Dissertation

Enantioselective Total Synthesis of (+)-Sieboldine A via Diastereoselective Pauson-Khand Reaction

> Graduate School of Medical Sciences Kanazawa University

Division: Pharmaceutical Sciences Laboratory: Pharmaceutical and Organic Chemistry

School registration No.: 1429012018 Name: Mohammed Khalifa Abd El-Gaber Khalifa Primary supervisor name: Prof. Dr. Chisato Mukai

ACKNOWLEDGEMENT

In the name of **ALLAH** Almighty, the Compassionate, the Merciful. Alhamdulillah, to **ALLAH** I extended my heartfelt thanks for giving me a chance to fulfill this research succesfully.

First and foremost, I would first like to thank my supervisor Professor Dr. Chisato Mukai for his innovative ideas, encouragements, endless patient, enthusiasm and guidance during this research over the past few years. It was my highest pleasure to be the member of his brilliant group. Also, I would like to thank gratefully Dr. Fuyuhiko Inagaki and Dr. shigeo Yasuda for their support, motivation, and enormous help during my Ph.D. studies.

I wish to extend my gratitude to all members of the Professor Dr. Chisato Mukai's group, present and past (graduate and undergraduate), for the excellent working atmosphere, the interesting and stimulating discussion about chemistry and the great support I got from them.

I also wish to express my sincere gratitude to the Ministry of Education, Culture, Sports, Science and Technology-Japan for the funded Ph.D scholarship. I wish to thank to the Ministry of the Higher Education of Egypt and Assuit University for their acceptance and support during my Ph.D study at Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan. Finally, yet importantly, I would like to express my heartfelt appreciation to my beloved parents, my wife, my sons Omar and Youssef and my friends for their wishes and the loving support that helped me through the tougher times of my graduate studies.

Mohammed Khalifa Abd El-Gaber Assiut University Egypt 2017

TABLE OF CONTENTS

ACKNOWLE	DGEMEI	NT	Page ii
TABLE OF C		rs	iv
LIST OF ABE	BREVIAT	TIONS / SYMBOLS	vi
CHAPTER I	INTRO	DUCTION	1
1.1	The Lyc	copodium alkaloids	1
	1.1.1 1.1.2	Structure and biological activity of (+)-sieboldine A Strategic comparison of previously reported syntheses of sieboldine A	2 2
	1.1.3	Total synthesis of (+)-sieboldine A by Overman	4
1.2	1.1.4 B ausan	Total synthesis of (+)-sieboldine A by Tu Khand Basetian (BKB)	6
1.2	Pauson-	-Knand Reaction (PKR)	8
	1.2.1	The Discovery and Early Evolution of the PKR	8
	1.2.2	Mechanism of the PKR	9
12	1.2.3 Total su	Intramolecular PKR	9
1.5	intramo	blecular PKR as a key step	11
		v i	
	1.3.1	Total Syntheses of (+)-Lycoposerramine-C and (-)-phlegmariurine-A by Takayama	11
	1.3.2	(+)-fawcettimine and (+)-fawcettidine by Takayama	12
	1.3.3	Total Syntheses of (-)-magellanine,	12
		(+)-magellaninone, and (+)-paniculatine by Mukai	13
	1.3.4	Total Syntheses of (+)-fawcettimine and	1.4
	135	(+)-iycoposeriannie B by Mukai Total Syntheses of (±)-fawcettimine	14
	1.5.5	(±)-fawcettidine, (±)-lycoposerramine-Q and	
		(±)-lycoflexine by Mukai	15
1.4	Researc	h objective	17
CHAPTER II	RESUL	TS AND DISCUSSION	18
2.1	Total s	ynthesis of (±)-Sieboldine A	18
	211	Retrosynthetic analysis of $(+)$ -Sieboldine A	18
	2.1.1	Synthesis of PKR precursor Dienyne 105	19
	2.1.3	Intramolecular PKR of Dienynes 104 and 105	20
	2.1.4	Stereoselective Reduction of indenone 107	21
	2.1.5	Construction of the quaternary center and	• •
	216	difficulties in removal of benzyl group	22
	2.1.0	Autompts for single enolization of ketone 119 Regionalectives acetate application latens 110	23
	2.1.7	Preparation of Triol 125	24 25
		_	

	2.1.9	Introduction of the nitrogen functionality	26
	2.1.10	Optimized oxidation of Diol 129	27
	2.1.11	Assembly of the azacyclononane ring	29
	2.1.12	Completion of total synthesis of (±)-sieboldine A 1	30
2.2	Total syr	nthesis of (+)-Sieboldine A	31
	2.2.1	Retrosynthetic analysis of (+)-Sieboldine A	31
	2.2.2	Keck asymmetric allylation of aldehyde 103	33
	2.2.3	Intramolecular PKR of Dienyne (+)-105	34
	2.2.4	Synthesis of Triol (-)-125	34
	2.2.5	Synthesis of Aminolactol (-)-132	35
	2.2.6	Completion of total synthesis of (+)-sieboldine A	36
2.3	Conclusi	ion	37
CHAPTER III	EXPERI	MENTAL	38
3.1	General	l notes	38
3.2	Synthet	ic procedures	39
	Determi	ination of the absolute configuration of (+)-	
3.3	144		59
	Compai	rison of synthetic and natural (+)-sieboldine A	• •
3.4	spectral	data	61
CHAPTER IV	REFER	ENCES	63
CHAPTER V	APPENI	DIX	67

LIST OF ABBREVIATIONS / SYMBOLS

Å	angstrom
Ac	acetyl
AIBN	azobisisobutyronitrile
aq	aqueous
Ar	argon
atm	atmosphere
BINOL	1,1'-Bi-2-naphthol
Bn	benzyl
BOC	tert-butyloxycarbonyl
br	broad (in nuclear magnetic resonance)
°C	degree centigrade
calcd	calculate
cat.	catalyst
-1	reciprocal centimeters
	aerbon monovido
	daublet
DBU	1,8-Diazabicyclo[5.4.0]undec-/-ene
DCE	1,2-dichloroethane
dd	doublet of doublet
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	diethyl azodicarboxylate
DIPAL-H	diisobutylaluminium hydride
DIPEA	<i>N</i> , <i>N</i> -diisopropylethylamine
DMAP	4-dimethylaminopyridine
DMDO	dimethyldioxirane
DMP	Dess-Martin periodinane
DMS	dimethylsulfide
DMSO	dimethylsulfoxide
dpen	1,2-diphenyl-1,2-ethylenediamine
EI	electron impact ionization
equiv.	equivalent
ESI	electron spray ionization
Et	ethyl
EtOAc	ethyl acetate
g	gram
h	hour
HMPA	hexamethylphosphoramide
HR	high resolution
Hz	hertz
IBX	2-iodoxybenzoic acid
Imid.	imidazole
<i>i</i> -Pr	isopropyl
Ipc	isopinocampheyl
ÎR	infrared
J	coupling constant

KHMDS	potassium bis(trimethylsilyl)amide
LAH	lithium aluminium hydride
m	multiplet
М	metal
М	molar
<i>m</i> -CPBA	<i>m</i> -chloroperbenzoic acid
Me	methyl
mg	miligram
MHz	megahertz
min	minute
mL	mililiter
mol%	mole per cent
MOM	methoxymethyl
Ms	methanesulfonyl
MS	molecular sieves, mass spectrometry
MsCl	methanesulfonyl chloride
MTPA	α-methoxy-α-trifluoromethylphenylacetic acid
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMR	nuclear magnetic resonance
Ph	phenyl
Piv	pivaloyl
PKR	Pauson-Khand reaction
PMB	<i>p</i> -methoxybenzyl
ppm	parts per million
PPTS	pyridinium <i>p</i> -toluenesulfonate
q	quartet
Rh	rhodium
rt	room temperature
rf	reflux
S	singlet, second
sat	saturated
t	triplet
TBAF	tetra-n-butylammonium fluoride
TBAI	tetra- <i>n</i> -butylammonium iodide
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMEDA	tetramethylethylenediamine
TMS	trimethylsilyl
TMTU	tetramethylthiourea
TPAP	tetrapropylammonium perruthenate
Ts	tosyl
δ	NMR chemical shift in ppm downfield from a standard

CHAPTER I

Introduction

1.1 The Lycopodium alkaloids

The Lycopodium alkaloids are a large group of natural products characterized by their unique polycyclic frameworks.^{1,2} These alkaloids derive their name from the Lycopodium species of clubmosses from which they were originally isolated.³ The Lycopodium alkaloids are divided into four distinct structural classes; the fawcettimine class, the lycopodine class, the lycodine class and the miscellaneous class (Figure 1). Hydrindane containing natural products, such as sieboldine A 1, alopecuridine 2 and fawcettimine 3 are classified in the fawcettimine group. Natural products that contain a pyridine or pyridone ring, such as huperzine A 4, are classified in the lycodine group. Furthermore, alkaloids that contain four interconnected sixmembered rings, such as lycopodine 5, are members of the lycopodine group. Finally, natural products that are devoid of one of the aforementioned structural features are members of the miscellaneous class, such as phlegmarine 6.4

Fawcettimine class

Lycodine class

Sieboldine A 1

R= OH Alopecuridine 2 R= H Fawcettimine 3

 H_2N

Huperzine A 4

Lycopodine 5

Miscellaneous class

Phlegmarine 6

Figure 1. Representative Lycopodium Alkaloids.

1.1.1 Structure and biological activity of (+)-sieboldine A

In 2003, Kobayashi and coworkers reported the isolation of (+)-sieboldine A 1 from the clubmoss *Lycopodium sieboldii* in Japan. Structurally, sieboldine A 1 contains unprecedented fused tetracyclic skeleton consisting of *cis*-hydrindane ring system, the distinctive structural feature of fawcettimine-type *Lycopodium* alkaloids and N-hydroxyazacyclononane ring embedded in a bicyclo[5.2.1]decane-N,O-acetal. (+)-Sieboldine A 1 has two contiguous quaternary carbons; one of them is an all-carbon quaternary center (Figure 2).⁵

(+)-Sieboldine A 1

Figure 2. Structure of (+)-sieboldine A 1.

Along with their complex structures, the *Lycopodium* alkaloids generally have interesting biological activities and plants or plant extracts containing these alkaloids have been utilized in traditional folk medicine for decades.¹ Sieboldine A **1** exhibited *in vitro* cytotoxicity against murine lymphoma L1210 cells (IC₅₀ 5.1 μ g/mL) and inhibited acetylcholinesterase (from electric eel) with an IC₅₀ value of 2.0 μ M, which was comparable to that of huperzine A **4**.⁵ In clinical trials, Huperzine A **4** has been shown to have beneficial effects on cognitive function and memory in patients with Alzheimer's disease.^{6,7} The unusual unique skeletons along with the interesting biological activities made the *Lycopodium* alkaloids worthy challenging targets for total synthesis.⁸⁻¹⁷

1.1.2 Strategic comparison of previously reported syntheses of sieboldine A

The completion of the first total synthesis of (+)-sieboldine A **1** was reported in 2010 by Overman.^{18,19} Later, Tu and coworkers reported the first total synthesis of alopecuridine **2** and its biomimetic oxidation to sieboldine A **1**.^{20,21} Overman and Tu used two completely different strategies to access sieboldine A **1**. The only common idea shared by the two strategies was the elaboration of the sensitive N,O-acetal moiety at a late stage of the synthesis.

Overman assembled the N,O-acetal via intramolecular coupling of the activated thioglycoside moiety with the tethered hydroxylamine side chain in derivative 7 (Scheme 1). The *cis*-hydrindanone **8** was obtained by a pinacol-terminated Prins cyclization of enyne **9** as a key step. Enyne **9** was prepared from cyclopentanone **10** through vinyl addition and alkyne elongation. Cyclopentanone **10** was readily accessed from previously reported enantiomerically pure bicyclic lactone **11**.

Scheme 1: Overman's retrosynthetic analysis of (+)-sieboldine A 1.

Tu decided to follow Kobayashi's proposed biogenetic pathway and expected that formation of the tetrahydrofuran ring with concomitant formation of the N,Oacetal could be achieved through a two-step oxidation of alopecuridine **2** (Scheme 2). The B-ring of the alkaloid was obtained via SmI₂-mediated pinacol coupling of compound **12**. The all-carbon quaternary center at C12 and the aza-cyclononane ring were constructed through a semipinacol ring expansion of the eight-membered nitrogen-containing ring of **13**. Hydroxy epoxide **13** was prepared from haloalkene **14** and carbamate **15** by coupling and epoxidation.

Scheme 2: Tu's retrosynthetic analysis of (+)-sieboldine A 1.

1.1.3 Total synthesis of (+)-sieboldine A by Overman

The key step in Overman's preparation of (+)-sieboldine A **1** was a pinacolterminated cyclization cascade (Scheme 3). The synthetic pathway started with a methyl cuprate-promoted SN2' alkylation of lactone **11**, followed by iodolactonization to give iodolactone **16** in 93% yield. Next, lithium aluminum hydride (LAH) reduction of **16** led to the corresponding dehalogenated diol, which was selectively monosilylated and oxidized with Dess-Martin periodinane (DMP) to form ketone **17**. Addition of *E*-vinyl iodide derivative **18** to ketone **17** afforded the desired allylic alcohol **19** in 90% yield. Thus, silylation of the allylic hydroxy functionality of **19** followed by Swern oxidation of the primary silyl ether, and subsequent reaction with the Bestmann–Ohira reagent **20** afforded alkyne **21** in 70% yield. Alkyne **21** was subjected to a gold-catalyzed pinacol-type cyclization reaction to deliver *cis*hydrindanone **23** in 78% yield.

Scheme 3: Overman's total synthesis of (+)-sieboldine A 1.

The next steps were concerned with the construction of the tetrahydrofuran moiety. Ozonolytic cleavage of the exo-methylene functionality of **23** and subsequent base-promoted elimination of the phenoxide afforded enone **24**. Europium(III)-catalyzed hetero Diels-Alder reaction with ethyl vinyl ether furnished the tricyclic dihydropyran **25**. Reduction of the C13 carbonyl group followed by oxidation with dimethyldioxirane (DMDO) and treatment with BF₃.OEt₂ and ethanethiol afforded cyclic hemithioacetal **26** in 53% yield.

Desilylation of **26** was carried out with TBAF and the resulting primary alcohol was subjected to a Mitsunobu coupling with protected hydroxylamine derivative (NsNH-OMOM). Then, the nosyl protecting group was removed with thiophenolate and treatment with dimethyl(methylthio)sulfonium triflate (DMTST) in the presence of 2,6-di-*tert*-butyl-4-methylpyridine (DTBMP) afforded the pentacyclic azacyclononane **27** in 39% yield. Final oxidation and MOM deprotection delivered (+)-sieboldine A **1** in 59% yield.^{18,19}

1.1.4 Total synthesis of (+)-sieboldine A by Tu

The plausible biogenesis of (+)-sieboldine A **1** was initially proposed by Kobayashi (Scheme 4). Alopecuridine **2** may exist in either an aminoacetal form or an amino ketone form. The aminoacetal form of **2** was confirmed by X-ray analysis. SieboldineA **1** might be generated from alopecuridine **2** as follows. Cleavage of the C13-N1 bond of an N-oxidative product of **2** followed by Polonovski-type reaction (path a) might result in an iminium intermediate **A** with a nine-membered ring system, although an alternative path through a hydroxylamine derivative **B** is also possible (path b). Oxidation of the imine **A** to produce an oxaziridine ring or a nitrone followed by attack of the hydroxy group at C4 to C1 will give (+)-sieboldine A **1**, although an alternative path (path c) is also possible.⁵

Scheme 4: Kobayashi's proposed biogenesis of (+)-sieboldine A 1.

Tu and coworkers followed Kobayashi's proposed biogenetic pathway and used alopecuridine **2** as a synthetic scaffold to access sieboldine A **1** (Scheme 5).^{20,21} The synthesis was commenced by treatment of *trans*-cyclohexenol **28** with trimethyl orthoester at 165 °C and the generated ester was reduced by LAH followed by Dess-Martin oxidation and Wittig methylenation to produce bromoalkene derivative **29** in 52% yield with a dr of 5:1. The known ketone **15** was prepared from azepine **30** via a Tiffenau–Demjanov-type reaction followed by hydrolysis of the ethyl ester and subsequent decarboxylation. Coupling of **29** with **15** was carried out through the

intermediacy of the vinylcerium species generated from the lithium salt of **29**. To avoid elimination, the generated coupling product was directly epoxidized by *m*-CPBA resulting in formation of epoxides **12** and **12'** as an inseparable mixture in 71% yield with a dr of 6:1. The semipinacol rearrangement of **12** and **12'** promoted by BF₃.OEt₂ took place to produce ketones **13** and **13'** in 51% yield. After a three-step sequence involving hydroxyl group protection, ozonolysis, and SmI₂ promoted Intramolecular pinacol coupling, the so obtained tricyclic compound **31** was further subjected to one-pot deprotection, TPAP oxidation and final N-Boc deprotection to deliver (+)-alopecuridine TFA **2** in 23% yield from **13**.

The biomimetic transformation of (+)-alopecuridine TFA **2** to (+)-sieboldine A **1** was realized through a two-step one pot oxidation cascade. Alopecuridine TFA **2** was oxidized to N-oxide **32** by the peroxide agent. The N-oxide **32** might isomerize to N-hydroxide **33** which underwent further oxidation with HgO to give nitrone **34**. The Intramolecular nucleophilic attack of the C4 hydroxy group to C1 led to formation of the tetrahydrofuran ring and afforded (+)-sieboldine A **1** in 60% yield.

Scheme 5: Tu's total synthesis of (+)-sieboldine A 1.

1.2 Pauson-Khand Reaction (PKR)

1.2.1 The Discovery and Early Evolution of the PKR

Metal-mediated transformations have changed the profile and enhanced the potential of organic synthesis well beyond that which was previously possible or imaginable. The cycloaddition reaction is one of the most attractive synthetic protocols for accessing a variety of scientifically interesting and pharmaceutically useful ring skeletons from simple starting materials.²² In 1973, Pauson and Khand reported the formal [2+2+1] cycloaddition reaction between an alkyne, an alkene, and

carbon monoxide that has become one of the most elegant methods for the construction of the cyclopentenone derivatives (Scheme 6).^{23,24}

Scheme 6: Pauson-Khand reaction

The first reported example was the reaction of norbornadiene 36 with the phenylacetylene-dicobalthexacarbonyl complex 35 to form the corresponding cyclopentenone 37 in 45% yield (Scheme 7).²⁴

Scheme 7: First example of PKR

The initial scope and generality of this cyclopentannulation process was established through an extensive series of studies by Pauson and his co-workers.²⁵⁻²⁷ However, there were some limitations for the original PKR at that early stage. For example, the stoichiometric amount of catalyst and only strained olefins reacted efficiently under the original reaction conditions. With respect to regiochemistry of PKR, the larger alkyne substituent is being installed in the position α to the cyclopentenone carbonyl unit. Unsymmetrical alkenes usually gave a mixture of regioisomers (Scheme 8).²⁸

Scheme 8: Regiochemistry of the PKR

1.2.2 Mechanism of the PKR

The mechanism of the PKR, initially proposed by Magnus, has now been widely accepted (Scheme 9). In the presence of $Co_2(CO)_8$ the alkyne **38** forms the tetrahedral dicobalt complex **39**. After loss of CO, the alkene is coordinated to give complex **40**, which undergoes insertion of the alkene moiety into the sterically least hindered Co-C bond to give complex **41**. Subsequent CO insertion gives rise to the cobalt acyl complex **42**. Extrusion of one $Co(CO)_3$ fragment yields the cobaltacyclopropene complex **43**, which is finally converted to the cyclopentenone **44** by reductive cleavage of $Co_2(CO)_6$.²⁹

Scheme 9: Mechanism of PKR

1.2.3 Intramolecular PKR

In 1981, Schore and co-workers reported the first example of an intramolecular PKR.³⁰ This version provided a powerful methodology for construction of cyclopentenone fused bicyclic frameworks in a straightforward manner. Within the original landmark publication, both hept-6-en-1-ynes **45** and oct-7-en-1-ynes **47** were utilized as substrates in intramolecular PK process to deliver bicyclo[3.3.0]octenones **46** andbicyclo[4.3.0]nonenone **48** (Scheme 10).³⁰

Scheme 10: Intramolecular PKR

Later, Magnus further enhanced the efficacy of PKR by showing that appreciable stereoselectivity could be achieved within the intramolecular processes, a feature that proved to be the cornerstone to the application of the PKR in natural product synthesis.³¹ Substituents at the propargylic C3 position in **49** and allylic C5 position in **52** have a preference to become situated on the *exo*-face and *syn* to the ring fusion hydrogen in the resulting bicyclic PK products **50** and **53** respectively (Scheme 11). The level of stereoselectivity was further enhanced by bulky substitution at the terminal alkyne carbon.³²

Scheme 11: Diastereoseletivity of intramolecular PKR.

With the stereochemical reaction outcomes established for a number of substrate substitution patterns, Magnus and co-workers utilized the intramolecular PKR as a key step for the synthesis of the linearly-fused triquinane natural products, coriolin,³¹ hirsutic acid³³ and cytotoxic sesquiterpene, quadrone.³⁴

The intramolecular version of the PK annulation has continued to expand in terms of substrate scope and reaction selectivity. The growth in PK potential has been

driven by a range of emerging procedures using a variety of metal complexes and promoters, which have appreciably enhanced the overall efficiency of the cyclization method.³⁵⁻⁴⁴

1.3 Total syntheses of *Lycopodium* **alkaloids using intramolecular PKR as a key step**

1.3.1 Total Syntheses of (+)-Lycoposerramine-C and (-)-phlegmariurine-A by Takayama

In 2009, Takayama *et al.* reported the total synthesis of (+)-lycoposerramine-C **60** and (-)-phlegmariurine-A **61** (Scheme 12).⁴⁵ Amide **55** was stereoselectively prepared by a diastereoselective Hosomi-Sakurai allylation⁴⁶ of **54** and subsequent cleavage of the oxazolidinone ring. Next, introduction of the alkyne chain to **55** followed by a Corey-Bakshi-Shibata (CBS) reduction⁴⁷ and TIPS protection of the resulting hydroxyl group afforded enyne **56** in 96% yield. The Intramolecular PKR of enyne **56** proceeded smoothly to form hydrindanone **57** in 87% yield. Construction of the quaternary center was conceived through a stereoselective CBS reduction of **57** followed by sulfoxide formation and Claisen rearrangement to afford the desired aldehyde **58** in 51% yield. The tricyclic dione **59**, obtained from **58** in 12 steps, was treated with ZnBr₂ to form (+)-lycoposerramine-C **60** in 32 % yield from **58**. Furthermore, base treatment of (+)-lycoposerramine-C **60** afforded (-)-phlegmariurine-A **61** in 95% yield.

Scheme 12: Takayama's total synthesis of (+)-lycoposerramine-C 60 and (-)phlegmariurine-A 61.

1.3.2 Total Syntheses of (-)-huperzine-Q, (+)-fawcettimine and (+)-fawcettidine by Takayama

In 2011, Takayama and coworkers completed the first total synthesis of (-)huperzine-Q **68** utilizing an intramolecular PKR as a key step (Scheme 13).⁴⁸ First, Noyori asymmetric hydrogenation⁴⁹ of ketone **62**, followed by acid catalyzed cyclization gave lactone **63** in 68% yield with 83% ee. Allyl lactone **64**, derived from **63** in 2 steps, was reduced by LiBH₄ to give enynediol **65** in 95% yield. Direct subjection of enynediol **65** to intramolecular PKR conditions resulted in formation of the undesired C7-epimer. Therefore, Takayama and coworkers decided to install a silicon tether to force the substrate in a chair-like conformation with the C15 sidechain in axial position. With the silyl tether in place, PKR of enyne **66** and subsequent treatment with concentrated hydrochloric acid afforded the desired desilylated bicyclic Pauson-Khand product **67** in excellent yield. With bicyclic intermediate **67** in hand, takayama was able to access (-)-huperzine-Q **68** in 13 synthetic steps from **67** with an overall yield of 16.4%. In the next year, takayama reported the total synthesis of (+)-fawcettimine **3** and (+)-fawcettidine **69** from **67** as a common synthetic intermediate.⁵⁰

Scheme 13: Takayama's total synthesis of (-)-huperzine Q 68, (+)-fawcettimine 3, (+)-fawcettidine 69.

1.3.3 Total Syntheses of (-)-magellanine, (+)-magellaninone, and (+)-paniculatine by Mukai

In 2007, Mukai reported the total syntheses of (-)-magellanine 77, (+)magellaninone 78, and (+)-paniculatine 79 from diethyl L-tartrate 70 in a stereoselective manner (Scheme 14).⁵¹ The crucial steps in these syntheses involved two intramolecular Pauson-Khand reactions and a Ueno-Stork reaction^{52,53} for construction of the quaternary center. Enyne 71, derived from diethyl L-tartarate 70, was subjected to an intramolecular PKR according to Sughihara's condition⁵⁴ to give preferentially bicyclo[4.3.0]nonenone 72 in 92% yield. Selective deprotection of the C2-siloxy group of 72 with TBAF furnished alcohol 73 in 99% yield. The simultaneous and stereoselective introduction of the essential carbon units at the C1 position and the C9 position was realized by the Ueno-Stork reaction. Alcohol **73** was treated with ethyl 2-bromovinyl ether under acidic catalysis, and the resulting bromoacetal derivative was subsequently subjected to AIBN in refluxing benzene in the presence of allyltributyltin to give the tricyclic lactone **74** in 65% yield. The enyne **75**, generated from **74**, was subjected to a second intramolecular PKR to afford tetracyclic derivative **76** which finally converted to (-)-magellanine **61**, (+)-magellaninone **62** and (+)-paniculatine **63** in an overall yield 1.7, 1.9 and 2.8% respectively.

Scheme 14: Mukai's Total Synthesis of (-)-magellanine 77, (+)-magellaninone 78, and (+)-paniculatine 79.

1.3.4 Total Syntheses of (+)-fawcettimine and (+)-lycoposerramine B by Mukai

Three years later, Mukai and coworkers utilized the lactone intermediate 74 for the asymmetric preparation of (+)-fawcettimine 3 and (+)-lycoposerramine B 82 (Scheme 15).⁵⁵ The amide alcohol 80, derived from intermediate 74 in 11 synthetic steps, was subjected to an intramolecular Mitsunobu reaction⁵⁶ to give tricyclic derivative 81 in 96% yield. The stereoselective introduction of C15 methyl and final conversions afforded (+)-fawcettimine 3 and (+)-lycoposerramine B 82 from tricyclic 81 in 20 and 6% yield respectively.

Scheme 15: Mukai's Total Synthesis of of (+)-fawcettimine 3 and (+)lycoposerramine B 82.

The high stereoselective intramolecular PKR developed by Mukai for construction of the bicyclo[4.3.0] skeleton applied a nice protocol for the preparation of the *cis*-hydrindane moiety in fawcettimine-type *Lycopodium* alkaloids and enabled the access for several complex natural products from common precursors. However, the approach seemed to have two issues that needed to be improved. First, the conversion of diethyl L-tartrate **54** into the PKR substrate enyne **55** involved 10 synthetic steps. Secondly, the stereoselective introduction of C15 methyl group

needed lengthy functional group manipulations which required several additional steps.

1.3.5 Total Syntheses of (±) -fawcettimine, (±) -fawcettidine, (±) lycoposerramine-Q and (±)-lycoflexine by Mukai

In 2013, Mukai reported the total synthesis of new Lycopodium alkaloids using a more efficient second generation synthetic pathway for preparation of bicyclo[4.3.0]nonenone skeleton.⁵⁷ In the improved protocol, Dienyne **84**, generated from commercially available propargyl alcohol 83 in only 5 synthetic steps, was used as a substrate for the PKR. The intramolecular PKR of 84 afforded bicyclo[4.3.0]nonenone 85 in 86% yield with a dr of 10: 1. The exomethylene moiety was stereoselectively reduced by Wilkinson's hydrogenation to give the methyl derivative 86 with the required stereochemistry at C15 in 80% yield. The stereoselective creation of the quaternary center and introduction of allyl group α to the carbonyl group was achieved through the Ueno-Stork reaction to form cyclic acetal 87 in 73% yield. A cascade of reduction, benzyl protection, acid treatment and Wittig olefination gave the diallyl derivative 88 in 48% yield. The diallyl 88 was converted to the tricyclic derivative 90 in 7 synthetic steps with a Mitsunobu coupling reaction of diol 89 as a key step. With the common synthetic intermediate 90 in hand, final manipulations allowed the access of (\pm) -fawcettimine 3, (\pm) -fawcettidine 69, (\pm) lycoposerramine-Q 91 and (\pm) -lycoflexine 92.

Scheme 16: Mukai's total syntheses of (±)-fawcettimine 3, (±)-fawcettidine 69, (±)lycoposerramine-Q 91 and (±)-lycoflexine 92.

1.4 Research objective

For the past century, the total synthesis of natural products has served as the flagship of chemical synthesis and the principal driving force for discovering new chemical reactivities, evaluating physical organic theories, testing the power of existing synthetic methods, and enabling biology and medicine to discover new drug candidates. The PKR has become one of the most important stratigies for the synthesis of cyclopentenone containing natural products. The intramolecular PKR of enynes, developed in Mukai's group, enabled the construction of bicyclo[4.3.0]nonenoe skeleton in a highly diastereoselective manner and allowed the access of several fawcettimine-type Lycopodium alkaloids. This research is concerned with the enantioselective total synthesis of (+)-sieboldine A 1 using an intramolecular PKR as a key step for construction of the cis-hydrindane core. (+)-Sieboldine A has

interesting biological activities and providing a shorter and entatioselective route for its preparation from commercially available starting materials will help to explore its scaffold for the discovery of potential anti-Alzheimer agents.

OH. $\int 0$ N-OH Propargyl alcohol (+)-Sieboldine A 1

Scheme 17: Research objective for total synthesis of (+)-sieboldine A 1.

CHAPTER II

Results and Discussion

2.1 Total synthesis of (±)-Sieboldine A

2.1.1 Retrosynthetic analysis of (±)-Sieboldine A

Our retrosynthetic plan for the preparation of (\pm) -sieboldine A 1 is presented in Scheme 18. The elaboration of the sensitive N,O-acetal functionality of (\pm) -1 was planned to be formed during the late stage of the synthesis via the intramolecular displacement reaction of the lactol functionality of **93** by the *O*-protected hydroxylamine residue.^{58,59} The spirolactol framework of **93** would be formed through oxidative cyclization of the diol **94**. Introduction of the nitrogen functionality could be achieved through the hydroboration–oxidation of the allyl side chain of **95**, followed by a Mitsunobu coupling with the protected hydroxylamine derivative. The *cis*-hydrindanone **95** with all-carbon units required for **1** would be obtained by the consecutive bromoacetalization, Ueno–Stork cyclization, and Wittig olefination of **96**. In our previous studies, we definitely showed that the PKR is a powerful and efficient synthetic tool to assemble bicyclo[4.3.0] frameworks.^{55,57,60} Based on our previous results, the PKR of the dienyne **97** would be expected to stereoselectively produce **96**. Dienyne **97** would be available through a Barbier coupling of aldehyde **98** with a suitable allyl derivative.

Scheme 18: Retrosynthetic analysis of (\pm) -Sieboldine A 1.

2.1.2 Synthesis of PKR precursor Dienyne 105

The synthetic plan towards (\pm) -sieboldine A 1 started with addition of allyl bromide to propargyl alcohol 83 in the presence of zinc dust and copper(I) iodide to

give alcohol **99** in 56% yield (Scheme 19).⁶¹ The alcohol **99** was subjected to Appel reaction conditions to form iododiene **100** in 71% yield.⁵⁷ On the other hand, the hydroxyl group of commercially available 4-pentyn-1-ol **101** was protected with a PMB group to give pentyne **102** in 96% yield. Pentyne **102** was hydroxymethylated with *n*-BuLi and paraformaldehyde and the resulting alcohol was oxidized by 2-iodoxybenzoic acid (IBX) in DMSO/THF mixture to give the desired aldehyde **103** in 66 % yield. The iododiene **100** was entered into a Barbier reaction with aldehyde **103** and the resulting secondary alcohol was protected with TBS group to form dienyne **105**.

Scheme 19: Preparation of dienyne 105.

2.1.3 Intramolecular PKR of Dienynes 104 and 105

The intramolecular PKR of dienynes **104** and **105** using a catalytic amount of $Co_2(CO)_8$ in presence of tetramethylthourea (TMTU) under 1 atm of CO afforded indenones **106** and **107** (Table 1).⁶²⁻⁶⁴ An extremely high preferential formation of indenones **106** and **107** over **106'** and **107'** could tentatively be rationalized by considering the steric hindrance between the OR group and the carbon reside having PMB in the possible cobaltacyclic intermediates **b** and **c**. Dienyne **105** showed the best results in terms of diastereoselectivity and yield. The enhanced

diastereoselectivity in PKR of dienyne **105** compared to **104** might be attributed to the more steric repulsion exhibited by the OTBS than the OH group in **104**.

 Table 1. Intramolecular PKR of dienynes 104 and 105.

2.1.4 Stereoselective Reduction of indenone 107

After obtaining indenone **107** with the required stereochemistry, our efforts moved towards the introduction of C15 methyl group and stereoselective reduction of the ketone group (Table 2). Hydrogenation of the exomethylene moiety of **107** in presence of 5 mol% Wilkinson's catalyst proceeded in a highly chemo- and stereoselective manner to form the methyl derivative **108** having the C15-methyl group with the desired stereochemistry in 98% yield.⁵⁷ Stereoselective reduction of the ketone group was examined using K-selectride under different conditions, (Table 2). Although the use of [18]-crown 6 as an additive during the reduction process had a beneficial effect on the yield, it decreased the stereoselectivity of the reduction. In addition, oxygenated solvents like Et₂O and THF showed the best results in terms of yield and stereoselectivity over hydrocabon solvents as toluene.

H, M TBSO 10	P RhCl(1 atm Benz rt, 9 7	PPh) ₃ H ₂ ene 8% TBSO 108	K-selectride conditions -78 °C-rt -OPMB	TBSO 109
Entry	Solvent	Additive	Yield (%)	dr ^a
1	Toluene		71	88:12
2	THF		87	92:8
3	Et ₂ O		76	73:27
4	Toluene	[18]-crown-6	77	68:32
5	THF	[18]-crown-6	89	61:39

 Table 2. Stereoselective reduction of ketone 108.

^aRatio calculated from isolated yields after column chromatography.

2.1.5 Construction of the quaternary center and difficulties in removal of benzyl group

The next synthetic steps aimed towards the construction of the all-carbon quaternary center by taking the advantage of the Ueno-Stork reaction (Scheme 20).⁶⁵⁻⁶⁹ First, alcohol **109** was protected with a benzyl group in 83% yield. The TBS group of **110** was removed by TBAF and the resulting alcohol was reacted with ethyl 2-bromovinyl ether in presence of acid catalysis to afford the bromoacetal **112**. Treatment of **112** with tributyltin hydride under conventional radical initiation

conditions (AIBN in toluene) provided the cyclic acetal **113** in 73% yield of 2 steps with a dr of 3:1. The hemiacetal derivative, obtained from **113** by acid treatment, underwent a Wittig olefination reaction with PPh₃MeBr and KHMDS to afford allyl alcohol **114** in 61% yield. Allyl alcohol **114** was protected with a MOM group to provide indene **115** in 91% yield. At this stage, we needed to remove the benzyl protecting group to restore the ketone functionality. Our attempts to obtain alcohol **116** through radical reduction of indene **115** with lithium 4,4'-di-*tert*-butulbiphenylide (LiDBB)⁷⁰ or lithium naphthalenide (LN)⁷¹ were unsuccessful. The encountered difficulties in removal of benzyl group through radical reduction may be attributed to the sterically congested environment surrounding the benzyl group. Accordingly, we decided to modify our strategy to form the oxa quaternary center before performing the Wittig olefination.

Scheme 20: Preparation of 115 and attempts for benzyl deprotection.

2.1.6 Attempts for silyl enolization of ketone 119

The TBS group of **108** was removed by TBAF and the resulting alcohol **117** was entered into the Ueno-Stork cascade to obtain the cyclic acetal **119** in 89% yield of 2 steps. We conceived that the formation of the oxa quaternary center could be

achieved through a Rubottom oxidation of the silyl enol derivative 120.⁷² We examined different protocols for preparation of the thermodynamically controlled silyl enol isomer 120 but our efforts were unfruitful (Table 3). The chlorosilanes were found to be unreactive enough for the conversion while the silyl triflates leaded to decomposition of the starting material.

 Table 3. Attempts for silvl enolization of ketone 119.

Entry	Conditions	Solvent	Temp.	Time/h	Result
1	TMSCI, Mg	THF	rt to rf	24	No reaction
2	TBSCI, Mg	THF	rt to rf	24	No Reaction
3	TBSCI, Et₃N	DMF	rt	24	No Reaction
4	TBSCI, Et ₃ N, Nal	CH₃CN	rf	24	No reaction
5	TMSOTf, Et₃N	CH_2CI_2	0 °C to rt	2	Decomposed

2.1.7 Regioselectivec acetate enolization ketone 119

The acetate enolization of ketone **119** derivative proved to be more successful. we studied the acetate enolization process under weak basic catalysis, high reaction temperatures and long reaction times to favor the formation of the thermodynamically controlled isomer **121** over the kinetically controlled one **121'** (Table 4).

 Table 4. Optimization of regioselective acetate enolization ketone 119.

Entry	Conditions	Temp(°C)	Time/h	Yield(%)

Peagent (Equiv		Additive	Solvent			
	Reagent (Equiv.)	(Equiv.)	Solvent			
1	Isopropenyl	P-TsOH	Neat	110	24	16
I	acetate	7-13011	Neat	110	27	10
2	AcCl		CH_Cl_	40	12	Complex
-			0112012	10	12	mixture
3	AcCl	Pyridine,	CH2CI2	40	12	Complex
Ŭ		DMAP	0112012	10	12	mixture
4	AcoO	Pyridine,	Neat	40	12	28
•	1.020	DMAP	Hour			20
5	Ac ₂ O	Et ₃ N,DMAP	CH_2CI_2	40	32	44
6	$Ac_{2}O(45)$	Et ₃ N(60)	Neat	40	8	58
Ū	1020(10)	,DMAP	Hour		Ū	
7	$Ac_{2}O(60)$	Et ₃ N(30)	Neat	40	16	85
·	1.020 (00)	,DMAP	Hour		10	
8	Ac ₂ O (60)	Et ₃ N(20)	Neat	40	48	92
Ū		,DMAP				
F	ų / P		н ~	OAc		OAc
Acetate enolization				\		
O ↓ CPMB			0	2		
EtO		کر EtO		\ EtO		
119			121		121'	

The results showed that acetic anhydride was superior to acetyl chloride for the enolization of ketone **119**. Aliphatic weak basic amines as Et_3N were more successful in catalyzing the enolization process than their aromatic peers. The high regioselectivity was achieved by utilizing Ac_2O and Et_3N and DMAP and performing the reaction neat at 40 °C for 48 h to obtain acetate enol **121** in 92% yield.

2.1.8 Preparation of Triol 125

The oxidation of acetate enol **121** with *m*-CPBA occurred from the sterically less hindered α face, and the resulting acetoxy epoxide moiety was hydrolyzed to give the α -hydroxy ketone derivative **122** in 96% yield (Table 5). Ketone **122** was temporarily converted to the *trans*-diol derivative **123** in 86% yield by the stereoselective K-selectride reduction to avoid any side reactions during further

chemical elaboration. The stereoselectivity observed in the K-selectride reduction of **123** might be attributed to the attack of the bulky hydride donor from the sterically less-hindered α face again. Compound **123** was treated with PPTS, and the resulting hemiacetal **124** was subsequently subjected to the Wittig olefination to form the allyltriol **125**. The polar nature of the Wittig olefination substrate triol **124** necessitated the use of base formulated in oxygenated solvent rather than hydrocarbon solvent to optimize the yield of the reaction.

 Table 5. Optimization of Wiitig olefination of hemiacetal 124.

2.1.9 Introduction of the nitrogen functionality

Having established all the carbon units with the proper stereochemistry, we focused on the introduction of the nitrogen functionality (Scheme 21). The two secondary hydroxyl groups of the triol derivative **125** were protected with pivaloyl group to provide **126** in 71% yield, which was subjected to hydroboration with BH₃.SMe₂, followed by oxidation using NaBO₃.4H₂O to afford primary alcohol **127** in 82% yield.⁷³ The Mitsunobu reaction of **127** with protected hydroxyl amine

derivative Ns-NH-OMOM effected the introduction of the nitrogen atom to give **128** in 88% yield.⁷⁴ The PMB group of **128** was then removed with DDQ to afford the diol **129** in 85% yield.

Scheme 21: Preparation of diol 129.

2.1.10 Optimized oxidation of Diol 129

For the formation of the spirotetrahydrofuran ring, we visualized that a controlled oxidation of diol **129** into aldehyde **130** will be followed by a spontaneous nucleophilic attack of the tertiary hydroxyl to the aldehydic carbonyl and result in formation of the spirolactol derivative **131**. We scanned the oxidation of diol **129** with different oxidant systems and the results are shown in Table 6.

The periodinane reagents showed the best potential for oxidation of diol **129** in terms of yield. Optimization of oxidation of **129** by periodinanes was examined using gradually increasing equivalents of the oxidants to determine the best equivalent that provides the maximum yield of spirolactol **131** with minimum overoxidation to the lactone **131'** (Table 7). We found that the oxidation of the diol **129** with 1.5 equivalent of IBX in THF/DMSO (1:1) at room temperature provided a clean conversion to the spirolactol **131** in 83% yield without overoxidation to the corresponding lactone species.
Table 6. Oxidation of diol 129 with different oxidants.

Entry	Oxidant ^a	Solvent	Temp.	Time (h)	Yield (%) ^b
1	Dess-martin	CH_2CI_2	0 °C to rt	3	45
2	IBX	THF/DMSO	0 °C to rt	6	51
3	PCC	CH_2CI_2	0°C	4	29
4	Swern	DMSO	-78 °C to rt	3	33 ^b
5	Parikh Doering	DMSO	rt	6	28
6	SeO ₂	CH_2CI_2	0°C	26	26

^aall Oxidants was used in 1.1 equivalent. ^bSM was recovered in varying yields after column chromatography.

Table 7. Optimization of oxidation of diol 129 with periodinanes.

Entry	Oxidant	Fauivalent	Yield		
2	Oxidant	Equivalent	131%	131'%	
1		1.1	45 ^a		
2		1.3	51 ^a		
3	Dess-martin	1.5	58 ^a		
4		1.7	43	12	
5		2	33	35	
6		1.1	51 ^a		
7	IDV	1.3	64 ^a		
8	IDA	1.5	83 ^b		
9		1.7	74	5	

^aSM was recovered in varying yields after column chromatography. ^bSM was recovered in 5 % yield sfter column chromatography.

2.1.11 Assembly of the azacyclononane ring

With the spirolactol **131** in hand, we examined the formation of the azacyclononane ring. The denosylation of **131** with thiophenolate smoothly proceeded to afford the aminolactol **132** in 90% yield. Aminolactol **132** possesses all of the necessary functional groups to form tetracyclic derivative **134**. It was envisioned that treatment of **132** with Lewis or Brønsted acids might remove the MOM group from the hydroxylamine, thereby freeing the hydroxylamine to react with oxocarbenium ion **133**, generated under acidic reaction conditions, and assemble the nine-membered ring to form the tetracyclic derivative **134** (Table 8).

Entry	Condition	Solvent	Result
1	MgSO ₄	CH_2CI_2	No Reaction
2	PPTS	Pyridine	Complex mixture
2	ZnBr ₂	CH_2CI_2	Decomposition
3	TFA	CH_2CI_2	Decomposition
4	TMSOTf	CH_2CI_2	Decomposition
5	TMSI	CH ₂ Cl ₂	Decomposition
6	PPh ₃ ,DEAD	Toluene	No Reaction
7	Heat at 80 °C	Toluene	No Reaction

Our efforts to induce dehydrative condensation of aminolactol **132** by MgSO₄, or a combination of MgSO₄ and ZnCl₂, were unrewarded. Exposure of **132** to PPTS in pyridine resulted in complex reaction mixture. Moreover, Treatment of aminolactol **132** with a variety of Brønsted and Lewis acids resulted in complete destruction of the starting material (Table 8). We also explored the thermal dehydrative condensation

and Mitsunobu reaction conditions to promote the formation of azacyclononane ring but our attempts were unsuccessful. Our inability to form the Nhydroxyazacyclononane ring under variety of conditions necessitated the search for milder reaction conditions to promote the condensation and complete the total synthesis of sieboldine A. We finally reached the conclusion that the Schmidt glycosylation condition was the best one for our purpose.75-77 Under Schmidt glycosylation conditions, aminolactol 132 would form the trichloroacetamidate 135 which generate the oxocarbenium ion 136. Intramolecular nucleophilic attack of the N to C1 will assemble the azacyclononane ring. Indeed, treatment of aminolactol 132 with Cl₃CCN and DBU in CH₂Cl₂ at 0 °C to room temperature afforded the desired tetracyclic derivative 137 in 63% yield (Table 9).

Entry	Cl₃CCN Equivalent	Temp.	Time (h)	Yield (%)
1	3	0 °C to rt	18	31
2	3	rt	18	22
3	5	0 °C to rt	18	55
4	10	0 °C to rt	48	63

2.1.12 Completion of total synthesis of (±)-sieboldine A 1

The final synthetic manipulations included removal of the protecting groups and restoring the ketone functionalities to complete the total synthesis of (\pm) sieboldine A **1**. Optimization of the deprotection of Piv groups of **137** under different conditions is shown in table 10. The reductive cleavage with LAH showed the best results and afforded diol **138** in 92% yield.

Table 10. Optimization of Piv deprotection of 137.

Entry	Condition	Solvent	Temp.	Yield (%)
1	DIBAL-H	CH ₂ Cl ₂	-78°C	63
2	K ₂ CO ₃	MeOH	rf	42
3	<i>t</i> -BuOK	MeOH/H ₂ O	rt	45
4	LAH	THF	0 °C to rt	92

Diol **138** was oxidized with DMP to furnish the diketone derivative **139** in 72% yield. Finally, deprotection of the MOM protecting group with BBr₃ delivered (\pm)-sieboldine A **1** in 73% yield.

Scheme 22: Completion of total synthesis of (±)-sieboldine A 1.

2.2 Total synthesis of (+)-Sieboldine A

2.2.1 Retrosynthetic analysis of (+)-Sieboldine A

For the preparation of (+)-sieboldine A 1, we decided to follow the same synthetic steps explored in the racemic route with the exception of employing an optically pure dienyne 97 as a PKR substrate. In the racemic route, we prepared dienyne 97 through a Barbier coupling reaction between aldehyde 98 and iododiene 100. For induction of chirality, we needed an enantioselective preparation of dienyne (+)-97 through the asymmetric allylation of aldehyde 98 with a suitable allyl derivative 140.

Racemic route

Scheme 23: Retrosynthetic analysis of (+)-sieboldine A 1.

The asymmetric allylation of aldehyde **98** is obviously one of the crucial steps in our synthesis. A parallel research at Mukai's group was concerned with the enantioselective preparation of (+)-**97** through asymmetric allylation of aldehyde **103** (Table 11).⁷⁸

 Table 11. Optimization of asymmetric allylation of aldehyde 103.

Entry ^{a)}	R	X	Condition	Solvent	Temp.	Yield (%)	ee ^{b)} (%)
1	-CH=CH ₂	I	In ⁰ , (+)-Ipc ₂ BCI	THF	-78 °C to rt	7	75
				34			

2	-CH=CH ₂	Ι	In ⁰ , (+)-Ipc ₂ BCI	THF	-98 °C to rt	35	77
3	-OTBDPS	I	In ⁰ , (+)-Ipc ₂ BCI	THF	-78 °C to rt	15	75
4	-OTBDPS	SnBu₃	TiCl ₄ ,Ti(O <i>i-</i> Pr) ₄ (<i>R</i>)-BINOL	CH_2CI_2	-15 °C to rt	80	89
5	-OAc	SnBu₃	TiCl ₄ ,Ti(O <i>i</i> -Pr) ₄ (<i>R</i>)-BINOL	CH_2CI_2	-15 °C to rt	80	93

^aPrevious work reported by lida.⁷⁸

^bee was determined by HPLC analysis (Daicel CHIRALPAK® OD-H).

Several allyl derivatives and different asymmetric reaction conditions were evaluated to optimize the allylation process in terms of chemical yield and enantiomeric excess (Table 11). The results showed that (+)-97 could be prepared enantioselectively through a Keck asymmetric allylation of aldehyde 103 with allyl stannate derivatives.⁷⁸

2.2.2 Keck asymmetric allylation of aldehyde 103

Allyl stannate **143** was prepared as described by trost *et al.*⁷⁹ 2-Methyl-2propen-1-ol **141** was reacted with *n*-BuLi, Bu₃SnCl and TMEDA in a mixture of THF/Et₂O and the resulting alcohol **142** was acetylated to afford allyl stannate **143** in 51% yield of two steps. We also optimized the formation of aldehyde **103** from 4pentyn-1-ol **101** to be conducted in only 2 steps. First, 4-pentyn-1-ol **101** was protected by a PMB group to give pentyne **102** in 96% yield. Second, the direct formylation of **102** under conventional conditions⁸⁰ gave the aldehyde **103** in 81% yield.

Scheme 24: Asymmetric allylation of aldehyde 103.

The Keck asymmetric allylation of aldehyde **103** with allyl stannate **143** using the modified Ti(IV) catalyst described by Maruoka *et al.*⁸¹ proceeded smoothly and afforded hydroxyenyne (+)-**144** in 80% yield with 93% ee. The (*R*)-absolute configuration of (+)-**144** was established by NMR spectroscopic considerations based on the differences in chemical shift between the derived Mosher esters **145** and **146**.

2.2.3 Intramolecular PKR of Dienyne (+)-105

The TBS protection of (+)-144 was followed by treatment with vinyl magnesium bromide to furnish dienyne (+)-105 in 85% yield of 2 steps. The highly diastereoselective PKR of (+)-105 was realized under catalytic conditions using 20 mol% of $Co_2(CO)_8$ and 20 mol% of TMTU in toluene at 70 °C under 1 atm of CO to afford the indenone (-)-106 in 96% yield with dr of 98:2.

Deprotection of the TBS group of (-)-106 with TBAF provided the alcohol (-)-148, which was recrystallized from EtOAc/hexanes to furnish the optically pure (-)- **148** in 90% yield (>99% ee). Fortuitously, alcohol (-)-**148** was a crystalline solid and its relative configuration was confirmed by X-ray crystal structure analysis.⁸²

Scheme 25: Preparation of alcohol (-)-148.

2.2.4 Synthesis of Triol (-)-125

The hydrogenation of (-)-148 in the presence of Wilkinson's catalyst afforded the methyl derivative (-)-117 in 98% yield. The Ueno-Stork cascade was applied to (-)-117 to produce cyclic acetal (+)-119 in 91% yield with a dr of 3:1. Upon exposure to acetic anhydride in the presence of Et₃N and DMAP at 40 °C, (+)-119 underwent regioselective acetate enolization to provide the vinyl acetate derivative (-)-121 in 92% yield. The oxidation of (-)-121 with *m*-CPBA followed by base promoted hydrolysis gave the α -hydroxy ketone derivative (+)-122 in 96% yield. The ketone derivative (+)-122 was temporarily converted to the *trans*-diol derivative (-)-123 in 86% yield by the stereoselective K-selectride reduction. Compound (+)-123 was treated with PPTS, and the resulting hemiacetal was subsequently subjected to the Wittig olefination with MePPh₃Br to form the allyltriol (-)-125 in 55% yield.

Scheme 26: Preparation of triol (-)-125.

2.2.5 Synthesis of Aminolactol (-)-132

The two secondary hydroxyl groups of triol (-)-125 were protected with pivaloyl group to provide (-)-126 in 71% yield, which was subjected to hydroboration followed by oxidation to afford primary alcohol (-)-127 in 82% yield. The Mitsunobu reaction of (-)-127 with NsNH-OMOM effected the introduction of the nitrogen atom to give (-)-128 in 88% yield. The PMB group of (-)-128 was then removed with DDQ to afford the diol (-)-129 in 85% yield. Controlled oxidation of (-)-127 with IBX furnished the spirolactol (-)-131 in 83% yield. The deprotection of nosyl group of (-)-131 with thiophenolate produced the aminolactol (-)-132 in 90% yield.

Scheme 27: synthesis of aminolactol (-)-132.

2.2.6 Completion of total synthesis of (+)-sieboldine A

The Schmidt glycosylation of aminolactol (-)-132 produced the desired tetracyclic derivative (+)-137 in 63% yield. LAH reduction of (+)-137 followed by oxidation with DMP furnished the diketone derivative. Finally, the MOM protecting group of the diketone derivative was removed by the commercially available BBr₃, delivering (+)-sieboldine A **1** in 53% yield. The synthetic (+)-1 exhibited indistinguishable spectral data (¹H NMR, ¹³C NMR, IR, and HRMS) as well as optical rotation (observed [α]_D²⁴ +140, *c* = 0.33, MeOH); lit.[α]_D +139, *c* = 0.3, MeOH) from the natural isolate.⁸³

Scheme 28: Completion of total synthesis of (+)-sieboldine A 1. 39

2.3 Conclusion

In conclusion, we have completed the highly enantioselective total synthesis of (+)-sieboldine A **1** from 5-(pmethoxybenzyloxy)pentyne in 19 steps with a 1.9% overall yield. The key features of this synthesis include (i) enantioselective Keck allylation to form the optically active enyne (+)-**144**; (ii) PKR to build the bicyclo[4.3.0]nonenone fragment (-)-**106** with a high diastereoselectivity; (iii) Ueno-Stork cyclization to construct the *cis*-hydrindane skeleton with a carbon quaternary center; (iv) regioselective formation of the vinyl acetate moiety followed by oxidation with *m*-CPBA to form the oxa-quaternary center; (v) oxidative cyclization to prepare the spirolactol (-)-**131**; and (vi) Schmidt glycosylation for assembly of the *N*-hydroxyazacyclononane ring. The enantioselective route for construction of the *cis*-hydrindane core is convergent and flexible, thus providing new avenues to access other fawcettimine-type *Lycopodium* alkaloids.

CHAPTER III

Experimental Section

3.1 General notes

All commercially obtained reagents and solvents were used as received unless additional purification is stated in the procedure. All glassware was oven-dried at 150 °C and cooled in desiccator immediately before use. Experiments were conducted under inert atmospheres of Nitrogen or Argon using standard syringe-septa techniques. Reactions performed at room temperature were at approximately 24 °C. Thin layer chromatography (TLC) was performed on Merck analytical glass plates pre-coated with silica gel 60 F254 (0.25 mm thick). Visualization was effected by exposure to UV light (254 nm) and staining with p-anisaldehyde or phosphomolybdic acid stains followed by a brief heating on a hot plate. Concentration under reduced pressure was performed by rotary evaporation (~30 mmHg) at 20-40 °C. Flash column chromatography was performed as described by W. C. Still et al. (J. Org. *Chem.***1978**, *43*, 2923.) using forced flow of the indicated solvent system on Kanto[®] Chemical silica gel 60N (spherical, neutral, 40-50 µm,). Melting points were determined on YANAGIMOTO micro melting point apparatus and were uncorrected. Infrared spectra were recorded on a ThermoFisher Nicolet iS5 spectrometer and are reported in terms of frequency of absorption (cm⁻¹). NMR spectra were recorded on JNM-ECS400 or JNM-ECA600 spectrometers. Chemical shift (δ) values are reported in parts per million relative to internal standard tetramethylsilane (δ 0.00 ppm) and residual CDCl₃ (δ 7.27 ppm) for proton spectra and to residual CDCl₃ (δ 77.23 ppm) for carbon spectra. Coupling constants are reported in Hertz. The following abbreviations were used for spin multiplicity: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet; ddd, doublet of doublet; td, triplet of doublet; m, multiplet; br m, broad multiplet. High-resolution mass spectra were measured with JMS-T100TD (DART) mass spectrometer. Optical rotations were measured with a JASCO P-2200 polarimeter with a sodium lamp and reported as followed: $[\alpha]^{T}_{D}$ (concentration g/100 mL, solvent). Single-crystal X-ray diffraction was measured with R-AXIS RAPID II.

3.2 Synthetic procedures

1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene 102

1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene **102** was prepared from 4pentyn-1-ol **101** according to the method described by Chandrasekhar *et al.*⁸⁴

2-((Tributylstannyl)methyl)allyl acetate 143

2-((Tributylstannyl)methyl)allyl acetate **143** was prepared from methallyl alcohol **141** according to the procedure described by Trost and Bonk.⁷⁹

6-((4-Methoxybenzyl)oxy)hex-2-ynal 103

To a solution of alkyne **101** (10 g, 49 mmol) and hexamethylphosphoramide HMPA (21.5 mL, 122.5 mmol) in THF (100 mL) at -45 °C was added *n*-BuLi (1.43 M in hexane, 51.5 mL, 73.5 mmol). After stirring for 30 min at the same temperature, DMF (15 mL, 196 mmol) was added at once and the reaction mixture was warmed up to room temperature over 1 h. The reaction was quenched with 10% aq KH_2PO_4 (270

mL) and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 6:1) as an eluent to afford aldehyde **103** as pale yellow oil (9.2 g, 81% yield): ¹H NMR (600 MHz, CDCl₃); δ 9.11 (s, 1H), 7.24 (dd, *J* = 8.2, 4.1, 2H), 6.86 (dd, *J* = 8.6, 4.3, 2H), 4.42 (s, 2H), 3.76 (s, 3H), 3.51 (t, *J* = 6.0, 2H), 2.51 (td, *J* = 7.0, 3.5, 2H), 1.85-1.84 (m, 2H); ¹³C NMR (151 MHz, CDCl₃); δ 176.9, 159.0, 130.0, 129.0, 113.5, 98.3, 81.5, 72.4, 67.5, 54.9, 27.5, 15.8; IR (thin film, cm⁻¹) 2200, 1664, 1243, 1030; DART HRMS *m/z* [M+H]⁺ calcd for C₁₄H₁₇O₃ 233.1177, found 233.1190.

(*R*)-4-Hydroxy-9-((4-methoxybenzyl)oxy)-2-methylenenon-5-yn-1-yl acetate (+)-144

To a stirred solution of TiCl₄ (22 μ L, 0.2 mmol) in CH₂Cl₂ (3 mL) at 0 °C under argon was added Ti(O*i*-Pr)₄ (180 μ L, 0.6 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 1 h. Silver(I) oxide Ag₂O (93 mg, 0.4 mmol) was added and the reaction mixture was stirred for 5 h at the same temperature under exclusion of direct light. The reaction mixture was diluted with CH₂Cl₂ (8 mL), and (*R*)-BINOL (229 mg, 0.8 mmol) was added. After stirring for 2 h, the reaction mixture was cooled to -15 °C and a solution of aldehyde **103** (232 mg, 1 mmol) in CH₂Cl₂ (2.5 mL) and a solution of allylstannane **143** (806 mg, 2 mmol) in CH₂Cl₂ (2.5 mL) were added sequentially via cannula. The reaction mixture was allowed to warm to 0 °C and stirred at the same temperature for 10 h. The reaction mixture was filtered through Celite.[®] The Celite[®] was washed thoroughly with Et₂O. The layers were separated and the aqueous layer was extracted three times with Et₂O. The combined

organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 2:1) as an eluent to afford alcohol (+)-**144** as colorless oil (277 mg, 80% yield, 93% ee): $[\alpha]^{30}_{D}$ = +13.2 (*c* 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.25 (d, *J* = 8.6, 2H), 6.87 (d, *J* = 8.6, 2H), 5.17 (d, *J* = 1.4, 1H), 5.09 (s, 1H), 4.58 (s, 2H), 4.48-4.46 (m, 1H), 4.43 (s, 2H), 3.79 (s, 3H), 3.50 (t, *J* = 6.2, 2H), 2.58 (d, *J* = 5.2, 1H), 2.44 (d, *J* = 10.8, 2H), 2.31 (td, *J* = 7.1, 1.8, 2H), 2.08 (s, 3H), 1.80-1.75 (m, 2H); ¹³C NMR (151 MHz, CDCl₃); δ 170.6, 159.0, 139.5, 130.3, 129.1, 115.9, 113.6, 85.0, 80.8, 72.4, 68.2, 66.7, 61.0, 55.1, 41.9, 28.5, 20.8, 15.4; IR (thin film, cm⁻¹) 3414, 1696, 1511, 1172; DART HRMS *m/z* [M+H]⁺ calcd for C₂₀H₂₇O₅ 347.1858, found 347.1857; HPLC: Daicel CHIRALPAK[®] OD-H column; λ = 254 nm; eluent: hexane/isopropanol = 90/10; flow rate: 1.0 mL/min; major enantiomer t_R = 18.0 min, minor enantiomer t_R = 20.2 min; ee = 93%.

To a solution of alcohol (+)-144 (3.1 g, 8.95 mmol) in CH₂Cl₂ (30 mL) were added imidazole (1.8 g, 26.85 mmol) and TBSC1 (2.7 g, 17.9 mmol) at room temperature. After stirring for 4 h at the same temperature, the reaction mixture was quenched with water. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was chromatographed using (hexanes/EtOAc, from 10:1) as an eluent to afford (+)-147 as colorless oil (4.06 g, 99% yield): $[\alpha]^{30}_{D}$ = +22.9 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃); δ 7.16 (d, *J* = 8.7, 2H), 6.78 (d, *J* = 8.7, 2H), 5.04 (d, *J* = 1.4, 1H), 4.95 (s, 1H), 4.48 (s, 2H), 4.39-4.36 (m, 1H), 4.33 (s, 2H), 3.70 (s, 3H), 3.42 (t, *J* = 6.4, 2H), 2.31 (d, *J* = 6.4, 2H), 2.20 (td, *J* = 7.3, 1.8, 2H), 1.99 (s, 3H), 1.69-1.68 (m, 2H), 0.80 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃);

 δ 170.5, 159.1, 139.9, 130.5, 129.1, 115.5, 113.7, 84.5, 81.3, 72.6, 68.5, 67.0, 62.4, 55.1, 42.7, 28.7, 25.7, 20.9, 18.1, 15.5, -4.5, -5.1; IR (thin film, cm⁻¹) 1733, 1514, 1249, 1078; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₆H₄₁O₅Si 461.2723, found 461.2730.

(*R*)-*tert*-Butyl((11-((4-methoxybenzyl)oxy)-4-methyleneundec-1-en-7-yn-6-yl)oxy)dimethylsilane (+)-105

To a stirred solution of (+)-147 (2.3 g, 5 mmol) in THF (18 mL) and dimethylsulfide Me₂S (1.8 mL) at room temperature under argon, was added CuI (190 mg, 1.0 mmol). The reaction mixture was cooled to -30 °C, and vinylmagnesium bromide (10 mL, 10 mmol, 1.0 M in THF) was added slowly over 20 min. After stirring for 30 min at the same temperature, the reaction was guenched with saturated aq NaHCO₃ and diluted with Et₂O. The layers were separated and the aqueous layer was extracted three times with Et₂O. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 20:1) as an eluent to afford dienvne (+)-105 as colorless oil (1.82 g, 85%). $[\alpha]_{D}^{30} = +22.8$ (c 0.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.14 (d, J = 8.6, 2H), 6.76 (d, J = 8.6, 2H), 5.72-5.67 (m, 1H), 4.96-4.95 (m, 2H), 4.77-4.76 (m, 2H), 4.36-4.35 (m, 1H), 4.32 (s, 2H), 3.66 (s, 3H), 3.41 (t, J = 6.4, 2H), 2.71 (d, J = 6.9, 2H), 2.27-2.26 (m, 2H), 2.20 (td, J = 7.0, 1.7, 2H), 1.69-1.65 (m, 2H), 0.81 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 159.0, 143.7, 136.0, 130.4, 129.0, 116.1, 113.5, 113.3, 84.0, 81.8, 72.5, 68.4, 62.3, 54.9, 45.1, 40.9, 28.7, 25.7, 18.1, 15.4, -4.6, -5.1; IR (thin film, cm⁻¹) 2952, 1513, 1248, 1079; DART HRMS m/z [M+H]⁺ calcd for C₂₆H₄₁O₃Si 429.2825, found 429.2827.

(4*R*,7a*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)-oxy)propyl)-6methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one (-)-106 and (4*R*,7a*R*)-4-((*tert*butyldimethylsilyl)oxy)-3-(3-((4-methoxybenz-yl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one (+)-106'

To a stirred solution of dienyne (+)-105 (4.8 g, 11.2 mmol) in toluene (70 mL) were added $Co_2(CO)_8$ (766 mg, 20 mol %) and tetramethulthiourea TMTU (296 mg, 20 mol %) at room temperature. The reaction was stirred for 4 h at 70 °C under 1 atm CO. The black suspension was concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 9:1) eluting first (-)-106 as colorless oil (4.8 g, 94%) followed by (+)-106' as colorless oil (0.1 g, 2%).

(4*R*,7a*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one (-)-106

 $[\alpha]^{30}{}_{D}$ = -62.1 (*c* 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.18 (d, *J* = 7.6, 2H), 6.79 (d, *J* = 7.6, 2H), 4.82 (s, 2H), 4.71 (s, 1H), 4.34 (s, 2H), 3.72 (s, 3H), 3.36-3.33 (m, 2H), 2.98-2.96 (m, 1H), 2.65 (dd, *J* = 6.5, 3.4, 1H), 2.47 (dd, *J* = 19.2, 6.5, 1H), 2.41 (d, *J* = 13.7, 1H), 2.23-2.22 (m, 2H), 2.09 (d, *J* = 13.7, 1H), 1.88 (d, *J* = 19.2, 1H) 1.71-1.70 (m,

1H), 1.62-1.60 (m, 2H), 0.78 (s, 9H), 0.00 (s, 3H), -0.11 (s, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 209.1, 173.9, 159.0, 141.8, 136.1, 130.5, 129.0, 113.6, 112.5, 72.3, 69.1, 65.0, 55.1, 43.4, 43.3, 41.1, 36.6, 28.4, 25.5, 19.5, 17.9, -4.8, -4.9; IR (thin film, cm⁻¹) 2928, 1702, 1247, 1071; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₇H₄₁O₄Si 457.2774, found 457.2770.

(4*R*,7a*R*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-((4-methoxy-benzyl)oxy)-propyl)-6-methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one (+)-106'

 $[\alpha]^{25}{}_{D}$ = +21.0 (*c* 3.1 , CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.25-7.23 (m, 2H), 6.85 (d, *J* = 8.6, 2H), 4.83 (s, 2H), 4.47 (dd, *J* = 11.7, 5.5, 1H), 4.41 (d, *J* = 11.6, 1H), 4.39 (d, *J* = 11.6, 1H), 3.79 (s, 3H), 3.42 (t, *J* = 7.0, 2H), 2.64-2.60 (m, 2H), 2.54-2.52 (m, 3H), 2.48-2.45 (m, 1H), 2.24 (t, *J* = 11.9, 1H), 1.96 (d, *J* = 17.2, 1H), 1.77-1.71 (m, 2H),

1.64-1.62 (m, 1H), 0.92 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 208.4, 173.0, 159.0, 143.2, 138.0, 130.8, 129.3, 113.6, 111.6, 74.3, 72.3, 70.0, 55.2, 45.8, 42.8, 40.5, 39.1, 29.7, 25.9, 19.4, 18.2, -4.6, -5.0; IR (thin film, cm⁻¹) 2952, 1702, 1243, 1093; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₇H₄₁O₄Si 457.2774, found 457.2779.

(4*R*,7a*S*)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methylene-5,6,7,7atetrahydro-1*H*-inden-2(4*H*)-one (-)-148

To a solution of indenone (-)-106 (1.63 g, 3.6 mmol) in THF (36 mL) at room temperature was added tetrabutylammonium fluoride TBAF (5.4 mL, 5.4 mmol, 1.0 M in THF). After stirring for 3 h at the same temperature, the reaction was quenched with saturated aq NH₄Cl and diluted by addition of EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 2:1) as an eluent. The crude eluted fractions were evaporated and the remaining solid residue was recrystallized from (EtOAc/hexanes) to give (-)-**148** as colorless needles (1.1 g, 90%, 99% ee): $[\alpha]^{30}_{D} =$ -117.7 (*c* 1.0 , CHCl₃); mp = 68-69 °C; ¹H NMR (600 MHz, CDCl₃); δ 7.23 (d, *J* = 8.6, 2H), 6.86 (d, *J* = 8.6, 2H), 4.98 (brs, 1H), 4.91-4.90 (m, 2H), 4.40 (d, *J* = 11.3, 1H), 4.38 (d, *J* = 11.3, 1H), 3.79 (s, 3H), 3.41 (t, *J* = 6.2, 2H), 3.04-3.00 (m, 1H), 2.79 (d, J = 4.8, 1H), 2.73 (dd, J = 12.7, 4.5, 1H), 2.60-2.53 (m, 2H), 2.32-2.30 (m, 3H), 1.97 (dd, J = 18.7, 1.9, 1H) 1.77-1.72 (m, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 208.7, 172.8, 159.0, 141.6, 137.6, 130.1, 129.2, 113.7, 113.5, 72.0, 68.7, 64.2, 55.1, 42.5, 42.0, 41.0, 36.7, 27.7, 19.2; IR (thin film, cm⁻¹) 3411, 1697, 1512, 1247, 1036; DART HRMS m/z [M+H]⁺ calcd for C₂₁H₂₇O₄ 343.1909, found 343.1906; HPLC: Daicel CHIRALPAK[®] OD-H column; $\lambda = 254$ nm; eluent: hexane/isopropanol = 94/6; flow rate: 1.0 mL/min; major enantiomer t_R = 32.9 min; ee = 99%.

(4*R*,6*R*,7a*S*)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methyl-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one (-)-117

To a stirred solution of (-)-148 (5.5 g, 16 mmol) in benzene (60 mL) at room temperature was added RhCl(PPh₃)₃ (740 mg, 5 mol %). The reaction was stirred for 6 h at room temperature under 1 atm H₂. The brown mixture was concentrated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, 1:1) as an eluent to give (-)-117 as colorless oil (5.4 g, 98%): $[\alpha]^{25}_{D} = -80.4$ (*c* 2.2 , CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.22 (d, *J* = 8.6, 2H), 6.87 (d, *J* = 8.6, 2H), 4.83 (brs, 1H), 4.40 (d, *J* = 11.7, 1H), 4.36 (d, *J* = 11.7, 1H), 3.80 (s, 3H), 3.41 (t, *J* = 5.3, 2H), 3.17-3.14 (m, 1H), 3.07 (s, 1H), 2.57 (dd, *J* = 18.9, 6.5, 1H), 2.31 (dd, *J* = 6.8, 6.5, 2H), 2.01-2.00 (m, 1H), 1.95-1.90 (m, 3H), 1.78-1.71 (m, 3H), 1.28-1.27 (m, 4H); ¹³C NMR (151 MHz, CDCl₃); δ 209.6, 175.1, 159.2, 137.4, 129.9, 129.3, 113.7, 71.8, 68.4, 64.2, 55.2, 41.5, 40.2, 37.9, 31.0, 27.0, 26.9, 20.5, 19.1; IR (thin film, cm⁻¹) 3426, 1701, 1512, 1174; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₁H₂₉O₄ 345.2065, found 345.2064.

(3aS,4R,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8methyloctahydroindeno[4,3a-b]furan-5(4H)-one (+)-119

Pyridinium *p*-toluenesulfonate PPTS 1.05 (263 mg, mmol) and camphorsulfonic acid CSA (244 mg, 1.05 mmol) were added to a solution of alcohol (-)-117 (1.8 g, 5.23 mmol) and (Z/E)-2-bromovinyl ethyl ether⁸⁵ (3.15 g, 20.9 mmol) at room temperature. After stirring for 2 h, the reaction was diluted by Et₂O and quenched with saturated aq NaHCO₃ at 0 °C. The layers were separated and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, from 10:1 to 3:1) as an eluent. The crude eluted fractions were evaporated and dissolved in toluene. Tributyltin hydride n-Bu₃SnH (7.0 mL, 26.15 mmol) and Azobisisobutyronitrile AIBN were added (0.43 g, 2.62 mmol) at room temperature. The reaction was heated under reflux for 4 h. The solvent was evaporated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, from 6:1 to 2:1) to afford cyclic acetal (+)-**119** as colorless oil (1.97 g, 91%, two diastereomers, 3:1): $[\alpha]_{D}^{25} = +3.4$ (c 1.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃ major isomer); δ 7.25-7.24 (m, 2H), 6.87 (d, J = 8.6, 2H), 5.12 (dd, J = 5.7, 2.6, 1H), 4.41 (s, 2H), 3.95 (t, J = 5.3, 1H), 3.80 (s, 3H), 3.75-3.71 (m, 1H), 3.46-3.41 (m, 3H), 2.44 (dd, *J* = 19.2, 8.9, 1H), 2.36-2.35 (m, 1H), 2.26 (dd, J = 9.3, 4.8, 1H), 2.00-1.96 (m, 2H), 1.89-1.87 (m, 2H), 1.77-1.73 (m, 2H), 1.68-1.64 (m, 1H), 1.53-1.45 (br m, 3H), 1.39-1.34 (m, 1H), 1.28-1.25 (m, 1H), 1.17 (t, J = 7.0, 3H), 1.07 (d, J = 6.9, 3H); ¹³C NMR (151 MHz, CDCl₃) major isomer); § 219.4, 159.1, 130.6, 129.2, 113.7, 102.0, 78.7, 72.4, 69.9, 62.9, 55.2, 52.3, 50.0, 42.1, 38.0, 33.8, 33.6, 33.4, 27.8, 24.9, 23.2, 20.7, 15.3; IR (thin film, cm⁻¹) 2924, 1736, 1513, 1247, 1098; DART HRMS m/z [M+H]⁺ calcd for C₂₅H₃₇O₅ 417.2641, found 417.2639.

(3aS,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyl-2,3,6,6a,7,8,9,9a-octahydroindeno[4,3a-b]furan-5-yl acetate (-)-121

Dimethylaminopyridine DMAP (410.5 mg, 3.36 mmol) and Et₃N (11.6 mL, 84 mmol) were added to a solution of (+)-119 (3.5 g, 8.4 mmol) and acetic anhydride (23.8 mL, 252 mmol) at room temperature. The reaction mixture was stirred at 40 °C for 48 h. The color changed from pale yellow to dark brown during the course of the reaction. The reaction was diluted by EtOAc at 0 °C and quenched with saturated aq NaHCO₃. The heterogeneous mixture was filtered through Celite[®] and the Celite® was washed thoroughly with EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with saturated aq copper(II) sulfate and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 9:1 to 6:1) as an eluent to afford vinyl acetate derivative (-)-121 as pale yellow oil (3.54 g, 92%, two diastereomers, 3:1): $[\alpha]_{D}^{24} = -13.1$ (*c* 1.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) major isomer); δ 7.26 (d, J = 8.6, 2H), 6.87 (d, J = 8.6, 2H), 5.11 (dd, J = 6.0, 3.3, 1H), 4.41 (s, 2H), 4.05 (t, J = 4.6, 1H), 3.80 (s, 3H), 3.75-3.73 (m, 1H), 3.45-3.40 (m, 3H), 2.57 (dd, J = 15.1, 7.9, 1H), 2.18-2.13 (br m, 5H), 2.08 (s, 3H), 1.92 (dd, J= 13.9, 3.3, 1H), 1.77-1.68 (m, 4H), 1.60-1.56 (m, 1H), 1.48-1.46 (m, 1H), 1.39-1.34 (m, 1H), 1.17 (t, J = 7.0, 3H), 1.03 (d, J = 6.9, 3H); ¹³C NMR (151 MHz, CDCl₃) major isomer); § 168.7, 159.0, 146.1, 130.7, 129.1, 128.4, 113.7, 102.2, 78.0, 72.3, 69.8, 63.1, 55.2, 54.1, 44.0, 39.0, 35.3, 33.7, 32.7, 28.5, 23.9, 21.7, 20.8, 20.5, 15.3; IR (thin film, cm⁻¹) 3292, 1754, 1512, 1246, 1100; DART HRMS m/z [M+H]⁺ calcd for C₂₇H₃₉O₆ 459.2747, found 459.2749.

(3a*R*,4*R*,6a*S*,8*R*,9a*R*)-2-Ethoxy-4-hydroxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyloctahydroindeno[4,3a-b]furan-5(4*H*)-one (+)-122

To a solution of (-)-121 (2.0 g, 4.36 mmol) in CH₂Cl₂ (40 mL) at -20 °C was added a solution of *m*-CPBA (2.26 g, 13.0 mmol) in CH₂Cl₂ (25 mL). The reaction mixture was gradually warmed to 0 °C and stirred for 2 h at the same temperature. The reaction was guenched with saturated ag NaHCO₃ and Na₂S₂O₃. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was dissolved in MeOH/H₂O (15 mL: 1.5 mL). Potassium carbonate K₂CO₃ (241 mg, 1.74 mmol) was added and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 4:1) as an eluent to give α -hydroxy ketone (+)-122 as colorless oil (1.8 g, 96% yield, two diastereomers, 3:1): $[\alpha]^{24}_{D} = +42.5$ (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃ major isomer); δ 7.23 (d, J = 8.7, 2H), 6.87 (d, J = 8.7, 2H), 5.05 (dd, J = 6.4, 4.6, 1H), 4.94 (s, 1H), 4.49 (d, J = 11.4, 1H),4.42 (d, J = 11.4, 1H), 3.80 (s, 3H), 3.77-3.74 (m, 1H), 3.55-3.53 (m, 2H), 3.45-3.42 (m, 2H), 2.83-2.80 (m, 1H), 2.71 (dd, J = 14.7, 6.4, 1H), 2.63 (dd, J = 19.5, 10.3, 101H), 2.15-2.10 (m, 1H), 2.04-1.92 (m, 1H), 1.87-1.84 (m, 4H), 1.51-1.44 (m, 4H), 1.35-1.31 (m, 1H), 1.21 (t, J = 7.1, 3H), 0.92 (d, J = 5.5, 3H); ¹³C NMR (151 MHz, CDCl₃ major isomer); δ 215.8, 159.3, 129.6, 129.5, 113.8, 104.5, 80.4, 77.4, 72.7, 70.8, 63.5, 56.0, 55.2, 39.5, 39.2, 34.8, 33.6, 32.9, 28.3, 24.0, 22.9, 21.9, 15.4; IR (thin film, cm⁻¹) 3357, 1741, 1246, 1090; DART HRMS m/z [M+H]⁺ calcd for C₂₅H₃₇O₆ 433.25901, found 433.25905.

(3aR,4R,5R,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)-propyl)-8methyldecahydroindeno[4,3a-b]furan-4,5-diol (-)-123

K-Selectride (5.5 mL, 5.5 mmol, 1.0M solution in THF) was added dropwise to a solution of (+)-122 (1.8 g, 4.16 mmol) in THF (40 mL) at -45 °C under argon. After stirring for 6h at the same temperature, the reaction was quenched with 3 M aq NaOH and 30% aq H₂O₂. The mixture was diluted with EtOAc and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with saturated aq Na₂S₂O₃ and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, from 2:1 to 1:1) as an eluent to give *trans*-diol (-)-123 as colorless oil (1.54 g, 86% yield, two diastereomers, 3:1): $[\alpha]_{D}^{24} = -9.3$ (c 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.24-7.23 (m, 2H), 6.88-6.87 (m, 2H), 5.12-5.04 (m, 1H), 4.49-4.45 (m, 3H) 4.00-3.98 (m, 1H), 3.80 (d, J = 10.0, 3H), 3.77-3.73 (m, 1H), 3.49-3.43 (m, 3H), 2.63-2.62 (m, 1H), 2.54-2.48 (m, 2H), 2.41-2.38 (m, 1H), 2.15-2.08 (m, 2H), 1.83-1.76 (m, 4H), 1.61-1.59 (m, 1H), 1.46-1.44 (m, 1H), 1.34-1.29 (m, 4H), 1.21-1.18 (m, 3H), 0.91-0.89 (m, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 159.2, 129.6, 129.5, 129.4, 113.8, 103.9, 102.4, 86.0, 85.6, 77.9, 77.4, 77.2, 72.9, 72.8, 70.6, 70.3, 63.4, 63.3, 57.3, 55.2, 54.8, 40.0, 39.6, 38.4, 37.8, 37.4, 36.8, 36.2, 34.1, 34.0, 28.8, 27.5, 24.3, 23.9, 23.8, 22.1, 22.0, 15.4; IR (thin film, cm⁻¹) 3430, 1512, 1301, 1091; DART HRMS m/z [M+H]⁺ calcd for C₂₅H₃₉O₆ 435.2746, found 435.2742.

(1*R*,2*R*,3a*S*,5*R*,7*R*,7a*R*)-7a-Allyl-1-(3-((4-methoxybenzyl)oxy)-propyl)-5methyloctahydro-1*H*-indene-1,2,7-triol (-)-125

PPTS (123 mg, 0.49 mmol) was added to a solution of (-)-123 (1.06 g, 2.44 mmol) in CH₃CN/H₂O (10 mL: 2 mL) at room temperature. The reaction mixture was heated under reflux for 4 h. The reaction was quenched with saturated aq NaHCO₃ and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, 1:2) as an eluent. The crude eluted fractions were evaporated, dissolved in THF (10 mL) and cooled at 0°C. In a previously prepared second flask, methyltriphenylphosphonium bromide PPh₃MeBr (6.1 g, 17.08 mmol) was dried at 80 °C under vacuum for 3 hours. After the salt has cooled THF (24 mL) was added and the slurry was cooled to 0 °C under argon. Potassium bis(trimehtylsilyl)amide KHMDS (16.8 mL, 16.8 mmol, 1.0 M in THF) was added dropwise at the same temperature resulting in a bright yellow color. After stirring for 30 min at the same temperature, the bright yellow ylide slurry was cannulated to the first reaction flask at 0°C under argon. The reaction mixture was stirred at the same temperature for 2h then warmed gradually to room temperature and stirred overnight. The reaction was quenched with saturated aq NH₄Cl and the mixture was diluted with EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography with (hexanes/EtOAc, 2:1) as eluent to afford triol (-)-125 as colorless oil (0.54 g, 55% yield): $[\alpha]^{24}_{D} = -13.4$ (c 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.26-7.24 (m, 2H), 6.87 (d, J = 9.3, 2H), 6.22-6.15 (m, 1H), 5.14 (dd, J = 17.2, 1.7, 1H), 5.03 (dd, J = 10.0, 1.7, 1H, 4.49 (d, J = 11.7, 1H), 4.46 (d, J = 11.7, 1H), 4.31-4.27 (m, 1H), 3.94-3.93 (m, 1H), 3.80 (s, 3H), 3.57-3.54 (m, 1H), 3.46 (td, J = 8.5, 3.9, 1H), 3.33

(d, J = 2.7, 1H) 2.53-2.49 (m, 2H), 2.35-2.31 (m, 1H), 2.29-2.25 (m, 1H), 2.17 (s, 1H), 2.15-2.10 (m, 1H), 1.93-1.88 (m, 1H), 1.84-1.80 (m, 2H), 1.75-1.74 (m, 1H), 1.67-1.64 (m, 1H), 1.49-1.44 (m, 2H), 1.19-1.16 (m, 2H), 1.12-1.09 (m, 1H), 0.92 (d, J = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 159.3, 139.1, 129.8, 129.5, 116.5, 113.8, 89.3, 77.8, 72.8, 70.1, 69.2, 55.2, 53.0, 41.3, 39.7, 36.0, 32.5, 32.1, 29.4, 25.6, 24.0, 22.1; IR (thin film, cm⁻¹) 3424, 1513, 1247, 1035; DART HRMS *m/z* [M+H]⁺ calcd for C₂₄H₃₇O₅ 405.2641, found 405.2640.

(2*R*,3*R*,3*aR*,4*R*,6*R*,7*aS*)-3*a*-Allyl-3-hydroxy-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methyloctahydro-1*H*-indene-2,4-diyl bis(2,2-dimethyl-propanoate) (-)-126

DMAP (35.5 mg, 0.29 mmol) and Et₃N (8 mL, 58 mmol) were added to a solution of triol (-)-125 (235 mg, 0.58 mmol) in CH₂Cl₂ (4 mL) at room temperature. The reaction was cooled to 0 °C and pivaloyl chloride (7.1 mL, 58 mmol) was added dropwise. After the addition, the reaction was stirred at 0 °C for 1 h and then warmed to 40 °C and stirred for 48 h. The reaction mixture was diluted with CH₂Cl₂ at 0 °C and quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with saturated aq copper(II) sulfate and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 18:1 to 6:1) as an eluent to afford (-)-**126** as colorless oil (234.5 mg, 71% yield)): $[\alpha]^{25}_{D} = -17.8$ (c 3.3, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.22 (d, J = 8.6, 2H), 6.86 (d, J = 8.6, 2H), 6.19-6.15 (m, 1H), 5.22 (dd, J = 11.5, 4.6, 1H), 5.12 (dd, J = 17.0, 1.5, 1H), 5.03 (dd, J = 10.1, 1.5, 1H), 4.80 (dd, J = 8.2, 3.1, 1H), 4.42 (d, J = 11.3, 1H), 4.39 (d, J = 11.3, 1H), 3.80 (s, 3H), 3.48-3.44 (m, 1H), 3.39 (br s, 1H), 3.34-3.30 (m, 1H), 2.65-2.63 (m, 1H), 2.55 (dd, J = 15.1, 7.2, 1H), 2.50-2.45 (m, 2H), 1.77-1.75 (m, 1H), 1.70-1.66 (m, 3H), 1.62-1.61 (m, 1H), 1.46-1.43 (m, 2H), 1.35-1.31 (m, 2H), 1.21 (s, 9H), 1.17 (s, 9H), 1.11-1.06 (m, 1H), 0.90 (d, J = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.4, 177.2, 159.2, 138.3, 130.0, 129.3, 116.4, 113.7, 88.1, 79.0, 72.7, 72.4, 70.5, 55.2, 51.8, 40.1, 38.8, 36.5, 35.5, 33.2, 32.6, 30.3, 27.1, 27.0, 26.8, 25.2, 24.0, 21.9; IR (thin film, cm⁻¹) 3443, 2924, 1721, 1158; DART HRMS *m*/*z* [M+H]⁺ calcd for C₃₄H₅₃O₇ 573.3791, found 573.3794.

(2*R*,3*R*,3a*R*,4*R*,6*R*,7a*S*)-3-Hydroxy-3a-(3-hydroxypropyl)-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methyloctahydro-1*H*-indene-2,4-diylbis(2,2-dimethyl propanoate) (-)-127

Borane dimethyl sulfide complex BH₃.SMe₂ (0.5 mL, 4.95 mmol) was added to a solution of allyl derivative (-)-126 (566 mg, 0.99 mmol) in THF (10 mL) at 0 °C under argon. After stirring for 2 h at the same temperature, water H₂O (2 mL) and NaBO₃.4H₂O (762 mg, 4.95 mmol) were added. The reaction was warmed to room temperature and stirred for 4 h. The reaction mixture was partitioned between EtOAc and brine and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was chromatographed using (hexanes/EtOAc, from 2:1 to 1:1) as an eluent to afford primary alcohol (-)-127 as colorless oil (480 mg, 82% yield): $[\alpha]_{D}^{25} = -19.8$ (c 3.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.23 (d, *J* = 8.2, 2H), 6.87 (d, *J* = 8.2, 2H), 5.21 (dd, *J* = 11.5, 4.6, 1H), 4.81 (dd, J = 8.9, 3.4, 1H), 4.43 (d, J = 11.5, 1H), 4.39 (d, J = 11.5, 1H), 3.81 (s, 3H), 3.64-3.63 (m, 2H), 3.50-3.47 (m, 2H), 3.33-3.31 (m, 1H), 2.65-2.62 (m, 1H), 2.51-2.45 (m, 1H), 1.95-1.93 (m, 1H), 1.77-1.69 (m, 4H), 1.66-1.61 (m, 5H), 1.50-1.48 (m, 2H), 1.32-1.26 (m, 3H), 1.21 (s, 9H), 1.16 (s, 9H), 0.89 (d, J = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.4, 177.3, 159.3, 129.8, 129.4, 113.8, 87.9, 79.5, 72.8, 72.7, 70.5, 64.3, 55.3, 50.9, 40.4, 38.8, 38.5, 36.6, 35.6, 33.5, 30.2, 29.2, 27.1, 26.8, 25.2, 24.6, 24.1, 21.9; IR (thin film, cm⁻¹) 3426, 1721, 1284, 1156; DART HRMS m/z [M+H]⁺ calcd for C₃₄H₅₅O₈ 591.3897, found 591.3890.

(2*R*,3*R*,3*aR*,4*R*,6*R*,7*a*S)-3-Hydroxy-3-(3-((4-methoxybenzyl)-oxy)propyl)-3a-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)-propyl)-6-methyloctahydro-1*H*-indene-2,4-diyl bis(2,2-dimethyl-propanoate) (-)-128

N-(Methoxymethoxy)-2-nitrobenzenesulfonamide¹⁹ Ns-NH-OMOM (47 mg, 0.18 mmol) and triphenylphosphine (168 mg, 0.64 mmol) were added to a solution of primary alcohol (-)-127 (94 mg, 0.16 mmol) in toluene (3 mL) at -20 °C. Diethyl azodicarboxylate DEAD (348 µL, 0.8 mmol, 40% in toluene) was added dropwise to the reaction mixture at the same temperature. The yellow suspension was warmed gradually to room temperature and stirred for 1 h. The orange suspension was concentrated under reduced pressure and the residue was chromatographed with (hexanes/Et₂O, from 1:1 to 1:2) to afford (-)-128 as pale yellow oil (114 mg, 88%): 1H), 7.79-7.72 (m, 2H), 7.59 (dd, J = 7.7, 1.2, 1H), 7.20 (d, J = 8.6, 2H), 6.86 (d, J =8.6, 2H), 5.19 (dd, J = 11.5, 4.6, 1H), 5.02 (d, J = 8.3, 1H), 4.99 (d, J = 8.3, 1H), 4.79 (dd, J = 8.6, 3.1, 1H), 4.40 (d, J = 11.0, 1H), 4.38 (d, J = 11.0, 1H), 3.80 (s, 3H), 3.49-3.44 (m, 1H), 3.43 (s, 3H), 3.33-3.32 (m, 1H), 3.24-3.23 (m, 2H), 2.62-2.58 (m, 1H), 2.49-2.45 (m, 1H), 2.07-2.04 (m, 1H), 1.78-1.75 (m, 3H), 1.63-1.62 (m, 3H), 1.49-1.43 (m, 2H), 1.29-1.26 (m, 4H), 1.21 (s, 9H), 1.15 (s, 9H), 1.10-1.06 (m, 2H), 0.89 (d, J = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.4, 177.3, 159.2, 149.8, 134.8, 132.3, 130.9, 130.0, 129.2, 126.6, 123.8, 113.7, 102.7, 87.9, 79.3, 72.7, 72.6, 70.5, 57.6, 55.3, 54.5, 51.0, 39.8, 38.8, 36.5, 35.5, 33.3, 30.2, 29.7, 27.1, 26.8, 25.5, 25.2, 24.2, 23.2, 21.8; IR (thin film, cm⁻¹) 3372, 2923, 1722, 1178; DART HRMS m/z $[M+H]^+$ calcd for C₄₂H₆₃N₂O₁₃S 835.4051, found 835.4050.

(2*R*,3*R*,3a*R*,4*R*,6*R*,7a*S*)-3-Hydroxy-3-(3-hydroxypropyl)-3a-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-6-methyloctahydro-1*H*indene-2,4-diyl bis(2,2-dimethylpropanoate) (-)-129

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone DDQ (102 mg, 0.45 mmol) was added to a solution of (-)-128 (250 mg, 0.3 mmol) in CH₂Cl₂/H₂O (4 mL: 1 mL) at room temperature. After stirring for 4 h at the same temperature, the reaction was quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexane/EtOAc, from 1:1 to 1:2) as an eluent to afford diol (-)-129 as pale yellow oil (182 mg, 85% yield): $[\alpha]_{D}^{25} = -12.2$ (c 0.22, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 8.05 (dd, J = 7.9, 2.1, 1H), 7.82-7.79 (m, 1H), 7.77-7.76 (m, 1H), 7.60 (d, *J* = 7.9, 1H), 5.21 (dd, *J* = 11.5, 4.6, 1H), 5.06 (d, J = 7.9, 1H), 5.01 (d, J = 7.9, 1H), 4.82 (dd, J = 8.1, 2.9, 1H) 1H), 3.70-3.68 (m, 1H), 3.55-3.53 (m, 1H), 3.47 (s, 3H), 3.28-3.21 (m, 3H), 2.62-2.59 (m, 1H), 2.50-2.44 (m, 1H), 2.07-2.05 (m, 1H), 1.84-1.75 (m, 5H), 1.64-1.63 (m, 2H), 1.50-1.44 (m, 2H), 1.34-1.25 (m, 3H), 1.22 (s, 9H), 1.18 (s, 9H), 1.11-1.09 (m, 2H), 0.90 (d, J = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.5, 177.3, 149.8, 134.9, 132.3, 131.0, 126.6, 123.8, 102.7, 87.9, 79.2, 72.6, 63.3, 57.7, 54.5, 51.0, 39.9, 38.9, 38.6, 36.5, 35.5, 33.3, 29.8, 27.1, 26.8, 25.4, 25.2, 23.1, 21.8, 14.2; IR (thin film, cm⁻ ¹) 3476, 1721, 1711, 1156; DART HRMS m/z [M+H]⁺ calcd for C₃₄H₅₅N₂O₁₂S 715.3476, found 715.3472.

(1'*R*,2'*R*,3a'*S*,5'*R*,7'*R*,7a'*R*)-5-Hydroxy-7a'-(3-(N-(methoxymethoxy)-2nitrophenylsulfonamido)propyl)-5'-methyldecahydro-3*H*-spiro[furan-2,1'indene]-2',7'-diyl bis(2,2-dimethylpropanoate) (-)-131

2-Iodoxybenzoic acid IBX⁸⁶ (29 mg, 0.105 mmol) was added to a solution of diol (-)-129 (49 mg, 0.07 mmol) in THF/DMSO (1.0 mL: 1.0 mL) at room temperature. After stirring for 6 h at the same temperature, the reaction was quenched with saturated aq NaHCO₃ and partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, 1:1) as an eluent to afford spirolactol (-)-131 as colorless oil (41.5 mg, 83% yield, two diastereomers, 3:1): $\left[\alpha\right]_{D}^{24} = -8.8$ (c 0.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃); δ 8.08-8.05 (m, 1H), 7.79-7.74 (m, 2H), 7.61-7.60 (m, 1H), 5.46-5.41 (m, 1H), 5.13-5.10 (m, 1H), 5.02-4.97 (m, 2H), 4.80-4.78 (m, 1H), 3.47 (d, J = 11.0, 3H), 3.28-3.23 (m, 2H), 2.55-2.48 (m, 1H), 2.42-2.38 (m, 1H), 2.21-2.17 (m, 1H), 2.11-2.03 (m, 1H), 1.81-1.77 (m, 4H), 1.70-1.65 (m, 4H), 1.54-1.50 (m, 2H), 1.44-1.32 (m, 2H), 1.22 (d, J = 5.5, 9H), 1.17 (d, J = 1.8, 9H), 1.08-1.05 (m, 1H), 0.91-0.89 (m, 3H); ¹³C NMR (101 MHz, CDCl₃); δ 177.7, 177.3, 158.4, 145.4, 134.8, 132.3, 132.0, 131.1, 123.9, 123.8, 102.3, 100.0, 99.3, 97.0, 78.1, 72.3, 72.1, 57.8, 55.0, 48.8, 39.3, 38.8, 38.6, 36.1, 34.6, 33.2, 32.9, 31.8, 27.2, 27.1, 26.9, 25.0, 24.3, 23.9, 23.4, 21.9; IR (thin film, cm⁻¹) 3492, 1719, 1283, 1158; DART HRMS m/z [M+H]⁺ calcd for C₃₄H₅₃N₂O₁₂S 713.3319, found 713.3313.

(1'*R*,2'*R*,3a'*S*,5'*R*,7'*R*,7a'*R*)-5-Hydroxy-7a'-(3-((methoxymethoxy)amino)propyl)-5'-methyldecahydro-3*H*-spiro[furan-2,1'-indene]-2',7'-diyl bis(2,2-dimethylpropanoate) (-)-132

 K_2CO_3 (29.0 mg, 0.21 mmol) and thiophenol PhSH (140 µL, 0.14 mmol, 1.0M in CH₃CN) were added to a solution of (-)-131 (50 mg, 0.07 mmol) in CH₃CN (4 mL) at room temperature. After stirring for 6 h at the same temperature, the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 1:1 to 1:2) as an eluent to afford aminolactol (-)-132 as colorless oil (33.2 mg, 90% yield, two diastereomers, 3:1): $\left[\alpha\right]_{D}^{24} = -6.5$ (c 0.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 5.44-5.43 (m, 1H), 5.11-5.09 (m, 1H), 4.82-4.80 (m, 1H), 4.76 (d, J = 2.4, 2H), 3.42 (s, 3H), 3.18-3.16 (m, 1H), 2.92-2.87 (m, 1H), 2.56-2.54 (m, 1H), 2.43-2.38 (m, 1H), 2.13-2.09 (m, 1H), 2.06-2.04 (m, 1H), 1.84-1.75 (m, 5H), 1.70-1.63 (m, 2H), 1.54-1.52 (m, 2H), 1.43-1.38 (m, 1H), 1.27-1.25 (m, 1H), 1.23 (d, J = 7.2, 9H), 1.17 (d, J = 9.3, 9H), 1.12-1.08 (m, 2H), 0.90-0.89 (m, 4H); ¹³C NMR (151 MHz, CDCl₃); δ 177.6, 177.3, 100.2, 99.2, 98.9, 97.0, 78.3, 72.4, 55.9, 53.1, 48.7, 40.0, 39.3, 38.9, 38.6, 36.4, 34.7, 33.3, 33.2, 27.2, 27.1, 26.9, 25.0, 24.5, 23.9, 23.0, 21.9; IR (thin film, cm⁻¹) 3733, 1723, 1151; DART HRMS *m/z* $[M+H]^+$ calcd for C₂₈H₅₀NO₈ 528.3536, found 528.3544.

(5*S*,7a*R*,8*R*,9a*S*,11*R*,13*R*,13a*R*)-4-(Methoxymethoxy)-11-methyltetradecahydro-5,7a-epoxyindeno[1,7a-e]azonine-8,13-diyl bis(2,2-dimethylpropanoate) (+)-137

1,8-Diazabicyclo[5.4.0]undec-7-ene DBU (550 µL, 1.32 mmol, 2.4 M in CH₂Cl₂) was added dropwise to a solution of aminolactol (-)-132 (32.0 mg, 0.06 mmol) in CH₂Cl₂ (4.0 mL) at 0 °C under argon. Trichloroacetonitrile (660 µL, 3.3 mmol, 5.0 M in CH₂Cl₂) was added dropwise to the reaction mixture at the same temperature. After stirring at 0 °C for 2 h, the reaction mixture was gradually warmed to room temperature and stirred for 36 h. The color changed from pale yellow to dark brown during the course of the reaction. The dark brown solution was concentrated under reduced pressure and the residue was purified by flash chromatography using (hexanes/acetone, 40:3) as an eluent to afford tetracyclic derivative (+)-137 as a colorless film: (19.4 mg, 63% yield). $[\alpha]^{24}_{D} = +85.5$ (c 0.33, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 5.19 (dd, J = 11.5, 4.6, 1H), 5.09 (t, J = 5.7, 1H), 4.90 (dd, J = 8.9, 3.6, 1H), 4.75 (s, 2H), 3.42 (s, 3H), 3.34-3.31 (m, 1H), 3.14-3.12 (m, 1H), 2.73-2.68 (m, 1H), 2.47-2.41 (m, 1H), 2.37-2.33 (m, 1H), 2.21-2.16 (m, 1H), 2.01-1.96 (m, 4H), 1.77-1.70 (m, 3H), 1.55-1.52 (m, 1H), 1.48-1.43 (m, 2H), 1.21 (s, 9H), 1.20 (s, 9H), 1.16-1.15 (m, 2H), 0.89 (d, J = 6.2, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.8, 177.0, 98.8, 96.5, 95.6, 80.5, 72.1, 56.1, 54.2, 49.5, 38.9, 38.6, 38.4, 35.2, 34.2, 31.3, 29.0, 27.1, 26.9, 26.5, 25.2, 25.0, 21.9, 19.3; IR (thin film, cm⁻¹) 2956, 1723, 1153; DART HRMS m/z [M+H]⁺ calcd for C₂₈H₄₈NO₇ 510.3431, found 510.3432.

(+)-Sieboldine A 1

Lithium aluminium hydride LAH (57 mg, 1.5 mmol) was added to a solution of (+)-**137** (11 mg, 0.021 mmol) in THF (3 mL) at 0 °C under argon. After stirring for 2 h at the same temperature, the reaction mixture was gradually warmed to room temperature and stirred for 18 h. The reaction was diluted with EtOAc at 0 °C and a saturated aq solution of Rochelle's salt was added. The mixture was allowed to warm to room temperature and stirred for 2h. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure.

The residue was dissolved in CH_2Cl_2 (3 mL). NaHCO₃ (13 mg, 0.15 mmol) and Dess martin periodinane DMP (0.5 mL, 0.15 mmol, 0.3 M in CH_2Cl_2) were added to the reaction mixture at room temperature under argon. After stirring for 2 h, the reaction was quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH_2Cl_2 . The combined organic layers were washed with H_2O and brine, dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure.

The residue was dissolved in CH_2Cl_2 (3 mL) and cooled to -78 °C under argon. Boron tribromide BBr₃ (105 µL, 0.105 mmol, 1.0 M in CH_2Cl_2) was added dropwise to the reaction mixture at the same temperature. The reaction mixture was gradually warmed to 0 °C and stirred for 2 h and was then warmed to room temperature and stirred for 18h. The reaction was quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH_2Cl_2 . The combined organic layers were washed with H_2O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified

by flash chromatography using (hexanes/acetone, 1:1) as an eluent to afford (+)sieboldine A **1** as a colorless powder (3.3 mg, 53% yield): $[\alpha]^{25}_{D} = +140.0$ (*c* 0.33, CH₃OH); ¹H NMR (600 MHz, CD₃OD); δ ; 4.89-4.87 (m, 1H), 3.27-3.22 (m, 1H), 3.20-3.18 (m, 1H), 2.90 (ddd, *J* = 14.8, 7.4, 3.7, 1H), 2.57-2.55 (m, 1H), 2.51 (dd, *J* = 12.9, 12.5, 1H), 2.47-2.45 (m, 1H), 2.43 (dd, *J* = 21.3, 10.7, 1H), 2.40-2.38 (m, 1H), 2.11-2.10 (m, 1H), 2.08-2.07 (m, 1H), 2.05-2.04 (m, 1H), 2.03-2.01 (m, 1H), 1.98-1.96 (m, 1H), 1.92 (dd, *J* = 19.6, 10.7, 1H), 1.79-1.77 (m, 2H), 1.76-1.75 (m, 1H), 1.62-1.60 (m, 1H), 1.05 (d, *J* = 6.2, 3H); ¹³C NMR (151 MHz, CD₃OD); δ 216.5, 212.7, 98.5, 92.8, 62.3, 54.5, 47.6, 38.7, 37.2, 32.5, 31.8, 31.4, 28.3, 26.1, 22.5, 19.4; IR (thin film, cm⁻¹) 3400, 1754, 1698; DART HRMS *m*/*z* [M+H]⁺ calcd for C₁₆H₂₄NO₄ 294.1705, found 294.1701.

(R)-MTPA ester of (+)-144 (145)

To a solution of (+)-144 (14 mg, 0.040 mmol) in CH₂Cl₂ (0.40 mL) were added Et₃N (50 μ L, 0.36 mmol), DMAP (1.0 mg, 8.0 x10⁻³ mmol) and (*S*)-MTPA-Cl (15 mg, 6.0 x10⁻² mmol) at room temperature. After

stirring for 1.5 h at the same temperature, the reaction was quenched with saturated aq NH₄Cl. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 6:1) as an eluent to afford **145** (17 mg, 75%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃); δ 7.55-7.53 (m, 2H), 7.39-7.36 (m, 3H), 7.26-7.23 (m, 2H), 6.88-6.86 (m, 2H), 5.71-5.68 (m, 1H), 5.09 (s, 1H), 4.95 (s, 1H), 4.46-4.45 (m, 2H), 4.41 (s, 2H), 3.80 (s, 3H), 3.58 (s, 3H), 3.49 (t, *J* =

6.2, 2H), 2.58-2.49 (m, 2H), 2.33 (td, *J* = 7.1, 1.8, 2H), 2.07 (s, 3H), 1.81-1.74 (m, 2H).

(S)-MTPA ester of (+)-144 (146)

In the same manner as that described for preparation of **145**, (+)-**144** (14 mg, 0.040 mmol) with (*R*)-MTPA-Cl (15 mg, 6.0 x 10^{-2} mmol) afforded **146** (14 mg, 61 %) as a colorless oil: ¹H NMR (400 MHz, CDCl₃); δ

7.53-7.51 (m, 2H), 7.40-7.35 (m, 3H), 7.26-7.23 (m, 2H), 6.89-6.85 (m, 2H), 5.70-5.65 (m, 1H), 5.20 (s, 1H), 5.09 (s, 1H), 4.53 (s, 2H), 4.41 (s, 2H), 3.80 (s, 3H), 3.53 (s, 3H), 3.48 (t, *J* = 6.2, 2H), 2.65-2.53 (m, 2H), 2.30 (td, *J* = 7.1, 1.8, 2H), 2.07 (s, 3H), 1.78-1.72 (m, 2H).

3.4 Comparison of synthetic and natural (+)-sieboldine A spectral data

3.4.1 (+)-Sieboldine A ¹³C spectra comparison:

(+)-Sieboldine A

	¹³ C NMR (δ)	¹³ C NMR (δ)
Position	Natural sample	Synthetic sample
	(CD ₃ OD)	(151 MHz, CD ₃ OD)
1	98.5	98.5
2	31.4	31.4
3	26.1	26.1
4	92.8	92.8
5	212.6	212.7
6	37.2	37.2
7	38.7	38.7
8	31.8	31.8
9	54.5	54.5
10	19.4	19.4
11	28.3	28.3
12	62.3	62.3
13	216.5	216.5
14	47.4	47.6
15	32.5	32.5
16	22.5	22.5
3.4.2 (+)-Sieboldine A ¹H spectra comparison:

(+)-Sieboldine A

	¹ Η NMR (δ)	¹ Η NMR (δ)
Position	Natural sample	Synthetic sample
1 00101011	(CD ₃ OD)	(600 MHz, CD ₃ OD)
1	4.89 (m, 1H)	4.89-4.87 (m, 1H)
2a	1.98 (m, 1H)	1.98-1.96 (m, 1H)
2b	2.12 (m, 1H)	2.11-2.10 (m, 1H)
3a	2.08 (m, 1H)	2.08-2.07 (m, 1H)
3b	2.40 (m, 1H)	2.40-2.38 (m, 1H)
6a	1.93 (dd, <i>J</i> = 19.6, 10.9, 1H)	1.92 (dd, J = 19.6, 10.7, 1H)
6b	2.45 (dd, <i>J</i> = 19.6, 9.2, 1H)	2.43 (dd, J=21.3, 10.7, 1H)
7	3.25 (m, 1H)	3.27-3.22 (m, 1H)
8a	1.76 (m, 1H)	1.76-1.75 (m, 1H)
8b	1.77 (m, 1H)	1.79-1.77 (m, 1H)
9a	2.91 (ddd, <i>J</i> = 14.8, 8.0, 3.7, 1H)	2.90 (ddd, <i>J</i> = 14.8, 7.4, 3.7, 1H)
9b	3.19 (m, 1H)	3.20-3.18 (m, 1H)
10a	1.63 (m, 1H)	1.62-1.60 (m, 1H)
10b	2.57 (m, 1H)	2.57-2.55 (m, 1H)
11a	1.77 (m, 1H)	1.79-1.77 (m, 1H)
11b	2.46 (m, 1H)	2.47-2.45 (m, 1H)
14a	2.03 (m, 1H)	2.03-2.01 (m, 1H)
14b	2.54 (dd, <i>J</i> = 12.7, 12.7, 1H)	2.51 (dd, <i>J</i> = 12.9, 12.5, 1H)
15	2.06 (m, 1H)	2.05-2.04 (m, 1H)

CHAPTER IV

REFERENCES

- (1) Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752-772.
- (2) Hirasawa, Y.; Kobayashi, J.; Morita, H. *Heterocycles* **2009**, *77*, 679-729.
- (3) Kobayashi, J.; Morita, H. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: New York, 2005; Vol. 61, p 1-57.
- (4) Siengalewicz, P.; Mulzer, J.; Rinner, U. In *The Alkaloids*; Knölker, H.-J., Ed.; Academic press: New York, 2013; Vol. 72, p 1-151.
- (5) Hirasawa, Y.; Morita, H.; Shiro, M.; Kobayashi, J. Org. Lett. 2003, 5, 3991-3993.
- (6) Zheng, W.; Xiang, Y. Q.; Li, X. B.; Ungvari, G. S.; Chiu, H. F.; Sun, F.; D'Arcy, C.; Meng, X.; Xiang, Y. T. *Hum. Psychopharmacol* 2016, *31*, 286-295.
- (7) Yang, G.; Wang, Y.; Tian, J.; Liu, J.-P. *PLoS ONE* **2013**, *8*, e74916.
- (8) Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A. J. Am. Chem. Soc. 2017, 139, 4282-4285.
- (9) Ding, R.; Fu, J.-G.; Xu, G.-Q.; Sun, B.-F.; Lin, G.-Q. J. Org. *Chem.***2014**, *79*, 240-250.
- (10) Chandra, A.; Pigza, J. A.; Han, J.-S.; Mutnick, D.; Johnston, J. N. J. Am. Chem. Soc. 2009, 131, 3470-3471.
- (11) Fu, J.-G.; Xu, G.-Q.; Ding, R.; Lin, G.-Q.; Sun, B.-F. Organic *Chemistry Frontiers* **2016**, *3*, 62-65.
- (12) Lei, X.; Hong, B.; Hu, D.; Wu, J.; Zhang, J.; Li, H. Chem Asian J 2017, 25, 201700364.
- (13) Zhao, L.; Tsukano, C.; Kwon, E.; Shirakawa, H.; Kaneko, S.; Takemoto, Y.; Hirama, M. *Chemistry* **2017**, *23*, 802-812.
- (14) Xu, S.; Zhang, J.; Ma, D.; Xu, D.; Xie, X.; She, X. Org Lett 2016, 18, 4682-4685.
- (15) Ochi, Y.; Yokoshima, S.; Fukuyama, T. Org Lett 2016, 18, 1494-1496.

- (16) Azuma, M.; Yoshikawa, T.; Kogure, N.; Kitajima, M.; Takayama, H. J Am Chem Soc 2014, 136, 11618-11621.
- (17) Zaimoku, H.; Taniguchi, T. Chemistry **2014**, 20, 9613-9619.
- (18) Canham, S. M.; France, D. J.; Overman, L. E. J. Org. Chem. 2013, 78, 9-34.
- (19) Canham, S. M.; France, D. J.; Overman, L. E. J. Am. Chem. Soc. 2010, 132, 7876-7877.
- (20) Zhang, X.-M.; Shao, H.; Tu, Y.-Q.; Zhang, F.-M.; Wang, S.-H. J. Org. Chem. 2012, 77, 8174-8181.
- (21) Zhang, X. M.; Tu, Y. Q.; Zhang, F. M.; Shao, H.; Meng, X. Angew. *Chem. Int. Ed.* **2011**, *50*, 3916-3919.
- (22) Torres, R. R. *The Pauson-Khand Reaction: Scope, Variations and Applications*; Wiley, 2012.
- (23) Khand, I. U.; Knox, G. R.; Pauson, P. L. J. Chem. Soc. Chem. Comm. 1971, 36.
- (24) U.Khand, I.; Knox, G. R.; L.Pauson, P.; Watts, W. E.; Foreman, M. I. J. Chem. Soc. Perkin Trans. 1 1973, 977–981
- (25) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. Perkin Trans. 1 1973, 975–977
- (26) Pauson, P. L.; Khand, I. U. Ann. N. Y. Acad. Sci. 1977, 295, 2-14.
- (27) Pauson, P. L. *Tetrahedron* **1985**, *41*, 5855–5860.
- (28) Blanco-Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Dominguez, G.; Perez-Castells, J. Chem Soc Rev 2004, 33, 32-42.
- (29) Magnus, P.; Príncipe, L.-M. *Tetrahedron Lett.* 1985, 26, 4851-4854.
- (30) Schore, N. E.; Croudace, M. C. J. Org. Chem. **1981**, 46, 5436-5438.
- (31) Exon, C.; Magnus, P. J. Am. Chem. Soc. 1983, 105, 2477-2478.
- (32) Magnus, P.; Principe, L. M. Tetrahedron Lett. 1985, 26.
- (33) Magnus, P.; Exon, C.; Albaugh-Robertson, P. *Tetrahedron* **1985**, *41*, 5861–5869.
- (34) Magnus, P.; Principe, L. M.; Slater, M. J. J.Org. Chem. 1987, 52, 1483-1486.
- (35) Mukai, C.; Sonobe, H.; Kim, J. S.; Hanaoka, M. J. Org. Chem. **2000**, *65*, 6654-6669.
- (36) Huang, F.; Yao, Z.-K.; Wang, Y.; Zhang, J.; Yu, Z.-X. *Chem. Asian J.* **2010**, *5*, 1555-1559.
- (37) Shibata, T. Adv. Synth. Catal. 2006, 348, 2328-2336.
- (38) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. *Org. Lett.* **2002**, *4*, 1755-1758.
- (39) Mukai, C.; Nomura, I.; Kitagaki, S. J. Org. Chem. 2003, 68, 1376-

1385.

- (40) Hirose, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2008, 73, 1061-1066.
- (41) Hayashi, Y.; Ogawa, K.; Inagaki, F.; Mukai, C. Org. Biomol. *Chem.* **2012**, *10*, 4747-4751.
- (42) Wender, P. A.; Croatt, M. P.; Descamps, N. M. J. Am. Chem.Soc. **2004**, *126*, 5948-5949.
- (43) Inagaki, F.; Mukai, C. Org. Lett. 2006, 8, 1217-1220.
- (44) Y., H.; N., M.; Kitagaki, S.; C., M. Org. Lett. 2008, 10, 2385-2388.
- (45) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Org. Lett. 2009, 11, 5554-5557.
- (46) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295-1298.
- (47) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. **1987**, 109, 5551-5553.
- (48) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. *Angew. Chem. Int. Ed.* **2011**, *50*, 8025-8028.
- (49) Noyori, R.; Hashiguchi, S. . Acc. Chem. Res. 1997, 30, 97-102.
- (50) Nakayama, A.; Kitajima, M.; Takayama, H. *Synlett* **2012**, 2014-2024.
- (51) Kozaka, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2007, 72, 10147-10154.
- (52) Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. *Am. Chem. Soc.* **1982**, *104*, 5564-5566.
- (53) Stork, G.; Mook, R.; Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. **1983**, 105, 3741-3742.
- (54) Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. *Synlett* **1999**, 771-773.
- (55) Otsuka, Y.; Inagaki, F.; Mukai, C. J. Org. Chem. **2010**, 75, 3420-3426.
- (56) Oyo, M.; Masaaki, Y. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
- (57) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. *Chem. Eur. J.* **2013**, *19*, 8665-8672.
- (58) Dondoni, A.; Giovannini, P. P.; Perrone, D. J. Org. Chem. 2002, 67, 7203-7214.
- (59) Teze, D.; Dion, M.; Daligault, F.; Tran, V.; Andre-Miral, C.; Tellier, C. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 448-451.
- (60) Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, A. *Org. Lett.* **2006**, *8*, 83-86.
- (61) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. J. Org. Chem. **1991**, *56*, 2011–2017.
- (62) Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Z. Yang Org.

Lett. **2005**, *7*, 593 – 595.

- (63) Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, A. *Org. Lett.* **2006**, *8*, 83-86.
- (64) Aburano, D.; Yoshida, T.; Miyakoshi, N.; C. Mukai *J. Org. Chem.* **2007**, *72*, 6878 6884.
- (65) Ueno, Y.; Moriya, O.; K.Chino; Watanabe, M.; M. Okawara J. *Chem. Soc. Perkin Trans. 1* **1986**, 1351-1356.
- (66) Stork, G.; M.Sher, P. J. Am. Chem. Soc. 1986, 108, 303-304.
- (67) Stork, G.; Sher, P. M.; Chen, H.-L. J. Am. Chem. Soc **1986**, 108, 6384 6385.
- (68) Stork, G. Bull. Soc. Chim. Fr. 1990, 127, 675–680.
- (69) Salom-Roig, X. J.; Dénès, F.; Renaud, P. Synthesis **2004**, 1903-1928.
- (70) Freeman, P. K.; Hutchinson, L. L. J. Org. Chem. 1980, 45, 1924-1930.
- (71) Liu, H. J.; Yip, J.; Shia, K.-S. *Tetrahedron Lett.* **1997**, *38*, 2253-2256.
- (72) Davis, F. A.; Chen, B. C. Chem. Rev. 1992, 92, 919-934.
- (73) Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. J. Org. Chem. 1989, 54, 5930 – 5933.
- (74) Yamashita, T.; Kawai, N.; Tokuyama, H.; Fukuyama, T. J. Am. *Chem. Soc.* **2005**, *127*, 15038-15039.
- (75) Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 731–732.
- (76) Nakano, J.; Ichiyanagi, T.; Ohtab, H.; Itoa, Y. *Tetrahedron Lett.* 2003, 44, 2853-2856.
- (77) Dasgupta, S.; Nitz, M. J. Org. Chem. 2011, 76, 1918-1921.
- (78) Iida, E. "Asymmetric total synthesis of Fawcettimine-type Lycopodium alkaloids. Synthesis of optically active bicyclo [4.3.0] derivatives", Kanazawa University, (Master thesis) 2016.
- (79) Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 1778-1781.
- (80) Journet, M.; cai, D.; DiMichele, L. M.; Larsen, R. D. *Tetrahedron Lett.* **1998**, *39*, 6427-6428.
- (81) Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708-1709.
- (82) CCDC 1482946 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
- (83) The optical rotations of synthetic (+)-sieboldine A 1 reported by Overman and Tu were $[\alpha]_D^{23}$ +141 (c = 0.4, MeOH) and

 $[\alpha]_{D}^{20.2}$ +135. 7 (*c* = 0.28, MeOH) respectively.

- (84) Chandrasekhar, S.; Rao, C. L.; Seenaiah, M.; Naresh, P.; Jagadeesh, B.; Manjeera, D.; Sarkar, A.; Bhadra, M. P. J. Org. Chem. 2009, 74, 401-404.
- (85) Stalick, W. M.; Khorrami, A.; Hatton, K. S. J. Org. Chem. 1986, 51, 3577-3581.
- (86) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. **1999**, *64*, 4537-4538.

CHAPTER V

Appendix

¹H and ¹³C NMR spectra

1 1 1

0 H _H 7''

