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Preface 

 WHO warned that Substandard and Falsified medical products (SFs) can harm patients and 

fail to treat the diseases for which they were intended and they lead to loss of confidence in 

medicines, healthcare providers and health systems, and affect every region of the world. 

Development of analytical procedure for detecting SFs is the key to grasp the distribution of the 

SFs and to understand the physical and chemical properties of the SFs to take measure to 

suppress the public health damage.  

There are various analytical methods defined for the analysis of a specific medical product, 

such as published in the pharmacopeias, but the discrimination methods to investigate the 

authenticity for detecting SFs which are actually distributed on the global market are still 

limited. Further, there are also few studies on how to apply the analytical technologies to 

discriminate the SFs with the portable device for in-situ measurements, non-destructive 

methods for evidence preservation of SFs, easy to use and low cost for easy introduction of 

those technologies, speedy measurements in order to grasp the actual situation immediately and 

to suppress damage to public health.  

 This paper is composed of three chapters. Chapter I shows that how to visualize the physical 

and chemical properties of falsified medical products with the combination technology of 

Handheld Raman Spectroscopy and X-ray Computed Tomography. Chapter II shows the result 
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of the survey to identify substandard and falsified tablets of hypertension medical products 

collected in China, Indonesia and Myanmar with pharmacopeial quality control tests and 

principal component analysis of handheld Raman spectroscopy. The measurements were 

conducted using the quality control tests such as assay and dissolution tests published in the 

pharmacopeia and the principal component analysis (PCA) of the Raman spectra obtained by 

using handheld Raman spectroscopy. Chapter I and Chapter II describe about the analytical 

technologies for the oral solid pharmaceutical products. In the chapter III, about the 

development and application of speedy and in-situ 3D fluorescence method for the parenteral 

products are shown. The fluorescence spectroscopy was applied to the active pharmaceutical 

ingredient (API) in the parenteral pharmaceutical products. The developed analytical methods 

shown in Chapter I to III are expected to be applied widely as the powerful tools for detecting 

SFs in the research institutes, authorities and the pharmaceutical industry. 
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Classification and Visualization of Physical and Chemical Properties of Falsified 

Medicines with Handheld Raman Spectroscopy and X-ray Computed 

Tomography 
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ABSTRACT 

 Analytical methods for the detection of Substandard and Falsified medical products (SFs) are 

important for public health and patient safety. Research to understand how the physical and 

chemical properties of SFs can be most effectively applied to distinguish the SFs from 

authentic products has not yet been investigated enough. Here, we investigated the usefulness 

of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray 

computed tomography (X-ray CT), for detecting SFs among oral solid anti-hypertensive 

pharmaceutical products containing candesartan cilexetil as an active pharmaceutical 

ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one 

containing many cracks and voids and the other containing aggregates with high electron 

density, such as from the presence of the heavy elements. Generic products that purported to 

contain equivalent amounts of API to the authentic products were discriminated from the 

authentic products by the handheld Raman and the different physical structure on X-ray CT. 

Approach to investigate both the chemical and physical properties with handheld Raman and 

X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual 

appearance is similar with authentic products. We present a decision tree for investigating the 

authenticity of samples purporting to be authentic commercial tablets. Our results indicate that 

the combination approach of visual observation, handheld Raman and X-ray CT is a powerful 

strategy for non-destructive discrimination of suspect samples. 
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1.1 INTRODUCTION 

In 2015, 128 countries were impacted by pharmaceutical crime, including sale of substandard 

and falsified medicines (SFs), and the number of incidents in the Asia Pacific region exceeded 

one thousand for the first time.1-9  The World Health Organization (WHO) and the European 

Commission have warned about the danger posed to public health by SFs, and pointed out the 

need for measures to detect and prevent distribution of SFs.10,11  

 

1.1.1 Definition of substandard and falsified medical products   

 The term of falsified medicines means any medicinal product with a false representation of: 

(a) its identity, including packaging, labelling, name or composition, as regards any of the 

ingredients including excipients and the strength of those ingredients; (b) its source, including 

manufacturer, country of manufacture, country of origin or marketing authorisation holder; or 

(c) its history, including records and documents relating to the distribution channels used.11 

Meanwhile, the term of substandard medicines refers to genuine medicines produced by 

manufacturers authorized by the relevant National Medicines Regulatory Authority, but which 

do not meet quality specifications set out for them by the national standards.10 The United 

States Food and Drug Administration (FDA) has investigated various analytical methods to 

discriminate SFs from genuine medical products.12  
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1.1.2 Non-destructive spectroscopic method  

Non-destructive analytical technologies that can identify and quantify APIs and excipients in 

pharmaceutical tablets include Raman spectroscopy13-17, Near Infrared spectroscopy (NIR)18-26, 

X-ray diffraction (XRD)27-28, NMR spectroscopy29, terahertz spectroscopy30, and chemical 

imaging with combinations of vibrational spectroscopy and multivariate spectral analysis 

etc.23,24,28,31-34 In particular, Raman spectroscopy provides sharp, characteristic spectral peaks, 

and therefore Raman spectroscopy is particularly suitable for identifying APIs and excipients in 

tablets. Non-destructive spectroscopic methods are summarized in the following figure. 
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1.1.3 Handheld instrument to detect SFs  

In addition, hand held instruments are now widely available for Raman35 and NIR 

spectroscopies, and devices covering the spectral region from ultraviolet (UV) to the infrared 

(IR)12. These instruments are suitable for on-site inspection to detect SFs at airports and 

customs, and to detect substandard medicines at manufacturing sites. Since these instruments 

are relatively inexpensive and require little or no sample preparation, they are especially 

suitable for use in low and middle-income countries (LMICs).36 Further, these methods are 

non-destructive, so that specimens found in surveys remain available for use as evidence for 

legal and regulatory purposes.  

 

1.1.4 Profiling of falsified products 

Information allowing the manufacture of falsified products is readily available. For examples, 

the contents of the drug product, including the API identity and quantity, and all excipients, are 

stated in the drug package insert. Other pertinent information, such as the shape, color, special 

markings and ID code can also be obtained easily from the drug package insert or website 

information. Pfizer Inc. has reported the existence of the falsified medicines containing the 

same effective ingredient as the authentic medicine, and with very similar appearance to the 

authentic tablets, in the global market.37  
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1.1.5 Physical structure by X-ray CT 

To detect such falsified products, which may be indistinguishable from authentic products 

visually and chemically, X-ray CT can be used to visualize differences in the physical structure 

of the tablets, such as particle size, uniformity of granules, film coating thickness, and the 

existence of pores or voids, which may result from differences in the manufacturing process 

and conditions, or grade of additive. These are important, because defects of physical structure 

can influence both stability and dissolution properties. Further, X-ray micro CT is a powerful 

tool to observe the distribution of elements in tablets by utilizing the difference of the electron 

density. For example, the distribution of magnesium in magnesium stearate, an additive used as 

a lubricant has been visualized by X-ray CT.38  

 

1.1.6 Combination method of handheld Raman and X-ray CT 

In this study, we investigated the effectiveness of handheld Raman spectroscopy and X-ray CT 

to discriminate SFs from authentic medicines of product A (Blopress Tablets), focusing on 

anti-hypertensive tablets containing candesartan cilexetil as API which is an angiotensin II 

receptor blocker, because they are widely prescribed worldwide for the treatment of 

hypertension. Authentic medicines were collected from Japan manufacture. We used generic 

products collected in China as example of products containing the same API but having 

differences in the kind of excipients and the manufacturing process. As known falsified tablets, 

we used falsified tablets from Indonesia, whose outer packaging and press through pack (PTP) 
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packaging were very similar with the authentic medicine, but were inconsistent with those of 

authentic medicines. 

 

1.2 EXPERIMENTAL 

 The collected and measured samples are summarized in the following. 

 

The authentic commercial tablets of Blopress including 0 mg (Placebo), 2 mg, 4 mg, 8 mg, 12 

mg and 16 mg of API, together with lactose monohydrate, corn starch, maize starch, 

carboxymethylcellulose calcium (ECG-505), hydroxypropyl cellulose (HPC-L), polyethylene 

glycol 6000 (PEG 6000), and magnesium stearate (St-Mg) were used. The weight and size of 

the 4 mg, 8 mg and 12 mg tablets are equivalent, as the amount of lactose monohydrate is 

adjusted according to the weight of API to maintain a constant total weight. Tablets distributed 
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as generic products in China from two different manufactures and two falsified products 

discovered in Jakarta, Indonesia in 2011 and 2012 were also used in this study. The falsified 

products were identified based on visual inspection of the packaging (differences from the 

authentic product included the color of the printed letters and the printing positions on the 

surface of the aluminum blister). These falsified products had been collected in different 

pharmacies in Jakarta, and their distribution was reported to Forensics, Brand Protection and 

Investigations. Two types of model formulations of falsified tablets were also prepared by 

physically mixing the API and excipients, and directly compressing the mixture at a pressure of 

11 kN without a granulation process. One of them contained the 8 mg API and lactose 

monohydrate to make the same total weight as that of the authentic tablets, and the other 

contained 8 mg API and all excipients in the same proportions as in the authentic tablets.  

 

1.2.1 Handheld Raman Spectroscopy 

All tablets were evaluated with a handheld Raman spectrometer (TruScan®, Thermo 

Scientific), and chemical equivalence between the authentic product and the other samples was 

examined based on the similarity of the Raman spectra. The Raman spectrum of the authentic 

tablets was registered in the instrument as the reference spectrum, and the similarity of the 

Raman spectra between the authentic tablets and test tablets was automatically calculated and 

assigned the p-value. The test tablet is judged "pass" if the p-value for similarity is more than 
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0.05, and “fail” if less than 0.05. In other words, “fail” means that the Raman spectrum of the 

test sample does not match that of the authentic product. The calculation algorithm for p-value 

in the instrument has been validated, but has not disclosed and is designed not to be modifiable. 

We confirmed the validity and the accuracy of the judgment by extracting and examining the 

raw data of the Raman spectra. If the device encounters a completely different Raman spectral 

pattern, it stops accumulating data and judges that the p-value is 0. Blow is a diagram of the 

flow of the discrimination by using handheld Raman. 

 

 

1.2.2 X-ray CT and Image acquisition 

 The X-ray micro CT consists of a combination of a high-intensity X-ray generator and a 

high-resolution X-ray camera. It is capable of observing the three-dimensional internal structure 
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of tablets at the micron-scale, based on the different X-ray absorptions of the constituent 

materials. The sample is placed on a rotating stage located between the X-ray generator and the 

X-ray detector. Multiple 2-dimension X-ray transmission images are recorded at different 

sample-rotation angles, and are converted into a three-dimensional image by a tomographic 

reconstruction algorithm. X-ray tomography measurements of tablets were conducted using a 

high resolution 3D X-ray microscope (nano3DX, Rigaku). The incident X-ray was generated 

using a rotating-anode generator with a molybdenum target operated at the tube voltage and 

current of 50 kV and 24 mA, respectively. The temperature was maintained at 22-24ºC during 

data acquisition. The 2160 lens, which allowed measurements in a 7.12 mm x 5.40 mm field of 

view with a resolution of 4.32 um/pixel, was used. Each CT reconstruction was conducted 

using 1800 projection shots with an exposure time of 5 seconds/shot. The analyses were done 

using the nano3D Calc software (Rigaku) and Image.39 

 

1.3 RESULTS 

 Figure 1.1 shows the appearance of each tablet. The 4 mg authentic product A (T-1) is white 

scored tablets, and the 8 mg dosage strength authentic product A (T-2) is a reddish white scored 

tablet. An embossed character was observed on the surface of both authentic tablets. The 

generic Chinese products, labeled T-3 and T-4 were white scored tablets with no embossed 

character on the surface. Two model formulation tablets, labeled T-5 and T-6, were prepared by 
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direct compression without granulation. T-5 contains 8 mg API and lactose monohydrate in an 

appropriate quantity to make tablet of the same shape and size as the authentic product A. T-6 

includes API and all excipients in the same proportions as the authentic product A. T-5 and T-6 

were white tablets with no scored line on the surface. The falsified products T-7 and T-8 from 

Indonesia, where product A is legally marketed were reddish white scored tablets and reddish 

tablets with no scored line, respectively. Without detailed knowledge of physical appearance of 

genuine tablets, it would be difficult to distinguish the falsified products simply by visual 

inspection. 

 Figure 1.2 shows the Raman spectra of the API and the authentic tablets of Blopress tablets (2 

mg), (4 mg), (8 mg), (12 mg), (16 mg) and Placebo. The characteristic peaks from API were 

confirmed in the region from 1780 cm-1 to 1700 cm-1, which are not overlap with the peaks 

from the excipients. Further, the intensity of the API peak at around 1610 cm-1 increased with 

the increase of the concentration of the API in the tablets. The Raman spectra of tablets T-1 to 

T-8 were compared with that of the authentic product. Table 1 shows the p-values and the 

auto-judgment results for each tablet. The authentic product T-2 was evaluated correctly as 

“pass” (p = 0.5045). Authentic tablets with a different dose of API (4 mg, T-1), the generic 

tablets T-3 and T-4 from China, and the model formulations T-5 and T-6 including same dose 

of API as authentic product T-2 were also discriminated as “pass”, although the p-values were 

lower than that of the authentic product T-2. The falsified products T-7 and T-8 were evaluated 

as “fail” based on the obvious difference of the Raman spectra from that of the authentic 
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product. These results suggested that the handheld Raman technique can distinguish falsified 

products that are grossly different from authentic products, but cannot discriminate suspect 

samples with similar composition including an insufficient quantity of API. 

The Raman spectra obtained with the handheld instrument are shown in Figure 1.3. Samples 

T-1 to T-6 showed very similar Raman spectra to that of the authentic product. The spectral 

features are mainly due to the API and lactose monohydrate. Characteristic peaks of the API 

that do not overlap with peaks due to the excipients were observed in the region from 1780 cm-1 

to 1700 cm-1as shown in Figure 1.3. The peak intensity from API in this region was reported to 

increase linearly with increase of API content in the tablets.27 The Raman spectra of tablets T-1 

to T-6 illustrate the difficulty of discriminating authenticity correctly among compositionally 

similar samples based only on chemical properties. On the other hand, the p-values of the 

falsified products T-7 and T-8 were 0.0000; their spectra showed no characteristic peaks of API, 

and the baselines rose from higher to lower wavelengths, suggesting the presence of a 

fluorescent component. Thus, falsified products that do not contain the API can be evaluated 

correctly as “fail”.  

 Figure 1.4 shows the average p-values calculated automatically by the handheld Raman 

instrument with reference to the authentic product A (8 mg), T-2. Good repeatability of the 

p-value was confirmed using 3 different lots of the authentic product A (8 mg) with ten 

replicate measurements. The other doses (4 mg and 12 mg) of the authentic products gave 

average p-values of 0.2127 and 0.2725, respectively, compared with the range of 0.5059 to 
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0.6768 for three different lots of 8 mg product A. These results suggested an appropriate 

criterion of the p-value should be set for discriminating the authenticity of the product A (8 mg) 

from falsified products. Based on the average p-values, a p-value of less than 0.4 might be a 

suitable criterion for judgment of falsified or substandard products containing less than 50% or 

more than 150% API compared to the content of the authentic product.  

Next, samples T-1 to T-8 were examined by X-ray CT, as shown in Figure 1.5. Uniform 

granule powders and white spots were seen in images of the authentic products T-1 and T-2. 

The white spots showed an elongated planar shape and were considered to be Magnesium 

stearate (St-Mg), a known component of the authentic tablets. Magnesium has a high electron 

density, and therefore has a higher X-ray absorption than the other components, so that St-Mg 

is clearly visualized in the CT image. The CT image of generic product T-3 showed much 

larger granules of non-uniform size and pores with a diameter of over 400 nm. Generic products 

T-3 and T-4 did not show evidence of the presence of St-Mg. Generic product T-3 showed 

aggregates with a diameter of 200-600 µm order. The model formulations T-5 and T-6 showed 

a uniform and smooth appearance, presumably due to the direct compression process without 

granulation. However, the density unevenness resulting from the lack of enough mixing process 

is confirmed by the color unevenness as in the black portion of the CT imaging. Also, in the CT 

imaging of T-5 and T-6, the distribution of the larger particle as seen in T-1 and T-2 are not 

confirmed.  
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The images data of falsified product T-7 showed many pores and cracks inside the tablets, 

suggestive of a poor manufacturing process. The image of falsified product T-8 shows a large 

amount of an unknown higher specific gravity component dispersed throughout the tablets.  

 

1.4   DISCUSSION 

 Visual inspection of the appearance of a drug product is a critical test item for detecting the 

falsified products. However, in the present study, falsified products T-7 and T-8 showed a 

similar color to the authentic product T-2. Thus, instrumental methods are important to identify 

SFs. 

 Although the spectrum resolution of the handheld Raman instrument is only about one-tenth in 

the comparison with the high resolution bench-top instrument, the handheld device is cheap and  

easily portable for the field use, such as at the airports, customs, manufacturing sites in the 

developing countries, owing to its small size. This instrument covers the required region of 

2875cm-1 to 250 cm-1 to observe APIs and some excipients in the tablets. In this study, it was 

found that the detection and discrimination of the falsified products of the product A were 

achieved by using the handheld Raman instrument. Although the Raman spectra of tablets T-1 

to T-6 were quite similar, the behavior of the repeatability in the same lot and the variation of 

the p-value among the lots suggested that a criterion p-value of not more than 0.4 could be used 

to discriminate SFs. The p-value was also clearly different among the original product A, the 
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generic products and the model formulations. This difference may be from the difference of the 

kind of and/or the grade of the excipients and the difference of the manufacturing process. 

When the suspect sample is evaluated whether it is product A or not, the trend of the p-value 

should be considered. 

 Our results are in agreement with those of a research group in University of Washington 

(Kovacs et al., 2014), which compared various solutions for detecting SFs in LMICs and 

evaluated handheld Raman as one of the top solutions, offering multiple advantages, including 

no-need for sample preparation, high performance, speed, easy of use, low cost, no 

requirement for electricity supply. Further, handheld Raman technology can be employed 

without opening the PTP package, because the laser is focused on the tables, and the peaks 

from the plastic do not overlap the peaks of API. Therefore, this technology is particularly 

suitable for on-site inspection throughout the supply chain, such as at custom, posts, airports, 

and also in manufacturing sites. 

 The X-ray CT approach enables detailed examination of the internal structure of tablets. Many 

voids were observed inside the falsified product T-7, while falsified product T-8 contained a 

large amount of excipients with high electron density. Also, the physical mixture, T-5 and T-6 

showed X-ray CT images that were clearly distinct from those of authentic product A, 

reflecting the omission of the granulation process. Further, generic products which included the 

same amount of API but contained different excipients and granules of the different sizes could 

be easily distinguished. The results of X-ray CT of T-1 and T-2 suggested that the API is not 
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identified nor localized in a specific location in the tablets. This is one of the important 

information about the quality of T-1 and T-2 to discriminate the SFs from authentic samples. 

Thus, the combination of Raman spectroscopy and X-ray CT can provide detailed information 

about API content and internal structure and uniformity of the tablet. At present the CT images 

have to be visually evaluated, but developments in equipment and software should make it 

possible to score images objectively in the future. 

 Overall, these results indicate that the combination approach of visual observation, handheld 

Raman and X-ray CT should be a powerful strategy for non-destructive discrimination of SFs. 

Figure 1.6 shows a decision tree for using these combination methods to discriminate the 

authenticity of samples purporting to be product A (8 mg). The first step is the visual 

observation of the tablet size, shape, color, scored line and embossed mark (Tier 1). Next, 

handheld Raman should be applied to identify the API and to detect differences of the kind of 

the excipients, based on the p-value (Tier 2). Generic products and different doses of product A 

should be discriminated at this point. Then, if necessary, the physical composition of the tablet 

can be investigated by X-ray CT (Tier 3). This combination approach should enable accurate 

detection of even falsified products that have very similar properties to the authentic products. 

Further it should provide detailed information to assist in tracking the source of the falsified 

products and for monitoring trends in SFs, as well as assessing the efficacy of regulatory 

procedure.   
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Figure 1.1.   Visual inspection of tablets: T-1; authentic product A (4 mg), T-2; authentic 

product A (8 mg), T-3 and T-4; generic products from different Chinese manufacturers, T-5; 

model formulation including API and lactose monohydrate, obtained by direct compression, 

T-6; model formulation including API and the same excipients as in the authentic product A, 

obtained by direct compression, T-7 and T-8; counterfeits found in Indonesia. 
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Figure 1.2.  Raman spectra of the active pharmaceutical ingredients (API), Blopress tablets (2 

mg), (4 mg), (8 mg), (12 mg), (16 mg) and Placebo.  
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Table 1.1   The results of handheld Raman examination of authenticity, based on the 

correlation of Raman spectra between test samples and the authentic product A (8 mg). The 

result of the instrumental judgment based on the p-value is also shown.  

No. Category Sample Name (Active Ingredient 
Dose) 

p-value Judgment 

T-1 Authentic Product A (4 mg)  0.2332 pass 

T-2 Authentic Product A (8 mg)  0.5045 pass 

T-3 Generic  Generic Product B (8 mg) from 
China 

0.2645 pass 

T-4 Generic Genetic Product C (4 mg) from 
China 

0.1483 pass 

T-5 Model formulation Direct compression of API (8 mg) 
and Lactose monohydrate  

0.1348 pass 

T-6 Model formulation Direct compression of API (8 mg) 
and all excipients  

0.1040 pass 

T-7 Falsified Product Falsified Product of product A (8 
mg) from Indonesia 

0.0000 fail 

T-8 Falsified Product Falsified Product of product A (16 
mg) from Indonesia 

0.0000 fail 
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Figure 1.3.   The Raman spectra of the API, lactose monohydrate (excipient) and the tablets. 

The area surrounded by the dashed line covers the specific peak of API that does not overlap 

with the peaks of excipients. Other peaks are due to excipients, mainly from lactose 

monohydrate. The Raman spectra of all tablets except the falsified tablets, which includes both 

API and lactose monohydrate  are similar, but the falsified tablets (T-7 and T-8) show 

distinctly different spectra.  
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Figure 1.4.   Average p-values of authentic products calculated automatically by the handheld 

Raman device for similarity to the authentic product A (8 mg). Repeatability of the p-value was 

confirmed by ten replicate measurements. The range of the p-value from the maximum to the 

minimum value is shown by a bar.   
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Figure 1.5.   X-ray CT images of the internal structure of tablets T-1 to T-8.  
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Figure 1.6.   Decision tree of combination approach for non-destructive discrimination. 
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Chapter II 

Survey to Identify Substandard and Falsified Tablets in Several Asian 

Countries with Pharmacopeial Quality Control Tests and Principal 

Component Analysis of Handheld Raman Spectroscopy  
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ABSTRACT 

 The World Health Organization (WHO) has warned that substandard and falsified medical 

products (SFs) can harm patients and fail to treat the diseases for which they were intended, and 

they affect every region of the world, leading to loss of confidence in medicines, healthcare 

providers and health systems. Therefore, development of analytical procedures to detect SFs is 

extremely important. In this study, we investigated the quality of pharmaceutical tablets 

containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, 

Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together 

with principal component analysis (PCA) of Raman spectra obtained with a handheld Raman 

spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial 

specification, while others failed the assay test. These products appeared to be substandard. 

PCA showed that all Raman spectra could be explained in terms of two components: the 

concentration of the active pharmaceutical ingredient (API) and the kind of the excipient. 

Examination of the PCA score plot indicated that the excipients of the substandard and falsified 

tablets showed similar Raman spectra, in contrast to authentic products. The locations of 

samples within the PCA score plot varied according to the source country, suggesting that 

manufacturers in different countries employ different excipients. Our results indicate that the 

handheld Raman device will be useful for detection of SFs in the field. PCA of that Raman data 

clarify the difference in chemical properties between good quality products and SFs that 

circulate in the Asian market. 
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2.1 INTRODUCTION 

2.1.1 SF statement in WHO 2017 

 In May 2017, definitions of substandard and falsified medical products (SFs) were announced 

by the World Health Organization (WHO).1 Substandard medical products (also called “out of 

specification”) are authorized by national regulatory authorities, but fail to meet either national 

or international quality standards or specifications – or in some cases, both. On the other hand, 

falsified medical products deliberately or fraudulently misrepresent their identity, composition 

or source.1-5 

 

2.1.2 Survey on falsified medical products 

 Many surveys of falsified medical products and analytical procedures for investigation of the 

authenticity of medical products have been reported by various public research institutes.2-12 

In 2015, the Pharmaceutical Security Research Institute (PSI) reported that Asia experienced 

the highest incidence of drug crime cases among seven regions in the world. In that year, a 

total of 3,002 cases of drug crime were recorded, among which around 1,000 involved the 

Asia-Pacific region.13 Many cases where defective products have been transported across 

national borders have been reported.14  
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2.1.3 Survey of substandard medical products 

 Relatively little work has been done on analytical methods for investigating the actual status 

of substandard medical products, including their distribution, and their physical and chemical 

properties.14-15 One reason for this may be concern about the possibility of excessively 

hindering the development of medicines and access to medicines in developing countries.16 

Also, regular quality control and surveillance of medicines after marketing tend to be more 

difficult in developing countries for various reasons, including high cost, the need for 

sophisticated equipment and skilled technicians, and lack of pharmacological knowledge to 

recognize the need for implementation of countermeasures.6, 15, 17-19 Further, medicines may be 

transported across national borders without proper quality checks through various distribution 

channels.14,20 These are serious issues to be taken measures, because SFs can cause treatment 

failure, development of antimicrobial resistance, and serious adverse drug reactions, thereby 

damaging public confidence in medicines.2,21-22  

 

2.1.4 Quality control by analytical procedures and acceptance criteria  

 The International Conference on Harmonisation (ICH) Q6A provides guidance to establish a 

harmonized set of global specifications consisting of analytical procedures and acceptance 

criteria for new drug substances (DS) and drug products (DP) for human use (1999).23 

Specifications of DS and DP are proposed and justified by the manufacturer, and approved by 
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regulatory authorities in each country. The specifications and acceptance criteria are focused 

on those chemical, physical and biological properties considered to be important for ensuring 

the safety and efficacy of DS and DP. Thus, they can be adopted to identify substandard 

products. Possible issues include 1) out-of-specification content of API,24-25 2) significant 

dissolution delay,24 3) contamination with toxic substances,26-27 and 4) lack of sterility.28-29 

These points can be checked by means of assay, content uniformity testing, measurements of 

dissolution properties and impurities, and microbial tests. 

 

2.1.5 Sample Collection  

 Candesartan cilexetil tablets were collected in China, Indonesia, Japan and Myanmar, and 

subjected to quality control tests (assay, content uniformity and dissolution tests) according to 

the Japanese pharmacopeia. The acceptance criteria for these tests in the Japanese 

pharmacopeia were adopted as thresholds for identification of SFs. 

 

2.1.6 Impact on quality by excipients 

 Many issues of quality and bioavailability are considered to be due to technical deficiencies 

in the manufacturing process design and differences in the nature of the excipients30-32. 

Although many studies have shown that excipients influence quality, the excipients are not 
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generally stipulated in quality tests. Our previous study found that the types of excipients used 

in candesartan cilexetil tablets differ depending on the manufacturer, and Raman spectra of 

the tablets showed different patterns reflecting the chemical nature of the excipients.33 

 

2.1.7 Principal component analysis (PCA) of Raman spectra 

 Here, we focused on methodology for detecting substandard and falsified medicines by 

principal component analysis (PCA)12,22,34-42 of raw data obtained by handheld Raman 

spectroscopy. We aimed to clarify the chemical features of substandard medicines by 

comparing them with authentic medicines, and by extracting the principal components of the 

Raman spectrum to visualize the relationships among the tablets. We chose the handheld 

Raman device as a simple spectroscope suitable for the speedy, easy to use, robust and in-situ 

observation in anywhere, and we employed PCA as a means to extract critical information 

despite the limited resolution and sensitivity of the device. We also compared signal 

preprocessing methods for PCA, and selected the MSC method as being particularly suitable 

to extract the desired signals from the strong fluorescence background. 42 This approach 

proved highly effective to evaluate the degree of similarity among samples. 
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2.2 EXPERIMENTAL 

 2.2.1 Sample Collection 

 Authentic candesartan cilexetil tablets were supplied by a Japanese manufacturer as 

reference samples. Samples of candesartan cilexetil tablets were collected from hospitals and 

clinic in China, Indonesia and Myanmar, and also purchased via the internet (2009-2015).  

 

2.2.2 Visual Inspection 
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 First, we observed the outer package and package insert, PTP or Al-blister packaging. The 

product name, dose, component, formulation, packaging unit, manufacturer, manufacturing date, 

expiration date and manufacturing number were recorded. The cartons were examined visually 

and microscopically and compared to reference samples. Printing on the edge of the tape seal 

was carefully observed to check fine details.  

 

2.2.3 Quality Control Test 

 Content uniformity43, Assay and Dissolution tests of candesartan cilexetil tablets were 

conducted according to the Japanese pharmacopeia.  

 Acetonitrile (for high-performance liquid chromatography), polyoxyethylene 20, and sorbitan 

monolaurate (for biochemistry) were purchased from Wako Pure Chemical Industries, Ltd., and 

acetic acid and acenaphthene were purchased from Nacalai Tesque Co., Ltd. Candesartan 

cilexetil reference tablets were supplied by Takeda Pharmaceutical Co., Ltd. 

 

2.2.4 Content Uniformity and Assay  

 Candesartan cilexetil in tablets were extracted in a mixture of acetonitrile and water (3:2), and 

measurements were carried out at a wavelength of 305 nm using a spectrophotometer (U-3210, 

Hitachi, Tokyo, Japan). Since the number of the collected samples was limited, 2, 3 or 10 
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tablets were used for each evaluation of content uniformity and the mean of the content was 

calculated as the result for assay. The acceptance criterion for the assay was set to 95.0-105.0%.  

 

2.2.5 Dissolution 

 The dissolution test was performed under the conditions described for Apparatus 2 (paddle 

method) with 50 rpm agitation in 900 mL of a dissolution medium containing 10 w/v% 

polyoxyethylene (20) sorbitan monolaurate at 37 °C. A sample was taken at the time point of 45 

minutes, and examined by high-speed liquid chromatography (HPLC, L-7200 autosampler, 

D-7000 interface, L-7100 pump, L-7300 column, L-7405 UV detector, Hitachi, Tokyo, Japan). 

Acenaphthene was added to the test solution as the internal standard. HPLC conditions: 5 μm 

ODS column (Shim-pack CLC-ODS (M) 4.6 mm × 15 cm, Shimadzu, Kyoto, Japan), flow rate 

1.8 mL/min, column temperature 25 °C, injection volume 50 μL, detection wavelength 254 nm. 

The mobile phase was a mixture of acetonitrile, water and acetic acid (57:43:1). The mean of 

the dissolution rates of 2, 3 or 6 tablets were evaluated, respectively. The criterion adopted was 

that the dissolution rate of candesartan cilexetil should be more than 75% at the 45-minute 

sampling point.44  

 

2.2.6 Handheld Raman Spectroscopy  
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All tablets were evaluated by the handheld Raman spectroscopy (TruScan®, Thermo Fisher 

Scientific). The chemical equivalent in structural component between the reference authentic 

products including 8 mg of API and the others were examined based on the similarity of the 

Raman spectra. The similarity of the Raman spectra between the authentic and the test tablets 

was calculated automatically as the p-value. The calculation algorithm for p-value in the 

handheld Raman spectroscopy is validated, not disclosed and designed not to be modified. 

After the auto-judgment by the handheld Raman device, to investigate trend of the chemical 

properties of the candesartan cilexetil tablets using PCA, the raw data of the Raman spectra 

were extracted and investigated. To input the factor of the API in the Raman spectra to the PCA, 

in addition to measuring the collected tablets, the original authentic tablets including 0 mg 

(Placebo), 4 mg, 8 mg and 12 mg of the API were also measured with handheld Raman, 

respectively and applied to PCA. The weight and size of 4 mg, 8 mg and 12 mg tablets are 

equivalent, and same weights of each excipient except Lactose monohydrate to adjust total 

weights of them. 

  

2.2.7 Preprocessing of Raman spectra  

 The data interval of the hand-held device is around 1.4 to 2.2 cm-1, and the noise level is high, 

so preprocessing of the spectroscopy spectra is critical for accurate PCA calculation. We used 

the Savitzky-Golay (SG) method45 to smooth each segment of the original Raman spectrum in a 
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small window by fitting to a polynomial function45-46. The multiplicative scattering correlation 

(MSC) method46-49 was also applied to eliminate baseline shift caused by the multiplicative shift 

of the baseline tilts and the additive shift of the baseline shifts up and down.46-48 MSC can utilize 

data from many wavelengths to distinguish between light absorption and light scattering, 

correcting spectra according to a simple linear univariate fit to a standard spectrum by means of 

least-squares regression using the standard spectrum. The observed spectrum )Y(ω  is 

considered to depend on wavelength as follows: 

 

  )e( +b+ω a + )Y( =)Y( ωωω     (1.2) 

 

where )Y( ω  is the standard spectrum and )e( ω  represents the residual. a and b are adjusted in 

order to minimize the term e(ω), to make these discrete deviations as small as possible.47 

 

2.2.8 Principal component analysis (PCA) 

Unscrambler® software (CAMO Software) was used for PCA. The Raman spectral data set 

consisting of 85 samples and 476 wavenumbers was calculated and it was decomposed into a 

linear combination of scores nt  and loadings np  consisting of several principal components, 

allowing the spectrum to be understood clear with a limited number of principal components. 
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That is, the data set X is decomposed into a linear combination of the score and the loading as 

shown in equation 1.3 and the schematic figure below. 

 

NN ptptptpt +++=Χ 332211      (1.3) 

 

 

 The validity and robustness of the calculated PCA model were confirmed by cross-random 

validation. 

 

2.3 RESULTS 

 More than fifteen brands of candesartan cilexetil tablets were available in China, as judged 

from an internet survey, but only 4 brands were found to be distributed in hospitals and clinics 

in Shanghai in China. The collected 7 samples of Japanese manufactures (Blopress), 3 kinds of 
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samples of Chinese manufactures (2 samples of 悉君宁, 4 samples of 维尔亚, 13 samples of 

XINXIN in distributed in Shanghai in China were used for quality tests and PCA. In Mandalay 

in Myanmar, three brands, which are Blopress manufactured in Japan, Candelong-8 

manufactured in India and Advant manufactured in Pakistan, were found in private hospitals, 

community pharmacies and wholesalers. No obvious deficiencies in the PTP packaging, 

package insert, pillows, or tablets were found in visual inspection of all collected samples. 

Table 2.1 shows the summary of the results of dissolution, assay, contents uniformity and 

chemical similarity of candesartan cilexetil tablets. 

 

2.3.1 Content Uniformity, Assay and Dissolution Behavior  

 Figure 2.1 summarizes the results of the dissolution test for the collected samples. Dissolution 

delay was confirmed in two samples of XINXIN candesartan cilexetil tablets, which failed to 

meet the criterion dissolution rate of more than 75% at 45 minutes. Other all samples met the 

criterion and was observed the enough dissolution at 45 minutes. Figure 2.2 summarizes the 

content uniformity and assay results for the collected samples.The assay values of 12 out of 13 

samples of XINXIN candesartan cilexetil tablets exceeded the upper limit of 105.0%. The 

difference in assay of these samples was large (Max 112.8% to Min 104.4%) and the content 

un-uniformity was observed from the standard deviation among each sample up to Max 4.8%. 

(see Tablet 2.1). Two samples of 悉君宁 and one sample of Advant candesartan cilexetil tablets 
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gave an assay value below the lower acceptance limit of 95.0%. Other samples met the criterion 

of assay. 

 

2.3.2  Handheld Raman spectroscopy and PCA 

 Raman spectra obtained with the handheld instrument are shown in Figure 2.3. The spectral 

features are mainly due to the API and excipients, including lactose monohydrate. The Raman 

spectra of the falsified products and XINXIN products showed a distinctive upward slope of the 

baseline toward high wavenumber. The API peak intensity in this region was reported to 

increase linearly with increase of API concentration in the tablets,27 and a similar result was 

also obtained in this study. These relationships of the quantitation between the API peak 

intensity and the assay of the API in tablet were also confirmed in not only the weight 

measurement of API in tablets vs the peak intensity of Raman spectra but the relationship 

between the weight measurements of API vs the peak intensity of X-ray diffraction 

measurement.27  

 These Raman spectra were conducted preprocessing and subjected to PCA in order to 

investigate the similarity of chemical components among samples. Figure 2.4 shows the spectra 

after the preprocessing of Savitzky-Golay method for smoothing and MSC method for baseline 

correction for the Raman spectra. The calibration result and cross validation result in PCA 

model were compared as shown in Figure 2.5. The result suggested that the difference among 
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the samples can be clarified by using the two principal components of PC1 and PC2 and the 

intensity change of Raman spectrum can be sufficiently expressed by PC1 and PC2. Therefore, 

the score plot was shown with the score of the PC1 and PC2 on the horizontal axis and the 

vertical axis, respectively for each tablet as shown in Figure 2.6. Data set of the Raman spectra 

in the range of 1780 to 1000 cm-1, which includes peaks from the API and main excipients, 

showed the intuitive interpretation score plot in the PCA result. Tablets collected in Myanmar 

were distributed around authentic Blopress tablets in the score plot, suggesting that similar 

excipients were used in both cases. On the other hand, the tablets collected in China showed a 

wide distribution on the score plot, suggesting that different excipients were used by different 

manufacturers. Notably, XINXIN tablets were placed very far from the other tablets, and there 

was a high positive correlation in PC2 and the falsified products collected in Indonesia were 

located similarly in the plot. The falsified products including the API were plotted on the PCA 

score plot suggesting those tablets include around 60% assay of the dose (16 mg) displayed in 

the package. This result is agreement with the result of the assay measured by high performance 

liquid chromatography. In addition, both SFs contained almost the same amount of API, despite 

being labelled on the packages as having 8 mg and 16 mg, respectively, suggesting that these 

were falsified products with poor quality control.  

 Figure 2.7 shows the loading of each PC in the calculated PCA model. The contribution rates 

were 84% of PC1, 7% of PC2 and 5% of PC3. PC2 was shown as a component extracted the 

characteristics of the signal derived from API, while PC1 showed the characteristics of the 
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excipients of the lactose and others excipients in the wave number region of 1200 to 1000 cm-1. 

PC3 appeared to be mainly due to lactose factor.  

 

2.4 DISCUSSION 

 Candesartan cilexetil tablets distributed in China, Indonesia and Myanmar were made by 

various manufacturers and contained different kinds of excipients. Testing identified a number 

of samples with unacceptable API contents above or below the criterion limits of the Japanese 

pharmacopeia, and others with excessive dissolution delay. Several products which meet the 

criteria of the assay, CU and dissolution were plotted in the center on the PCA plot. The failed 

samples which did not meet the criteria were all located far from the center position on the 

PCA score plot. This PCA model was very effective to distinguish the products include the 

different excipients, which appeared in different regions of the score plot and itwas able to 

explain all spectra clearly with two components of the concentration of the medicinal 

ingredient and the kinds of the excipients. The PCA result decomposed spectrum reflected the 

elements of pure Raman spectrum on PC 2 without interference by background of strong 

florescence substances. In this study, with an appropriate spectral preprocessing and PCA 

combination, even in market research using a large amount of Raman spectrum of various 

kinds of tablets including some unknown excipients, the elements of the API and the kinds of 

the excipients are clearly extracted, and the similarity and correlation are clearly visualized.  
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 A key feature of the present work was the use of the MSC method for Raman signal 

preprocessing. This method proved to be more effective than other commonly used methods, 

such as the second derivative and standard normal variate methods, for extracting the desired 

signals from the strong fluorescence background. It was found that how to extract the 

chemical information itself from the spectrum of the spectroscopic, not the experimental 

devices and methods, is a significant powerful and effective solution for detecting SFs. These 

results suggest that the handheld Raman device we used could be a useful tool to detect SFs in 

the field, despite its relatively low sensitivity and low resolution.  

 In conclusion, the combination of pharmacopeial quality control tests and PCA score plots 

calculated from Raman spectra proved to be very effective methodology for detecting SFs. 

Application of this approach to candesartan cilexetil tablets collected in several Asian countries 

uncovered a number of examples of out-of-specification content and inadequate dissolution. 

The handheld Raman device is expected to be useful in field surveys to detect SFs. PCA of that 

Raman data clarify the difference in chemical properties between good quality products and 

SFs that circulate in the Asian market. 
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Figure 2.1. Dissolution result of candesartan cilexetil tablets. 
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Figure 2.2. Content uniformity and assay results of candesartan cilexetil tablets. 
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Table 2.1 Summary of the results of dissolution, assay, content uniformity and chemical 

similarity of candesartan cilexextil tablets. 
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Figure 2.3. Raman spectra of authentic candesartan cilexetil tablets and SFs.  

(Before MSC preprocessing of spectra) 

 

 



67 

 

 

Figure 2.4. Raman spectra of authentic candesartan cilexetil tablets and SFs.  

(After MSC preprocessing of spectra) 
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Figure 2.5.  Comparison between the calibration and validation result in PCA model. 
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Figure 2.6.  PCA score plot derived from the Raman spectra of candesartan cilexetil tablets, 

including falsified tablets, collected in China, Indonesia, Japan and Myanmar. 
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Figure 2.7. Loading on PC1, PC2 and PC3 in the PCA model calculated  

by using Raman spectra of candesartan cilexetil tablets.  
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2.6 CHALLENGES FOR FUTURE SF RESEARCH 

In addition, it is necessary to consider the effectiveness of the following means as a way of 

future investigation method of SF. Not only the results of physicochemical experiments such 

as quality tests and spectroscopy of each sample but also information on the collected samples 

(product name, active ingredient name, API dose, dosage form, package, manufacturer, 

country of manufacture, Product information such as lot number, manufacturing date, 

expiration date, packing date, packing etc), confirm the validity of the import manufacturer 

registration number by the manufacturer, check the validity of the import registration number, 

It is also considered to be one of the useful means to check whether the sample is permitted to 

sell on the market based on the result of the test. In addition to the results of physicochemical 

experiments, it is expected to extract the characteristic elements of SF from a lot of 

information from manufacturers and authorities. 
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Chapter III 

Development and Application of Speedy and in-situ 3D Fluorescence Method to 

Detect Substandard and Falsified Parenteral Products  
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3.1 INTRODUCTION 

 The anlytical methods for the oral solid form are described in Chpater 1 and 2, but Chpater 3 

shows the analytical methods of the falsified medicines for the injectable formulation. The 

falsified medicines for the injections have serious risks of the health hazards because the API 

enter directly into the blood. It is conceivable that it is important to analyze quickly and to 

detect counterfeit drugs speedy at an early stage of the distribution. Since the injectable 

products that are not guaranteed the quality and that may have been prepared in a poor 

environment lead to serious health damage, it is necessary to quickly detect the falsified 

products and to take measure. 

 

3.1.1 Distribution of Falsified Avastin in U.S. 

 The U.S. Food and Drug Administration (FDA) warns medical staff and patients about the 

distribution of the falsified medical products imitating of Avastin (400 mg / 16 mL).1 Avastin is 

an anticancer drug for injection binding to protein of VEGF (Vascular endothelial growth 

factor) secreted by cancer cells and inhibiting the neovascularization. The falsified products of 

the Avastin did not include bevacizumab of the active pharmaceutical ingredient (API). The 

FDA has announced that the falsified products of the Avastin were used for 19 medical 

practices in the United States and patients were unable to access the necessary health treatment.  

Those falsified products were labeled with Rosh as manufacture, but the FDA-approved version 
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of Avastin for use in the United States is marketed by Genentech only. Roche does not 

manufacture for the United States market.  

 

3.1.2 Distribution of Falsified Herceptin in EU 

 European Medicines Agency (EMA) alerted that vials of Herceptin injection (trastuzumab) for 

cancer treatment, which has been stolen from hospital in Italy, were illegally used and flowed 

into the pharmaceutical supply chain. The medical personnel throughout the European Union 

(EU) are notified about the characteristic information of counterfeited Herceptin vials. The 

batch number and expiration date stated in the vials of these falsified products did not match the 

indication of the batch number and expiration date on the package on the outside. Further, it is 

pointed out that rubber plugs, crimp caps or lids have also been tampered with.  

 

3.1.3 Evaluation of API in injectable products by Spectrofluorophotometer  

 In the actual incident which are shown in above,, the imitated or stolen glass vial and 

packaging as same as those of the authentic products were used. Further, the injections are often 

clear liquids and it is difficult to visually identify the contents and to detect the falsified 

medicines easily. We investigated the analytical method for observing the contents in the glass 

vial from the outside of the glass vial without removing the injectable solution from the glass 

vial. Especially, it was aimed to develop the speedy detection of the presence or absence of the 
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active pharmaceutical ingredient (API). Further, both injections of Avastin and Herceptin 

targeted as the falsified medicines are molecular targeted therapeutic medicines and are 

compounds having the high molecular weight and the larger physical three-dimensional 

structure. Many APIs in the injectable solution include anticancer drugs with a relatively large 

molecular weight, and medicinal ingredients having large three-dimensional structures such as 

peptides, antibodies, and antibacterial drugs.  

 These compounds usually have their own fluorescent properties. Therefore, the speedy and 

in-situ three-dimensional (3D) fluorescence method was developed to detect the API's 

fluorescence of various injections without removing the contents from the outside of the glass 

vial or preprocessing of the solution for the measurement. 

 

3.1.4 Excitation-Emission Matrices Method 

 The sample was irradiated with excitation light of various wavelengths, and the emitted 

fluorescence intensity was measured every 5 nm. By plotting the excitation wavelength on the 

vertical axis, the fluorescence wavelength on the horizontal axis, and the fluorescence intensity 

in the height direction, it is possible to draw a three-dimensional contour diagram as shown in 

Figure 3.1. A method for measuring such excited fluorescent three-dimensional matrix is called 

the EEMs (Excitation-Emission Matrices) method.4 To identify the API by EEMs method has 

high specificity based on the three-dimensional structure of the API in solution which was 
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affected by the concentration of the API, buffer solution, excipients, pH, viscosity and 

temperature in the injection.5-8  

 

3.2 EXPERIMENTAL 

 3.2.1 Principle and Advantage of Fluorescence Measurement  

 A molecular electronic transition to excited states is induced by the irradiation of light with a 

wavelength in the ultraviolet and visible region. The molecular emits the fluorescence when it 

comes back to the ground state.3 As some advantages applying fluorescence measurement, the 

following points are mainly mentioned. 1) Possible to irradiate wide range of light from visible 

light to ultraviolet light. 2) Compounds emitting fluorescence have specific fluorescence 

intensities for specific excitation wavelengths. This phenomenon is a characteristic value 

derived from the three-dimensional structure of each compound. 3) Detection sensitivity is two 

or three orders better comparing UV method.3 In this study, spectrofluorometor (F-7000, 

HITACHI, Japan) was used for the evaluation of API in the injectable products. The model 

formulations including fluorescence API compound in parenteral products for the small 

molecule, the antibody, and the peptide injection were measured in the following EEMs 

method. 

 

3.2.2 Fluorescence Excitation-Emission matrices (EEMs) method4-5 
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 The EEMs data were obtained by using the spectrofluorometor (F-7000, HITACHI, Japan) in 

the following conditions. At the photomal voltage of 600 V, the sample was irradiated with 

excitation light of the wavelengths of 200 nm to 600 nm (or 400 nm) and the emitted 

fluorescence intensity was scanned in the region of 200 nm to 700 nm with the scan speed at 

60000 nm/min. The slit range of 5 nm was applied for the both the irradiation and the detection. 

By plotting the excitation wavelength on the vertical axis, the detected fluorescence wavelength 

on the horizontal axis, and the fluorescence intensity in the height direction, it is possible to 

draw a three-dimensional contour diagram as shown in Figure 3.1.  

 

 3.2.3 Conventional Fluorescence Measurement vs New Approach 

 In the conventional fluorescence measurements, the test solution to be measured had to be 

transferred to the cell from glass vial or ampoule to a quartz cell and it is measured in the 

fluoro-photometer as shown in Figure 3.2. This method is not able to measure each container 

without destroying the sample as the evidence, and it is difficult to analyze with a plurality of 

measurement methods quickly. Here, we removed the cell unit and make open space at the 

position where the direction of the irradiation light and the direction in which the light enters 

the fluorescence detector are orthogonal as shown in Figure 3.3.  

 

3.3  RESULTS 
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3.3.1 Identification of API in injectable product by EEMs 

 Figure 3.4 shows the result of EEMs measured by using spectrofluorometor for 3 kinds of API 

(peptide, small molecule and antibody) in the injectable products. the comparison between 

placebo solution without API and the DP with API. The characteristic fluorescent fingerprints 

derived from API itself were obtained in any of pharmaceuticals products such as peptides, 

small molecules and antibodies, and it was confirmed that they have high discriminating ability. 

 

3.3.2 New Approach without Cell Unit 

 This new approach as shown in Figure 3.3 was possible to measure the fluorescence from API 

in the parenteral products over the glass vial/ampoule without opening the lid of the glass 

vial/ampoule. This method is not limited by the size and shape of the glass container. This 

development of the cell unit was conducted in the joint with Hitachi. It was confirmed this 

method has phenomenal sensitivity compared with the method connecting an external optical 

fiber more than 100 times. 

 

3.4 DISCUSSION 

For the injectable products including API which has fluorescence properties, the fluorescence 

EEMs measurement is very effective to discriminate the authenticity of the medical products. 



79 

 

We succeeded in measuring the specific fluorescence fingerprints of the API in the injectable 

products from the outside of the glassware material without affecting the shape and size of the 

glass with enough intensity of the fluorescence. In recent years, a non-destructive analysis 

method of the fluorescence by using the fiber probe has been developed. However, in this fiber 

probe method, the attenuate of the fluorescence intensity is observed due to the physical 

distance between the spectrometer and the measurement samples. Therefore, it was difficult to 

detect the EEMs with the high sensitivity analysis in the conventional fiber probe method.  In 

this study, by removing the conventional cell unit and measuring the samples of the injectable 

formulation, the detection sensitivity was improved and the detection strength. Even if the low 

molecules which have week fluorescent, it was confirmed that this speedy and in-situ 3D 

measurement is able to sufficiently detect to a low concentration of around 10 ppm and it is 

very powerful tool to discriminate the medical products in the injectable formulation. 
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Figure 3.1.  EEMs of injectable products including peptide and vitamin.  
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Figure 3.2.  Conventional fluorescence measurement cell unit. 

 

 

 

 

 

 

Figure 3.3.  New approach to measure the fluorescence compound in parenteral product 

from the outside of the glass ampoule.  
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Figure 3.4.  EEMs data of peptide, small molecule and antibody in injectable products. 
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Conclusion and summary 

This investigation succeeded to detect of SFs for the oral solid pharmaceutical products and 

the injectable solutions circulating in the Asian market using the pharmacopeial quality tests 

and non-destructive spectroscopy using the X-ray CT, the portable Raman, PCA, and the 

fluorescence spectrophotometer. The physical and chemical properties ant those correlation 

among the samples were clarified in this study. 

In chapter I, it was showed how to visualize the physical and chemical properties of falsified 

medical products with the combination technology of Handheld Raman Spectroscopy and 

X-ray Computed Tomography. And the decision tree was presented for the judgment of 

authenticity of Blopress tablets. In chapter II, the results of the survey on the substandard and 

falsified products of hypertension medical products collected in Asian marked were shown. 

This survey was clarified about the existing of some substandard products by using the quality 

tests, the handheld Raman spectroscopy and PCA. Further, in chapter III, the method 

development and the application for the parenteral products were conducted for detecting the 

falsified medical products for injectable formulation with speedy and in-situ 3D fluorescence 

method. By combination method of the EEMs and the new approach to measure the sample 

from over the glass ampoule without operation to cut the glass ample and take out the contents, 

we successfully detected the API itself in injectable solutions with high specificity and 

sensitivity.  



85 

 

Through the chapter I to III, the discrimination methods of the substandard and falsified 

medical products for the solid formulation and injectable formulation were developed using the 

quality test and non-destructive spectroscopy. The application of the developed methods for the 

actual medical products showed that these methods have sufficient performance to detect 

speedy and in-situ SFs and to understand the physical and chemical properties and risks of the 

SFs which are distributing in the actual market. There methods are expected to contribute for 

the analysis of the medical products for people to access the appropriate health care. 
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