科学研究費補助金研究成果報告書

平成23年 5月20日現在

機関番号:13301 研究種目:基盤研究(C) 研究期間:2008~2010 課題番号:20560440 研究課題名(和文)エネルギー吸収型落石防護柵の性能実証試験法と設計法の確立 に関する研究	
研究課題名(英文) Study on the performance-proof-test method of an energy absor type rockfall guard fence and its design method	ption
研究代表者	
前川 幸次 (MAEGAWA KOJI)	
金沢大学・環境デザイン学系・教授	
研究省备亏:00124024	

研究成果の概要(和文):エネルギー吸収型落石防護柵の性能は、メーカー独自の実験と評価お よびその実験値を根拠とした吸収可能なエネルギーの累加則による設計法に依存している。本 研究ではシミュレーション技術の向上を図り、同じエネルギーでも落石の特性、すなわち質量、 形状、速度等が性能に影響すること、ならびに累加則の適用が不適切であることを実験および 解析から明らかにした。

研究成果の概要(英文): The performance of a high energy type rock-fence is now depending on the design method based on the cumulative and absorbable energies which have been evaluated from a manufacturer's original experimental method and its experimental value. Improvement in a simulation technique of a high energy type rock-fence was aimed in this study. It has been made clear from experiments and analyses that the rockfall characteristics, i.e., mass, configuration and velocity, etc. influence the performance of a rock-fence even if the rockfall energy is same, and that the cumulative rule is unsuitable for evaluating a performance of a high energy type rock-fence.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	2, 300, 000	690,000	2, 990, 000
2009 年度	600,000	180,000	780,000
2010 年度	700, 000	210,000	910,000
年度			
年度			
総計	3, 600, 000	1, 080, 000	4, 680, 000

研究分野:工学 科研費の分科・細目:土木工学・ 構造工学・地震工学・維持管理工学 キーワード:落石,落石防護柵,性能認証,シミュレーション解析,LS-DYNA

1. 研究開始当初の背景

わが国の一般公共事業費は,平成10年度の 14兆円から平成18年度は7.1兆円にまで減 少し,自然災害・防災関連事業についてもコ スト縮減が強く求められている。例えば,わ が国の山間部では雪崩・落石の危険から通行 車輌や住居を守るためにスノーシェッド・ ロックシェッド,防護柵,防護壁等が多数設 置されてきたが,近年コストパフォーマンス の優れている"エネルギー吸収型の雪崩・落 石防護柵"が採用されており,とりわけネッ ト式落石防護柵が多くなっている。

エネルギー吸収型落石防護柵は,実験用防 護柵が落石を捕捉できるかどうかという視点 で,各メーカーが独自に行った性能実証試験 の限られた結果を根拠として,対応できる落 石規模,すなわちエネルギー吸収型落石防護 柵の性能が決められている。また,性能実証 試験では落石の衝突エネルギーを再現するた めの衝突条件である"落石の質量と衝突速度" が実験環境や設備の制約で決められており, 一般に自然現象よりも質量を大きくして落下 高,すなわち衝突速度を小さくせざるを得な いのが現状である。

エネルギー吸収型落石防護柵のように複数 の構成部材によるエネルギー吸収を期待する システムでは、衝突エネルギーが同じであっ ても衝突条件、例えば、小質量の高速衝突、 または重質量の低速衝突によっては防護柵の 性能評価に差異が出ると考えられる。

以上のことから,事が起こったときに"想定 外の落石"として片付けられることのないよ うに,エネルギー吸収型落石防護柵の性能実 証試験の実態を調査するとともに設計法の問 題点を明らかにし,設計方法の改善を目指す べきという着想に至った。

2. 研究の目的

限られた性能評価試験において性能が確認 されると,設計においては防護柵の個々の構 成部材の終局強度(吸収エネルギー)の予測 値を累加則に当てはめて,適用可能な落石規 模の範囲が拡張されている。累加則では個々 の構成部材が独立しているものとしてその耐 衝撃特性を考慮しており,構成部材の寸法や 耐衝撃特性および落石の衝突速度や質量など の衝突条件が異なれば,エネルギー吸収型落 石防護柵全体としての所定の性能を確保でき る保証はなく,結果の信頼性には問題がある。 特に,ネット式落石防護柵の設計はロープ式 落石防護柵に比べて明確でない。

本研究では、上記の問題を解明するととも に高エネルギー吸収型落石防護柵の性能照査 において衝撃解析汎用コードLS-DYNA による シミュレーション解析を援用するための知見 を得ることを目指した。

3. 研究の方法

落石防護柵の先進地であるスイスおよび欧 州では、すでに性能認証制度が導入されてい る。一方、わが国における落石防護柵の性能 実証試験はメーカー独自で行っている上に、 その詳細について公表されているものはほと んど無い。そこで、本研究では、わが国のメー カーおよび協会を対象として性能実証試験の 方法と設計の考え方についてアンケート調査 を行った。

また,既存の実験データを基に,高エネル ギー吸収型落石防護柵のシミュレーション技 術の確立を行った。次に,わが国の性能実証 試験では考慮していない"衝突条件の影響" や"性能累加則の問題"について,そのシミュ レーション技術を利用した数値実験により明 らかにした。

4. 研究成果

(1) 落石防護柵の性能実証試験の現状調査 在来型の落石防護柵(落石対策便覧の設計 例であるワイヤーロープ金網式)にはないワ イヤーロープの保護・緩衝機構や異なる形式 の落石防護柵を扱っているメーカーおよび協 会に対して,実証試験の概要および設計手法 についてアンケートをお願いした。表1は回 答のあった製品名(A~Mの13タイプ16件) ごとに質問項目の1)~17)の結果を示す.な お,製品タイプ13は実証試験の実施年の順に 並んでいる。

 ①
 質問項目
 1)
 性能
 と
 10)
 衝撃度の関係

欧州製品 H, I, L および A, C では,性能認 証指針(2001年)あるいはその思想のため,製 品性能が実証試験の衝撃度になっている。一 方,日本製品 B, D, E, F, J の性能は実証試 験の衝撃度よりも大きなレベルまで設定され ている。これは、実証試験を基にした数値解 析や落石対策便覧を拠り所とした設計手法に 基づいてグレードアップされた落石防護柵が 設置されていることを意味する。なお,日本 製品 G, K, M の性能は衝撃度にほぼ一致して いるが,繊維性ネットを主体としている製品 G, M では性能のグレードアップを設計手法に より行うことが簡単ではない等の理由と思わ れる。

② 質問項目 5) 衝突体(重錘)形状

欧州製品では、2001 年以降は性能認証指針 に定められた重錘形状(表1の備考: SAEFL 型, EOTA型)が使用され、それ以前は自然岩 石が使用されている。日本製品では、衝突面 が球状の重錘から近年は SAEFL型または EOTA 型の重錘に移ってきている。

③ 質問項目 9) 衝突速度

欧州製品では性能認証指針の衝突速度規定 (25 m/s 以上)が確保されている。日本製品 での衝突速度は13.8~23.8 m/s であり,同じ 衝撃度で衝突速度を25 m/sとする場合に比べ ると,重錘質量を約3.3~1.1倍,および衝突 投影面積を約2.2~1.07倍で行っていること になる。なお,製品Dは重錘を鉄球にするこ とで比較的遅い衝突速度でも所定の衝撃度を 確保している。

実証試験は落石防護柵にとって厳しい衝突 条件(大径落石の低速衝突よりも小径落石の 高速衝突の方が厳しいと思われる)で行うべ きであり,性能保証と公正な競争のためにも, 欧州の性能認証指針の衝突速度(25 m/s 以上) の適否も含めて試験方法についての指針,さ らには数値解析や吸収可能エネルギーの累加

					¥.	来 	石防護	曲の実験	概要に関	するアンケ	アート結果					
製品名(整理名)	A-1	A-2 /	A-3	В	0-1 0-1	C−2	D	Е	ш	G	н	I	P	х	L	Μ
(1) 製品性能 (kJ)	~1000 -	~1500 ~.	3000	~1500	~1500 ~	2000 2	$00 \sim 1000$	\sim 500	~ 1000	200	~ 3000	~ 100	~500	~ 600	$250 \sim 3000$	~ 150
(2) 実験実施主体		フランス		自社	スイス	~	自社	自社	自社	自社	スイス	スイス	自社	自社	スイス	自社
(3) 実験実施年		1988		1993	1996 1	997	2000	2001	2001	2002	2002	2005	2006	2007	2007	2008
(4) 衝突体重量(ff)	3.0	3.9	6.0	3.0	4.1	5.3	7.0	3.1	3.0	1.6	9.6	0.32	1.46	2.0	3.2	0.9
(5)衝突体形状	ш	副然岩石		英原田柱 劉惑コン ゆ1:3m,1:5m	自然 抵 む は	石形	球体 鉄球 ゆ1.2m	御 田 田 本 御 田 田 本 御 思 日 日 日 日 日 日 日 日 日 日 日 日 日	御 御 田 田 本 御 田 田 市 御 御 思 御 思 記 し 日 日 日 日 日 日 日 日 日 日 日 日 日	<mark>球底田柱</mark> 劉波山ソク 夕0.9m	SAEFL 型 コンクリート ロ1.6m	SAEFL 型 コンクリート ロ0.52m	EOTA 2014 1 2 1 2 1 2 1 2 1 2 1 2	SAEFL 型 RC □0.95m	SAEFL 型 コンクリート ロ1.11m	联体 鶴樹コ ゆ0:45m
(6) 衝突方法	業道	負から離朋	ä	自由落下	素道から	離脱	滑り台	自由落下	自由落下	振り子	自由落下	自由落下	自由落下	自由落下	自由落下	振り子
(7) 衝突角度(度)		30 ?		06	60		90	I	06	90	60	60	90	90	75	90
(8) 鉛直落下高(m)		I		17.0	I		10.0	13.0	12.0	12.5	I	I	15.0	29.0	32.0	16.6
(9) 衝突速度(m/s)	26.2	28.6 3	31.8	18.3	27.0	26.5	13.8	16.0	15.3	15.3	25.0	25.0	18.0	23.8	25.0	18.0
(10) 衝撃度(kJ)	1017	1599 3	3018	510	1500 2	040	700	395	400	196	3000	100	215	568(625)	例:1000	150
(11) 速度計測	センキ- 画 速度:	- カメラ	HA.	里論値	高速度力メ	л Ч	い サー	理論値 加速度計	理論値	高速カメラ	加速度計 高速カメラ	加速度計 高速カメラ	理論値 加速度計	理論値 加速度計	高速カメラ	理論値 加速度計 高速カメラ
(12) 実験形態		実物		実物	実物		実物	実物	実物	実物	実物	実物	実物	実物	実物	実物
(13) スパン数		3		3	3		3	3	3	3	3	3	3	3	3	3
(14) 設置場所	77	斜面上		鉛直壁	斜面上		平地上	斜面上	鉛直壁	平地上	鉛直壁	鉛直壁	鉛直壁	鉛直壁	鉛直壁	平地上
(15)衝突部位	8	央入心	<u></u>	中央スパン 諸部スパン 第の上急 第の下急	中央スパン	т	ュ央スパン	中央スパン	中央スパン 諸部スパン	中央スパン 諸部スパン	中央スパン	中央スパン	中央スパン (上・下線, 支柱隣接部)	 中央スパン 端部スパン (エネルギー と速度を減) 	中央スペン 諸部スペン	中央スパン
	ЧЧ. К	「開かなし	<u>د</u>	重錘捕捉	いなります。	ない 重	鍾捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉
(16) 性能評価 基準					衝り 御命 御命 御命 で で し の や の や し で た に 一 に や の や や や し や し や し や し や し や し い い し い い し い し い し い し い し い し い し い し い し い し い し い し い し い し い い し い	中にのすりまた。	(村の) (村の) (村田) (村田) (村田) (村田) (村田) (村田) (村田) (村田	▲ 本 物 市 御 た が な た の た の た た の の た の の た の の の の の の の	緩衝機構が 可応機構 するに機能 他	メットに入 と開かたに 減た(ネット 繊維の多少 の撮傷は可)	衡 働 り り の 後 後 の 御 御 で し 信 し し し し し し し し し し し し し	働後後後 り、 し、	撮線を 「 物の 物の 物の 物の かる や か し た し や や や や や や や や や や や や や	ちめ国内に 「点を国内に しか」です はちや」で 時間 大子があのと、 マサに添わりた の たすのの ス	柵 すて で た た の 神 の で で の 部 に の 部 の 観 を ま で に が に が に が に が に が に が に が に が に が に	祭ッなの強程地を体いなの強程地をしたしたして作数度上に 材置を用のとの部での おご部のおのを用のとかに都の記 おおおが割様で
(17) 設計手法・ 思想		入先の力 診 を根拠) を	去 () ()	本 石 水 線 線 水 水 水 水 石 市 一 市 小 石 一 、 石 子 石 子 石 子 石 子 石 子 石 子 石 石 子 石 石 石 石	柵は設計 日も定算 上設済 利 「 し し し を た に し し を た に し し を た に し し を た に し し を た に し を た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た し し 条 た に し し 来 た し し 条 た し し 来 た こ で た こ し た た こ で た こ た こ た こ た こ た こ た こ し た た こ し た た こ し た た こ し た た こ し こ た た こ し た た こ た こ た こ た こ た こ た こ た こ た こ た こ た こ た こ た た た た こ た た た て し た た た た た た て ん た た た た た た た た た た た こ た た た た た た た た た た た た た 	性でり控値の計い能確、えを安計る	石石一にい覧のある「なも要」 オエ政ににい覧のの 策ネ収考の記頭画種構体も要し し、「「「「」」」 「「「」」」」 「「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」	実施したいので実施した。 いいとにというである。 それのも子をおした。 でまで、 で を で、 た を を で し た に の し た に た に た に た に た し た に た た で た で た し た に ち し た に の た で し た し た し た し た で し た し た し た し た し	先 また。 (SSS) たい で た で で で で で で に の に の に の に の に の に の に の に の に の に の に の に の の に の の の の の の の の の の の の の	ネネ収収である。 ネネリッル重求さんの値 トギをの図はの実をてし、 の一般のあま、証据でて エの世界では、 ないの様で、 ないの様で、 ないので、 で、 で、 で、 で、 で、 の で、 の し、 の し、 の の の の し の し の し の し の し の し の し し の し し の し し し し し し し し し し し し し	4 性試済計控張と安設人 士能談泳到え方に定計れ 部はでです」 部はでできって 御時に です。 をすって をすって をすって です。 をすって です。 をすって です。 です です。 です。 です。 です。 です。 です。	# 性試験 新 は に ま な ま に た ま な ま た ま た ま た ま た ま た ま た ま た ま た た た た た た た た た た た た た	実といい。そその確余でいい。 後についい。その確余でいる。 で支援が、予設確全で支援。 にて変がい当しを認る。 拠し、な認い。 の折を洗する。 であたた。	踊びし、 あままでの、 「 して で して い して い し し し い し に を を を を を を を を を を を を を を で う を を う を の を で う を で う を で う を で う を で う う で う う で う ひ う う で う ひ う で う で う の う の う の の の の の の う の の の の	あた、 いた、 した、 した、 した、 した、 した、 した、 のた に した、 した、 のた に した、 で、 と、 と、 と、 と、 と、 と、 と、 と、 と、 と、 と、 と、 と、	を 「 ま に ま に ま に ま た た し ま た た た た た た た た た た た た た
備	な	≝ <u>~</u>	^余 ^余 ^余 ^余				····································			SAEFL型	EOT	· · · · · · · · · · · · · · · · · · ·	(1) (1) (1) (1) (1) (1) (1) (1)	個人、大学校、大学校、大学校、大学校、大学校、大学校、大学校、大学会、大学校、大学校、大学校、大学校、大学校、大学社、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、	田 本 本 本 本 本 本 本 本 本 に に 本 本 市 一 本 本 市 一 本 本 二 い 本 た い こ の た た 大 か に 一 た た た た た た た た た た た た た	産、平地) ア) TA) TA) コープ) むを考慮し ち。

則に基づく設計手法の妥当性,あるいは性能 認証制度についての議論が必要である。

(2) シミュレーション解析方法の検討

本研究では、衝撃解析コード LS-DYNA を用 いたシミュレーション解析を行うために、落 石防護柵の既存の実験データをキャリブレー ション値としてモデル作成方法の検討を行っ た。LS-DYNA 固有の情報になるところもある が、紙面の都合上、エネルギー吸収型落石防 護柵のシミュレーション解析に有用と思われ る事項のみを示す。

① ポリエチレンネット製落石防護柵のモデル 写真1は落石防護柵の実験(表1の製品G)

写真1 ポリエチレンネット製落石防護柵

のケースの一つである。落石を模した 1.6 ton の重錘は振り子運動によりポリエチレンネッ ト(以下, PE ネットという)面に垂直に衝突 する。下端がヒンジ支持され,上端が控えロー プ3本で支持されたH形鋼柱の間に張設され たワイヤーロープが PE ネット縁の折り返し 部の中を貫通・支持している。

PE ネットを構成する網糸は破断ひずみを 設定できる truss 要素と引張力にのみ抵抗す る cable 要素を交互に直列することによりそ の力学的特性を表した。また、PE ネット縁が ワイヤーロープに沿って移動できる条件を表 現するために、図1のようにPE ネット縁に剛 なリングを形成し、ワイヤーロープとの間に LS-DYNA の接触条件 (Contact Automatic General, 摩擦係数0.1)を適用した。

図1 PE ネットのモデル化

ワイヤーロープは、鋼柱に1本ずつ定着され、写真2のようにスパン中央部において余長を持たせてワイヤークリップ4個で連結してあるため、張力が大きくなると張力は大きく変動しながら連結部に滑りを生じる。ワイヤークリップの締め付け力を調整することによりその平均滑り張力をある程度制御ついたに定着した鋼板2枚である。また、控えロープにしてあり、ワイヤークリップの場合と同様など動をする。このような機構(以下、緩衝装置という)は、衝撃的張力によるロープの破断を防ぐだけでなく、摩擦エネルギーとして落石のエネルギーを吸収することができる。

写真2 緩衝装置(上:クリップ型,下:金具型)

図2は、緩衝装置で定着したワイヤーロー プに重錘を落下衝突させたときのロープ張力 の計測例である。シミュレーション解析では、 図2のような特性と吸収エネルギーが等価に なるようにワイヤーロープの中央部の要素の 材料特性を完全弾塑性モデルで近似した。

図2 緩衝装置のロープ張力と滑りの関係

② PE ネット製落石防護柵のシミュレーション 解析値と実験値の比較の例として,重錘衝 撃力および控えロープ張力の経時変化をそれ ぞれ図3および図4に示す。重錘衝撃力の0.6 秒時の実験値は,重錘が水平運動を停止して 着地した状態であり,解析では着地を考慮し ていないことによる差異がある。控えロープ 張力の実験値は,図2と同様に大きく変動し ているが,緩衝装置の特性を平均滑り張力に 相当する材料モデルにより近似した解析では, 違いが生じている。しかし,ワイヤーロープ によるPEネットの支持特性のモデル化は図5 の変形性状から妥当であると言える。

図 5 PE ネット製落石防護柵の変形性状の比較

(3) 落石衝突条件の影響

落石の衝突エネルギーが同じであっても落 石の形状,質量および衝突速度が落石防護柵 の性能,すなわち落石を捕捉できるかどうか に影響すると考えられる。落石防護柵の認証 制度であるETAG27およびSAEFLでは衝突速度 が25 m/s以上に規定されている一方で,わが 国の性能実証試験では表1に示すように20 m/sを超えて実施したのは1件だけである。 本研究ではシミュレーションにより,まず,衝突 速度の影響を検討した。

① 落石防護柵の基準エネルギーE₀

前述の PE ネット製落石防護柵について,衝 突速度 25 m/s 前後の落石が衝突したときに捕 捉できる最大の落石エネルギーを基準エネル ギーE₀ とした。落石は ETAG27 で規定されて いる多面体で質量を 433 kg に固定し,速度を 変数として解析を行った結果,表 2 を得たの で,基準エネルギーE₀を 130 kJ とした。

	12 4	盔牢	イ L ₀ の次定	
No.	落石(kg)	速度(m/s)	エネルギー(kJ)	捕捉
1)		23.5	119.6	\bigcirc
2)		24.0	124.7	\bigcirc
3)	433	24.5	130.0	\bigcirc
4)		25.0	135.3	\times
5)		25.5	140.8	×

表2 基準エネルギーE。の決定

② 基準エネルギーE₀における落石の捕捉

基準エネルギーE₀を有する落石について,そ の寸法,すなわち質量と衝突速度を表3の組み 合わせで解析を行った。図6は各 No.における PE ネットの最大変位時(a)とその後の落石の状 態(b)を表している。

表 3 落石衝突条件	(E ₀ は130kJに固定)	と結果
------------	----------------------------	-----

No.	速度 (m/s)	質量 (kg)	最大寸法 (m)	投影面積 (m ²)	結果
1	12.25	1730	0.99	0.86	捕捉(軽損傷)
2	16.33	980	0.82	0.59	捕捉(軽損傷)
3	20.41	620	0.71	0.44	停止・抜け落ち
4	24.50	430	0.63	0.34	捕捉(軽損傷)
5	28.59	320	0.56	0.28	貫通

落石を確実に捕捉して押し戻しているのは No.1,2 および4 であり, No.5 は貫通している。ま た, No.3 では落石は停止したが PE ネットが戻る ときに孔をすり抜けて落下した。捕捉したケース においても,網糸の損傷により小さな孔が複数 生じている。落石が貫通するかしないかは網糸 の損傷によって生じる孔の大きさと落石寸法の 相対的な関係によるが, No.1~4 までは落石を 停止させているのに対して, No.5 では落石を停 止できていないことは,図7に示した落石の水平 速度の経時変化からも明らかである。

以上のことから,性能実証試験において捕捉 できる落石の衝突エネルギーで評価する場合, 落石の弾丸効果(小径物体の高速衝突)を考慮 すべきであることが分かった。落石の実斜面落 下実験等の報告によれば,落石の衝突速度は 30 m/s 程度になる可能性もあることから, ETAG27

6.1 6.2 6.3 6.4 6.5 6.6 時間(t)

図7 落石の水平速度の経時変化

および SAEFL の規定(25 m/s 以上)は合理的 な値と言える。

(4)設計におけるエネルギー累加則の妥当性 落石防護柵(網)の設計においては個々の 構成部材の終局強度(吸収エネルギー)の予 測値を累加則に当てはめることが多い。その 妥当性について、シミュレーション解析に基 づいて検討した。

解析対象は、図8に示す落石エネルギー450 kJ に対して落石対策便覧に準じて設計され たポケット式落石防護網の実構造である。構 造の詳細については「雑誌論文④」に譲るが、

図8 ポケット式落石防護網の概要

図8の青・赤の円は緩衝装置を表す。落石は SAEFLの多面体型落石2.0 tonを速度21.2 m/s, すなわち450 kJで防護網面に垂直に衝突させ ることとし,設計における衝突位置 I の外に $II \sim VIIの衝突位置についてもシミュレーショ$ $ン解析を行った。その結果,衝突位置 I <math>\sim V$ では落石を捕捉して下方へ誘導することがで きたが,衝突位置VIとVIIでは落石が貫通した。 図9はその一例である。

図9ポケット式落石防護網の解析(衝突位置V, VI)

落石を捕捉できなかった衝突位置VIについ て、緩衝装置のロープ滑り長を表4に示す。 設計では緩衝装置の限界滑り長を1mに設定 したエネルギー吸収量を防護網全体のエネル ギー吸収量に累加している。衝突位置VIの場 合、限界滑り長の1mに達していない緩衝装 置があり、余裕があるにも拘わらず落石は防 護網に損傷を与えて貫通した。エネルギー吸 収量の累加則は、静的荷重作用の下では しい概念であるが、衝撃的荷重作用の下では 動的応答解析(シミュレーション解析)によ る評価が必要であることが明らかである。

なお、緩衝装置の平均滑り張力の大きさを 維持するためには、限界滑り長の制限が必要 であるが、解析ではその制限を設けない場合 についても検討を行った結果、衝突位置Ⅵお よびⅦにおいても落石は防護網を貫通しな かった。緩衝装置は落石エネルギーを吸収す るのと同時にロープや防護網の負担を軽減す るために有効な装置であることもわかった。

今後は緩衝装置のより高度なモデル化を開 発することにより,シミュレーション解析を エネルギー吸収型の落石防護柵(網)の性能 評価に使用できる。

表4 緩衝装置の滑り長と吸収エネルギー

(吊り)U型	緩衝装置	(横1段	:)R型	(横2段	:)R型
滑り長	Energy	滑り長	Energy	滑り長	Energy
mm	kJ	mm	kJ	mm	kJ
3	0.0	1000	110	737	69.7
5	0.2	1000	112	490	68.7
	(吊り)U型 滑り長 mm 3 5	(吊り)U型緩衝装置 滑り長 Energy mm kJ 3 0.2 5	(吊り)U型緩衝装置 (横1段) 滑り長 Energy 滑り長 mm kJ mm 3 0.22 1000 5 1000 1000	(吊り)U型緩衝装置 (横1 段) R型 滑り長 Energy 滑り長 Energy mm kJ mm kJ 3 0.2 1000 112	(吊り)U型緩衝装置 (横1段) R型 (横2段) 滑り長 Energy 滑り長 Energy 滑り長 mm kJ mm kJ mm 3 0.2 1000 112 737 5 1000 1000 490

* 平均滑り張力: 22kN(U型), 56kN(R型)

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

- 前川幸次,(他3名),ポケット式落石防 護網のシミュレーション解析に関する 研究,構造工学論文集 Vol.57A(2011), 1134-1144,査読有
- 田島与典,<u>前川幸次</u>,(他2名),実物大 重錘衝突実験による緩衝装置を用いた ポケット式落石防護網の評価,構造工学 論文集 Vol.56A (2010), 1088-1100,査 読有
- 河上康太,<u>前川幸次</u>,(他2名),ポケット式落石防護網の実物大実験への LS-DYNAの適用,構造物の衝撃問題に 関するシンポジウム論文集 No.10 (2010), 257-262,査読有
- ④ T. Tajima, <u>K. Maegawa</u>, (他 3 名), Evaluation of Pocket-type Rock Net by Full Scale Tests, Proc. of IABSE Symposium (2009), CD-ROM 8 pages, 査読有

〔学会発表〕(計4件)

- 河上康太,田島与典,<u>前川幸次</u>,ポケット式落石防護網に対する落石衝突位置の影響に関する研究,土木学会第65回 年次学術講演会,2010年9月3日,北海 道大学(北海道)
- 前川幸次,落石防護柵の性能実証試験の 現状調査について、土木学会第65回年 次学術講演会、2010年9月3日、北海道 大学(北海道)
- ③ 田島与典,岩崎征夫,前川幸次,実物大 モデルを用いた重錘衝突載荷実験によ るポケット式落石防護網の評価,土木学 会第64回年次学術講演会,2009年9月 2日,福岡大学(福岡県)
- ④ 舘佑介,田島与典,<u>前川幸次</u>,落石防護 柵の衝突シミュレーションに関する研 究,土木学会第 63 回年次学術講演会, 2008 年 9 月 10 日,東北大学(宮城県)

6. 研究組織

- (1)研究代表者
- 前川 幸次 (MAEGAWA KOJI) 金沢大学・環境デザイン学系・教授 研究者番号:00124024