	45.7	Fail	Fail	Fail	Fail
49.7	47.1	79.3	48.8	77.9	77.0	63.3	16.2	25.6	Fail	Fail	Pass	Fail
60.1	65.2	61.7	60.1	65.1	61.7	62.3	2.3	3.7	Fail	Fail	Pass	Fail
73.8	79.3	71.4	72.4	71.1	70.8	73.1	3.9	5.4	Pass	pass		
56.6	70.7	55.2	54.5	48.1	74.7	60.0	10.4	17.3	Fail	Fail	Pass	Fail
73.9	77.7	62.1	75.0	60.7	60.8	68.4	8.0	11.6	Fail	Fail	Pass	Fail
75.3	75.8	60.7	73.7	63.2	74.1	70.5	6.7	9.5	Fail	Fail	Pass	Fail
76.8	68.0	70.6	76.9	71.1	76.5	73.3	3.9	5.3	Fail	Fail	Pass	Pass
72.5	72.1	67.3	67.6	73.4	72.5	70.9	2.7	3.8	Fail	Fail	Pass	Pass
77.6	69.5	77.7	55.7	66.9	53.7	66.9	10.4	15.5	Fail	Fail	Pass	Pass
69.0	73.1	66.6	71.7	67.5	72.5	70.1	2.8	3.9	Fail	Fail	Pass	Pass
18.3	19.5	17.9	18.5	18.9	18.3	18.6	0.6	3.0	Fail	Fail	Fail	Fail
69.4	67.9	75.2	67.4	67.6	72.5	70.0	3.2	4.5	Fail	Fail	Pass	Pass
80.0	74.7	91.1	80.0	76.4	90.3	82.1	7.0	8.5	Pass	pass		
99.6	98.6	98.8	97.7	97.4	94.6	97.8	1.8	1.8	Pass	Pass		
92.2	86.9	87.1	91.1	88.9	92.9	89.9	2.6	2.9	Pass	Pass		
67.6	81.2	79.8	80.6	68.5	68.2	74.3	6.8	9.2	Fail	Fail	Pass	Pass
71.7	94.3	86.6	73.1	93.9	86.8	84.4	9.9	11.7	Pass	Pass		
59.7	98.8	61.0	59.7	98.7	61.4	73.2	19.8	27.1	Fail	Fail	Pass	Fail
87.1	86.9	87.2	86.4	88.0	87.9	87.2	0.6	0.7	Pass	Pass		
92.2	87.5	87.3	91.2	88.4	92.3	89.8	2.3	2.6	Pass	Pass		
51.5	60.6	59.9	50.7	51.3	60.4	55.7	5.0	9.0	Fail	Fail	Fail	Fail
49.4	43.5	50.8	49.9	44.1	50.9	48.1	3.4	7.1	Fail	Fail	Fail	Fail
93.5	91.0	92.9	89.3	92.8	94.3	92.3	1.8	2.0	Pass	pass		
89.9	93.5	95.8	99.9	95.9	98.2	95.5	3.5	3.7	Pass	Pass		
93.9	97.7	99.8	93.3	93.4	91.2	94.9	3.2	3.4	Pass	Pass		
94.6	95.2	78.9	96.5	80.6	82.9	88.1	8.1	9.2	Pass	Pass		
66.4	85.3	84.9	65.6	83.7	66.3	75.4	10.2	13.5	Fail	Fail	Pass	Fail
39.7	38.5	42.8	39.8	38.9	42.6	40.4	1.9	4.6	Fail	Fail	Fail	Fail
82.2	71.8	73.5	86.2	70.2	76.3	76.7	6.3	8.2	Pass	Pass		

\% of Quantity Capsule 1	\% of Quantity capsule 2	\% of Quantity Capsule 3	\% of Quantity capsule 4	\% of Quantity Capsule 5	\% of Quantity capsule 6	Mean \% of Quantity	$\begin{gathered} \% \text { of } \\ \text { Quantity } \end{gathered}$ SD	$\%$ of Quantity \%CV	Judge	$\begin{gathered} \text { New Judge } \\ 10 \% * 1.2= \\ 12 \% \\ \text { dissolved } \end{gathered}$
10.2	8.7	3.0	8.9	8.7	10.5	[10.3	4.4	42.4	Pass	
7.8	8.3	6.8	7.7	6.8	9.5	9.4	1.8	19.4	Pass	
33.7	31.6	34.5	34.8	35.5	39.3	24.0	11.5	47.9	Fail	Fail
25.0	25.8	22.1	26.5	27.9	32.4	25.5	2.8	11.1	Fail	Fail
7.0	6.5	8.8	4.3	6.9	8.4	9.8	3.6	36.4	Pass	
3.8	6.8	3.9	5.1	3.6	4.6	9.2	5.3	58.0	Pass	
8.8	10.7	9.1	10.0	8.2	12.8	7.3	4.0	55.2	Pass	
12.0	16.3	11.1	12.1	14.2	11.2	14.4	4.1	28.8	Fail	Fail
4.4	3.9	4.0	5.7	18.3	6.8	10.4	5.4	52.6	Pass	
1.3	5.6	6.8	4.1	4.5	3.8	8.4	4.8	57.0	Pass	
3.7	4.3	6.6	3.8	3.3	5.1	10.5	7.5	71.0	Fail	Pass
15.6	11.1	11.7	13.1	11.7	12.7	14.4	5.1	35.2	Fail	Fail
11.6	3.0	13.5	12.7	11.0	12.3	12.6	4.2	33.0	Fail	Fail
8.0	7.5	6.8	6.7	6.4	7.8	4.4	3.0	67.2	Pass	

$\%$ of Quantity Capsule 1	\% of Quantity Capsule 2	\% of Quantity Capsule 3	$\%$ of Quantity Capsule 4	\% of Quantity Capsule 5	\% of Quantity Capsule 6	Mean \% of Quantity	$\begin{gathered} \text { \% of } \\ \text { Quantity } \\ \text { SD } \end{gathered}$	$\begin{aligned} & \% \text { of } \\ & \text { Quantity } \end{aligned}$ $\% C V$	Initial Judge	Disso Initial Final Judge	$\begin{aligned} & \text { ew Judge } \\ & \mathrm{Q}=52 \end{aligned}$	Disso New Final Judge
63.5	71.2	102.5	64.7	76.4	46.9	70.4	14.3	20.3	Pass	Pass		
71.2	64.9	74.5	64.9	73.3	61.8	60.5	9.4	15.5	Fail	Fail	Pass	Pass
37.1	49.6	41.5	37.8	49.6	40.3	63.2	21.9	34.6	Fail	Fail	Pass	Fail
35.2	34.1	32.5	34.1	35.7	37.1	46.3	12.6	27.2	Fail	Fail	Fail	Fail
63.3	52.7	60.6	51.7	42.5	50.0	63.0	11.4	18.2	Fail	Fail	Pass	Pass
65.6	54.7	62.1	63.1	63.3	64.9	61.3	8.8	14.3	Fail	Fail	Pass	Pass
74.9	64.9	61.2	65.5	62.3	75.3	69.6	5.9	8.5	Pass	Pass		
34.0	27.7	31.1	32.4	28.6	26.2	46.6	20.7	44.3	Fail	Fail	Fail	Fail
58.8	81.4	72.6	67.6	73.9	64.5	64.9	10.2	15.7	Pass	Pass		
80.5	74.6	75.1	60.4	64.0	67.9	69.4	7.5	10.8	Pass	Pass		
67.2	52.1	62.3	79.2	65.7	76.5	68.8	8.2	12.0	Pass	Fail		Pass
38.4	71.2	56.3	41.9	38.2	69.0	62.9	15.2	24.1	Fail	Fail	Pass	Pass
60.6	41.1	48.6	52.5	64.5	50.4	61.9	11.1	18.0	Fail	Fail	Pass	Pass
69.8	61.6	66.0	53.7	60.9	68.5	65.1	8.3	12.7	Pass	Pass		
39.2	67.8	56.7	43.5	41.6	69.6	61.6	12.9	20.9	Fail	Fail	Pass	Pass
53.0	69.8	66.7	60.4	61.1	66.8	66.5	5.9	8.9	Pass	Pass		
61.7	78.7	77.4	71.1	81.4	81.0	74.8	6.9	9.2	Pass	Pass		
24.3	18.1	29.6	19.4	22.9	18.6	47.7	30.0	62.9	Fail	Fail	Fail	Fail
61.8	90.6	60.5	64.9	57.5	53.4	60.2	10.7	17.7	Fail	Fail	Pass	Fail
65.6	72.1	81.4	78.6	78.2	80.4	75.7	8.0	10.5	Pass	Pass		

\% of Quantity Capsule 1	\% of Quantity Capsule 2	\% of Quantity Capsule 3	\% of Quantity Capsule 4	\% of Quantity Capsule 5	\% of Quantity Capsule 6	\% of Quantity Capsule 7	\% of Quantity Capsule 8	\% of Quantity Capsule 9	\% of Quantity Capsule 10	Mean \% of Quantity	\% of Quantity SD	\% of Quantity YCV	$\begin{gathered} \text { AV } \\ \text { (Acceptanc } \\ \text { e Value) } \end{gathered}$	Judge	New Judge $A V=18$	Mean \% of Quantity	Judge	New Judge BP $76.0 \leqq$ mea $n \leqq 126$
98.4	103.4	96.8	103.9	100.1	99.0	94.2	99.7	98.1	95.7	98.9	3.1	3.1	7.4	Pass		98.9	Pass	
90.5	91.9	91.6	95.1	95.2	96.6	91.0	90.8	91.1	96.5	93.0	2.5	2.7	11.5	Pass		93.0	Fail	Pass
88.2	87.8	86.7	97.1	83.7	84.2	88.3	93.3	85.2	105.7	90.0	6.9	7.6	25.0	Fail	Fail	90.0	Fail	Pass
99.9	103.1	98.4	102.9	105.9	94.3	102.8	101.5	98.1	103.8	101.1	3.4	3.4	8.2	Pass		101.1	Pass	
97.5	95.4	81.2	90.8	100.2	98.4	100.1	94.5	93.9	101.2	95.3	6.0	6.2	17.5	Fail	Pass	95.3	Pass	
99.1	108.0	100.1	99.8	99.6	106.5	103.0	100.4	104.1	107.9	102.9	3.6	3.5	7.2	Pass		102.9	Pass	
102.7	102.6	105.7	101.5	96.8	106.0	106.1	105.5	101.0	106.7	103.5	3.1	3.0	5.6	Pass		103.5	Pass	
95.9	94.0	97.5	91.8	91.4	90.8	99.0	100.9	96.1	104.8	96.2	4.5	4.7	13.0	Pass		96.2	Pass	
97.1	94.1	95.2	100.0	99.5	100.9	92.6	105.0	97.8	102.7	98.5	3.9	4.0	9.4	Pass		98.5	Pass	
107.7	105.9	104.9	101.8	99.9	104.6	103.2	104.3	107.8	105.1	104.5	2.4	2.3	2.8	Pass		104.5	Pass	
101.6	106.5	107.0	106.7	106.5	105.2	106.5	104.5	109.7	109.8	106.4	2.4	2.2	0.8	Pass		106.4	Fail	Pass
101.4	106.5	106.8	106.7	106.5	105.1	107.9	107.4	109.2	109.7	106.7	2.3	2.2	0.3	Pass		106.7	Fail	Pass
99.5	107.6	104.4	106.9	104.4	109.8	107.9	109.4	108.3	105.4	106.4	3.1	2.9	2.5	Pass		106.4	Fail	Pass
99.6	108.0	99.8	98.9	106.3	105.3	104.0	99.5	100.2	102.9	102.4	3.3	3.2	7.0	Pass		102.4	Pass	
99.8	107.9	104.5	107.2	104.5	109.8	107.8	109.6	108.4	105.8	106.5	3.0	2.8	2.2	Pass		106.5	Fail	Pass
91.1	91.6	92.7	97.9	99.0	97.1	94.9	96.7	93.7	93.8	94.9	2.7	2.9	10.2	Pass		94.9	Pass	
89.8	92.1	89.0	88.8	90.8	93.0	92.2	93.5	90.0	84.7	90.4	2.6	2.9	14.3	Pass		90.4	Fail	Pass
89.8	92.1	89.1	88.9	91.0	93.0	92.3	93.5	89.9	84.8	90.4	2.6	2.9	14.2	Pass		90.4	Fail	Pass
87.9	89.2	89.3	87.9	90.6	87.9	88.6	85.5	91.0	93.8	89.2	2.2	2.5	5.4	Pass		89.2	Fail	Pass
92.1	96.0	90.3	91.2	92.0	95.0	94.2	93.6	95.9	96.5	93.7	2.2	2.3	10.1	Pass		93.7	Fail	Pass
96.4	94.7	95.8	91.6	97.6	92.5	97.6	96.6	98.5	98.0	95.9	2.3	2.4	8.2	Pass		95.9	Pass	
102.0	95.8	110.0	107.2	107.8	108.5	106.7	98.2	105.6	105.3	104.7	4.6	4.4	7.9	Pass		104.7	Pass	
90.7	95.5	93.6	91.0	99.3	90.8	96.0	91.3	98.0	91.7	93.8	3.2	3.4	12.4	Pass		93.8	Fail	Pass
96.2	97.8	99.7	95.8	98.9	94.6	93.0	93.6	98.6	90.6	95.9	2.9	3.1	9.7	Pass		95.9	Pass	
93.5	94.2	102.0	93.3	96.1	93.1	98.5	100.9	92.9	93.8	95.8	3.4	3.6	10.9	Pass		95.8	Pass	
98.9	93.0	95.9	96.4	100.3	99.5	92.0	96.3	100.5	103.6	97.6	3.6	3.7	9.5	Pass		97.6	Pass	
96.3	101.6	92.5	98.5	99.4	96.6	97.9	96.6	100.0	98.2	97.8	2.5	2.5	6.7	Pass		97.8	Pass	
101.2	94.0	105.6	98.6	101.9	98.5	95.0	95.6	102.6	102.7	99.6	3.8	3.9	8.2	Pass		99.6	Pass	
90.0	90.9	92.3	92.2	95.9	95.4	92.5	94.4	93.4	92.2	92.9	1.9	2.0	10.1	Pass		92.9	Fail	Pass
93.2	98.1	96.6	99.7	95.5	94.3	97.0	97.2	96.9	101.7	97.0	2.5	2.5	7.4	Pass		97.0	Pass	
90.1	95.5	92.5	95.0	96.7	103.7	98.3	90.8	95.4	97.0	95.5	3.9	4.1	12.4	Pass		95.5	Pass	
92.1	102.4	99.3	96.7	92.8	98.1	95.1	100.4	98.0	98.5	97.3	3.3	3.4	9.0	Pass		97.3	Pass	
92.3	94.7	98.9	100.1	99.6	95.7	93.9	95.3	92.7	97.2	96.0	2.8	2.9	9.1	Pass		96.0	Pass	
95.2	90.3	96.8	103.7	95.0	92.6	98.2	90.7	95.9	97.1	95.5	3.9	4.1	12.4	Pass		95.5	Pass	
92.5	92.6	96.1	92.2	92.3	90.0	91.1	93.6	94.5	95.4	93.0	1.9	2.0	10.0	Pass		93.0	Fail	Pass
94.8	92.6	97.8	98.2	97.0	92.0	98.3	96.7	99.3	96.0	96.3	2.5	2.6	8.2	Pass		96.3	Pass	
97.1	93.7	96.7	97.7	94.0	93.4	94.0	96.9	91.6	93.9	94.9	2.0	2.1	8.5	Pass		94.9	Pass	
56.5	47.1	95.7	99.2	77.9	47.6	83.0	72.5	85.2	99.6	76.4	20.1	26.4	70.4	Fail	Fail	76.4	Fail	Pass
89.0	91.5	96.7	95.8	98.8	100.1	88.1	90.3	93.3	92.7	93.6	4.1	4.4	14.7	Pass		93.6	Fail	Pass
92.4	93.0	94.0	99.5	100.6	98.6	96.3	98.2	94.8	95.2	96.3	2.8	3.0	9.1	Pass		96.3	Pass	
75.6	84.7	81.9	86.5	101.0	80.1	99.1	100.1	95.9	91.3	89.6	9.1	10.2	30.8	Fail	Fail	89.6	Fail	Pass
93.0	78.3	77.4	76.2	89.1	94.1	91.4	97.8	82.9	87.6	86.8	7.7	8.8	30.1	Fail	Fail	86.8	Fail	Pass
109.2	107.2	107.9	106.3	102.1	105.1	104.5	105.3	106.4	100.3	105.4	2.7	2.5	2.4	Pass		105.4	Pass	
86.1	91.8	87.7	83.8	90.4	86.5	88.2	89.4	84.2	90.7	87.9	2.7	3.1	17.2	Fail	Pass	87.9	Fail	Pass
101.2	101.4	98.2	99.3	96.9	96.9	98.6	96.0	99.1	101.5	98.9	2.0	2.0	4.7	Pass		98.9	Pass	
90.9	81.7	99.9	92.7	93.5	85.0	85.6	87.3	85.5	86.5	88.8	5.4	6.0	22.5	Fail	Fail	88.8	Fail	Pass
99.8	94.0	62.2	62.5	76.6	45.5	73.8	90.3	76.0	78.7	75.9	16.4	21.5	61.8	Fail	Fail	75.9	Fail	Fail
100.0	93.9	99.7	95.4	96.7	97.9	98.4	98.9	104.0	103.3	98.8	3.2	3.2	7.6	Pass		98.8	Pass	
93.3	94.5	96.5	91.2	96.4	95.7	93.8	92.6	98.3	98.7	95.1	2.4	2.6	9.3	Pass		95.1	Pass	
98.3	90.0	97.8	90.3	99.0	101.3	101.6	104.2	103.4	103.3	98.9	5.1	5.2	12.2	Pass		98.9	Pass	
94.1	103.4	99.3	101.9	96.4	104.2	97.3	103.5	98.6	104.0	100.3	3.6	3.6	8.7	Pass		100.3	Pass	
80.6	69.2	77.8	80.0	89.5	78.4	85.0	85.6	82.6	83.4	81.2	5.5	6.8	30.5	Fail	Fail	81.2	Fail	Pass
98.6	113.1	90.3	98.3	116.2	96.6	100.7	108.9	113.3	113.5	104.9	9.1	8.6	18.3	Fail	Fail	104.9	Pass	
88.1	99.5	100.1	94.7	95.0	89.9	98.0	87.3	90.8	91.6	93.5	4.7	5.0	16.2	Fail	Pass	93.5	Fail	Pass

AV (Acceptanc e Value)	Judge	New Judge $A V=18$	Kanazawa Univ. Quantity test (10 caps)	Judge	New Judge	DS Final Judge	DS New Final Judge	All test pass or any fail	New All test pass or any fail
7.4	Pass		98.9	Pass		Pass		Pass	
11.5	Pass		93.0	Fail	Pass	Fail	Pass	Fail	Fail
19.9	Fail	Fail	90.0	Fail	Pass	Pass		Fail	Fail
8.2	Pass		101.1	Pass		Pass		Pass	
17.5	Pass		95.3	Pass		Pass		Pass	
7.2	Pass		102.9	Pass		Pass		Pass	
5.6	Pass		103.5	Pass		Pass		Pass	
13.0	Pass		96.2	Pass		Pass		Pass	
9.4	Pass		98.5	Pass		Pass		Pass	
2.8	Pass		104.5	Pass		Pass		Pass	
0.8	Pass		106.4	Fail	Pass	Pass		Fail	Pass
0.3	Pass		106.7	Fail	Pass	Pass		Fail	Pass
2.5	Pass		106.4	Fail	Pass	Pass		Fail	Pass
7.0	Pass		102.4	Pass		Pass		Pass	
2.2	Pass		106.5	Fail	Pass	Pass		Fail	Pass
10.2	Pass		94.9	Pass		Fail	Fail	Fail	Fail
14.3	Pass		90.4	Fail	Pass	Fail	Fail	Fail	Fail
14.2	Pass		90.4	Fail	Pass	Fail	Fail	Fail	Fail
5.4	Pass		89.2	Fail	Pass	Fail	Fail	Fail	Fail
10.1	Pass		93.7	Fail	Pass	Fail	Fail	Fail	Fail
8.2	Pass		95.9	Pass		Fail	Fail	Fail	Fail
7.9	Pass		104.7	Pass		Pass		Pass	
12.4	Pass		93.8	Fail	Pass	Pass		Fail	Pass
9.7	Pass		95.9	Pass		Pass		Pass	
10.9	Pass		95.8	Pass		Fail	Fail	Fail	Fail
9.5	Pass		97.6	Pass		Fail	Fail	Fail	Fail
6.7	Pass		97.8	Pass		Fail	Fail	Fail	Fail
8.2	Pass		99.6	Pass		Pass		Pass	
10.1	Pass		92.9	Fail	Pass	Pass		Fail	Pass
7.4	Pass		97.0	Pass		Pass		Pass	
12.4	Pass		95.5	Pass		Pass		Pass	
9.0	Pass		97.3	Pass		Fail	Pass	Fail	Pass
9.1	Pass		96.0	Pass		Pass		Pass	
12.4	Pass		95.5	Pass		Pass		Pass	
10.0	Pass		93.0	Fail	Pass	Fail	Pass	Fail	Pass
8.2	Pass		96.3	Pass		Fail	Fail	Fail	Fail
8.5	Pass		94.9	Pass		Pass		Pass	
70.4	Fail	Fail	76.4	Fail	Pass	Pass		Fail	Pass
14.7	Pass		93.6	Fail	Pass	Pass		Fail	Pass
9.1	Pass		96.3	Pass		Pass		Pass	
20.8	Fail	Fail	89.6	Fail	Pass	Pass		Fail	Fail
21.6	Fail	Fail	86.8	Fail	Pass	Pass		Fail	Fail
2.4	Pass		105.4	Pass		Fail	Fail	Fail	Fail
13.8	Pass		87.9	Fail	Pass	Pass		Fail	Pass
4.7	Pass		98.9	Pass		Pass		Pass	
16.7	Fail	Pass	88.8	Fail	Pass	Fail	Fail	Fail	Fail
61.8	Fail	Fail	75.9	Fail	Fail	Fail	Fail	Fail	Fail
7.6	Pass		98.8	Pass		Pass		Pass	
9.3	Pass		95.1	Pass		Pass		Pass	
12.2	Pass		98.9	Pass		Pass		Pass	
8.7	Pass		100.3	Pass		Pass		Pass	
30.5	Fail	Fail	81.2	Fail	Pass	Pass		Fail	Fail
10.4	Pass		104.9	Pass		Fail	Fail	Fail	Fail
13.6	Pass		93.5	Fail	Pass	Pass		Fail	Pass

Omeprazole USP

Kanazawa Univ. Dissolution test USP: Buffer Stage- No unit is less than Q+5\% ($Q=75 \%$)											considered $Q=65 \%$	
89.4	87.9	90.5	92.6	92.2	89.5	90.3	1.8	2.0	Pass	Pass		
90.7	85.0	90.3	89.7	90.1	91.9	89.6	2.4	2.7	Pass	Pass		
86.1	95.4	95.7	96.3	88.0	93.2	92.4	4.3	4.7	Pass	Pass		
92.8	97.9	93.9	90.9	92.7	97.6	94.3	2.9	3.0	Pass	Pass		
77.1	81.7	80.0	78.6	81.4	77.7	79.4	1.9	2.4	Fail	Fail	Pass	Pass
83.4	89.1	86.9	88.0	85.5	88.4	86.9	2.1	2.5	Pass	Pass		
88.4	89.2	86.4	87.5	93.3	87.8	88.8	2.4	2.7	Pass	Pass		
85.6	89.2	86.5	87.5	90.0	87.6	87.7	1.6	1.9	Pass	Pass		
89.4	90.4	99.5	91.6	92.2	96.4	93.2	3.9	4.2	Pass	Pass		
88.8	89.9	98.9	91.0	91.7	95.9	92.7	3.9	4.2	Pass	Pass		
81.2	77.6	80.0	78.6	77.3	75.9	78.4	1.9	2.5	Fail	Fail	Pass	Fail

Kanezana Univ. Cortent unifomity test (19st stage)						toleaca: $A \leq \leq 15.0$			10,0	103.4	4.1	4.0	8.1	Pass					
106.7	105.7	103.3	107.9	105.9	97.6	10.6	94.6	103.2								103.4	Pass		
105.1	10.8	1067	10.0	1085	103.9	108.2	1077	10.3	105.7	10.0	1.7	1.6	9.3	Pass		10.0	Pass		
93.7	98.7	97,3	93.1	10.3	10.1	92.4	93.3	90.7	1077	97,0	5.4	5.6	14.4	Pass		97.0	Pass		
10.2	96.2	110.0	107.4	107.9	108.5	1068	98.5	103.9	105.3	10.7	4.5	4.3	7.1	Pass		10.7	Pass		
88.9	63.0	70.3	62.4	86.7	84.7	70.0	70.9	95.3	91.9	78.4	12.3	1.5 .7	49.7	Fail	Fail	78.4	Fail	Pass	
109.7	108.2	1093	100.4	108.1	19.8	1066	102.4	107.7	107.6	107,	3.2	2.9	2.1	Pass		107,	Pass		
98.0	92.7	99.3	100.4	10.5	90.2	96.2	10.12	10.2	93.3	97.8	4.7	4.8	11.9	Pass		97.8	Pass		
97.1	93.1	10.6	1066	99.6	98.8	93.2	98.1	10.6	93.3	98.5	4.7	4.7	11.2	Pass		98.5	Pass		
90.1	19.8	10.3	10.7	97, 1	108.1	1005	10.6	99.5	103.5	100.9	4.8	4.8	11.6	Pass		100.9	Pass		
100.0	94.7	10.4	10.5	107.7	92.1	98.3	103.3	103.3	95.2	99.9	4.8	4.8	11.5	Pass		99.9	Pass		
93.4	106.4	88.1	93.7	10.5	94.4	91.0	95.3	94.7	105.6	97.6	5.5	5.1	14.2	Pass		97.6	Pass		

Ceftriaxone

AV (Acceptanc e Value)	CU Judge	CU Judge	AV (Acceptanc e Value.)	CU Judge	New CU Judge	Kanazawa Univ. Quantity test	Judge	New Judge	New All Fail Judge
27.63	Fail	Fail	27.63	Fail	Fail	117.66	Fail	Pass	Fail
4.49	Pass		4.49	Pass		103.29	Pass		
9.62	Pass		9.62	Pass		107.97	Pass		
15.00	Pass		15.00	Pass		112.08	Pass		
10.10	Pass		10.10	Pass		107.27	Pass		
11.61	Pass		11.61	Pass		108.50	Pass		
9.31	Pass		9.31	Pass		108.70	Pass		
8.87	Pass		8.87	Pass		108.40	Pass		
10.34	Pass		10.34	Pass		106.81	Pass		
10.19	Pass		10.19	Pass		106.20	Pass		
9.62	Pass		9.62	Pass		107.99	Pass		
8.75	Pass		8.75	Pass		108.54	Pass		
50.36	Fail	Fail	50.36	Fail	Fail	118.61	Fail	Pass	Fail
14.72	Pass		14.72	Pass		110.69	Pass		
10.46	Pass		10.46	Pass		107.63	Pass		
15.00	Pass		15.00	Pass		107.21	Pass		
15.00	Pass		15.00	Pass		111.59	Pass		
12.23	Pass		12.23	Pass		105.57	Pass		
14.95	Pass		14.95	Pass		114.15	Pass		
9.64	Pass		9.64	Pass		106.14	Pass		
11.10	Pass		11.10	Pass		105.47	Pass		
12.53	Pass		12.53	Pass		106.78	Pass		
7.41	Pass		7.41	Pass		102.50	Pass		
9.82	Pass		9.82	Pass		105.82	Pass		
10.02	Pass		10.02	Pass		108.48	Pass		
9.34	Pass		9.34	Pass		105.05	Pass		
11.06	Pass		11.06	Pass		106.95	Pass		
6.16	Pass		6.16	Pass		100.97	Pass		
14.23	Pass		14.23	Pass		111.74	Pass		
11.92	Pass		11.92	Pass		110.27	Pass		
11.96	Pass		11.96	Pass		109.52	Pass		
10.78	Pass		10.78	Pass		106.35	Pass		
12.41	Pass		12.41	Pass		107.52	Pass		
10.34	Pass		10.34	Pass		107.05	Pass		
14.04	Pass		14.04	Pass		111.13	Pass		
8.85	Pass		8.85	Pass		97.98	Pass		
10.90	Pass		10.90	Pass		103.87	Pass		
9.53	Pass		9.53	Pass		107.01	Pass		
10.37	Pass		10.37	Pass		107.31	Pass		
6.52	Pass		6.52	Pass		101.98	Pass		
11.14	Pass		11.14	Pass		108.15	Pass		
14.55	Pass		14.55	Pass		108.61	Pass		
7.76	Pass		7.76	Pass		106.26	Pass		
10.25	Pass		10.25	Pass		107.14	Pass		
5.44	Pass		5.44	Pass		99.75	Pass		
9.35	Pass		9.35	Pass		106.52	Pass		
6.50	Pass		6.50	Pass		101.01	Pass		
77.79	Fail	Fail	77.79	Fail	Fail	98.91	Pass		Fail
6.80	Pass		6.80	Pass		100.81	Pass		
11.8	Pass								

Annex 2.1 Map of Cambodia

[^0]: * Sample size was insufficient for testing in some cases.

