Dissertation

Enantioselective Total Synthesis of (+)-Sieboldine A via Diastereoselective Pauson-Khand Reaction

Graduate School of Medical Sciences Kanazawa University

Division: Pharmaceutical Sciences
Laboratory: Pharmaceutical and Organic Chemistry

School registration No.: 1429012018
Name: Mohammed Khalifa Abd El-Gaber Khalifa
Primary supervisor name: Prof. Dr. Chisato Mukai

ACKNOWLEDGEMENT

In the name of ALLAH Almighty, the Compassionate, the Merciful. Alhamdulillah, to ALLAH I extended my heartfelt thanks for giving me a chance to fulfill this research succesfully.

First and foremost, I would first like to thank my supervisor Professor Dr. Chisato Mukai for his innovative ideas, encouragements, endless patient, enthusiasm and guidance during this research over the past few years. It was my highest pleasure to be the member of his brilliant group. Also, I would like to thank gratefully Dr. Fuyuhiko Inagaki and Dr. shigeo Yasuda for their support, motivation, and enormous help during my Ph.D. studies.

I wish to extend my gratitude to all members of the Professor Dr. Chisato Mukai's group, present and past (graduate and undergraduate), for the excellent working atmosphere, the interesting and stimulating discussion about chemistry and the great support I got from them.

I also wish to express my sincere gratitude to the Ministry of Education, Culture, Sports, Science and Technology-Japan for the funded Ph.D scholarship. I wish to thank to the Ministry of the Higher Education of Egypt and Assuit University for their acceptance and support during my Ph.D study at Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan.

Finally, yet importantly, I would like to express my heartfelt appreciation to my beloved parents, my wife, my sons Omar and Youssef and my friends for their wishes and the loving support that helped me through the tougher times of my graduate studies.

Mohammed Khalifa Abd El-Gaber
Assiut University
Egypt
2017

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iv
LIST OF ABBREVIATIONS / SYMBOLS vi
CHAPTERI INTRODUCTION 1
1.1 The Lycopodium alkaloids 1
1.1.1 Structure and biological activity of (+)-sieboldine A 2
1.1.2 Strategic comparison of previously reported 2syntheses of sieboldine A
1.1.3 Total synthesis of $(+)$-sieboldine A by Overman 4
1.1.4 Total synthesis of $(+)$-sieboldine A by Tu 6
1.2 Pauson-Khand Reaction (PKR) 8
1.2.1 The Discovery and Early Evolution of the PKR 8
1.2.2 Mechanism of the PKR 9
1.2.3 Intramolecular PKR 9
1.3 Total syntheses of Lycopodium alkaloids using intramolecular PKR as a key step 11
1.3.1 Total Syntheses of (+)-Lycoposerramine-C and (-)-phlegmariurine-A by Takayama 11
1.3.2 Total Syntheses of (-)-huperzine-Q, $(+)$-fawcettimine and (+)-fawcettidine by Takayama 12
1.3.3 Total Syntheses of (-)-magellanine, $(+)$-magellaninone, and (+)-paniculatine by Mukai 13
1.3.4 Total Syntheses of $(+)$-fawcettimine and (+)-lycoposerramine B by Mukai 14
1.3.5 Total Syntheses of (\pm)-fawcettimine,
(\pm-fawcettidine, (\pm)-lycoposerramine- Q and (\pm)-lycoflexine by Mukai 15
$1.4 \quad$ Research objective 17
CHAPTER II RESULTS AND DISCUSSION 18
2.1 Total synthesis of (\pm)-Sieboldine A 18
2.1.1 Retrosynthetic analysis of (\pm)-Sieboldine A 18
2.1.2 Synthesis of PKR precursor Dienyne 105 19
2.1.3 Intramolecular PKR of Dienynes 104 and 105 20
2.1.4 Stereoselective Reduction of indenone 107 21
2.1.5 Construction of the quaternary center and difficulties in removal of benzyl group 22
2.1.6 Attempts for silyl enolization of ketone 119 23
2.1.7 Regioselectivec acetate enolization ketone 119 24
2.1.8 Preparation of Triol 125 25
2.1.9 Introduction of the nitrogen functionality 26
2.1.10 Optimized oxidation of Diol 129 27
2.1.11 Assembly of the azacyclononane ring 29
2.1.12 Completion of total synthesis of (\pm)-sieboldine A 1 30
2.2 Total synthesis of (+)-Sieboldine A 31
2.2.1 Retrosynthetic analysis of (+)-Sieboldine A 31
2.2.2 Keck asymmetric allylation of aldehyde 103 33
2.2.3 Intramolecular PKR of Dienyne (+)-105 34
2.2.4 Synthesis of Triol (-)-125 34
2.2.5 Synthesis of Aminolactol (-)-132 35
2.2.6 Completion of total synthesis of (+)-sieboldine A 36
$2.3 \quad$ Conclusion 37
CHAPTER III EXPERIMENTAL 38
$3.1 \quad$ General notes 38
$3.2 \quad$ Synthetic procedures 39
Determination of the absolute configuration of (+)-
59
59
3.3 144 144
Comparison of synthetic and natural (+)-sieboldine A
Comparison of synthetic and natural (+)-sieboldine A 3.4 spectral data 61 61
CHAPTER IV REFERENCES 63
CHAPTER V APPENDIX 67

A	angstrom
Ac	acetyl
AIBN	azobisisobutyronitrile
aq	aqueous
Ar	argon
atm	atmosphere
BINOL	1,1 --Bi-2-naphthol
Bn	benzyl
BOC	tert-butyloxycarbonyl
br	broad (in nuclear magnetic resonance)
${ }^{\circ} \mathrm{C}$	degree centigrade
calcd	calculate
cat.	catalyst
cm	reciprocal centimeters
CO	carbon monoxide
CSA	camphorsulfonic acid
d	doublet
DBU	1,8 -Diazabicyclo[5.4.0]undec-7-ene
DCE	1,2 -dichloroethane
dd	doublet of doublet
DDQ	2,3 -dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	diethyl azodicarboxylate
DIPAL-H	diisobutylaluminium hydride
DIPEA	N, N-diisopropylethylamine
DMAP	4-dimethylaminopyridine
DMDO	dimethyldioxirane
DMP	Dess-Martin periodinane
DMS	dimethylsulfide
DMSO	dimethylsulfoxide
dpen	1,2 -diphenyl-1,2-ethylenediamine
EI	electron impact ionization
equiv.	equivalent
ESI	electron spray ionization
Et	ethyl
EtOAc	ethyl acetate
g	gram
h	hour
HMPA	hexamethylphosphoramide
HR	high resolution
Hz	hertz
IBX	2 -iodoxybenzoic acid
Imid.	imidazole
i-Pr	isopropyl
Ipc	isopinocampheyl
IR	infrared
J	coupling constant

KHMDS	potassium bis(trimethylsilyl)amide
LAH	lithium aluminium hydride
m	multiplet
M	metal
M	molar
m-CPBA	m-chloroperbenzoic acid
Me	methyl
mg	miligram
MHz	megahertz
min	minute
mL	mililiter
mol\%	mole per cent
MOM	methoxymethyl
Ms	methanesulfonyl
MS	molecular sieves, mass spectrometry
MsCl	methanesulfonyl chloride
MTPA	α-methoxy- α-trifluoromethylphenylacetic acid
NMO	N-methylmorpholine N-oxide
NMR	nuclear magnetic resonance
Ph	phenyl
Piv	pivaloyl
PKR	Pauson-Khand reaction
PMB	p-methoxybenzyl
ppm	parts per million
PPTS	pyridinium p-toluenesulfonate
q	quartet
Rh	rhodium
rt	room temperature
rf	reflux
s	singlet, second
sat	saturated
t	triplet
TBAF	tetra- n-butylammonium fluoride
TBAI	tetra- n-butylammonium iodide
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMEDA	tetramethylethylenediamine
TMS	trimethylsilyl
TMTU	tetramethylthiourea
TPAP	tetrapropylammonium perruthenate
Ts	tosyl
δ	NMR chemical shift in ppm downfield from a standard

CHAPTER I

Introduction

1.1 The Lycopodium alkaloids

The Lycopodium alkaloids are a large group of natural products characterized by their unique polycyclic frameworks. ${ }^{1,2}$ These alkaloids derive their name from the Lycopodium species of clubmosses from which they were originally isolated. ${ }^{3}$ The Lycopodium alkaloids are divided into four distinct structural classes; the fawcettimine class, the lycopodine class, the lycodine class and the miscellaneous class (Figure 1). Hydrindane containing natural products, such as sieboldine A 1, alopecuridine $\mathbf{2}$ and fawcettimine $\mathbf{3}$ are classified in the fawcettimine group. Natural products that contain a pyridine or pyridone ring, such as huperzine A 4, are classified in the lycodine group. Furthermore, alkaloids that contain four interconnected sixmembered rings, such as lycopodine 5, are members of the lycopodine group. Finally, natural products that are devoid of one of the aforementioned structural features are members of the miscellaneous class, such as phlegmarine $6 .{ }^{4}$

Fawcettimine class

Sieboldine A 1

$\mathrm{R}=\mathrm{OH}$ Alopecuridine 2
$\mathrm{R}=\mathrm{H} \quad$ Fawcettimine 3

Lycodine class

Huperzine A 4

Lycopodine class

Lycopodine 5

Miscellaneous class

Phlegmarine 6

Figure 1. Representative Lycopodium Alkaloids.

1.1.1 Structure and biological activity of (+)-sieboldine A

In 2003, Kobayashi and coworkers reported the isolation of (+)-sieboldine A 1 from the clubmoss Lycopodium sieboldii in Japan. Structurally, sieboldine A 1 contains unprecedented fused tetracyclic skeleton consisting of cis-hydrindane ring system, the distinctive structural feature of fawcettimine-type Lycopodium alkaloids and N -hydroxyazacyclononane ring embedded in a bicyclo[5.2.1]decane-N,O-acetal. $(+)$-Sieboldine A 1 has two contiguous quaternary carbons; one of them is an allcarbon quaternary center (Figure 2). ${ }^{5}$

(+)-Sieboldine A 1

Figure 2. Structure of (+)-sieboldine A 1.

Along with their complex structures, the Lycopodium alkaloids generally have interesting biological activities and plants or plant extracts containing these alkaloids have been utilized in traditional folk medicine for decades. ${ }^{1}$ Sieboldine A 1 exhibited in vitro cytotoxicity against murine lymphoma L 1210 cells $\left(\mathrm{IC}_{50} 5.1 \mu \mathrm{~g} / \mathrm{mL}\right)$ and inhibited acetylcholinesterase (from electric eel) with an IC_{50} value of $2.0 \mu \mathrm{M}$, which was comparable to that of huperzine A $4 .{ }^{5}$ In clinical trials, Huperzine A 4 has been shown to have beneficial effects on cognitive function and memory in patients with Alzheimer's disease. ${ }^{6,7}$ The unusual unique skeletons along with the interesting biological activities made the Lycopodium alkaloids worthy challenging targets for total synthesis. ${ }^{8-17}$

1.1.2 Strategic comparison of previously reported syntheses of sieboldine A

The completion of the first total synthesis of $(+)$-sieboldine A 1 was reported in 2010 by Overman. ${ }^{18,19}$ Later, Tu and coworkers reported the first total synthesis of alopecuridine 2 and its biomimetic oxidation to sieboldine A $1 .{ }^{20,21}$ Overman and Tu used two completely different strategies to access sieboldine A $\mathbf{1}$. The only common
idea shared by the two strategies was the elaboration of the sensitive N, O-acetal moiety at a late stage of the synthesis.

Overman assembled the N,O-acetal via intramolecular coupling of the activated thioglycoside moiety with the tethered hydroxylamine side chain in derivative 7 (Scheme 1). The cis-hydrindanone $\mathbf{8}$ was obtained by a pinacolterminated Prins cyclization of enyne $\mathbf{9}$ as a key step. Enyne $\mathbf{9}$ was prepared from cyclopentanone $\mathbf{1 0}$ through vinyl addition and alkyne elongation. Cyclopentanone $\mathbf{1 0}$ was readily accessed from previously reported enantiomerically pure bicyclic lactone
11.

Scheme 1: Overman's retrosynthetic analysis of (+)-sieboldine A 1.

Tu decided to follow Kobayashi's proposed biogenetic pathway and expected that formation of the tetrahydrofuran ring with concomitant formation of the $\mathrm{N}, \mathrm{O}-$ acetal could be achieved through a two-step oxidation of alopecuridine 2 (Scheme 2). The B-ring of the alkaloid was obtained via SmI_{2}-mediated pinacol coupling of compound 12. The all-carbon quaternary center at C12 and the aza-cyclononane ring were constructed through a semipinacol ring expansion of the eight-membered nitrogen-containing ring of 13. Hydroxy epoxide 13 was prepared from haloalkene 14 and carbamate 15 by coupling and epoxidation.

Scheme 2: Tu's retrosynthetic analysis of (+)-sieboldine A 1.

1.1.3 Total synthesis of (+)-sieboldine A by Overman

The key step in Overman's preparation of (+)-sieboldine A 1 was a pinacolterminated cyclization cascade (Scheme 3). The synthetic pathway started with a methyl cuprate-promoted SN2' alkylation of lactone 11, followed by iodolactonization to give iodolactone 16 in 93% yield. Next, lithium aluminum hydride (LAH) reduction of 16 led to the corresponding dehalogenated diol, which was selectively monosilylated and oxidized with Dess-Martin periodinane (DMP) to form ketone 17. Addition of E-vinyl iodide derivative $\mathbf{1 8}$ to ketone $\mathbf{1 7}$ afforded the desired allylic alcohol 19 in 90% yield. Thus, silylation of the allylic hydroxy functionality of 19 followed by Swern oxidation of the primary silyl ether, and subsequent reaction with the Bestmann-Ohira reagent 20 afforded alkyne 21 in 70\% yield. Alkyne 21 was subjected to a gold-catalyzed pinacol-type cyclization reaction to deliver cishydrindanone 23 in 78\% yield.

Scheme 3: Overman's total synthesis of (+)-sieboldine A 1.

The next steps were concerned with the construction of the tetrahydrofuran moiety. Ozonolytic cleavage of the exo-methylene functionality of $\mathbf{2 3}$ and subsequent base-promoted elimination of the phenoxide afforded enone 24. Europium(III)catalyzed hetero Diels-Alder reaction with ethyl vinyl ether furnished the tricyclic dihydropyran 25. Reduction of the C13 carbonyl group followed by oxidation with dimethyldioxirane (DMDO) and treatment with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ and ethanethiol afforded cyclic hemithioacetal 26 in 53\% yield.

Desilylation of $\mathbf{2 6}$ was carried out with TBAF and the resulting primary alcohol was subjected to a Mitsunobu coupling with protected hydroxylamine derivative (NsNH-OMOM). Then, the nosyl protecting group was removed with thiophenolate and treatment with dimethyl(methylthio)sulfonium triflate (DMTST) in the presence of 2,6-di-tert-butyl-4-methylpyridine (DTBMP) afforded the pentacyclic azacyclononane 27 in 39% yield. Final oxidation and MOM deprotection delivered (+)-sieboldine A 1 in 59\% yield. ${ }^{18,19}$

1.1.4 Total synthesis of (+)-sieboldine A by Tu

The plausible biogenesis of $(+)$-sieboldine A 1 was initially proposed by Kobayashi (Scheme 4). Alopecuridine $\mathbf{2}$ may exist in either an aminoacetal form or an amino ketone form. The aminoacetal form of $\mathbf{2}$ was confirmed by X-ray analysis. SieboldineA 1 might be generated from alopecuridine 2 as follows. Cleavage of the C13-N1 bond of an N-oxidative product of $\mathbf{2}$ followed by Polonovski-type reaction (path a) might result in an iminium intermediate \mathbf{A} with a nine-membered ring system, although an alternative path through a hydroxylamine derivative \mathbf{B} is also possible (path b). Oxidation of the imine \mathbf{A} to produce an oxaziridine ring or a nitrone followed by attack of the hydroxy group at C 4 to C 1 will give $(+)$-sieboldine $\mathrm{A} \mathbf{1}$, although an alternative path (path c) is also possible. ${ }^{5}$

Scheme 4: Kobayashi's proposed biogenesis of (+)-sieboldine A 1.
Tu and coworkers followed Kobayashi's proposed biogenetic pathway and used alopecuridine $\mathbf{2}$ as a synthetic scaffold to access sieboldine A $\mathbf{1}$ (Scheme 5). ${ }^{20,21}$ The synthesis was commenced by treatment of trans-cyclohexenol 28 with trimethyl orthoester at $165{ }^{\circ} \mathrm{C}$ and the generated ester was reduced by LAH followed by DessMartin oxidation and Wittig methylenation to produce bromoalkene derivative 29 in 52% yield with a dr of 5:1. The known ketone $\mathbf{1 5}$ was prepared from azepine $\mathbf{3 0}$ via a Tiffenau-Demjanov-type reaction followed by hydrolysis of the ethyl ester and subsequent decarboxylation. Coupling of $\mathbf{2 9}$ with $\mathbf{1 5}$ was carried out through the
intermediacy of the vinylcerium species generated from the lithium salt of 29. To avoid elimination, the generated coupling product was directly epoxidized by m CPBA resulting in formation of epoxides $\mathbf{1 2}$ and $\mathbf{1 2}^{\prime}$ as an inseparable mixture in 71% yield with a dr of $6: 1$. The semipinacol rearrangement of $\mathbf{1 2}$ and 12 promoted by $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ took place to produce ketones $\mathbf{1 3}$ and $\mathbf{1 3}^{\prime}$ in 51% yield. After a three-step sequence involving hydroxyl group protection, ozonolysis, and SmI_{2} promoted Intramolecular pinacol coupling, the so obtained tricyclic compound $\mathbf{3 1}$ was further subjected to one-pot deprotection, TPAP oxidation and final N-Boc deprotection to deliver (+)-alopecuridine TFA 2 in 23\% yield from 13.

The biomimetic transformation of (+)-alopecuridine TFA 2 to (+)-sieboldine A 1 was realized through a two-step one pot oxidation cascade. Alopecuridine TFA 2 was oxidized to N -oxide $\mathbf{3 2}$ by the peroxide agent. The N -oxide $\mathbf{3 2}$ might isomerize to N-hydroxide 33 which underwent further oxidation with HgO to give nitrone 34. The Intramolecular nucleophilic attack of the C 4 hydroxy group to C 1 led to formation of the tetrahydrofuran ring and afforded (+)-sieboldine A 1 in 60% yield.

31

(+)-Sieboldine A 1

Scheme 5: Tu's total synthesis of (+)-sieboldine A 1.

1.2 Pauson-Khand Reaction (PKR)

1.2.1 The Discovery and Early Evolution of the PKR

Metal-mediated transformations have changed the profile and enhanced the potential of organic synthesis well beyond that which was previously possible or imaginable. The cycloaddition reaction is one of the most attractive synthetic protocols for accessing a variety of scientifically interesting and pharmaceutically useful ring skeletons from simple starting materials. ${ }^{22}$ In 1973, Pauson and Khand reported the formal $[2+2+1]$ cycloaddition reaction between an alkyne, an alkene, and
carbon monoxide that has become one of the most elegant methods for the construction of the cyclopentenone derivatives (Scheme 6). ${ }^{23,24}$

Scheme 6: Pauson-Khand reaction

The first reported example was the reaction of norbornadiene 36 with the phenylacetylene-dicobalthexacarbonyl complex 35 to form the corresponding cyclopentenone 37 in 45% yield (Scheme 7). ${ }^{24}$

Scheme 7: First example of PKR

The initial scope and generality of this cyclopentannulation process was established through an extensive series of studies by Pauson and his co-workers. ${ }^{25-27}$ However, there were some limitations for the original PKR at that early stage. For example, the stoichiometric amount of catalyst and only strained olefins reacted efficiently under the original reaction conditions. With respect to regiochemistry of PKR, the larger alkyne substituent is being installed in the position α to the cyclopentenone carbonyl unit. Unsymmetrical alkenes usually gave a mixture of regioisomers (Scheme 8). ${ }^{28}$

Scheme 8: Regiochemistry of the PKR

1.2.2 Mechanism of the PKR

The mechanism of the PKR, initially proposed by Magnus, has now been widely accepted (Scheme 9). In the presence of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ the alkyne 38 forms the tetrahedral dicobalt complex 39. After loss of CO, the alkene is coordinated to give complex 40, which undergoes insertion of the alkene moiety into the sterically least hindered Co-C bond to give complex 41. Subsequent CO insertion gives rise to the cobalt acyl complex 42. Extrusion of one $\mathrm{Co}(\mathrm{CO})_{3}$ fragment yields the cobaltacyclopropene complex 43 , which is finally converted to the cyclopentenone 44 by reductive cleavage of $\mathrm{Co}_{2}(\mathrm{CO})_{6}{ }^{29}$

Scheme 9: Mechanism of PKR

1.2.3 Intramolecular PKR

In 1981, Schore and co-workers reported the first example of an intramolecular PKR. ${ }^{30}$ This version provided a powerful methodology for construction of cyclopentenone fused bicyclic frameworks in a straightforward manner. Within the original landmark publication, both hept-6-en-1-ynes 45 and oct-7-en-1-ynes 47 were utilized as substrates in intramolecular PK process to deliver bicyclo[3.3.0]octenones 46 andbicyclo[4.3.0]nonenone 48 (Scheme 10). ${ }^{30}$

Scheme 10: Intramolecular PKR

Later, Magnus further enhanced the efficacy of PKR by showing that appreciable stereoselectivity could be achieved within the intramolecular processes, a feature that proved to be the cornerstone to the application of the PKR in natural product synthesis. ${ }^{31}$ Substituents at the propargylic C 3 position in 49 and allylic C 5 position in $\mathbf{5 2}$ have a preference to become situated on the exo-face and syn to the ring fusion hydrogen in the resulting bicyclic PK products $\mathbf{5 0}$ and 53 respectively (Scheme 11). The level of stereoselectivity was further enhanced by bulky substitution at the terminal alkyne carbon. ${ }^{32}$

Scheme 11: Diastereoseletivity of intramolecular PKR.

With the stereochemical reaction outcomes established for a number of substrate substitution patterns, Magnus and co-workers utilized the intramolecular PKR as a key step for the synthesis of the linearly-fused triquinane natural products, coriolin, ${ }^{31}$ hirsutic acid ${ }^{33}$ and cytotoxic sesquiterpene, quadrone. ${ }^{34}$

The intramolecular version of the PK annulation has continued to expand in terms of substrate scope and reaction selectivity. The growth in PK potential has been
driven by a range of emerging procedures using a variety of metal complexes and promoters, which have appreciably enhanced the overall efficiency of the cyclization method. ${ }^{35-44}$

1.3 Total syntheses of Lycopodium alkaloids using intramolecular PKR as a key step

1.3.1 Total Syntheses of (+)-Lycoposerramine-C and (-)-phlegmariurine-A by Takayama

In 2009, Takayama et al. reported the total synthesis of (+)-lycoposerramine-C 60 and (-)-phlegmariurine-A 61 (Scheme 12). ${ }^{45}$ Amide 55 was stereoselectively prepared by a diastereoselective Hosomi-Sakurai allylation ${ }^{46}$ of $\mathbf{5 4}$ and subsequent cleavage of the oxazolidinone ring. Next, introduction of the alkyne chain to $\mathbf{5 5}$ followed by a Corey-Bakshi-Shibata (CBS) reduction ${ }^{47}$ and TIPS protection of the resulting hydroxyl group afforded enyne 56 in 96% yield. The Intramolecular PKR of enyne $\mathbf{5 6}$ proceeded smoothly to form hydrindanone $\mathbf{5 7}$ in 87% yield. Construction of the quaternary center was conceived through a stereoselective CBS reduction of $\mathbf{5 7}$ followed by sulfoxide formation and Claisen rearrangement to afford the desired aldehyde $\mathbf{5 8}$ in 51% yield. The tricyclic dione $\mathbf{5 9}$, obtained from $\mathbf{5 8}$ in 12 steps, was treated with ZnBr_{2} to form (+)-lycoposerramine-C $\mathbf{6 0}$ in 32% yield from 58. Furthermore, base treatment of (+)-lycoposerramine-C 60 afforded (-)-phlegmariurine-A 61 in 95\% yield.

Scheme 12: Takayama's total synthesis of (+)-lycoposerramine-C 60 and (-)-phlegmariurine-A 61.

1.3.2 Total Syntheses of (-)-huperzine-Q, (+)-fawcettimine and (+)-fawcettidine by Takayama

In 2011, Takayama and coworkers completed the first total synthesis of (-)-huperzine-Q 68 utilizing an intramolecular PKR as a key step (Scheme 13). ${ }^{48}$ First, Noyori asymmetric hydrogenation ${ }^{49}$ of ketone 62, followed by acid catalyzed cyclization gave lactone $\mathbf{6 3}$ in 68% yield with 83% ee. Allyl lactone 64, derived from 63 in 2 steps, was reduced by LiBH_{4} to give enynediol 65 in 95% yield. Direct subjection of enynediol $\mathbf{6 5}$ to intramolecular PKR conditions resulted in formation of the undesired C7-epimer. Therefore, Takayama and coworkers decided to install a silicon tether to force the substrate in a chair-like conformation with the C 15 sidechain in axial position. With the silyl tether in place, PKR of enyne 66 and subsequent treatment with concentrated hydrochloric acid afforded the desired desilylated bicyclic Pauson-Khand product 67 in excellent yield. With bicyclic intermediate 67 in hand, takayama was able to access (-)-huperzine-Q 68 in 13 synthetic steps from 67
with an overall yield of 16.4%. In the next year, takayama reported the total synthesis of (+)-fawcettimine 3 and (+)-fawcettidine 69 from 67 as a common synthetic intermediate. ${ }^{50}$

Scheme 13: Takayama's total synthesis of (-)-huperzine Q 68, (+)-fawcettimine 3, $(+)$-fawcettidine 69.

1.3.3 Total Syntheses of (-)-magellanine, (+)-magellaninone, and (+)-paniculatine by Mukai

In 2007, Mukai reported the total syntheses of (-)-magellanine 77, (+)magellaninone 78, and (+)-paniculatine 79 from diethyl L-tartrate 70 in a stereoselective manner (Scheme 14). ${ }^{51}$ The crucial steps in these syntheses involved two intramolecular Pauson-Khand reactions and a Ueno-Stork reaction ${ }^{52,53}$ for construction of the quaternary center. Enyne 71, derived from diethyl L-tartarate 70, was subjected to an intramolecular PKR according to Sughihara's condition ${ }^{54}$ to give preferentially bicyclo[4.3.0]nonenone $\mathbf{7 2}$ in 92% yield. Selective deprotection of the C2-siloxy group of $\mathbf{7 2}$ with TBAF furnished alcohol 73 in 99% yield. The
simultaneous and stereoselective introduction of the essential carbon units at the C 1 position and the C9 position was realized by the Ueno-Stork reaction. Alcohol 73 was treated with ethyl 2-bromovinyl ether under acidic catalysis, and the resulting bromoacetal derivative was subsequently subjected to AIBN in refluxing benzene in the presence of allyltributyltin to give the tricyclic lactone 74 in 65% yield. The enyne 75, generated from 74, was subjected to a second intramolecular PKR to afford tetracyclic derivative 76 which finally converted to (-)-magellanine 61, (+)magellaninone $\mathbf{6 2}$ and (+)-paniculatine $\mathbf{6 3}$ in an overall yield 1.7, 1.9 and 2.8\% respectively.

Scheme 14: Mukai's Total Synthesis of (-)-magellanine 77, (+)-magellaninone 78, and (+)-paniculatine 79.

1.3.4 Total Syntheses of (+)-fawcettimine and (+)-lycoposerramine B by Mukai

Three years later, Mukai and coworkers utilized the lactone intermediate 74 for the asymmetric preparation of (+)-fawcettimine $\mathbf{3}$ and (+)-lycoposerramine B 82 (Scheme 15). ${ }^{55}$ The amide alcohol 80, derived from intermediate 74 in 11 synthetic steps, was subjected to an intramolecular Mitsunobu reaction ${ }^{56}$ to give tricyclic derivative $\mathbf{8 1}$ in 96% yield. The stereoselective introduction of C15 methyl and final conversions afforded (+)-fawcettimine 3 and (+)-lycoposerramine B 82 from tricyclic 81 in 20 and 6% yield respectively.

(+)-fawcettimine 3

(+)-lycoposerramine-B 82

Scheme 15: Mukai's Total Synthesis of of (+)-fawcettimine 3 and (+)lycoposerramine B 82.

The high stereoselective intramolecular PKR developed by Mukai for construction of the bicyclo[4.3.0] skeleton applied a nice protocol for the preparation of the cis-hydrindane moiety in fawcettimine-type Lycopodium alkaloids and enabled the access for several complex natural products from common precursors. However, the approach seemed to have two issues that needed to be improved. First, the conversion of diethyl L-tartrate 54 into the PKR substrate enyne 55 involved 10 synthetic steps. Secondly, the stereoselective introduction of C15 methyl group
needed lengthy functional group manipulations which required several additional steps.

1.3.5 Total Syntheses of (\pm) -fawcettimine, (\pm) -fawcettidine, (\pm) -lycoposerramine- Q and (\pm)-lycoflexine by Mukai

In 2013, Mukai reported the total synthesis of new Lycopodium alkaloids using a more efficient second generation synthetic pathway for preparation of bicyclo[4.3.0]nonenone skeleton. ${ }^{57}$ In the improved protocol, Dienyne 84, generated from commercially available propargyl alcohol $\mathbf{8 3}$ in only 5 synthetic steps, was used as a substrate for the PKR. The intramolecular PKR of $\mathbf{8 4}$ afforded bicyclo[4.3.0]nonenone $\mathbf{8 5}$ in 86% yield with a dr of 10: 1. The exomethylene moiety was stereoselectively reduced by Wilkinson's hydrogenation to give the methyl derivative $\mathbf{8 6}$ with the required stereochemistry at C15 in 80% yield. The stereoselective creation of the quaternary center and introduction of allyl group α to the carbonyl group was achieved through the Ueno-Stork reaction to form cyclic acetal 87 in 73% yield. A cascade of reduction, benzyl protection, acid treatment and Wittig olefination gave the diallyl derivative $\mathbf{8 8}$ in 48% yield. The diallyl $\mathbf{8 8}$ was converted to the tricyclic derivative $\mathbf{9 0}$ in 7 synthetic steps with a Mitsunobu coupling reaction of diol $\mathbf{8 9}$ as a key step. With the common synthetic intermediate $\mathbf{9 0}$ in hand, final manipulations allowed the access of (\pm)-fawcettimine 3, (\pm)-fawcettidine 69, (\pm) -lycoposerramine-Q 91 and (\pm)-lycoflexine 92.

(32\% for 5 steps)

(\pm)-fawcettimine
3

(\pm)-fawcettidine
69

(\pm)-lycoposerramine-Q
91

\pm)-lycoflexine
92

Scheme 16: Mukai's total syntheses of (\pm)-fawcettimine 3, (\pm)-fawcettidine 69, (\pm)-lycoposerramine-Q 91 and (\pm)-lycoflexine 92.

1.4 Research objective

For the past century, the total synthesis of natural products has served as the flagship of chemical synthesis and the principal driving force for discovering new chemical reactivities, evaluating physical organic theories, testing the power of existing synthetic methods, and enabling biology and medicine to discover new drug candidates. The PKR has become one of the most important stratigies for the synthesis of cyclopentenone containing natural products. The intramolecular PKR of enynes, developed in Mukai's group, enabled the construction of bicyclo[4.3.0]nonenoe skeleton in a highly diastereoselective manner and allowed the access of several fawcettimine-type Lycopodium alkaloids. This research is concerned with the enantioselective total synthesis of (+)-sieboldine A 1 using an intramolecular PKR as a key step for construction of the cis-hydrindane core. (+)-Sieboldine A has
interesting biological activities and providing a shorter and entatioselective route for its preparation from commercially available starting materials will help to explore its scaffold for the discovery of potential anti-Alzheimer agents.

Scheme 17: Research objective for total synthesis of (+)-sieboldine A 1.

CHAPTER II

Results and Discussion

2.1 Total synthesis of (\pm)-Sieboldine \mathbf{A}

2.1.1 Retrosynthetic analysis of (\pm)-Sieboldine A

Our retrosynthetic plan for the preparation of (\pm)-sieboldine A 1 is presented in Scheme 18. The elaboration of the sensitive N, O-acetal functionality of (\pm) - $\mathbf{1}$ was planned to be formed during the late stage of the synthesis via the intramolecular
displacement reaction of the lactol functionality of 93 by the O-protected hydroxylamine residue. ${ }^{58,59}$ The spirolactol framework of 93 would be formed through oxidative cyclization of the diol 94 . Introduction of the nitrogen functionality could be achieved through the hydroboration-oxidation of the allyl side chain of $\mathbf{9 5}$, followed by a Mitsunobu coupling with the protected hydroxylamine derivative. The cis-hydrindanone 95 with all-carbon units required for 1 would be obtained by the consecutive bromoacetalization, Ueno-Stork cyclization, and Wittig olefination of 96. In our previous studies, we definitely showed that the PKR is a powerful and efficient synthetic tool to assemble bicyclo[4.3.0] frameworks. ${ }^{55,57,60}$ Based on our previous results, the PKR of the dienyne 97 would be expected to stereoselectively produce 96. Dienyne 97 would be available through a Barbier coupling of aldehyde 98 with a suitable allyl derivative.

Scheme 18: Retrosynthetic analysis of (\pm)-Sieboldine A 1.

2.1.2 Synthesis of PKR precursor Dienyne 105

The synthetic plan towards (\pm)-sieboldine A 1 started with addition of allyl bromide to propargyl alcohol 83 in the presence of zinc dust and copper(I) iodide to
give alcohol 99 in 56% yield (Scheme 19). ${ }^{61}$ The alcohol 99 was subjected to Appel reaction conditions to form iododiene $\mathbf{1 0 0}$ in 71% yield. ${ }^{57}$ On the other hand, the hydroxyl group of commercially available 4-pentyn-1-ol 101 was protected with a PMB group to give pentyne $\mathbf{1 0 2}$ in 96% yield. Pentyne $\mathbf{1 0 2}$ was hydroxymethylated with n-BuLi and paraformaldehyde and the resulting alcohol was oxidized by 2 iodoxybenzoic acid (IBX) in DMSO/THF mixture to give the desired aldehyde $\mathbf{1 0 3}$ in 66% yield. The iododiene 100 was entered into a Barbier reaction with aldehyde 103 and the resulting secondary alcohol was protected with TBS group to form dienyne 105.

Scheme 19: Preparation of dienyne 105.

2.1.3 Intramolecular PKR of Dienynes 104 and 105

The intramolecular PKR of dienynes $\mathbf{1 0 4}$ and $\mathbf{1 0 5}$ using a catalytic amount of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ in presence of tetramethylthourea (TMTU) under 1 atm of CO afforded indenones 106 and $\mathbf{1 0 7}$ (Table 1). ${ }^{62-64}$ An extremely high preferential formation of indenones 106 and 107 over $\mathbf{1 0 6}^{\prime}$ and $\mathbf{1 0 7}^{\prime}$ could tentatively be rationalized by considering the steric hindrance between the OR group and the carbon reside having PMB in the possible cobaltacyclic intermediates \mathbf{b} and \mathbf{c}. Dienyne $\mathbf{1 0 5}$ showed the best results in terms of diastereoselectivity and yield. The enhanced
diastereoselectivity in PKR of dienyne $\mathbf{1 0 5}$ compared to $\mathbf{1 0 4}$ might be attributed to the more steric repulsion exhibited by the OTBS than the OH group in 104.

Table 1. Intramolecular PKR of dienynes 104 and 105.

Entry	Substrate	R	Temp (${ }^{\circ} \mathrm{C}$)	Yield (\%)	Ratio ${ }^{\text {a }}$ [Major:Minor]
1	104	H	70	89	89:11
2	104	H	80	86	87:13
3	105	TBS	70	96	98:2
4	105	TBS	80	92	95:5

${ }^{\text {a }}$ Ratio was calculated from isolated yields after column chromatography

2.1.4 Stereoselective Reduction of indenone 107

After obtaining indenone 107 with the required stereochemistry, our efforts moved towards the introduction of C15 methyl group and stereoselective reduction of the ketone group (Table 2). Hydrogenation of the exomethylene moiety of $\mathbf{1 0 7}$ in presence of $5 \mathrm{~mol} \%$ Wilkinson's catalyst proceeded in a highly chemo- and stereoselective manner to form the methyl derivative $\mathbf{1 0 8}$ having the C15-methyl group with the desired stereochemistry in 98% yield. ${ }^{57}$ Stereoselective reduction of the ketone group was examined using K-selectride under different conditions, (Table 2). Although the use of [18]-crown 6 as an additive during the reduction process had a beneficial effect on the yield, it decreased the stereoselectivity of the reduction. In addition, oxygenated solvents like $\mathrm{Et}_{2} \mathrm{O}$ and THF showed the best results in terms of yield and stereoselectivity over hydrocabon solvents as toluene.

Table 2. Stereoselective reduction of ketone 108.

Entry	Solvent	Additive	Yield (\%)	$\mathbf{d r}^{\mathbf{a}}$
1	Toluene	$----------\cdots$	71	$88: 12$
2	THF	---------	87	$92: 8$
3	$\mathrm{Et}_{2} \mathrm{O}$	---------	76	$73: 27$
4	Toluene	$[18]-c r o w n-6$	77	$68: 32$
5	THF	$[18]-c r o w n-6$	89	$61: 39$
Ratio calculated from isolated yields after column chromatography.				

${ }^{a}$ Ratio calculated from isolated yields after column chromatography.

2.1.5 Construction of the quaternary center and difficulties in removal of benzyl group

The next synthetic steps aimed towards the construction of the all-carbon quaternary center by taking the advantage of the Ueno-Stork reaction (Scheme 20). ${ }^{65-}$ ${ }^{69}$ First, alcohol 109 was protected with a benzyl group in 83% yield. The TBS group of $\mathbf{1 1 0}$ was removed by TBAF and the resulting alcohol was reacted with ethyl 2bromovinyl ether in presence of acid catalysis to afford the bromoacetal 112. Treatment of $\mathbf{1 1 2}$ with tributyltin hydride under conventional radical initiation
conditions (AIBN in toluene) provided the cyclic acetal $\mathbf{1 1 3}$ in 73% yield of 2 steps with a dr of 3:1. The hemiacetal derivative, obtained from 113 by acid treatment, underwent a Wittig olefination reaction with $\mathrm{PPh}_{3} \mathrm{MeBr}$ and KHMDS to afford allyl alcohol 114 in 61% yield. Allyl alcohol 114 was protected with a MOM group to provide indene 115 in 91% yield. At this stage, we needed to remove the benzyl protecting group to restore the ketone functionality. Our attempts to obtain alcohol $\mathbf{1 1 6}$ through radical reduction of indene $\mathbf{1 1 5}$ with lithium 4,4'-di-tert-butulbiphenylide $(\operatorname{LiDBB})^{70}$ or lithium naphthalenide $(\mathrm{LN})^{71}$ were unsuccessful. The encountered difficulties in removal of benzyl group through radical reduction may be attributed to the sterically congested environment surrounding the benzyl group. Accordingly, we decided to modify our strategy to form the oxa quaternary center before performing the Wittig olefination.

Scheme 20: Preparation of $\mathbf{1 1 5}$ and attempts for benzyl deprotection.

2.1.6 Attempts for silyl enolization of ketone 119

The TBS group of $\mathbf{1 0 8}$ was removed by TBAF and the resulting alcohol $\mathbf{1 1 7}$ was entered into the Ueno-Stork cascade to obtain the cyclic acetal 119 in 89% yield of 2 steps. We conceived that the formation of the oxa quaternary center could be
achieved through a Rubottom oxidation of the silyl enol derivative $\mathbf{1 2 0}{ }^{72}$ We examined different protocols for preparation of the thermodynamically controlled silyl enol isomer $\mathbf{1 2 0}$ but our efforts were unfruitful (Table 3). The chlorosilanes were found to be unreactive enough for the conversion while the silyl triflates leaded to decomposition of the starting material.

Table 3. Attempts for silyl enolization of ketone 119.

Entry	Conditions	Solvent	Temp.	Time/h	Result
1	TMSCI, Mg	THF	rt to rf	24	No reaction
2	TBSCI, Mg	THF	rt to rf	24	No Reaction
3	TBSCI, $\mathrm{Et}_{3} \mathrm{~N}$	DMF	rt	24	No Reaction
4	TBSCI, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{NaI}$	$\mathrm{CH}_{3} \mathrm{CN}$	rf	24	No reaction
5	TMSOTf, $\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$ to rt	2	Decomposed

2.1.7 Regioselectivec acetate enolization ketone 119

The acetate enolization of ketone $\mathbf{1 1 9}$ derivative proved to be more successful. we studied the acetate enolization process under weak basic catalysis, high reaction temperatures and long reaction times to favor the formation of the thermodynamically controlled isomer $\mathbf{1 2 1}$ over the kinetically controlled one 121' (Table 4).

Table 4. Optimization of regioselective acetate enolization ketone 119.

Entry	Conditions	Temp($\left.{ }^{\circ} \mathrm{C}\right)$	Time/h	Yield(\%)

	Reagent (Equiv.)	Additive (Equiv.)	Solvent			
1	Isopropenyl acetate	P-TsOH	Neat	110	24	16
2	AcCl	$E t_{3} \mathrm{~N}, \mathrm{DMAP}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	12	Complex mixture
3	AcCl	Pyridine, DMAP	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	12	Complex mixture
4	$\mathrm{Ac}_{2} \mathrm{O}$	Pyridine, DMAP	Neat	40	12	28
5	$\mathrm{Ac}_{2} \mathrm{O}$	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	32	44
6	$\mathrm{Ac}_{2} \mathrm{O}(45)$	$\mathrm{Et}_{3} \mathrm{~N}(60)$,DMAP	Neat	40	8	58
7	$\mathrm{Ac}_{2} \mathrm{O}$ (60)	$\mathrm{Et}_{3} \mathrm{~N}(30)$,DMAP	Neat	40	16	85
8	$\mathrm{Ac}_{2} \mathrm{O}$ (60)	$\mathrm{Et}_{3} \mathrm{~N}(20)$,DMAP	Neat	40	48	92
	 119	enolization conditions				 121'

The results showed that acetic anhydride was superior to acetyl chloride for the enolization of ketone 119. Aliphatic weak basic amines as $E t_{3} \mathrm{~N}$ were more successful in catalyzing the enolization process than their aromatic peers. The high regioselectivity was achieved by utilizing $\mathrm{Ac}_{2} \mathrm{O}$ and $\mathrm{Et}_{3} \mathrm{~N}$ and DMAP and performing the reaction neat at $40^{\circ} \mathrm{C}$ for 48 h to obtain acetate enol $\mathbf{1 2 1}$ in 92% yield.

2.1.8 Preparation of Triol 125

The oxidation of acetate enol $\mathbf{1 2 1}$ with m-CPBA occurred from the sterically less hindered α face, and the resulting acetoxy epoxide moiety was hydrolyzed to give the α-hydroxy ketone derivative $\mathbf{1 2 2}$ in 96% yield (Table 5). Ketone $\mathbf{1 2 2}$ was temporarily converted to the trans-diol derivative 123 in 86% yield by the stereoselective K-selectride reduction to avoid any side reactions during further
chemical elaboration. The stereoselectivity observed in the K-selectride reduction of 123 might be attributed to the attack of the bulky hydride donor from the sterically less-hindered α face again. Compound $\mathbf{1 2 3}$ was treated with PPTS, and the resulting hemiacetal 124 was subsequently subjected to the Wittig olefination to form the allyltriol 125. The polar nature of the Wittig olefination substrate triol 124 necessitated the use of base formulated in oxygenated solvent rather than hydrocarbon solvent to optimize the yield of the reaction.

Table 5. Optimization of Wiitig olefination of hemiacetal 124.

2.1.9 Introduction of the nitrogen functionality

Having established all the carbon units with the proper stereochemistry, we focused on the introduction of the nitrogen functionality (Scheme 21). The two secondary hydroxyl groups of the triol derivative $\mathbf{1 2 5}$ were protected with pivaloyl group to provide $\mathbf{1 2 6}$ in 71% yield, which was subjected to hydroboration with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, followed by oxidation using $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ to afford primary alcohol 127 in 82% yield. ${ }^{73}$ The Mitsunobu reaction of $\mathbf{1 2 7}$ with protected hydroxyl amine
derivative Ns-NH-OMOM effected the introduction of the nitrogen atom to give $\mathbf{1 2 8}$ in 88% yield ${ }^{74}$ The PMB group of $\mathbf{1 2 8}$ was then removed with DDQ to afford the diol 129 in 85% yield.

Scheme 21: Preparation of diol 129.

2.1.10 Optimized oxidation of Diol 129

For the formation of the spirotetrahydrofuran ring, we visualized that a controlled oxidation of diol 129 into aldehyde $\mathbf{1 3 0}$ will be followed by a spontaneous nucleophilic attack of the tertiary hydroxyl to the aldehydic carbonyl and result in formation of the spirolactol derivative 131. We scanned the oxidation of diol $\mathbf{1 2 9}$ with different oxidant systems and the results are shown in Table 6.

The periodinane reagents showed the best potential for oxidation of diol $\mathbf{1 2 9}$ in terms of yield. Optimization of oxidation of $\mathbf{1 2 9}$ by periodinanes was examined using gradually increasing equivalents of the oxidants to determine the best equivalent that provides the maximum yield of spirolactol $\mathbf{1 3 1}$ with minimum overoxidation to the lactone 131' (Table 7). We found that the oxidation of the diol $\mathbf{1 2 9}$ with 1.5 equivalent of IBX in THF/DMSO (1:1) at room temperature provided a clean conversion to the spirolactol 131 in 83% yield without overoxidation to the corresponding lactone species.

Table 6. Oxidation of diol $\mathbf{1 2 9}$ with different oxidants.

Entry	Oxidant ${ }^{\text {a }}$	Solvent	Temp.	Time (h)	Yield (\%) ${ }^{\text {b }}$
1	Dess-martin	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$ to rt	3	45
2	IBX	THF/DMSO	$0^{\circ} \mathrm{C}$ to rt	6	51
3	PCC	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$	4	29
4	Swern	DMSO	$-78^{\circ} \mathrm{C}$ to rt	3	$33^{\text {b }}$
5	Parikh Doering	DMSO	rt	6	28
6	SeO_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$	26	26

Table 7. Optimization of oxidation of diol 129 with periodinanes.

Entry	Oxidant	Equivalent	Yield	
			131\%	131'\%
1		1.1	$45^{\text {a }}$	---
2		1.3	$51^{\text {a }}$	---
3	Dess-martin	1.5	$58^{\text {a }}$	---
4		1.7	43	12
5		2	33	35
6		1.1	$51^{\text {a }}$	---
7		1.3	$64^{\text {a }}$	---
8	IBX	1.5	$83^{\text {b }}$	---
9		1.7	74	5

2.1.11 Assembly of the azacyclononane ring

With the spirolactol 131 in hand, we examined the formation of the azacyclononane ring. The denosylation of $\mathbf{1 3 1}$ with thiophenolate smoothly proceeded to afford the aminolactol $\mathbf{1 3 2}$ in 90% yield. Aminolactol $\mathbf{1 3 2}$ possesses all of the necessary functional groups to form tetracyclic derivative 134. It was envisioned that treatment of $\mathbf{1 3 2}$ with Lewis or Brønsted acids might remove the MOM group from the hydroxylamine, thereby freeing the hydroxylamine to react with oxocarbenium ion 133, generated under acidic reaction conditions, and assemble the nine-membered ring to form the tetracyclic derivative $\mathbf{1 3 4}$ (Table 8).

Table 8. Attempts for formation of azacyclononane ring.

Our efforts to induce dehydrative condensation of aminolactol $\mathbf{1 3 2}$ by MgSO_{4}, or a combination of MgSO_{4} and ZnCl_{2}, were unrewarded. Exposure of $\mathbf{1 3 2}$ to PPTS in pyridine resulted in complex reaction mixture. Moreover, Treatment of aminolactol 132 with a variety of Brønsted and Lewis acids resulted in complete destruction of the starting material (Table 8). We also explored the thermal dehydrative condensation
and Mitsunobu reaction conditions to promote the formation of azacyclononane ring but our attempts were unsuccessful. Our inability to form the N hydroxyazacyclononane ring under variety of conditions necessitated the search for milder reaction conditions to promote the condensation and complete the total synthesis of sieboldine A. We finally reached the conclusion that the Schmidt glycosylation condition was the best one for our purpose. ${ }^{75-77}$ Under Schmidt glycosylation conditions, aminolactol $\mathbf{1 3 2}$ would form the trichloroacetamidate $\mathbf{1 3 5}$ which generate the oxocarbenium ion 136. Intramolecular nucleophilic attack of the N to C 1 will assemble the azacyclononane ring. Indeed, treatment of aminolactol $\mathbf{1 3 2}$ with $\mathrm{Cl}_{3} \mathrm{CCN}$ and DBU in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ to room temperature afforded the desired tetracyclic derivative 137 in 63\% yield (Table 9).

Table 9. Optimization of Shmidt glycosylation of aminolactol 132.

Entry	$\mathrm{Cl}_{3} \mathrm{CCN}$ Equivalent	Temp.	Time (h)	Yield (\%)
1	3	$0^{\circ} \mathrm{C}$ to rt	18	31
2	3	rt	18	22
3	5	$0^{\circ} \mathrm{C}$ to rt	18	55
4	10	$0^{\circ} \mathrm{C}$ to rt	48	63

2.1.12 Completion of total synthesis of (\pm)-sieboldine A 1

The final synthetic manipulations included removal of the protecting groups and restoring the ketone functionalities to complete the total synthesis of (\pm) sieboldine A 1. Optimization of the deprotection of Piv groups of $\mathbf{1 3 7}$ under different conditions is shown in table 10. The reductive cleavage with LAH showed the best results and afforded diol $\mathbf{1 3 8}$ in 92% yield.

Table 10. Optimization of Piv deprotection of 137.

Entry	Condition	Solvent	Temp.	Yield (\%)
1	DIBAL-H	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78^{\circ} \mathrm{C}$	63
2	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	MeOH	rf	42
3	t-BuOK	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	rt	45
4	LAH	THF	$0^{\circ} \mathrm{C}$ to rt	92

Diol 138 was oxidized with DMP to furnish the diketone derivative 139 in 72% yield. Finally, deprotection of the MOM protecting group with BBr_{3} delivered (\pm)-sieboldine A 1 in 73% yield .

(\pm)-Sieboldine A 1

Scheme 22: Completion of total synthesis of (\pm)-sieboldine A 1 .

2.2 Total synthesis of (+)-Sieboldine A

2.2.1 Retrosynthetic analysis of (+)-Sieboldine A

For the preparation of $(+)$-sieboldine A 1, we decided to follow the same synthetic steps explored in the racemic route with the exception of employing an optically pure dienyne 97 as a PKR substrate. In the racemic route, we prepared dienyne 97 through a Barbier coupling reaction between aldehyde 98 and iododiene 100. For induction of chirality, we needed an enantioselective preparation of dienyne $(+)-97$ through the asymmetric allylation of aldehyde $\mathbf{9 8}$ with a suitable allyl derivative 140 .

Racemic route

(\pm)-Sieboldine A 1
$(\pm)-97$
98

Enantioselective route

Scheme 23: Retrosynthetic analysis of (+)-sieboldine A 1.

The asymmetric allylation of aldehyde $\mathbf{9 8}$ is obviously one of the crucial steps in our synthesis. A parallel research at Mukai's group was concerned with the enantioselective preparation of (+)-97 through asymmetric allylation of aldehyde $\mathbf{1 0 3}$ (Table 11). ${ }^{78}$

Table 11. Optimization of asymmetric allylation of aldehyde 103.

Entry $^{\mathbf{a})}$	\mathbf{R}	\mathbf{X}	Condition	Solvent	Temp.	Yield (\%)	ee ${ }^{\text {b) }}$ (\%)
1	$-\mathrm{CH}=\mathrm{CH}_{2}$	I	$\mathrm{In}^{0},(+)-\mathrm{Ipc}_{2} \mathrm{BCl}$	THF	$-78^{\circ} \mathrm{C}$ to rt	7	75

2	$-\mathrm{CH}=\mathrm{CH}_{2}$	I	$\mathrm{In}^{0},(+)-\mathrm{lpc}_{2} \mathrm{BCl}$	THF	$-90^{\circ} \mathrm{C}$ to rt	35	77
3	-OTBDPS	I	$\mathrm{In}^{0},(+)-\mathrm{lpc}_{2} \mathrm{BCl}$	THF	$-78{ }^{\circ} \mathrm{C}$ to rt	15	75
4	-OTBDPS	SnBu_{3}	TiCl 4 $(R)-\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ $(R)-\mathrm{BINOL}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-15^{\circ} \mathrm{C}$ to rt	80	89
5	-OAc	SnBu_{3}	TiCl 4 $(R)-\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ $(R)-\mathrm{BINOL}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-15^{\circ} \mathrm{C}$ to rt	80	93

${ }^{\text {a }}$ Previous work reported by lida. ${ }^{78}$
${ }^{\text {b }}$ ee was determined by HPLC analysis (Daicel CHIRALPAK® OD-H).
Several allyl derivatives and different asymmetric reaction conditions were evaluated to optimize the allylation process in terms of chemical yield and enantiomeric excess (Table 11). The results showed that (+)-97 could be prepared enantioselectively through a Keck asymmetric allylation of aldehyde $\mathbf{1 0 3}$ with allyl stannate derivatives. ${ }^{78}$

2.2.2 Keck asymmetric allylation of aldehyde 103

Allyl stannate $\mathbf{1 4 3}$ was prepared as described by trost et al. ${ }^{79}$ 2-Methyl-2-propen-1-ol 141 was reacted with $n-\mathrm{BuLi}, \mathrm{Bu}_{3} \mathrm{SnCl}$ and TMEDA in a mixture of $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$ and the resulting alcohol $\mathbf{1 4 2}$ was acetylated to afford allyl stannate $\mathbf{1 4 3}$ in 51% yield of two steps. We also optimized the formation of aldehyde 103 from 4-pentyn-1-ol 101 to be conducted in only 2 steps. First, 4-pentyn-1-ol 101 was protected by a PMB group to give pentyne $\mathbf{1 0 2}$ in 96% yield. Second, the direct formylation of $\mathbf{1 0 2}$ under conventional conditions ${ }^{80}$ gave the aldehyde $\mathbf{1 0 3}$ in 81% yield.

Scheme 24: Asymmetric allylation of aldehyde 103.

The Keck asymmetric allylation of aldehyde $\mathbf{1 0 3}$ with allyl stannate $\mathbf{1 4 3}$ using the modified $\mathrm{Ti}(\mathrm{IV})$ catalyst described by Maruoka et al. ${ }^{81}$ proceeded smoothly and afforded hydroxyenyne (+)-144 in 80% yield with 93% ee. The (R)-absolute configuration of (+)-144 was established by NMR spectroscopic considerations based on the differences in chemical shift between the derived Mosher esters 145 and 146.

2.2.3 Intramolecular PKR of Dienyne (+)-105

The TBS protection of $(+)-\mathbf{1 4 4}$ was followed by treatment with vinyl magnesium bromide to furnish dienyne (+)-105 in 85% yield of 2 steps. The highly diastereoselective PKR of $(+)-\mathbf{1 0 5}$ was realized under catalytic conditions using 20 $\mathrm{mol} \%$ of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and $20 \mathrm{~mol} \%$ of TMTU in toluene at $70^{\circ} \mathrm{C}$ under 1 atm of CO to afford the indenone (-)-106 in 96\% yield with dr of 98:2.

Deprotection of the TBS group of (-)-106 with TBAF provided the alcohol (-)148, which was recrystallized from EtOAc/hexanes to furnish the optically pure (-)-

148 in 90% yield ($>99 \%$ ee). Fortuitously, alcohol (-)-148 was a crystalline solid and its relative configuration was confirmed by X-ray crystal structure analysis. ${ }^{82}$

Scheme 25: Preparation of alcohol (-)-148.

2.2.4 Synthesis of Triol (-)-125

The hydrogenation of (-)-148 in the presence of Wilkinson's catalyst afforded the methyl derivative (-)-117 in 98\% yield. The Ueno-Stork cascade was applied to (-)-117 to produce cyclic acetal (+)-119 in 91% yield with a dr of 3:1. Upon exposure to acetic anhydride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and DMAP at $40{ }^{\circ} \mathrm{C},(+)-\mathbf{1 1 9}$ underwent regioselective acetate enolization to provide the vinyl acetate derivative (-)-121 in 92% yield. The oxidation of (-)-121 with m-CPBA followed by base promoted hydrolysis gave the α-hydroxy ketone derivative (+)-122 in 96% yield. The ketone derivative $(+)-\mathbf{1 2 2}$ was temporarily converted to the trans-diol derivative (-)-123 in 86% yield by the stereoselective K-selectride reduction. Compound (+)- $\mathbf{1 2 3}$ was treated with PPTS, and the resulting hemiacetal was subsequently subjected to the Wittig olefination with $\mathrm{MePPh}_{3} \mathrm{Br}$ to form the allyltriol (-)-125 in 55% yield.

Scheme 26: Preparation of triol (-)-125.

2.2.5 Synthesis of Aminolactol (-)-132

The two secondary hydroxyl groups of triol (-)- $\mathbf{1 2 5}$ were protected with pivaloyl group to provide (-)-126 in 71\% yield, which was subjected to hydroboration followed by oxidation to afford primary alcohol (-)-127 in 82% yield. The Mitsunobu reaction of (-)-127 with NsNH-OMOM effected the introduction of the nitrogen atom to give (-)-128 in 88% yield. The PMB group of (-)-128 was then removed with DDQ to afford the diol (-)-129 in 85% yield. Controlled oxidation of (-)-127 with IBX furnished the spirolactol (-)-131 in 83\% yield. The deprotection of nosyl group of (-)131 with thiophenolate produced the aminolactol (-)-132 in 90% yield.

Scheme 27: synthesis of aminolactol (-)-132.

2.2.6 Completion of total synthesis of (+)-sieboldine A

The Schmidt glycosylation of aminolactol (-)-132 produced the desired tetracyclic derivative $(+)-\mathbf{1 3 7}$ in $\mathbf{6 3 \%}$ yield. LAH reduction of $(+)$ - $\mathbf{1 3 7}$ followed by oxidation with DMP furnished the diketone derivative. Finally, the MOM protecting group of the diketone derivative was removed by the commercially available BBr_{3}, delivering (+)-sieboldine A 1 in 53% yield. The synthetic (+)-1 exhibited indistinguishable spectral data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and HRMS) as well as optical rotation (observed $[\alpha]_{\mathrm{D}}{ }^{24}+140, c=0.33, \mathrm{MeOH}$); lit. $[\alpha]_{\mathrm{D}}+139, c=0.3, \mathrm{MeOH}$) from the natural isolate. ${ }^{83}$

Scheme 28: Completion of total synthesis of $(+)$-sieboldine A 1.

2.3 Conclusion

In conclusion, we have completed the highly enantioselective total synthesis of $(+$)-sieboldine A 1 from 5-(pmethoxybenzyloxy)pentyne in 19 steps with a 1.9% overall yield. The key features of this synthesis include (i) enantioselective Keck allylation to form the optically active enyne (+)-144; (ii) PKR to build the bicyclo[4.3.0]nonenone fragment (-)-106 with a high diastereoselectivity; (iii) UenoStork cyclization to construct the cis-hydrindane skeleton with a carbon quaternary center; (iv) regioselective formation of the vinyl acetate moiety followed by oxidation with m-CPBA to form the oxa-quaternary center; (v) oxidative cyclization to prepare the spirolactol (-)-131; and (vi) Schmidt glycosylation for assembly of the N hydroxyazacyclononane ring. The enantioselective route for construction of the cishydrindane core is convergent and flexible, thus providing new avenues to access other fawcettimine-type Lycopodium alkaloids.

CHAPTER III

Experimental Section

3.1 General notes

All commercially obtained reagents and solvents were used as received unless additional purification is stated in the procedure. All glassware was oven-dried at 150 ${ }^{\circ} \mathrm{C}$ and cooled in desiccator immediately before use. Experiments were conducted under inert atmospheres of Nitrogen or Argon using standard syringe-septa techniques. Reactions performed at room temperature were at approximately $24^{\circ} \mathrm{C}$. Thin layer chromatography (TLC) was performed on Merck analytical glass plates pre-coated with silica gel 60 F254 (0.25 mm thick). Visualization was effected by exposure to UV light (254 nm) and staining with p-anisaldehyde or phosphomolybdic acid stains followed by a brief heating on a hot plate. Concentration under reduced pressure was performed by rotary evaporation ($\sim 30 \mathrm{mmHg}$) at $20-40{ }^{\circ} \mathrm{C}$. Flash column chromatography was performed as described by W. C. Still et al. (J. Org. Chem. 1978, 43, 2923.) using forced flow of the indicated solvent system on Kanto ${ }^{\circledR}$ Chemical silica gel 60 N (spherical, neutral, $40-50 \mu \mathrm{~m}$,). Melting points were determined on YANAGIMOTO micro melting point apparatus and were uncorrected. Infrared spectra were recorded on a ThermoFisher Nicolet iS5 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded on JNM-ECS400 or JNM-ECA600 spectrometers. Chemical shift (δ) values are reported in parts per million relative to internal standard tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) and residual $\mathrm{CDCl}_{3}(\delta 7.27 \mathrm{ppm})$ for proton spectra and to residual $\mathrm{CDCl}_{3}(\delta 77.23 \mathrm{ppm})$ for carbon spectra. Coupling constants are reported in Hertz. The following abbreviations were used for spin multiplicity: s , singlet; br s , broad singlet; d, doublet; t , triplet; \mathbf{q}, quartet; dd, doublet of doublet; ddd, doublet of doublet of doublet; td, triplet of doublet; m, multiplet; br m, broad multiplet. High-resolution mass spectra were measured with JMS-T100TD (DART) mass spectrometer. Optical rotations were
measured with a JASCO P-2200 polarimeter with a sodium lamp and reported as followed: $[\alpha]^{\mathrm{T}}$ D (concentration $\mathrm{g} / 100 \mathrm{~mL}$, solvent). Single-crystal X-ray diffraction was measured with R-AXIS RAPID II.

3.2 Synthetic procedures

1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene 102

1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene $\mathbf{1 0 2}$ was prepared from 4-pentyn-1-ol $\mathbf{1 0 1}$ according to the method described by Chandrasekhar et al. ${ }^{84}$

2-((Tributylstannyl)methyl)allyl acetate 143

2-((Tributylstannyl)methyl)allyl acetate $\mathbf{1 4 3}$ was prepared from methallyl alcohol $\mathbf{1 4 1}$ according to the procedure described by Trost and Bonk. ${ }^{79}$

6-((4-Methoxybenzyl)oxy)hex-2-ynal 103

To a solution of alkyne $\mathbf{1 0 1}(10 \mathrm{~g}, 49 \mathrm{mmol})$ and hexamethylphosphoramide HMPA ($21.5 \mathrm{~mL}, 122.5 \mathrm{mmol}$) in THF $(100 \mathrm{~mL})$ at $-45^{\circ} \mathrm{C}$ was added n-BuLi $(1.43$ M in hexane, $51.5 \mathrm{~mL}, 73.5 \mathrm{mmol}$). After stirring for 30 min at the same temperature, DMF ($15 \mathrm{~mL}, 196 \mathrm{mmol}$) was added at once and the reaction mixture was warmed up to room temperature over 1 h . The reaction was quenched with 10% aq $\mathrm{KH}_{2} \mathrm{PO}_{4}(270$
mL) and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 6:1) as an eluent to afford aldehyde $\mathbf{1 0 3}$ as pale yellow oil $(9.2 \mathrm{~g}$, 81% yield): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.2,4.1,2 \mathrm{H}$), 6.86 (dd, $J=8.6,4.3,2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.76$ (s, 3H), 3.51 (t, $J=6.0,2 \mathrm{H}$), 2.51 (td, J $=7.0,3.5,2 \mathrm{H}$), 1.85-1.84 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 176.9,159.0$, $130.0,129.0,113.5,98.3,81.5,72.4,67.5,54.9,27.5,15.8$; IR (thin film, cm^{-1}) 2200 , 1664, 1243, 1030; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$ 233.1177, found 233.1190 .
(R)-4-Hydroxy-9-((4-methoxybenzyl)oxy)-2-methylenenon-5-yn-1-yl acetate (+)144

To a stirred solution of $\mathrm{TiCl}_{4}(22 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(180 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$. The reaction mixture was allowed to warm to room temperature and stirred for 1 h . Silver(I) oxide $\mathrm{Ag}_{2} \mathrm{O}$ (93 $\mathrm{mg}, 0.4 \mathrm{mmol}$) was added and the reaction mixture was stirred for 5 h at the same temperature under exclusion of direct light. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, and (R)-BINOL ($229 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added. After stirring for 2 h , the reaction mixture was cooled to $-15^{\circ} \mathrm{C}$ and a solution of aldehyde $103(232 \mathrm{mg}, 1$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and a solution of allylstannane $143(806 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ were added sequentially via cannula. The reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 10 h . The reaction mixture was quenched with saturated aq NaHCO_{3} and the heterogeneous suspension was filtered through Celite. ${ }^{\circledR}$ The Celite ${ }^{\circledR}$ was washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined
organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 2:1) as an eluent to afford alcohol $(+)-\mathbf{1 4 4}$ as colorless oil ($277 \mathrm{mg}, 80 \%$ yield, 93% ee): $[\alpha]^{30}{ }_{\mathrm{D}}=+13.2\left(c 1.1, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.25(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6,2 \mathrm{H}), 5.17(\mathrm{~d}, J=$ $1.4,1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.48-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50$ (t, $J=6.2,2 \mathrm{H}), 2.58(\mathrm{~d}, J=5.2,1 \mathrm{H}), 2.44(\mathrm{~d}, J=10.8,2 \mathrm{H}), 2.31(\mathrm{td}, J=7.1,1.8$, 2 H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 170.6,159.0$, $139.5,130.3,129.1,115.9,113.6,85.0,80.8,72.4,68.2,66.7,61.0,55.1,41.9,28.5$, 20.8, 15.4; IR (thin film, cm^{-1}) $3414,1696,1511,1172$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{5} 347.1858$, found 347.1857; HPLC: Daicel CHIRALPAK ${ }^{\circledR}$ OD-H column; $\lambda=254 \mathrm{~nm}$; eluent: hexane/isopropanol $=90 / 10$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $\mathrm{t}_{\mathrm{R}}=18.0 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{R}}=20.2 \mathrm{~min} ;$ ee $=93 \%$.

(R)-4-((tert-Butyldimethylsilyl)oxy)-9-((4-methoxybenzyl)oxy)-2-methylenenon-5-yn-1-yl acetate (+)-147

To a solution of alcohol $(+)-\mathbf{1 4 4}(3.1 \mathrm{~g}, 8.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added imidazole ($1.8 \mathrm{~g}, 26.85 \mathrm{mmol}$) and $\mathrm{TBSCl}(2.7 \mathrm{~g}, 17.9 \mathrm{mmol})$ at room temperature. After stirring for 4 h at the same temperature, the reaction mixture was quenched with water. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was chromatographed using (hexanes/EtOAc, from 10:1) as an eluent to afford $(+)-147$ as colorless oil ($4.06 \mathrm{~g}, 99 \%$ yield): $[\alpha]^{30}{ }_{\mathrm{D}}=+22.9\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}); $\delta 7.16$ (d, $\left.J=8.7,2 \mathrm{H}\right), 6.78$ (d, $J=8.7,2 \mathrm{H}$), 5.04 (d, $J=$ $1.4,1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.39-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.42$ $(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.31(\mathrm{~d}, J=6.4,2 \mathrm{H}), 2.20(\mathrm{td}, J=7.3,1.8,2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.69-$ $1.68(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$);
$\delta 170.5,159.1,139.9,130.5,129.1,115.5,113.7,84.5,81.3,72.6,68.5,67.0,62.4$, 55.1, 42.7, 28.7, 25.7, 20.9, 18.1, 15.5, -4.5, -5.1; IR (thin film, cm^{-1}) 1733,1514 , 1249, 1078; DART HRMS $m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si}$ 461.2723, found 461.2730.

(R)-tert-Butyl((11-((4-methoxybenzyl)oxy)-4-methyleneundec-1-en-7-yn-6yl)oxy)dimethylsilane (+)-105

To a stirred solution of $(+)-\mathbf{1 4 7}(2.3 \mathrm{~g}, 5 \mathrm{mmol})$ in THF (18 mL) and dimethylsulfide $\mathrm{Me}_{2} \mathrm{~S}(1.8 \mathrm{~mL})$ at room temperature under argon, was added $\mathrm{CuI}(190$ $\mathrm{mg}, 1.0 \mathrm{mmol})$. The reaction mixture was cooled to $-30{ }^{\circ} \mathrm{C}$, and vinylmagnesium bromide ($10 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added slowly over 20 min . After stirring for 30 min at the same temperature, the reaction was quenched with saturated aq NaHCO_{3} and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 20:1) as an eluent to afford dienyne $(+)$ - $\mathbf{1 0 5}$ as colorless oil $(1.82 \mathrm{~g}$, $85 \%) .[\alpha]^{30}{ }_{\mathrm{D}}=+22.8\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.14(\mathrm{~d}, J=8.6$, $2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6,2 \mathrm{H}), 5.72-5.67(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.76(\mathrm{~m}, 2 \mathrm{H})$, 4.36-4.35 (m, 1H), $4.32(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.71(\mathrm{~d}, J=6.9$, $2 \mathrm{H}), 2.27-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{td}, J=7.0,1.7,2 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 159.0,143.7,136.0,130.4$, $129.0,116.1,113.5,113.3,84.0,81.8,72.5,68.4,62.3,54.9,45.1,40.9,28.7,25.7$,
18.1, 15.4, -4.6, -5.1; IR (thin film, cm^{-1}) 2952, 1513, 1248, 1079; DART HRMS m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si} 429.2825$, found 429.2827.
(4R,7aS)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1H-inden-2(4H)-one (-)-106 and (4R,7aR)-4-((tert-butyldimethylsilyl)oxy)-3-(3-((4-methoxybenz-yl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1H-inden-2(4H)-one (+)-106'

To a stirred solution of dienyne (+)-105 (4.8 g, 11.2 mmol$)$ in toluene $(70 \mathrm{~mL})$ were added $\mathrm{Co}_{2}(\mathrm{CO})_{8}(766 \mathrm{mg}, 20 \mathrm{~mol} \%)$ and tetramethulthiourea TMTU (296 mg , $20 \mathrm{~mol} \%$) at room temperature. The reaction was stirred for 4 h at $70^{\circ} \mathrm{C}$ under 1 atm CO. The black suspension was concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 9:1) eluting first (-)-106 as colorless oil (4.8 $\mathrm{g}, 94 \%)$ followed by $(+)-106$ ' as colorless oil ($0.1 \mathrm{~g}, 2 \%$).
(4R,7aS)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1H-inden-2(4H)-one (-)-106

$[\alpha]^{30}{ }_{\mathrm{D}}=-62.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}); $\delta 7.18(\mathrm{~d}, J=7.6,2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6$, $2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.65$ (dd, $J=6.5,3.4,1 \mathrm{H}), 2.47$ (dd, $J=19.2,6.5,1 \mathrm{H})$, 2.41 (d, $J=13.7,1 \mathrm{H}), 2.23-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~d}, J$ $=13.7,1 \mathrm{H}), 1.88(\mathrm{~d}, J=19.2,1 \mathrm{H}) 1.71-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.62-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 209.1,173.9,159.0,141.8,136.1,130.5,129.0,113.6,112.5,72.3$, $69.1,65.0,55.1,43.4,43.3,41.1,36.6,28.4,25.5,19.5,17.9,-4.8,-4.9$; IR (thin film, cm^{-1}) 2928, 1702, 1247, 1071; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si} 457.2774$, found 457.2770.
(4R,7aR)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-((4-methoxy-benzyl)oxy)-propyl)-6-methylene-5,6,7,7a-tetrahydro-1H-inden-2(4H)-one (+)-106'

$[\alpha]^{25}{ }_{\mathrm{D}}=+21.0\left(c \quad 3.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6$, 2 H), 4.83 (s, 2H), 4.47 (dd, $J=11.7,5.5,1 \mathrm{H}), 4.41$ (d, $J=11.6,1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6,1 \mathrm{H}), 3.79(\mathrm{~s}$, 3 H), $3.42(\mathrm{t}, J=7.0,2 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.54-$ $2.52(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=11.9$, $1 \mathrm{H}), 1.96(\mathrm{~d}, J=17.2,1 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H})$, 1.64-1.62 (m, 1H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) ; \delta 208.4,173.0,159.0,143.2,138.0,130.8,129.3,113.6,111.6,74.3,72.3$, $70.0,55.2,45.8,42.8,40.5,39.1,29.7,25.9,19.4,18.2,-4.6,-5.0$; IR (thin film, cm^{-} $\left.{ }^{1}\right)$ 2952, 1702, 1243, 1093; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si}$ 457.2774, found 457.2779.
(4R,7aS)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro- 1 H -inden-2(4H)-one (-)-148

(-)-106

(-)-148

To a solution of indenone (-)-106 (1.63 g, 3.6 mmol) in THF (36 mL) at room temperature was added tetrabutylammonium fluoride TBAF ($5.4 \mathrm{~mL}, 5.4$ mmol, 1.0 M in THF). After stirring for 3 h at the same temperature, the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted by addition of EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 2:1) as an eluent. The crude eluted fractions were evaporated and the remaining solid residue was recrystallized from (EtOAc/hexanes) to give (-)-148 as colorless needles ($1.1 \mathrm{~g}, 90 \%, 99 \%$ ee): $[\alpha]^{30}{ }_{\mathrm{D}}=$ -117.7 (c $\left.1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=68-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.23(\mathrm{~d}, J=$ $8.6,2 \mathrm{H}), 6.86$ (d, $J=8.6,2 \mathrm{H}), 4.98$ (brs, 1H), 4.91-4.90 (m, 2H), 4.40 (d, $J=11.3$, $1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.3,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=6.2,2 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 1 \mathrm{H})$,
$2.79(\mathrm{~d}, J=4.8,1 \mathrm{H}), 2.73(\mathrm{dd}, J=12.7,4.5,1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.30(\mathrm{~m}$, 3 H), 1.97 (dd, $J=18.7,1.9,1 \mathrm{H}) 1.77-1.72(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); δ 208.7, 172.8, 159.0, 141.6, 137.6, 130.1, 129.2, 113.7, 113.5, 72.0, 68.7, 64.2, 55.1, 42.5, 42.0, 41.0, 36.7, 27.7, 19.2; IR (thin film, cm^{-1}) $3411,1697,1512,1247,1036$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4} 343.1909$, found 343.1906; HPLC: Daicel CHIRALPAK ${ }^{\circledR}$ OD-H column; $\lambda=254 \mathrm{~nm}$; eluent: hexane/isopropanol $=$ $94 / 6$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $\mathrm{t}_{\mathrm{R}}=32.9 \mathrm{~min}$; ee $=99 \%$.
(4R,6R,7aS)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methyl-5,6,7,7a-tetrahydro- $1 H$-inden-2(4H)-one (-)-117

To a stirred solution of (-)-148 ($5.5 \mathrm{~g}, 16 \mathrm{mmol}$) in benzene $(60 \mathrm{~mL})$ at room temperature was added $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(740 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The reaction was stirred for 6 h at room temperature under $1 \mathrm{~atm} \mathrm{H}_{2}$. The brown mixture was concentrated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, 1:1) as an eluent to give $(-)-\mathbf{1 1 7}$ as colorless oil $(5.4 \mathrm{~g}, 98 \%):[\alpha]^{25}{ }_{\mathrm{D}}=-80.4(c 2.2$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.22(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6,2 \mathrm{H})$, 4.83 (brs, 1H), 4.40 (d, $J=11.7,1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.7,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J$ $=5.3,2 \mathrm{H}), 3.17-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=18.9,6.5,1 \mathrm{H}), 2.31(\mathrm{dd}, J$ $=6.8,6.5,2 \mathrm{H}), 2.01-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.27$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 209.6,175.1,159.2,137.4,129.9,129.3$, 113.7, 71.8, 68.4, 64.2, 55.2, 41.5, 40.2, 37.9, 31.0, 27.0, 26.9, 20.5, 19.1; IR (thin film, cm^{-1}) $3426,1701,1512,1174$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{4}$ 345.2065 , found 345.2064 .
(3aS,4R,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyloctahydroindeno[4,3a-b]furan-5(4H)-one (+)-119

Pyridinium p-toluenesulfonate PPTS (263 mg, 1.05 mmol$)$ and camphorsulfonic acid CSA ($244 \mathrm{mg}, 1.05 \mathrm{mmol}$) were added to a solution of alcohol $(-) \mathbf{- 1 1 7}(1.8 \mathrm{~g}, 5.23 \mathrm{mmol})$ and (Z/E)-2-bromovinyl ethyl ether ${ }^{85}$ ($3.15 \mathrm{~g}, 20.9 \mathrm{mmol}$) at room temperature. After stirring for 2 h , the reaction was diluted by $\mathrm{Et}_{2} \mathrm{O}$ and quenched with saturated aq NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, from $10: 1$ to $3: 1$) as an eluent. The crude eluted fractions were evaporated and dissolved in toluene. Tributyltin hydride $n-\mathrm{Bu}_{3} \mathrm{SnH}$ ($7.0 \mathrm{~mL}, 26.15 \mathrm{mmol}$) and Azobisisobutyronitrile AIBN were added ($0.43 \mathrm{~g}, 2.62$ mmol) at room temperature. The reaction was heated under reflux for 4 h . The solvent was evaporated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, from 6:1 to $2: 1$) to afford cyclic acetal (+)119 as colorless oil $(1.97 \mathrm{~g}, 91 \%$, two diastereomers, $3: 1):[\alpha]^{25}{ }_{\mathrm{D}}=+3.4(c 1.9$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); $\delta 7.25-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.6,2 \mathrm{H}), 5.12(\mathrm{dd}, J=5.7,2.6,1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=5.3,1 \mathrm{H}), 3.80(\mathrm{~s}$, 3 H), 3.75-3.71 (m, 1H), 3.46-3.41 (m, 3H), 2.44 (dd, $J=19.2,8.9,1 \mathrm{H}), 2.36-2.35$ (m, 1H), $2.26(\mathrm{dd}, J=9.3,4.8,1 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.45(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.25$ $(\mathrm{m}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.0,3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); $\delta 219.4,159.1,130.6,129.2,113.7,102.0,78.7,72.4,69.9,62.9$, $55.2,52.3,50.0,42.1,38.0,33.8,33.6,33.4,27.8,24.9,23.2,20.7,15.3$; IR (thin film, cm^{-1}) 2924, 1736, 1513, 1247, 1098; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{5} 417.2641$, found 417.2639.

Dimethylaminopyridine DMAP ($410.5 \mathrm{mg}, 3.36 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(11.6 \mathrm{~mL}$, $84 \mathrm{mmol})$ were added to a solution of $(+)-119(3.5 \mathrm{~g}, 8.4 \mathrm{mmol})$ and acetic anhydride ($23.8 \mathrm{~mL}, 252 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 48 h . The color changed from pale yellow to dark brown during the course of the reaction. The reaction was diluted by EtOAc at $0^{\circ} \mathrm{C}$ and quenched with saturated aq NaHCO_{3}. The heterogeneous mixture was filtered through Celite ${ }^{\circledR}$ and the Celite ${ }^{\circledR}$ was washed thoroughly with EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with saturated aq copper(II) sulfate and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 9:1 to 6:1) as an eluent to afford vinyl acetate derivative (-)-121 as pale yellow oil ($3.54 \mathrm{~g}, 92 \%$, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-13.1\left(c\right.$ 1.5, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); $\delta 7.26(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6,2 \mathrm{H}), 5.11(\mathrm{dd}, J=6.0,3.3$, $1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=4.6,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.40$ (m, 3H), $2.57(\mathrm{dd}, J=15.1,7.9,1 \mathrm{H}), 2.18-2.13(\mathrm{br} \mathrm{m}, 5 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J$ $=13.9,3.3,1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.34$ $(\mathrm{m}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.0,3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); $\delta 168.7,159.0,146.1,130.7,129.1,128.4,113.7,102.2,78.0,72.3$, $69.8,63.1,55.2,54.1,44.0,39.0,35.3,33.7,32.7,28.5,23.9,21.7,20.8,20.5,15.3$; IR (thin film, cm^{-1}) $3292,1754,1512,1246,1100$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{6} 459.2747$, found 459.2749.
(3aR,4R,6aS,8R,9aR)-2-Ethoxy-4-hydroxy-4-(3-((4-methoxybenzyl)-oxy)propyl)-8-methyloctahydroindeno[4,3a-b]furan-5(4H)-one (+)-122

To a solution of (-)-121 (2.0 g, 4.36 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a solution of m-CPBA ($2.26 \mathrm{~g}, 13.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The reaction mixture was gradually warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at the same temperature. The reaction was quenched with saturated aq NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($15 \mathrm{~mL}: 1.5 \mathrm{~mL}$). Potassium carbonate $\mathrm{K}_{2} \mathrm{CO}_{3}$ (241 mg , 1.74 mmol) was added and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, $4: 1$) as an eluent to give α-hydroxy ketone $(+)-\mathbf{1 2 2}$ as colorless oil ($1.8 \mathrm{~g}, 96 \%$ yield, two diastereomers, $3: 1$): $[\alpha]^{24}{ }_{\mathrm{D}}=+42.5(c$ $0.5, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); $\delta 7.23$ (d, $J=8.7,2 \mathrm{H}$), $6.87(\mathrm{~d}, J=8.7,2 \mathrm{H}), 5.05(\mathrm{dd}, J=6.4,4.6,1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.4,1 \mathrm{H})$, $4.42(\mathrm{~d}, J=11.4,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.42$ (m, 2H), 2.83-2.80 (m, 1H), 2.71 (dd, $J=14.7,6.4,1 \mathrm{H}), 2.63$ (dd, $J=19.5,10.3$, $1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 4 \mathrm{H})$, $1.35-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.92(\mathrm{~d}, J=5.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}, major isomer); $\delta 215.8,159.3,129.6,129.5,113.8,104.5,80.4,77.4,72.7$, $70.8,63.5,56.0,55.2,39.5,39.2,34.8,33.6,32.9,28.3,24.0,22.9,21.9,15.4$; IR (thin film, cm^{-1}) 3357, 1741, 1246, 1090; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{6} 433.25901$, found 433.25905 .
(3aR,4R,5R,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)-propyl)-8-methyldecahydroindeno[4,3a-b]furan-4,5-diol (-)-123

K-Selectride ($5.5 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) was added dropwise to a solution of $(+)-\mathbf{1 2 2}(1.8 \mathrm{~g}, 4.16 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-45^{\circ} \mathrm{C}$ under argon. After stirring for 6 h at the same temperature, the reaction was quenched with 3 M aq NaOH and 30% aq $\mathrm{H}_{2} \mathrm{O}_{2}$. The mixture was diluted with EtOAc and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with saturated aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, from 2:1 to $1: 1)$ as an eluent to give trans-diol (-)-123 as colorless oil ($1.54 \mathrm{~g}, 86 \%$ yield, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-9.3\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); δ 7.24-7.23 (m, 2H), 6.88-6.87 (m, 2H), 5.12-5.04 (m, 1H), 4.49-4.45 (m, 3H) 4.00$3.98(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=10.0,3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 3 \mathrm{H}), 2.63-$ $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.76$ $(\mathrm{m}, 4 \mathrm{H}), 1.61-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.18(\mathrm{~m}$, 3 H), 0.91-0.89 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 159.2,129.6,129.5,129.4$, $113.8,103.9,102.4,86.0,85.6,77.9,77.4,77.2,72.9,72.8,70.6,70.3,63.4,63.3$, $57.3,55.2,54.8,40.0,39.6,38.4,37.8,37.4,36.8,36.2,34.1,34.0,28.8,27.5,24.3$, 23.9, 23.8, 22.1, 22.0, 15.4; IR (thin film, cm^{-1}) 3430, 1512, 1301, 1091; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{6} 435.2746$, found 435.2742 .
(1R,2R,3aS,5R,7R,7aR)-7a-Allyl-1-(3-((4-methoxybenzyl)oxy)-propyl)-5-methyloctahydro-1H-indene-1,2,7-triol (-)-125

PPTS ($123 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added to a solution of $(-)-\mathbf{1 2 3}(1.06 \mathrm{~g}, 2.44$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}: 2 \mathrm{~mL})$ at room temperature. The reaction mixture was heated under reflux for 4 h . The reaction was quenched with saturated aq NaHCO_{3} and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, 1:2) as an eluent. The crude eluted fractions were evaporated, dissolved in THF (10 mL) and cooled at $0^{\circ} \mathrm{C}$. In a previously prepared second flask, methyltriphenylphosphonium bromide $\mathrm{PPh}_{3} \mathrm{MeBr}(6.1 \mathrm{~g}, 17.08 \mathrm{mmol})$ was dried at $80^{\circ} \mathrm{C}$ under vacuum for 3 hours. After the salt has cooled THF (24 mL) was added and the slurry was cooled to $0{ }^{\circ} \mathrm{C}$ under argon. Potassium bis(trimehtylsilyl)amide KHMDS ($16.8 \mathrm{~mL}, 16.8 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added dropwise at the same temperature resulting in a bright yellow color. After stirring for 30 min at the same temperature, the bright yellow ylide slurry was cannulated to the first reaction flask at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at the same temperature for 2 h then warmed gradually to room temperature and stirred overnight. The reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography with (hexanes/EtOAc, 2:1) as eluent to afford triol (-)-125 as colorless oil ($0.54 \mathrm{~g}, 55 \%$ yield): $[\alpha]^{24}{ }_{\mathrm{D}}=-13.4\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.26-7.24(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=9.3,2 \mathrm{H}), 6.22-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=17.2,1.7,1 \mathrm{H}), 5.03(\mathrm{dd}$, $J=10.0,1.7,1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.7,1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.7,1 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 1 \mathrm{H})$, 3.94-3.93(m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{td}, J=8.5,3.9,1 \mathrm{H}), 3.33$
(d, $J=2.7,1 \mathrm{H}) 2.53-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.74(\mathrm{~m}, 1 \mathrm{H})$, 1.67-1.64 (m, 1H), 1.49-1.44 (m, 2H), 1.19-1.16 (m, 2H), 1.12-1.09 (m, 1H), 0.92 $(\mathrm{d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 159.3,139.1,129.8,129.5,116.5$, $113.8,89.3,77.8,72.8,70.1,69.2,55.2,53.0,41.3,39.7,36.0,32.5,32.1,29.4,25.6$, 24.0, 22.1; IR (thin film, cm^{-1}) $3424,1513,1247$, 1035; DART HRMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{5} 405.2641$, found 405.2640 .
(2R,3R,3aR,4R,6R,7aS)-3a-Allyl-3-hydroxy-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methyloctahydro-1H-indene-2,4-diyl bis(2,2-dimethyl-propanoate) (-)-126

DMAP ($35.5 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(8 \mathrm{~mL}, 58 \mathrm{mmol})$ were added to a solution of triol (-)-125 (235 mg, 0.58 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at room temperature. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and pivaloyl chloride ($7.1 \mathrm{~mL}, 58 \mathrm{mmol}$) was added dropwise. After the addition, the reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then warmed to $40^{\circ} \mathrm{C}$ and stirred for 48 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ and quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated aq copper(II) sulfate and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 18:1 to 6:1) as an eluent to afford (-)126 as colorless oil ($234.5 \mathrm{mg}, 71 \%$ yield)): $[\alpha]^{25}{ }_{\mathrm{D}}=-17.8\left(c 3.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.22(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.19-6.15(\mathrm{~m}, 1 \mathrm{H})$, $5.22(\mathrm{dd}, J=11.5,4.6,1 \mathrm{H}), 5.12(\mathrm{dd}, J=17.0,1.5,1 \mathrm{H}), 5.03(\mathrm{dd}, J=10.1,1.5,1 \mathrm{H})$, $4.80(\mathrm{dd}, J=8.2,3.1,1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.3,1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.3,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J$ $=15.1,7.2,1 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.61$ (m, 1H), 1.46-1.43 (m, 2H), 1.35-1.31 (m, 2H), 1.21 (s, 9H), 1.17 (s, 9H), 1.11-1.06
$(\mathrm{m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.4,177.2,159.2$, $138.3,130.0,129.3,116.4,113.7,88.1,79.0,72.7,72.4,70.5,55.2,51.8,40.1,38.8$, $36.5,35.5,33.2,32.6,30.3,27.1,27.0,26.8,25.2,24.0,21.9$; IR (thin film, cm^{-1}) 3443, 2924, 1721, 1158; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{7}$ 573.3791, found 573.3794.
(2R,3R,3aR,4R,6R,7aS)-3-Hydroxy-3a-(3-hydroxypropyl)-3-(3-((4-methoxy-benzyl)oxy)propyl)-6-methyloctahydro- $1 H$-indene-2,4-diylbis(2,2-dimethyl propanoate) (-)-127

Borane dimethyl sulfide complex $\mathrm{BH}_{3} . \mathrm{SMe}_{2}(0.5 \mathrm{~mL}, 4.95 \mathrm{mmol})$ was added to a solution of allyl derivative (-)-126 (566 mg, 0.99 mmol$)$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. After stirring for 2 h at the same temperature, water $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{NaBO}_{3} .4 \mathrm{H}_{2} \mathrm{O}(762 \mathrm{mg}, 4.95 \mathrm{mmol})$ were added. The reaction was warmed to room temperature and stirred for 4 h . The reaction mixture was partitioned between EtOAc and brine and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was chromatographed using (hexanes/EtOAc, from 2:1 to 1:1) as an eluent to afford primary alcohol (-)-127 as colorless oil ($480 \mathrm{mg}, 82 \%$ yield $):[\alpha]^{25}{ }_{\mathrm{D}}=-19.8\left(c \quad 3.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.23$ (d, $J=8.2,2 \mathrm{H}$), 6.87 (d, $J=8.2,2 \mathrm{H}$), 5.21 (dd, $J=11.5,4.6$, $1 \mathrm{H}), 4.81$ (dd, $J=8.9,3.4,1 \mathrm{H}), 4.43$ (d, $J=11.5,1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5,1 \mathrm{H}), 3.81$ (s, $3 \mathrm{H}), 3.64-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}, 1 \mathrm{H})$, 2.51-2.45 (m, 1H), 1.95-1.93 (m, 1H), 1.77-1.69 (m, 4H), 1.66-1.61 (m, 5H), 1.50$1.48(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}); $\delta 177.4,177.3,159.3,129.8,129.4,113.8,87.9,79.5,72.8$, $72.7,70.5,64.3,55.3,50.9,40.4,38.8,38.5,36.6,35.6,33.5,30.2,29.2,27.1,26.8$,
25.2, 24.6, 24.1, 21.9; IR (thin film, cm^{-1}) $3426,1721,1284,1156$; DART HRMS m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{O}_{8}$ 591.3897, found 591.3890.
($2 R, 3 R, 3 \mathrm{a} R, 4 R, 6 R, 7 \mathrm{aS})$-3-Hydroxy-3-(3-((4-methoxybenzyl)-oxy)propyl)-3a-(3(N -(methoxymethoxy)-2-nitrophenylsulfonamido)-propyl)-6-methyloctahydro-1H-indene-2,4-diyl bis(2,2-dimethyl-propanoate) (-)-128

N-(Methoxymethoxy)-2-nitrobenzenesulfonamide ${ }^{19}$ Ns-NH-OMOM (47 mg, 0.18 mmol) and triphenylphosphine ($168 \mathrm{mg}, 0.64 \mathrm{mmol}$) were added to a solution of primary alcohol (-)-127 (94 mg, 0.16 mmol$)$ in toluene (3 mL) at $-20^{\circ} \mathrm{C}$. Diethyl azodicarboxylate DEAD ($348 \mu \mathrm{~L}, 0.8 \mathrm{mmol}, 40 \%$ in toluene) was added dropwise to the reaction mixture at the same temperature. The yellow suspension was warmed gradually to room temperature and stirred for 1 h . The orange suspension was concentrated under reduced pressure and the residue was chromatographed with (hexanes/ $\mathrm{Et}_{2} \mathrm{O}$, from 1:1 to $1: 2$) to afford (-)- $\mathbf{1 2 8}$ as pale yellow oil ($114 \mathrm{mg}, 88 \%$): $[\alpha]_{\mathrm{D}}^{25}=-39.2\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.04$ (dd, $J=7.9,1.0$, $1 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=7.7,1.2,1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.6,2 \mathrm{H}), 5.19(\mathrm{dd}, J=11.5,4.6,1 \mathrm{H}), 5.02(\mathrm{~d}, J=8.3,1 \mathrm{H}), 4.99(\mathrm{~d}, J=8.3,1 \mathrm{H}), 4.79$ (dd, $J=8.6,3.1,1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.0,1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.0,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.49-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 1 \mathrm{H})$, 2.49-2.45 (m, 1H), 2.07-2.04 (m, 1H), 1.78-1.75 (m, 3H), 1.63-1.62 (m, 3H), 1.49$1.43(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.89$ (d, $J=6.5,3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NRR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.4,177.3,159.2,149.8,134.8$, $132.3,130.9,130.0,129.2,126.6,123.8,113.7,102.7,87.9,79.3,72.7,72.6,70.5$, $57.6,55.3,54.5,51.0,39.8,38.8,36.5,35.5,33.3,30.2,29.7,27.1,26.8,25.5,25.2$, 24.2, 23.2, 21.8; IR (thin film, cm^{-1}) 3372, 2923, 1722, 1178; DART HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}$ 835.4051, found 835.4050.
(2R,3R,3aR,4R,6R,7aS)-3-Hydroxy-3-(3-hydroxypropyl)-3a-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-6-methyloctahydro-1H-indene-2,4-diyl bis(2,2-dimethylpropanoate) (-)-129

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone DDQ ($102 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a solution of (-)-128 ($250 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL}: 1 \mathrm{~mL})$ at room temperature. After stirring for 4 h at the same temperature, the reaction was quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexane/EtOAc, from 1:1 to 1:2) as an eluent to afford diol (-)- $\mathbf{1 2 9}$ as pale yellow oil ($182 \mathrm{mg}, 85 \%$ yield): $[\alpha]^{25}{ }_{\mathrm{D}}=-12.2\left(c 0.22, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $88.05(\mathrm{dd}, J=$ $7.9,2.1,1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9,1 \mathrm{H}), 5.21(\mathrm{dd}, J$ $=11.5,4.6,1 \mathrm{H}), 5.06(\mathrm{~d}, J=7.9,1 \mathrm{H}), 5.01(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.82(\mathrm{dd}, J=8.1,2.9$, $1 \mathrm{H}), 3.70-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.59$ $(\mathrm{m}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.50-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.11-1.09(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.5,177.3,149.8,134.9$, $132.3,131.0,126.6,123.8,102.7,87.9,79.2,72.6,63.3,57.7,54.5,51.0,39.9,38.9$, $38.6,36.5,35.5,33.3,29.8,27.1,26.8,25.4,25.2,23.1,21.8,14.2$; IR (thin film, cm^{-} ${ }^{1}$) $3476,1721,1711,1156$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$ 715.3476, found 715.3472.
(1'R,2'R,3a'S,5'R,7'R,7a'R)-5-Hydroxy-7a'-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-5'-methyldecahydro-3H-spiro[furan-2,1'-indene]-2',7'-diyl bis(2,2-dimethylpropanoate) (-)-131

2-Iodoxybenzoic acid $\mathrm{IBX}^{86}(29 \mathrm{mg}, 0.105 \mathrm{mmol})$ was added to a solution of diol (-)-129 (49 mg, 0.07 mmol) in THF/DMSO ($1.0 \mathrm{~mL}: 1.0 \mathrm{~mL}$) at room temperature. After stirring for 6 h at the same temperature, the reaction was quenched with saturated aq NaHCO_{3} and partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, 1:1) as an eluent to afford spirolactol (-)-131 as colorless oil ($41.5 \mathrm{mg}, 83 \%$ yield, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-8.8(c 0.24$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.08-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.61-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.78(\mathrm{~m}$, $1 \mathrm{H}), 3.47(\mathrm{~d}, J=11.0,3 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.21-2.17 (m, 1H), 2.11-2.03 (m, 1H), 1.81-1.77 (m, 4H), 1.70-1.65 (m, 4H), 1.54$1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=5.5,9 \mathrm{H}), 1.17(\mathrm{~d}, J=1.8,9 \mathrm{H}), 1.08-1.05$ $(\mathrm{m}, 1 \mathrm{H}), 0.91-0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.7,177.3,158.4$, $145.4,134.8,132.3,132.0,131.1,123.9,123.8,102.3,100.0,99.3,97.0,78.1,72.3$, $72.1,57.8,55.0,48.8,39.3,38.8,38.6,36.1,34.6,33.2,32.9,31.8,27.2,27.1,26.9$, 25.0, 24.3, 23.9, 23.4, 21.9; IR (thin film, cm^{-1}) 3492, 1719, 1283, 1158; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$ 713.3319, found 713.3313.
($\left.1^{\prime} R, 2^{\prime} R, 3 a^{\prime} S, 5{ }^{\prime} R, 7 '^{\prime} R, 7 a^{\prime} R\right)-5-H y d r o x y-7 a^{\prime}-(3-((m e t h o x y m e t h o x y)-$ amino)propyl)-5'-methyldecahydro-3H-spiro[furan-2,1'-indene]-2',7'-diyl bis(2,2-dimethylpropanoate) (-)-132

$\mathrm{K}_{2} \mathrm{CO}_{3}(29.0 \mathrm{mg}, 0.21 \mathrm{mmol})$ and thiophenol $\mathrm{PhSH}(140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0 \mathrm{M}$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ were added to a solution of $(-)-\mathbf{1 3 1}(50 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ at room temperature. After stirring for 6 h at the same temperature, the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from $1: 1$ to $1: 2$) as an eluent to afford aminolactol (-)-132 as colorless oil ($33.2 \mathrm{mg}, 90 \%$ yield, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-6.5(c \quad 0.4$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 5.44-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.82-$ $4.80(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=2.4,2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.56-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.27-$ $1.25(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.2,9 \mathrm{H}), 1.17(\mathrm{~d}, J=9.3,9 \mathrm{H}), 1.12-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.89$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}); $\delta 177.6,177.3,100.2,99.2,98.9,97.0,78.3$, $72.4,55.9,53.1,48.7,40.0,39.3,38.9,38.6,36.4,34.7,33.3,33.2,27.2,27.1,26.9$, 25.0, 24.5, 23.9, 23.0, 21.9; IR (thin film, cm^{-1}) 3733, 1723, 1151; DART HRMS m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{NO}_{8}$ 528.3536, found 528.3544.
($5 S, 7 \mathrm{a} R, 8 R, 9 \mathrm{aS}, 11 R, 13 R, 13 \mathrm{a} R$)-4-(Methoxymethoxy)-11-methyltetradecahydro-5,7a-epoxyindeno[1,7a-e]azonine-8,13-diyl bis(2,2-dimethylpropanoate) (+)-137

1,8-Diazabicyclo[5.4.0]undec-7-ene DBU ($550 \mu \mathrm{~L}, 1.32 \mathrm{mmol}, 2.4 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to a solution of aminolactol (-)-132 ($32.0 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. Trichloroacetonitrile ($660 \mu \mathrm{~L}, 3.3$ mmol, 5.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to the reaction mixture at the same temperature. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was gradually warmed to room temperature and stirred for 36 h . The color changed from pale yellow to dark brown during the course of the reaction. The dark brown solution was concentrated under reduced pressure and the residue was purified by flash chromatography using (hexanes/acetone, 40:3) as an eluent to afford tetracyclic derivative $(+) \mathbf{- 1 3 7}$ as a colorless film: (19.4 mg, 63% yield). $[\alpha]^{24}{ }_{\mathrm{D}}=+85.5\left(c 0.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 5.19$ (dd, $\left.J=11.5,4.6,1 \mathrm{H}\right), 5.09(\mathrm{t}, J=5.7,1 \mathrm{H}), 4.90$ (dd, $J=8.9$, 3.6, 1H), 4.75 (s, 2H), $3.42(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 4 \mathrm{H})$, $1.77-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$, 1.16-1.15 (m, 2H), $0.89(\mathrm{~d}, J=6.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.8$, $177.0,98.8,96.5,95.6,80.5,72.1,56.1,54.2,49.5,38.9,38.6,38.4,35.2,34.2,31.3$, 29.0, 27.1, 26.9, 26.5, 25.2, 25.0, 21.9, 19.3; IR (thin film, cm^{-1}) 2956, 1723, 1153; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{NO}_{7}$ 510.3431, found 510.3432.

(+)-Sieboldine A 1

Lithium aluminium hydride LAH ($57 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to a solution of (+)$137(11 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. After stirring for 2 h at the same temperature, the reaction mixture was gradually warmed to room temperature and stirred for 18 h . The reaction was diluted with EtOAc at $0{ }^{\circ} \mathrm{C}$ and a saturated aq solution of Rochelle's salt was added. The mixture was allowed to warm to room temperature and stirred for 2 h . The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}) . \mathrm{NaHCO}_{3}(13 \mathrm{mg}, 0.15 \mathrm{mmol})$ and Dess martin periodinane DMP ($0.5 \mathrm{~mL}, 0.15 \mathrm{mmol}, 0.3 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were added to the reaction mixture at room temperature under argon. After stirring for 2 h , the reaction was quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$ under argon. Boron tribromide $\mathrm{BBr}_{3}\left(105 \mu \mathrm{~L}, 0.105 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was added dropwise to the reaction mixture at the same temperature. The reaction mixture was gradually warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h and was then warmed to room temperature and stirred for 18h. The reaction was quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified
by flash chromatography using (hexanes/acetone, 1:1) as an eluent to afford (+)sieboldine A 1 as a colorless powder ($3.3 \mathrm{mg}, 53 \%$ yield): $[\alpha]^{25}{ }_{\mathrm{D}}=+140.0(c 0.33$, $\mathrm{CH}_{3} \mathrm{OH}$) ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta ; 4.89-4.87(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 1 \mathrm{H})$, 3.20-3.18 (m, 1H), 2.90 (ddd, $J=14.8,7.4,3.7,1 \mathrm{H}), 2.57-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=$ $12.9,12.5,1 \mathrm{H}), 2.47-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (dd, $J=21.3,10.7,1 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.10 (m, 1H), 2.08-2.07 (m, 1H), 2.05-2.04 (m, 1H), 2.03-2.01 (m, 1H), 1.98$1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=19.6,10.7,1 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.75(\mathrm{~m}, 1 \mathrm{H})$, 1.62-1.60 (m, 1H), $1.05(\mathrm{~d}, J=6.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta 216.5$, $212.7,98.5,92.8,62.3,54.5,47.6,38.7,37.2,32.5,31.8,31.4,28.3,26.1,22.5,19.4 ;$ IR (thin film, cm^{-1}) 3400, 1754, 1698; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}$ 294.1705, found 294.1701.

3.3 Determination of the absolute configuration of (+)-144

145, 75\%

146, 61\%

(R)-MTPA ester of (+)-144 (145)

To a solution of (+)-144 (14 mg, 0.040 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.40 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(50 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$, DMAP $(1.0 \mathrm{mg}$, $\left.8.0 \times 10^{-3} \mathrm{mmol}\right)$ and (S)-MTPA-Cl $(15 \mathrm{mg}$, $6.0 \times 10^{-2} \mathrm{mmol}$) at room temperature. After stirring for 1.5 h at the same temperature, the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 6:1) as an eluent to afford 145 (17 $\mathrm{mg}, 75 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.36(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H})$, $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.46-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, J=$
6.2, 2H), 2.58-2.49 (m, 2H), 2.33 (td, $J=7.1,1.8,2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.74(\mathrm{~m}$, 2 H).
(S)-MTPA ester of (+)-144 (146)

In the same manner as that described for preparation of $\mathbf{1 4 5},(+)$ - $\mathbf{1 4 4}(14 \mathrm{mg}, 0.040$ $\mathrm{mmol})$ with (R)-MTPA-Cl $\left(15 \mathrm{mg}, 6.0 \times 10^{-2}\right.$ mmol) afforded 146 ($14 \mathrm{mg}, 61 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); δ 7.53-7.51 (m, 2H), 7.40-7.35 (m, 3H), 7.26-7.23 (m, 2H), 6.89-6.85 (m, 2H), 5.70$5.65(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.53$ $(\mathrm{s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=6.2,2 \mathrm{H}), 2.65-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{td}, J=7.1,1.8,2 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H})$.

3.4 Comparison of synthetic and natural (+)-sieboldine A spectral data

3.4.1 (+)-Sieboldine $\mathrm{A}^{13} \mathrm{C}$ spectra comparison:

(+)-Sieboldine A

Position	$\begin{gathered} \left.{ }^{13} \mathrm{C} \text { NMR (} \delta\right) \\ \text { Natural sample } \\ \left(\mathrm{CD}_{3} \mathrm{OD}\right) \end{gathered}$	${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{\delta}\right)$ Synthetic sample $\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$
1	98.5	98.5
2	31.4	31.4
3	26.1	26.1
4	92.8	92.8
5	212.6	212.7
6	37.2	37.2
7	38.7	38.7
8	31.8	31.8
9	54.5	54.5
10	19.4	19.4
11	28.3	28.3
12	62.3	62.3
13	216.5	216.5
14	47.4	47.6
15	32.5	32.5
16	22.5	22.5

3.4.2 (+)-Sieboldine $A^{\mathbf{1}} \mathbf{H}$ spectra comparison:

(+)-Sieboldine A

Position	$\begin{gathered} \left.{ }^{1} \mathrm{H} \text { NMR (} \delta\right) \\ \text { Natural sample } \\ \left(\mathrm{CD}_{3} \mathrm{OD}\right) \end{gathered}$	${ }^{1} \mathrm{H}$ NMR (δ) Synthetic sample $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$
1	4.89 (m, 1H)	4.89-4.87 (m, 1H)
2 a	1.98 (m, 1H)	1.98-1.96 (m, 1H)
2b	2.12 (m, 1H)	2.11-2.10 (m, 1H)
3a	2.08 (m, 1H)	2.08-2.07 (m, 1H)
3b	2.40 (m, 1H)	2.40-2.38 (m, 1H)
6 a	1.93 (dd, $J=19.6,10.9,1 \mathrm{H})$	1.92 (dd, $J=19.6,10.7,1 \mathrm{H})$
6b	2.45 (dd, $J=19.6,9.2,1 \mathrm{H})$	2.43 (dd, $J=21.3,10.7,1 \mathrm{H})$
7	3.25 (m, 1H)	3.27-3.22 (m, 1H)
8a	1.76 (m, 1H)	1.76-1.75 (m, 1H)
8b	1.77 (m, 1H)	1.79-1.77 (m, 1H)
9 a	2.91 (ddd, $J=14.8,8.0,3.7,1 \mathrm{H})$	2.90 (ddd, $J=14.8,7.4,3.7,1 \mathrm{H})$
9b	3.19 (m, 1H)	$3.20-3.18$ (m, 1H)
10a	1.63 (m, 1H)	1.62-1.60 (m, 1H)
10b	2.57 (m, 1H)	$2.57-2.55$ (m, 1H)
11a	1.77 (m, 1H)	1.79-1.77 (m, 1H)
11b	2.46 (m, 1H)	2.47-2.45 (m, 1H)
14a	2.03 (m, 1H)	2.03-2.01 (m, 1H)
14b	2.54 (dd, $J=12.7,12.7,1 \mathrm{H})$	$2.51(\mathrm{dd}, J=12.9,12.5,1 \mathrm{H})$
15	2.06 (m, 1H)	2.05-2.04 (m, 1H)

$\mathbf{1 6}$	$1.06(\mathrm{~d}, J=6.2,3 \mathrm{H})$	$1.05(\mathrm{~d}, J=6.2,3 \mathrm{H})$

CHAPTER IV

REFERENCES

(1) Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752-772.
(2) Hirasawa, Y.; Kobayashi, J.; Morita, H. Heterocycles 2009, 77, 679-729.
(3) Kobayashi, J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2005; Vol. 61, p 1-57.
(4) Siengalewicz, P.; Mulzer, J.; Rinner, U. In The Alkaloids; Knölker, H.-J., Ed.; Academic press: New York, 2013; Vol. 72, p 1-151.
(5) Hirasawa, Y.; Morita, H.; Shiro, M.; Kobayashi, J. Org. Lett. 2003, 5, 3991-3993.
(6) Zheng, W.; Xiang, Y. Q.; Li, X. B.; Ungvari, G. S.; Chiu, H. F.; Sun, F.; D'Arcy, C.; Meng, X.; Xiang, Y. T. Hum. Psychopharmacol 2016, 31, 286-295.
(7) Yang, G.; Wang, Y.; Tian, J.; Liu, J.-P. PLoS ONE 2013, 8, e74916.
(8) Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A. J. Am. Chem. Soc. 2017, 139, 4282-4285.
(9) Ding, R.; Fu, J.-G.; Xu, G.-Q.; Sun, B.-F.; Lin, G.-Q. J. Org. Chem.2014, 79, 240-250.
(10) Chandra, A.; Pigza, J. A.; Han, J.-S.; Mutnick, D.; Johnston, J. N. J. Am. Chem. Soc. 2009, 131, 3470-3471.
(11) Fu, J.-G.; Xu, G.-Q.; Ding, R.; Lin, G.-Q.; Sun, B.-F. Organic Chemistry Frontiers 2016, 3, 62-65.
(12) Lei, X.; Hong, B.; Hu, D.; Wu, J.; Zhang, J.; Li, H. Chem Asian J 2017, 25, 201700364.
(13) Zhao, L.; Tsukano, C.; Kwon, E.; Shirakawa, H.; Kaneko, S.; Takemoto, Y.; Hirama, M. Chemistry 2017, 23, 802-812.
(14) Xu, S.; Zhang, J.; Ma, D.; Xu, D.; Xie, X.; She, X. Org Lett 2016, 18, 4682-4685.
(15) Ochi, Y.; Yokoshima, S.; Fukuyama, T. Org Lett 2016, 18, 14941496.
(16) Azuma, M.; Yoshikawa, T.; Kogure, N.; Kitajima, M.; Takayama, H. J Am Chem Soc 2014, 136, 11618-11621.
(17) Zaimoku, H.; Taniguchi, T. Chemistry 2014, 20, 9613-9619.
(18) Canham, S. M.; France, D. J.; Overman, L. E. J. Org. Chem. 2013, 78, 9-34.
(19) Canham, S. M.; France, D. J.; Overman, L. E. J. Am. Chem. Soc. 2010, 132, 7876-7877.
(20) Zhang, X.-M.; Shao, H.; Tu, Y.-Q.; Zhang, F.-M.; Wang, S.-H. J. Org. Chem. 2012, 77, 8174-8181.
(21) Zhang, X. M.; Tu, Y. Q.; Zhang, F. M.; Shao, H.; Meng, X. Angew. Chem. Int. Ed. 2011, 50, 3916-3919.
(22) Torres, R. R. The Pauson-Khand Reaction: Scope, Variations and Applications; Wiley, 2012.
(23) Khand, I. U.; Knox, G. R.; Pauson, P. L. J. Chem. Soc. Chem. Comm. 1971, 36.
(24) U.Khand, I.; Knox, G. R.; L.Pauson, P.; Watts, W. E.; Foreman, M. I. J. Chem. Soc. Perkin Trans. 1 1973, 977-981
(25) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. Perkin Trans. 1 1973, 975-977
(26) Pauson, P. L.; Khand, I. U. Ann. N. Y. Acad. Sci. 1977, 295, 2-14.
(27) Pauson, P. L. Tetrahedron 1985, 41, 5855-5860.
(28) Blanco-Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Dominguez, G.; Perez-Castells, J. Chem Soc Rev 2004, 33, 32-42.
(29) Magnus, P.; Príncipe, L.-M. Tetrahedron Lett. 1985, 26, 48514854.
(30) Schore, N. E.; Croudace, M. C. J. Org. Chem. 1981, 46, 54365438.
(31) Exon, C.; Magnus, P. J. Am. Chem. Soc. 1983, 105, 2477-2478.
(32) Magnus, P.; Principe, L. M. Tetrahedron Lett. 1985, 26.
(33) Magnus, P.; Exon, C.; Albaugh-Robertson, P. Tetrahedron 1985, 41, 5861-5869.
(34) Magnus, P.; Principe, L. M.; Slater, M. J. J.Org. Chem. 1987, 52, 1483-1486.
(35) Mukai, C.; Sonobe, H.; Kim, J. S.; Hanaoka, M. J. Org. Chem. 2000, 65, 6654-6669.
(36) Huang, F.; Yao, Z.-K.; Wang, Y.; Zhang, J.; Yu, Z.-X. Chem. Asian J. 2010, 5, 1555-1559.
(37) Shibata, T. Adv. Synth. Catal. 2006, 348, 2328-2336.
(38) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755-1758.
(39) Mukai, C.; Nomura, I.; Kitagaki, S. J. Org. Chem. 2003, 68, 1376-
1385.
(40) Hirose, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2008, 73, 1061-1066.
(41) Hayashi, Y.; Ogawa, K.; Inagaki, F.; Mukai, C. Org. Biomol. Chem. 2012, 10, 4747-4751.
(42) Wender, P. A.; Croatt, M. P.; Descamps, N. M. J. Am. Chem.Soc. 2004, 126, 5948-5949.
(43) Inagaki, F.; Mukai, C. Org. Lett. 2006, 8, 1217-1220.
(44) Y., H.; N., M.; Kitagaki, S.; C., M. Org. Lett. 2008, 10, 2385-2388.
(45) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Org. Lett. 2009, 11, 5554-5557.
(46) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295-1298.
(47) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551-5553.
(48) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Angew. Chem. Int. Ed. 2011, 50, 8025-8028.
(49) Noyori, R.; Hashiguchi, S. . Acc. Chem. Res. 1997, 30, 97-102.
(50) Nakayama, A.; Kitajima, M.; Takayama, H. Synlett 2012, 20142024.
(51) Kozaka, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2007, 72, 10147-10154.
(52) Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am. Chem. Soc. 1982, 104, 5564-5566.
(53) Stork, G.; Mook, R.; Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741-3742.
(54) Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. Synlett 1999, 771-773.
(55) Otsuka, Y.; Inagaki, F.; Mukai, C. J. Org. Chem. 2010, 75, 34203426.
(56) Oyo, M.; Masaaki, Y. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
(57) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Chem. Eur. J. 2013, 19, 8665-8672.
(58) Dondoni, A.; Giovannini, P. P.; Perrone, D. J. Org. Chem. 2002, 67, 7203-7214.
(59) Teze, D.; Dion, M.; Daligault, F.; Tran, V.; Andre-Miral, C.; Tellier, C. Bioorg. Med. Chem. Lett. 2013, 23, 448-451.
(60) Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, A. Org. Lett. 2006, 8, 83-86.
(61) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. J. Org.Chem. 1991, 56, 2011-2017.
(62) Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Z. Yang Org.

Lett. 2005, 7, 593-595.
(63) Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, A. Org. Lett. 2006, 8, 83-86.
(64) Aburano, D.; Yoshida, T.; Miyakoshi, N.; C. Mukai J. Org. Chem. 2007, 72, 6878-6884.
(65) Ueno, Y.; Moriya, O.; K.Chino; Watanabe, M.; M. Okawara J. Chem. Soc. Perkin Trans. 1 1986, 1351-1356.
(66) Stork, G.; M.Sher, P. J. Am. Chem. Soc. 1986, 108, 303-304.
(67) Stork, G.; Sher, P. M.; Chen, H.-L. J. Am. Chem. Soc 1986, 108, 6384-6385.
(68) Stork, G. Bull. Soc. Chim. Fr. 1990,, 127, $675-680$.
(69) Salom-Roig, X. J.; Dénès, F.; Renaud, P. Synthesis 2004, 19031928.
(70) Freeman, P. K.; Hutchinson, L. L. J. Org.Chem. 1980, 45, 19241930.
(71) Liu, H. J.; Yip, J.; Shia, K.-S. Tetrahedron Lett. 1997, 38, 22532256.
(72) Davis, F. A.; Chen, B. C. Chem. Rev. 1992, 92, 919-934.
(73) Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. J. Org. Chem. 1989, 54, $5930-5933$.
(74) Yamashita, T.; Kawai, N.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2005, 127, 15038-15039.
(75) Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 731-732.
(76) Nakano, J.; Ichiyanagi, T.; Ohtab, H.; Itoa, Y. Tetrahedron Lett. 2003, 44, 2853-2856.
(77) Dasgupta, S.; Nitz, M. J. Org. Chem. 2011, 76, 1918-1921.
(78) Iida, E. "Asymmetric total synthesis of Fawcettimine-type Lycopodium alkaloids. Synthesis of optically active bicyclo [4.3.0] derivatives", Kanazawa University, (Master thesis) 2016.
(79) Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 1778-1781.
(80) Journet, M.; cai, D.; DiMichele, L. M.; Larsen, R. D. Tetrahedron Lett. 1998, 39, 6427-6428.
(81) Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708-1709.
(82) CCDC 1482946 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
(83) The optical rotations of synthetic (+)-sieboldine A 1 reported by Overman and Tu were $[\alpha]_{\mathrm{D}}{ }^{23}+141(c=0.4, \mathrm{MeOH})$ and
$[\alpha]_{\mathrm{D}}{ }^{20.2}+135.7(c=0.28, \mathrm{MeOH})$ respectively.
(84) Chandrasekhar, S.; Rao, C. L.; Seenaiah, M.; Naresh, P.; Jagadeesh, B.; Manjeera, D.; Sarkar, A.; Bhadra, M. P. J. Org. Chem. 2009, 74, 401-404.
(85) Stalick, W. M.; Khorrami, A.; Hatton, K. S. J. Org. Chem. 1986, 51, 3577-3581.
(86) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.

CHAPTER V

Appendix

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

TTTT

"T

$\pi\|\|\|\|$

$\pi \pi\|\|ा\|$

(+)-106'

$(-)-117$

\footnotetext{
$\pi 1\|\|\|\|$

"ाITTMW

TाIIII

(-)-123
7 Tp川

$\begin{aligned} & \text { 潯䕉 } \end{aligned}$	$\begin{aligned} & \text { o름 } \\ & \text { an } \end{aligned}$				 	 		
V			，	$\\|$	WH1	\mid 辿	Wrly	

 $\begin{array}{lllllllllllllllllllllll}220.0 & 210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

$(-)-127 \mathrm{OH}$

