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Chapter 1

Introduction

One of the important steps in the theoretical treatment of chemical reactions is repre-

sentation of the potential energy surface (PES) [1, 2]. PES gives not only the local ge-

ometries such as reactant (RS), transition (TS), and product states (PS), but the energy

landscape for various configurational changes in chemical reactions. Most approaches

to chemical reactions analyze the PES by quantum chemical calculations derived under

the Born-Oppenheimer approximation, also known as the adiabatic PES. Once the PES

is obtained, the scattering cross section, reaction constant, and reaction path, which

are important for understanding chemical reactions, can be obtained from the PES [3].

Therefore the PES can be used to elucidate the detail of chemical reactions. Although

ab initio quantum chemical calculations are becoming possible for large molecular sys-

tems, however, accurate PES calculations for understanding chemical reactions tend to

be unfeasible. In addition, though analytical function for PES requires to analyze the
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reaction, the global function has not been known.

One of the ways for dealing with the problem has been to use intrinsic reaction

coordinate (IRC). IRC is the PES only along a one-dimensional curve that connects

RS, TS, and PS, which is the most important reaction path in chemical reactions.

Though this approach has been very useful, IRC requires the TS configuration, the

computational cost of which makes the calculation difficult for large molecular systems.

Rather than examine the adiabatic PES, another approach to chemical reactions

is to analyze the diabatic PES. In contrast to the adiabatic potential, the diabatic

potential presents electronic states that change constantly to confine the eigenstates

of the electronic Hamiltonian. There are some approaches to describing the diabatic

potential [4], constructing using some valence bond (VB) electronic wave functions [5–

8]. For empirical valence bond (EVB) [9] or multistate empirical valence bond (MS-

EVB) [10] approaches, diabatic potentials are used to provide the molecular mechanical

functions needed to construct the PES [11–27]. Therefore, a proposal of simple method

for light or more uniquely construction of PES in the diabatic picture is important to

analyze the chemical reaction and it can be widely applied to describing large molecular

systems such as protains.

Meanwhile, detailed analyses of chemical reactions such as proton transfer require a

quantum mechanical treatment. One of the approaches to quantum mechanical treat-
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ments is a time-dependent reactive scattering for estimating individual scattering ma-

trix (S-matrix) elements. S-matrix elements have been obtained from time-correlation

functions between RS and PS wavepackets. Furthermore, Miller and co-workers [28–30]

have used the reactant partition function to show that cumulative reaction probability

can be directly related to the thermal rate constant. However, in general the reactive

scattering approach intrinsically tends to be complicated and imbalanced because the

least and most appropriate wavefunctions corresponding to the RS and PS wavepackets

are required in order to calculate the time-correlation functions.

In the diabatic picture, the Hamiltonian is divided into nonreactive (reactant and

product) and reactive parts. In particular, the reaction probability based on the reac-

tive scattering theory is evaluated in terms of the transition between two nonreactive

surfaces. The wavefunctions corresponding to the RS and PS necessary for calculating

the time-correlation functions can be easily obtained in the diabatic picture. Therefore

reactive scattering approach in the diabatic picture are important for analyzing proton

transfer reactions based on a quantum mechanical treatment.

In this dissertation, a simple construction method of global PES and analytical

method using the PES for intermolecular proton transfer are mainly discussed. The

content of this dissertation is as follows. Chapter 2 shows the fundamental theories

used in this dissertation. Chapter 3 is discussed a construction method of PES in
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diabatic picture for intermolecular proton transfer. In this chapter, we focus on the

proton-bonded ammonia (AmH+ − Am) and imidazole (ImH+ − Im) pairs as homo-

molecular proton transfer systems and the proton-bonded imidazole-ammonia (ImH+−

Am) and ammonia-water (AmH+ − Wat) as hetero-molecular systems. Chapter 4 is

discussed a thermal rate constant estimation method for intermolecular proton transfer

reactions that uses quantum dynamics simulations on the constructed potentials. In this

chapter, we focus on the proton-bonded water (WatH+−Wat) and AmH+−Am pairs as

homo-molecular proton transfer systems, and onAmH+−Wat pair as hetero-molecular

systems. Chapter 5 shows the application to intermolecular proton transfer in proton

conductive material using the diabatic picture. In this chapter, the approaches discussed

in chapters 3 and 4 are applied to crystalline imidazolium succinate (Im-Suc), which

is a known proton-conductive material. Chapter 6 shows the analysis of the reaction

involving proton using adiabatic potential instead of diabatic potential. This chapter

is discussed the hydride transfer process including a proton during the reduction of

formaldehyde by LiAlH4 and LiBH4, including investigations of the geometries, solvent

effects and charge transfer processes along the IRC. Finally, chapter 7 shows conclusion

of this dissertation entire.

4



Chapter 2

Fundamental Theory

In this chapter, fundamental theories used in this dissertation are discussed. To analyze

chemical reactions by the theoretical treatment, in general quantum chemical calcula-

tion is performed. Especially a potential energy surface (PES) using the quantum chem-

ical calculation is usually constructed based on the Born-Oppenheimer approximation.

Therefore,“Quantum chemical calculation”and“Born-Oppenheimer approximation”

are explained in sections 1 and 2, respectively. Once the PES is obtained, the potential

gives the energies and configurations of reactant, transition, and product states as one

example. Reaction rate constant of the reaction can be then estimated base on transi-

tion state theory using information of reactant and transition states.“Transition state

theory”is explained in section 3, which is one of the important theories for estimation

of rate constant. A main topic of this dissertation is an analysis of proton transfer using

diabatic PES. The Diabatic PES are based on diabatic representation, while adiabatic
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PES, which are usually used, are based on adiabatic representation. Therefore,“Adia-

batic and Diabatic representation”is explains in section 4. Proton transfer reaction is

often included nuclear quantum effect and treated quantum mechanical approaches. In

this dissertation, quantum mechanical approach such as quantum wavepacket dynamics

is performed. Therefore,“Quantum wavepacket dynamics”is explained in section 5.

Finally,“ Quantum theory of chemical reaction” is explained section 6.

2.1 Quantum chemical calculation

In this dissertation quantum chemical calculations are performed by using density func-

tional theory (DFT). In this section, the fundamental theory of DFT and basis function

for the quantum chemical calculation is discussed. A more detailed description of the

DFT and basis function is given in Ref. [31–34]. The outline of them is discussed in

the following.

2.1.1 Density functional theory

The basis for DFT was proven by Hohenberg and Kohn [35] that the ground-state

electronic energy is determined completely by the electron density. Thus, DFT does

not attempt to calculate the wave function with 3N coordinates for an N electron

molecular system but calculates the electron probability density with three coordinates
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and calculates the electronic energy from the density. Therefore, DFT is the method

with light computational cost than the post-Hartree-Fock methods such as configuration

interaction (CI), Møller-Plesset (MP), and coupled cluster (CC) approaches including

electron correlation.

The most common implement of DFT was achieved through the Kohn-Sham (KS)

method [36]. Kohn and Sham considered a fictitious system of N non-interacting elec-

trons that have for their overall grand-state density the same density as some real

system of interest where the electrons do interact. The formalism of KS method is

as follows. First, the energy functional with electron density was divided into specific

components to facilitate further analysis, especially:

DDFT[ρ] = TS[ρ] + Vne[ρ] + Vee[ρ] + ∆T [ρ] + ∆Vee[ρ], (2.1)

where TS[ρ] is the kinetic energy term of the non-interacting electrons, Vne[ρ] is the

nuclear-electron interaction term, Vee[ρ] is the classical electron-electron repulsion term,

∆T [ρ] is the correction to the kinetic energy deriving from the interacting nature of

the electrons, and ∆Vee[ρ] is the all non-classical corrections to the electron-electron

repulsion tern. For a non-interacting system of electrons, the kinetic energy is just the

sum of the individual electron kinetic energies. Within an orbital for the density based
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on a Slate determinant wave function, Eq. (2.1) may be then rewritten as

DDFT[ρ] =
N∑
i

(
⟨ϕi| −

1

2
∇2

i |ϕi⟩ − ⟨ϕi|
nuclei∑

k

Zk

|ri − rk|
|ϕi⟩

)

+
N∑
i

⟨ϕi|
1

2

∫
ρ(r′)

|ri − r′|
dr′|ϕi⟩+ Exc[ρ], (2.2)

where N is the number of electrons and a Slater determinant wave function is used

satisfying simply　

ρ =
N∑
i

⟨ϕi|ϕi⟩. (2.3)

Exc[ρ] is ∆T [ρ] + ∆Vee[ρ] in Eq. (2.1), which is referred to as the exchange-correlation

energy. By minimizing DDFT[ρ] in Eq. (2.2) with respect to variation of the orbitals

{ϕi}, it is then derived the following KS equation:

hKS
i ϕi = εiϕi, (2.4)

where the KS one-electron operator is defined as

hKS
i = −1

2
∇2

i −
nuclei∑

k

Zk

|ri − rk|
+

∫
ρ(r′)

|ri − r′|
dr′ + Vxc, (2.5)
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and

Vxc =
δExc

δρ
. (2.6)

A set of canonical KS orbitals {ϕi} in Eq. (2.4) is determined by numerical methods or

expansion in a set of basis functions. Insofar as the density is required for computation of

the KS operator, but the density is determined using the orbitals derived from solution

of KS equation, the KS process thus must be carried out as an iterative SCF procedure.

If the exact Exc[ρ] was known, DFT would provide the exact total energy including

electron correlation. Although it is possible to prove that the exchange-correlation

potential is a unique functional for all systems, however, an explicit functional form of

this potential has been elusive. The difference between DFT methods is the choice of

the functional form of the exchange-correlation energy Exc.

It is customary to separate Exc into two parts: a pure exchange Ex and a correlation

part Ec, although it is not clear that this is a valid assumption. Each of these energies

is often written in terms of the energy density, εx and εc:

Exc[ρ] = Ex[ρ] + Ec[ρ] =

∫
ρ(r)εx[ρ(r)]dr +

∫
ρ(r)εc[ρ(r)]dr. (2.7)

In the Local Density Approximation (LDA) it is assumed that the density locally can

be treated as a uniform electron gas, or equivalently that the density is a slowly varying
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function. The exchange energy for a uniform electron gas is then given by the Dirac

formula [37]:

ELDA
x [ρ] = −Cx

∫
ρ4/3(r)dr, (2.8)

εLDA
x [ρ] = −Cxρ

1/3. (2.9)

In general the LDA underestimates the exchange energy by ∼ 10%, thereby creating

errors which are larger than the whole correlation energy. Electron correlation is fur-

thermore overestimated and bond strengths are as a consequence overestimated. The

most fundamental process in chemistry is the making and breaking of bonds. Compu-

tation of bond energies is therefore one of the greatest concerns of quantum chemists.

Therefore an obvious way to improve on LDA is to allow the exchange correlation en-

ergy per particle to depend not only on the density at the point r, but also on the

density gradients (∇ρ). This generalizes Eq. (2.7) to the form:

EGGA
xc [ρ] =

∫
f(ρ(r),∇ρ)dr, (2.10)

where the function f is chosen by some set of criteria. Such approximation is called

generalized gradient approximation (GGA), and variety of different forms for func-

tion f have been suggested and applied in the literature. One of the most commonly
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used exchange functionals is B88 proposed by Becke [38], which was corrected to −r−1

asymptotic behavior for the energy density:

εB88
x = εLDA

x +∆εB88
x , (2.11)

∆εB88
x = −βρ1/3 x2

1 + 6βx sinh−1 x
,

where β is the parameter determined by fitting to known atomic data and x = |∇ρ|/ρ4/3.

Also, one popular gradient corrected functional for correlation energy is due to Lee,

Yang, and Parr (LYP) [39], and has the form:

εLYP
c =− a

γ

(1 + dρ−1/3)
− ab

γe−cρ−1/3

9(1 + dρ−1/3)ρ8/3

×

 18(22/3)CF (ρ
8/3
α + ρ

8/3
β )− 18ρtW

+ρα(2t
α
W +∇2ρα) + ρβ(2t

β
W +∇2ρβ)

 , (2.12)

γ = 2

[
1−

ρ2α + ρ2β
ρ2

]
,

tσW =
1

8

(
|∇ρσ|2

ρσ
−∇2ρσ

)
,

CF =
3

10
(3π2)2/3,

where the parameters a, b, c and d are determined by fitting to data for the helium

atom. The tW functional is known as the local Weizsacker kinetic energy density.
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Prior to a more detailed analysis of performance, at least in functional design, the

inclusion of Hartree-Fock (HF) exchange is considered. The Slater determinant of

KS orbitals is the exact wave function for the non-interacting Hamiltonian operator.

Therefore, the expectation value is the exact exchange for the non-interacting system,

which can be computed just as it is in HF calculations except that the KS orbitals

are used. Hybrid functionals are a class of approximation to the exchange-correlation

energy functional in DFT that incorporate a portion of exact exchange from HF theory.

The exchange-correlation energy functional EXC is then expressed by using some

choice of DFT functional EDFT
XC as

Exc = (1− a)EDFT
xc + aEHF

x , (2.13)

where EHF
x is the exchange functional by using HF theory. One of the most commonly

used models in computational chemistry is B3LYP [40], which is defined by

EB3LYP
xc = (1− a)ELSDA

x + aEHF
x + b∆EB

x + (1− c)ELSDA
c + cELYP

c , (2.14)

where a, b, and c were optimized to 0.20, 0.72, and 0.81, respectively. The name of the

functional, B3LYP, implies its use of a three-parameter scheme, as well as the GGA

exchange and correlation functions Becke and Lee-Yang-Parr, respectively.
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Hybrid functionals are a slight improvement, but not nearly enough. Long range

corrected (LC) methods have been proposed that divide the interelectronic interaction

1/r12 into a short-range part and a long-range part:

1

r12
=

1− erf(ωr12)

r12
+

erf(ωr12)

r12
. (2.15)

The first term accounts for the short range interaction, and the second term accounts

for the long range interaction. CAM-B3LYP is a long-range corrected version of B3LYP

that employs the Coulomb-attenuating method [41]. Although the conventional B3LYP

method is typically used to investigate charge density [42] and solvent effects [43], CAM-

B3LYP improves upon B3LYP since the latter is unsuccessful in a number of important

applications, such as when determining the polarizability of long chains, excitations of

Rydberg states and especially charge transfer effects [44–46]. In this thesis, the quantum

chemical calculations were carried out using B3LYP and CAM-B3LYP functionals.

2.1.2 Basis function

The basis functions are the mathematical functions to construct wave functions. The

electron density is expressed as a Slater determinant formed from the set of canonical

KS orbitals {ϕn} in KS-DFT theory. Each orbital is expressed as a linear combination

13



of basis functions, the coefficients for which are determined from the iterative SCF

procedure.

There are two type of basis functions commonly used in quantum chemical calcula-

tions: Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). STO and GTO

have the functional forms, respectively:

χSTO
ξ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r

n−1e−ξr, (2.16)

χGTO
ξ,lx,ly ,lz(x, y, z) = Nxlxylyzlze−ξr2 , (2.17)

where N is normalization constant, Yl,m is the usual spherical harmonic functions, and

the sum of lx, ly, and lz determines the type of orbital. Although the exponential de-

pendence of STO on the distance between the nucleus and the electron describes the

exact orbitals for the hydrogen atom, however, the calculation using the STO is com-

putationally effort because of not having analytical three- and four- center two-electron

integrals. On the other hand, the calculation using the GTO is computationally efficient

because of having analytical solution of the general two-electron integral. However, the

r2 dependence in the exponential makes the GTO inferior to the STO in two aspects.

At the nucleus the GTO has zero slope, in contrast to the STO which has“ cusp”

and GTO has problems representing the proper behavior nucleus. The other problem

14



is that the GTO falls off too rapidly far from the nucleus compared with an STO, and

the“ tail”of the wave function is consequently represented poorly.

Both STO and GTO can be chosen to form a complete basis, but the above con-

siderations indicate that more GTOs are necessary for achieving a certain accuracy

compared with STOs. A rough guideline says that the basis functions used for SCF

calculations were not individual GTOs, but instead a linear combination of GTOs fit to

reproduce as accurately as possible as STO, then it is referred to as a“contracted”GTO

(CGTO), and the individual Gaussian form, which is called“ primitive”Gaussians,

i.e.,

χ(CGTO) =
k∑
i

aiχi(PGTO). (2.18)

where χi’s are normalized Gaussians. The contraction coefficients ai are constants

that are held fixed during the calculation. By using contracted Gaussians instead

of primitive Gaussians as the basis set, the number of variational coefficients to be

determined is reduced, which gives large savings in computational time with little loss

in accuracy if the contraction coefficients ai are well chosen. In terms of computational

efficiency, CGTOs are therefore preferred, and used almost universally as basis functions

in quantum chemical calculations.
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Correlation consistent basis function

The correlation consistent (cc) basis functions are geared toward recovering the corre-

lation energy of the valence electrons, thus the exponents and contraction coefficients

are variationally optimized not only for HF calculations, but also for calculations in-

cluding electron correlation (such as CI). They are designed to converge systematically

to the complete-basis-set (CBS) limit using empirical extrapolation techniques. There

are known by their acronyms: cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, cc-pV6Z. Note

that as we go from one basis set to the next, the number of sets of basis functions

of each angular-momentum l value is increased by one and one set of functions with

the next higher l value is added. The addition of diffuse primitive nonpolarization and

polarization functions to the cc-pVnZ basis sets gives the augmented sets aug-cc-pVDZ,

aug-cc-pVTZ, etc., suitable for calculations on anions and hydrogen bonded species. To

form the set aug-cc-pVnZ from cc-pVnZ, the number of sets of basis functions of each

angular-momentum l value is increased by one by the addition of diffuse primitives.

In this dissertation, when quantum chemical calculation were performed, aug-cc-

pVDZ and aug-cc-pVTZ as the basis sets were used.
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2.2 Born-Oppenheimer approximation

A potential energy surface (PES) using the quantum chemical calculation is usually

constructed based on the Born-Oppenheimer (BO) approximation. BO approximation

is also central to quantum chemistry. In this section, the outline is explained.

For a general molecular system consisting of electrons and nuclei, the Hamiltonian

can be written as

H(r, R) = TN + Te(r) + VeN(r, R) + Vee(r, R) + VNN , (2.19)

where TN represents the nuclear kinetic energy operator; Te represents the electronic

kinetic energy operator; VeN is electron-nuclear interaction; Vee is electron-electron

interaction; and VNN is nuclear-nuclear interaction. We use r and R as collective indices

to denote the coordinates of the electrons and nuclei, respectively. Since nuclei are much

heavier than electrons, they move more slowly. Hence, to a good approximation, one

can consider the electrons in a molecule to be moving in the field of fixed nuclei. Within

this approximation, TN can be neglected and VNN can be considered to be constant.

The remaining terms in Eq. (2.19) are called the electronic Hamiltonian:

Hel = Te(r) + VeN(r, R) + Vee(r, R). (2.20)

17



We then obtain the Schrödinger equation involving electronic Hamiltonian:

Helϕ
el
n (r;R) = Eelϕ

el
n (r;R). (2.21)

The electronic wave function ϕel
n describes the motion of the electrons and explicitly

depends on the electronic coordinates but depends parametrically on the nuclear coor-

dinates. The total energy for fixed nuclei include the constant nuclear repulsion:

Etot = Eel + VNN . (2.22)

Within BO approximation, a nuclear Hamiltonian can be described as the motion of

the nuclei in the average field of the electrons,

Hnucl = TN + Etot. (2.23)

Therefore the total energy Etot provides a potential for nuclear motion and the function

constitutes a PES. Thus the nuclei in the BO approximation move on a PES obtained

by solving the electronic problem or performing quantum chemical calculations.
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2.3 Transition state theory

Transition state theory (TST) explains the reaction rates of elementary chemical reac-

tions, which was developed by Henry Eyring [47], Meredith Gwynne Evans and Michael

Polanyi [48]. TST, which assumes a quasi-equilibrium between reactant (RS) and ac-

tivated transition state (TS), provides a simple way of formulating reaction rates and

gives a unique insight into how processes occur. The theory is conveniently classified

under three headings: (1) thermodynamic treatments, (2) kinetic-theory treatments,

and (3) statistical-mechanical treatments. In addition, TST is based on these three

postulates:

1. In passing from RS to product state (PS) over the potential energy surface, the

reacting system must traverse a region of the reaction path called the TS. The

rates of reaction can be estimated by examining only TS.

2. The chemical species in the TS is in quasi-equilibrium with the RS.

3. The rate of reaction is equal to the product of the concentration of TS species

formed from the RS and the frequency with which this species passes on the PS.

The rate constant based on the TST is derived as follow.

We consider the bimolecular reaction of A with B to form P , but in which A and B

reversibly react to form an intermediate complex [AB]‡, which irreversibly decomposes
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to form final product P , i.e.,

A+B ⇀↽ [AB]‡ → P. (2.24)

TST assumes that the activated complexes are in quasi-equilibrium with the reactants.

The equilibrium constant K‡ for the quasi-equilibrium can be written as

K‡ =
[AB]‡

[A][B]
. (2.25)

The concentration of the TS [AB]‡ is then given by

[AB]‡ = K‡[A][B] (2.26)

Therefore, the rate equation for the production of PS is written as

d[P ]

dt
= k‡[AB]‡ = k‡K‡[A][B] = k[A][B], (2.27)

where the rate constant k is given by

k = k‡K‡. (2.28)
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K‡ is expressed in terms of the partition functions for the activated complex, therefore

k is given by

k = k‡
Q‡′

QAQB

e−∆E‡
0/kBT , (2.29)

where

∆E‡
0 = E‡ − E0. (2.30)

QA, QB, and Q
‡′ contains terms for translational motion, rotation around the center of

mass, and electronic energy for A,B, and AB‡, respectively. Although we assume that

partition functions in RS and TS, the TS has one less degree of vibrational freedom

than the RS. Therefore, instead of 3N −6 degrees of vibrational freedom, it has 3N −7

degrees of vibrational freedom for TS. The vibration can be then expressed along the

reaction coordinate (r.c.) as a one-dimensional translational partition function Qr.c.:

Qr.c. =

(
2πm‡kBT

h2

) 1
2

δ, (2.31)

where m‡ is the mass of the molecule in which the bond is breaking and δ is the width

of the barrier across the saddle point of the TS. The term on the right hand side of Eq.
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(2.29) is factored out of the partition function Q‡:

k = k‡
(
2m‡kBT

h2

) 1
2

δ
Q‡

QAQB

exp

(
−∆E‡

0

kBT

)
. (2.32)

We consider the motion only from left to right. The velocity across the top of the

barrier is 1/2m‡v2. In addition, considering the Boltzmann distribution, we can write

down the ratio to the molecules in the TS with velocity v and to the molecules in the

TS with velocity zero:

v̄ =

∫∞
0
v exp

(
−1/2mv2

kBT

)
dv∫∞

0
exp

(
−1/2mv2

kBT

)
dv

=

(
kBT

2πm‡

)1/2

. (2.33)

The rate equals velocity divided by distance, which is given by

k‡ =
v̄

δ
. (2.34)

The rate of passage across the barrier is then given by the following equation:

k‡ =
1

δ

(
kBT

2πm‡

)1/2

. (2.35)
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This means that k is given by the following expression:

k =
1

δ

(
kBT

2πm‡

)1/2(
2πm‡kBT

h2

)1/2

δ
Q‡

QAQB

exp

(
−∆E‡

0

kBT

)
. (2.36)

The absolute rate constant k‡ is finally written as

k‡ =
kBT

h
, (2.37)

and k is

k =
kBT

h

Q‡

QAQB

exp

(
−∆E‡

0

kBT

)
. (2.38)

Additionally, by analogy with the thermodynamic relation ∆G = ∆H − T∆S,K‡ can

be written as

K‡ = e−∆G‡/RT . (2.39)

Therefore, Eq. (2.38) gives the following Eyring equation:

k =
kBT

h
exp

(
−∆G‡

0

RT

)
=
kBT

h
exp

(
∆S‡

0

R

)
exp

(
−∆H‡

0

RT

)
. (2.40)

TST usually describes well low dimensional systems such as chemical reactions in the gas

phase. Even though the theory is widely applicable, however, it does have limitations.

23



For example, when applied to each elementary step of a multi-step reaction, the theory

assumes that each intermediate is long-lived enough to reach a Boltzmann distribution

of energies before continuing to the next step. When the intermediates are very short-

lived, however, then TST fails. TST is also based on the assumption that atomic nuclei

behave according to classic mechanics. It is assumed that unless atoms or molecules

collide with enough energy to form the transition structure, then the reaction does

not occur. However, according to quantum mechanics, for any barrier with a finite

amount of energy, there is a possibility that particles can still tunnel across the barrier.

With respect to chemical reactions this means that there is a chance that molecules

will react even if they do not collide with enough energy to traverse the energy barrier.

While this effect is expected to be negligible for reactions with large activation energies,

it becomes a more important phenomenon for reactions with relatively low energy

barriers, since the tunneling probability increases with decreasing barrier height. While

TST fails for some reactions not only at low temperature but also high temperature.

The theory assumes the reaction system will pass over the lowest energy saddle point on

the potential energy surface. While this description is consistent for reactions occurring

at relatively low temperatures, at high temperatures, molecules populate higher energy

vibrational modes; their motion becomes more complex and collisions may lead to

transition states far away from the lowest energy saddle point.
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2.4 Adiabatic and Diabatic representations

In this dissertation, potential energy surface (PES) for intermolecular proton transfer

was constructed. PES is constructed by using adiabatic or diabatic representations. In

this section the conventional formalism of the adiabatic and diabatic representations.

Since a more detailed description of these representations is given in Ref. [49], the

outline of these formalisms is discussed in this section.

For a general molecular system consisting of electrons and nuclei, the Hamiltonian

can be written as

H(r, R) = TN +He(r) + VeN(r, R), (2.41)

where TN represents the nuclear kinetic energy operator, He is the Hamiltonian of

electrons only. VeN includes all the electron-nuclear and nuclear-nuclear interactions.

We use r and R as collective indices to denote the coordinates of the electrons and

nuclei, respectively.
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Adiabatic representation

In the adiabatic representation, the molecular wavefunction Ψ(r, R) can be expanded

on adiabatic basis ϕn(r, R):

Ψ(r, R) =
∑
n

χad
n (R)ϕn(r, R), (2.42)

where χad
n (R) is the corresponding nuclear wavefunction in this representation, and

ϕn(r, R) determines the electronic wavefunction calculated for any value of R as a

parameter by the Schrödinger equation:

[He(r) + VeN(r, R)]ϕn(r, R) = ϵn(R)ϕn(r, R). (2.43)

The molecular wavefunction Ψ(r, R) then satisfies the time-dependent Schrödinger

equation:

ih̄
∂Ψ(r, R)

∂t
= H(r, R)Ψ(r, R). (2.44)

Multiplying from the left by ⟨ϕm| in above equation, it gives the following equation:

ih̄
∂χad

m (R)

∂t
= [T (R) + ϵm(R)]χ

ad
m (R) +

∑
n

Λmn(R)χ
ad
n (R). (2.45)
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Λmn(R) is the non-adiabatic coupling matrix operator in the adiabatic representation,

which is given by

Λmn(R) = − h̄
2

M

(
⟨ϕm|∇R|ϕn⟩∇R +

1

2
⟨ϕm|∇2

R|ϕn⟩
)
. (2.46)

Equation (2.45) can be written in matrix form:

ih̄
∂χad(R)

∂t
= (T + V ad)χad(R), (2.47)

where the diagonal matrix V ad is adiabatic potential with diagonal parts of ϵm(R). The

nuclear potential operator in the Schrödinger equation is diagonal, while the kinetic

energy operator T is included in the non-adiabatic coupling matrix, and is thus not

diagonal. For a two-state system, Eq. (2.47) can be expressed in matrix form:

ih̄
∂

∂t

χ
ad
1

χad
2

 =

 T1 Λ12

Λ21 T2


χ

ad
1

χad
2

+

ϵ1 0

0 ϵ2


χ

ad
1

χad
2

 . (2.48)

In the adiabatic representation, the PES can be obtained by quantum chemical

calculations for a given nuclear geometry. Nuclear dynamics problems must be solved

using this potential with off-diagonal kinetic energy operators for the nuclei.
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Diabatic representation

In the diabatic representation, ϕn(r, R0) is used as basis set, the molecular wavefunction

Ψ(r, R) can be expanded as

Ψ(r, R) =
∑
n

χdi
n (R)ϕn(r, R0). (2.49)

ϕn(r, R0) is an electronic wavefunction for a fixed reference nuclear configuration R0,

which is selected at a fixed reference value, regardless of the actual spatial positions

of the nuclei. ϕn(r, R0) determines the electronic wavefunction calculated for a fixed

reference nuclear configuration R0 by the Schrödinger equation:

[He(r) + VeN(r, R0)]ϕn(r, R0) = ϵn(R0)ϕn(r, R0). (2.50)

After multiplying from the left by ⟨ϕm| in Eq. (2.44), the following equation in the

diabatic representation is obtained:

ih̄
∂χdi

m(R)

∂t
= TNχ

di
m(R) +

∑
n

V di
mn(R)χ

di
n (R). (2.51)

The off-diagonal elements V di
mn arises from the electron-nuclear interaction VeN(r, R)

and is given by
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V di
mn(R) = ⟨ϕm|He + VeN(R)|ϕn⟩ = ϵm(R0)δmn + ⟨ϕm|VeN(R)− VeN(R0)|ϕn⟩ (2.52)

= ϵm(R0)δmn +

∫
ϕ∗
m(r, R0)[VeN(R)− VeN(R0)]ϕn(r, R0)dr.

Equation (2.51) can be written in matrix form as

ih̄
χdi(R)

∂t
= (T + V di)χdi(R), (2.53)

where the kinetic energy operator T is diagonal, but the potential energy operator

V di is off-diagonal with its matrix element given by Eq. (2.52). The diagonal and

non-diagonal elements of V di correspond respectively to the diabatic potential and

non-adiabatic coupling element in the diabatic representation. For a two-state system,

Eq. (2.53) can be expressed in matrix form:

ih̄
∂

∂t

χ
di
1

χdi
2

 =

T1 0

0 T2


χ

di
1

χdi
2

+

V
di
11 V di

12

V di
21 V di

22


χ

di
1

χdi
2

 , (2.54)

where V di
11 and V di

22 are diabatic potentials, and V di
12 and V di

21 are non-diagonal matrix

elements in the diabatic representation.

29



Relationship between representations

The adiabatic and diabatic representations are related to each other through a unitary

transformation. In the subspace of some electronic states, the transformation relation

between the representations of nuclear wavefunctions can be obtained as

χad = Uχdi (2.55)

using the diabatic-to-adiabatic transformation matrix U , which is constructed from the

electronic wavefunctions sets, where the transformation matrix is given by

Umn(R|R0) = ⟨ϕm(R)|ϕn(R0)⟩ =
∫
ϕ∗
m(r, R)ϕn(r, R0)dr. (2.56)

However, calculation of the transformation matrix Umn is too difficult because it

requires the adiabatic and diabatic eigenfucntion sets {ϕm(r, R)}, {ϕn(r, R0)} for all

dimension of r and R,R0. To avoid this computationally hard condition, we begin with

the diabatic representation of Eq. (2.53) by constructing the diabatic coupling potential

matrix V di, which is also much easier to calculate than the adiabatic coupling terms.

The adiabatic potential energy matrix V ad is obtained from the diabatic potential
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energy matrix V di via

V ad = UV diU ‡. (2.57)

For a two-state case, the lowest adiabatic potential energy is then given by the diago-

nalization of the diabatic potential energy matrix; specifically

V ad =
V di
11 + V di

22

2
−

√(
V di
11 − V di

22

2

)2

+ V di
12

2
. (2.58)

2.5 Quantum wavepacket dynamics

In the quantum mechanical studies, the time-dependent (TD) approach for solving the

TD Schrödinger equation has become an extremely important analytical tool for under-

standing the chemical reactions in the field of theoretical and computational chemistry.

TD methods provide clear and direct physical insight into the dynamics in the same

way as classical mechanics. The successful development and application of various

computational methods for solving the TD Schrödinger equation in the past decade

has significantly improved the numerical efficiency for practical applications of the TD

methods to chemical dynamics problems with quantum effects.

Especially, quantum wavepacket method is attractive in the problems, because it

can visualize the dynamics of the quantum system via a motion of wavepacket, and one
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can easily obtain a lot of dynamical information from the results using semiclassical

ideas.

In the quantum wavepacket approach a time-step is chosen but the propagation

involves updating wavefunction amplitudes at chosen discrete grid points. The wave-

packet is thus represented by amplitudes at grid points. The changes in amplitudes with

time are determined by the action of the time-evolution operator on the wavepacket.

The time-evolution operator U(t) = exp{−iĤt/h̄} contains the Hamiltonian, Ĥ. Ap-

plying the time-evolution operator to the wavepacket therefore requires evaluating the

action of the Hamiltonian on the wavepacket. The Hamiltonian has a potential part

and a kinetic part. The action of the potential on the wavepacket merely involves a

multiplication while the action of the kinetic part involves second derivatives. These

can be efficiently handled in a variety of ways [50].

In this section, the generally used numerical methods for quantum wavepacket sim-

ulation are shown by reference to [49–51].

2.5.1 Representation

The starting point of discussion is the TD Schrödinger equation:

HΨ(x, t) = ih̄
∂Ψ(x, t)

∂t
, (2.59)
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where H is the Hamiltonian operator, being time-dependent or time-independent, and

Ψ(x, t) is the TD wavefunction. The central task of this section is to find the numerical

solution for Ψ(x, t) that contains all the necessary dynamical information of the system.

For a time-independent Hamiltonian, the solution to the TD Schrödinger equation may

be expressed as

Ψ(x, t) = exp(−iHt/h̄)Ψ(x, 0). (2.60)

Thus, the action of the time-evolution operator exp(−iHt/h̄) on the wavefunction Ψ(t)

has to be evaluated in the propagation.

2.5.2 Initial condition

The initial wavepacket is placed on the chosen grid. The initial form of the wavepacket

is often chosen to be of Gaussian shape in the scattering coordinate:

Ψ(x, t = 0) = N exp(−ik0x− (x− x0)
2/4σ2), (2.61)

where k0 is the average momentum of the wavepacket and σ is its width. The normal-

ization constant is N = (2πσ2)−1/4. A Gaussian wavepacket remains Gaussian with its

center traveling at the classical speed and the width of the wavepacket spreads even in

the absence of an interaction potential.
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2.5.3 Expansion by eigenfunction of the system

For a time independent Hamiltonian, a wavepacket can be propagated trivially in terms

of the eigenstates of H, {ϕn}. For scattering wavepackets these eigenstate must span

a region in the scattering coordinate that covers the interaction and non-interaction

regions. In terms of this set of eigenstates the time-evolved wavepacket is given by

|Ψ(t)⟩ = exp

(
− i

h̄
Ht

)
|Ψ(0)⟩ =

∑
n

Cn exp

(
− i

h̄
Ent

)
|ϕn⟩, (2.62)

where the time-independent coefficients Cn are given by

Cn = ⟨ϕn|Ψ(0)⟩, (2.63)

and where En are the eigenvalues of H. This procedure is straightforward and can

be used to obtain the wavepacket at any time t. In addition, it is easy to propagate

different initial packets Ψ(0) corresponding, for example, to different initial quantum

states of reactants in a reactive scattering calculation. Of course, the computational

effort in obtaining the eigenfunctions and eigenvalues of H can be very significant,

even prohibit. The diagonalization of Hamiltonian matrix H scales exponentially with

system dimension and therefore diagonaization in multidimension becomes formidable
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task.

If we use the method in expansion by Eigenfunction of the system, we must get

eigenfunction of the system beforehand. In order to obtain eigenfunction of the system,

we can simply discretize the time-independent Schrödinger equation and put it into

matrix form, which can then be numerically solved. For the one dimensional case, the

time-independent Schrödinger equation at each point along x can be written as

− h̄2

2m

(
d2ϕ

dx2

)
xn

+ V (xn)ϕxn = Eϕxn . (2.64)

Now using the basic finite difference approximation,

(
d2ϕ(x)

dxϕ2

)
xn

=
ϕxn+1 − 2ϕxn + ϕxn−1

(∆x)2
, (2.65)

where ∆x is the spatial interval spacing, we can write Eq. (2.64) as

k(2ϕxn − ϕxn+1 − ϕxn−1) + V (xn)ϕxn = Eϕxn , (2.66)
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where k = h̄2

2m(∆x)2
. This can be written in matrix form as



2k −k 0 0 0 · · ·

−k 2k −k 0 0 · · ·

· · · · · · · · · · · · · · · · · ·

· · · 0 0 −k 2k −k

· · · 0 0 0 −k 2k





ϕx1

ϕx2

ϕx3

· · ·

ϕxN−1

ϕxN



+



V (x1) 0 0 0 0 · · ·

0 V (x2) 0 0 0 · · ·

0 0 V (x2) 0 0 · · ·

· · · · · · · · · · · · · · · · · ·

· · · 0 0 0 V (xN−1) 0

· · · 0 0 0 0 V (xN)





ϕx1

ϕx2

ϕx3

· · ·

ϕxN−1

ϕxN



= E



ϕx1

ϕx2

ϕx3

· · ·

ϕxN−1

ϕxN



.

(2.67)

This eigenvalue problem can be solved numerically, and the corresponding eigenvectors

can be found. But the task of finding the eigenfunction is formidable when we consider

many dimensional systems. When we use N grid points per one degree of freedom,
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we must diagonalize N × N,N2 × N2, and N3 × N3 Hamiltonian matrix, in one, two

and three dimensional systems, respectively. Because of this exponential scaling of the

computational cost with respect to the dimension, we cannot apply this method to

many dimensional systems.

2.5.4 Finite difference method

Solving Eq. (2.59) for a given initial wavefunction Ψ(0) constitutes a time propa-

gation of the wavefunction, which is carried out by integrating the wavefunction in

time. The propagation can be accomplished by using a variety of integration methods.

The most straightforward approach is based on finite difference schemes including the

Runge-Kutta method, second order difference (SOD) method, or higher order difference

methods. At present, however, more sophisticated methods, such as the split-operator

method, are often used in practical applications.

In the SOD method, one approximates the time-derivative of the wave function by

second-order finite differencing:

∂

∂t
Ψ(t) =

Ψ(t+∆)−Ψ(t−∆)

2∆
+O(∆2), (2.68)

37



which results in the following iterative formula for the wavefunction:

Ψ(t+∆) = Ψ(t−∆)− 2
i

h̄
∆HΨ(t). (2.69)

The wavefunction obtained by the SOD method of Eq. (2.69) is correct to second order

O(∆2). Since the iterative procedure in Eq. (2.69) requires wavefunctions at two prior

times, Ψ0 and Ψ1, the SOD method requires the use of a self-starting scheme such as

the Runge-Kutta method to generate Ψ1 first. The SOD method is stable with respect

to the time increment ∆ below a certain critical value ∆max. If the step size ∆ is greater

than ∆max, the solution becomes unstable and increases exponentially (blow-up). The

SOD method is extremely easy to use but is not very efficient for large scale calculations

because it generally requires the small time step in order to obtain stable and accurate

solutions.

2.5.5 Split-Operator method

The kinetic energy operator in the Hamiltonian contains one or more second derivatives,

which are to act on the wavepacket. In the Fourier transform method, this is done by

first Fourier transforming the wavefunction Ψ(x) to the momentum representation and

thereafter multiplying each momentum component by −k2. Here k is the wavenumber.
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Finally, the resulting function is transformed back to the original coordinate represen-

tation. We illustrate this in one dimension by writing

Ψ(k) =
1√
2π

∫ +∞

−∞
Ψ(x) exp{−ikx}dx = FT [Ψ(x)], (2.70)

and

Ψ(x) =
1√
2π

∫ +∞

−∞
Ψ(k) exp{ikx}dk = FT−[Ψ(k)], (2.71)

whereby

Ψ(x)

dx
=

1√
2π

∫ +∞

−∞
ikΨ(k) exp{ikx}dk = FT−[ikΨ(k)], (2.72)

and thus

d2Ψ(x)

dx2
= − 1√

2π

∫ +∞

−∞
k2Ψ(k) exp{ikx}dk = FT−[−k2Ψ(k)]. (2.73)

The split-operator (SO) propagator splits the kinetic energy operator T̂ and the po-

tential energy operator V̂ into different exponentials when applying the time-evolution

operator. Since T̂ and V̂ do not commute this is an approximation. The splitting can

be performed so that the kinetic energy operator is sandwiched between potential en-

ergy operators. This is referred to as the kinetic referenced SO method. Alternatively

the potential energy operator is sandwiched between kinetic energy operators, giving
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the potential referenced SO method.

Choosing a time-step ∆t and neglecting the non-commutativity, the potential ref-

erenced SOP can be written

exp

(
−i∆tĤ

h̄

)
≈ exp

(
−i∆tT̂

2h̄

)
exp

(
−i∆tV̂

h̄

)
exp

(
−i∆tT̂

2h̄

)
+O((∆t)3). (2.74)

By making ∆t suitably small, the propagation

Ψ(t+∆t) = exp

(
−i∆tT̂

2h̄

)
exp

(
−i∆tV̂

h̄

)
exp

(
−i∆tT̂

2h̄

)
Ψ(t) (2.75)

becomes accurate. The SO propagator is unitary and therefore numerically stable as it

conserves the norm of the wavefunction.

The potential referenced SO propagation begins with a Fourier transformation of

the wavefunction to momentum space. According to Eq. (2.73), it is then multiplied

by exp(−ik2∆th̄/4µ), where µ is a reduced mass. Thereafter it is transformed back to

coordinate space and multiplied by exp(−i∆tV/h̄) using Eq. (2.71). Finally another

Fourier transform to momentum space, multiplication by exp(−ik2∆th̄/4µ) and back

transformation are carried out.

The actions of the kinetic energy operator can be combined with the adjacent

timestep, thereby reducing the number of required Fourier transforms. The fast Fourier
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transform (FFT) method is a numerically efficient implementation of the discrete Fourier

transform which scales as O(N lnN), where N is the number of grid points. Therefore

practical implementation of the SO propagation requires the use of the FFT method,

so that the actions of the operators will be evaluated in their respective local represen-

tations.

2.6 Quantum theory of chemical reaction

In this section the quantum theories of chemical reactions are discussed. Especially

reactive scattering theory, rate constant using the reaction probability, and transition

state theory which is not rigorous quantum theory, are explained. Reactive scattering

deals with rearrangement of particles such as an approach of reactants, a rearrangement

of the atoms, and a separation of the products, which is at the heart of chemical

reactions. The exact thermal rate constant for an elementary bimolecular reaction

can be rigorously calculated by Boltzmann averaging the reactive flux over the initial

states and the collision energy. On the other hand, for transition state theory the rate

constant, which is widely applicable in the gas phase, is derived by assumption of a

special type of chemical equilibrium. Since a more detailed description of these theories

is given in Ref. [50,51], the outline is discussed in this section.
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2.6.1 Wavepacket correlation function formulation of reactive

scattering

Scattering theory in general, and reactive scattering in particular, are very easy to grasp

intuitively using a time-dependent approach. A wavepacket corresponding to a well-

defined internal state of reactant states enters the interaction region and bifurcates:

part returns to reactants and part proceeds to different product arrangements. The

projection of the product wavepacket onto the asymptotic eigenstates of products gives

the various transition amplitudes from the initial states to all final states, i.e., a column

of the scattering matrix (S-matrix).

In reactive scattering, since the final chemical arrangement of the atoms in the

product states is different from that in the reactants, we will need to consider scattering

eigenstates corresponding to multiple chemical arrangements. We will be interested in

incoming eigenstates with well-defined boundary conditions in the reactant arrangement

channel, and outgoing eigenstates with well-defined boundary conditions in the product

arrangement channel. The S-matrix will then be defined in terms of the overlap of

degenerate scattering eigenstates with these different boundary conditions.

We consider a wevepacket located at the asymptotic reactant channel having a mo-

mentum of incoming direction initially and propagated to the interaction scattering
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region. The transition amplitude from an incoming state to an outgoing state, which

represents the S-matrix elements, is defined by the overlap between scattering eigen-

states corresponding to incoming and outgoing boundary conditions. The amplitude is

then written as

Sβ,α(E)δ(E − E
′
) = ⟨ψ−

β (E
′
)|ψ+

α (E)⟩. (2.76)

where α and β represent the initial and final arrangement channels, respectively, ψ+
α

is the incoming eigenstate, and ψ−
β is outgoing eigenstate. The energy-normalized

incoming scattering eigenstate takes the form:

ψ+
α (E) =

1

2πh̄ηα(E)

∫ ∞

−∞
e−iHt/h̄ϕ+

α e
iEt/h̄dt, (2.77)

where ηα(E) is the coefficient of the energy-normalized eigenstate ψ+
α (E) contained in

ϕ+
α . Similarly, the energy-normalized outgoing eigenstate is then given by

ψ−
β (E

′) =
1

2πh̄ηβ(E ′)

∫ ∞

−∞
e−iHt/h̄ϕ−

β e
iE′t/h̄dt, (2.78)

where ηβ(E
′) is the coefficient of the energy-normalized eigenstate ψ−

β (E
′) contained in

ϕ−
β .

From Eq. (2.76), the S-matrix is then simply related to the overlap between these
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two energy-normalized eigenfunctions:

Sβ,α(E)δ(E − E ′) = ⟨ψβ(E
′)|S|ψα(E)⟩ = ⟨ψ−

β (E
′)|ψ+

α (E). (2.79)

Substituting Eqs. (2.77) and (2.78) into Eq. (2.79), we obtain

Sβ,α(E)δ(E − E ′) (2.80)

=
(2πh̄)−2

η∗β(E
′)ηα(E)

∫ ∞

−∞

∫ ∞

−∞
⟨ϕ−

β |e
−iH(t′−t′′)/h̄|ϕ+

α ⟩eiE+(t′−t′′)/h̄eiE−(t′+t′′)/h̄dt′dt′′

=
(2πh̄)−2

η∗β(E
′)ηα(E)

∫ ∞

−∞
⟨ϕ−

β |e
−iHt/h̄|ϕ+

α ⟩eiEt/h̄dt.

Furthermore Tannor and coworkers introduced the new formula of scattering matrix el-

ements [67–75], using Fourier transform of time correlation function, which is equivalent

with the following flux-operation formula:

|Sβ,α(E)|2 =
|
∫∞
−∞⟨ϕ−

β |e−iHt/h̄|ϕ+
α ⟩eiEt/h̄dt|2

|
∫∞
−∞⟨ϕ+

α |e−iHt/h̄|ϕ+
α ⟩eiEt/h̄dt||

∫∞
−∞⟨ϕ−

β |e−iHt/h̄|ϕ−
β ⟩eiEt/h̄dt|

. (2.81)

Therefore reactive scattering transition amplitudes are described from the Fourier trans-

form of the cross correlation between a reactant wavepacket going forward in time and

a product wavepacket going backword in time.
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2.6.2 Rate constant using cumulative reaction probability

The reaction probability may be defined at different levels of detail. Complete infor-

mation about the scattering process requires knowledge of all the individual S-matrix

elements, {Sβα(E)}. Some state-averaged quantities are of relevance, such as the initial

(final) state-selected total reaction probability

Nα(β)(E) =
∑
α(β)

|Sβ,α(E)|2, (2.82)

or the cumulative reaction probability

N(E) =
∑
αβ

|Sβ,α(E)|2. (2.83)

It is the cumulative reaction probability, which gives the thermal reaction rate constant

averaged over the energy distribution:

k(T ) =
1

2πh̄Q(T )

∫ ∞

0

N(E)e−E/kBTdE, (2.84)

where Q(T ) is the reactant partition function. From the practical point of view it

is advantageous to find the total or cumulative reaction probabilities directly without

explicit reference to the state-to-sate probabilities.
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Chapter 3

Construction of Diabatic Potential

for Proton Transfer in Molecular

Pairs

In this chapter a construction method of potential energy surface (PES) in diabatic

picture for intermolecular proton transfer is discussed. This chapter is focused on

the proton-bonded ammonia (AmH+-Am) and imidazole (ImH+-Im) pairs as homo-

molecular proton transfer systems and on the proton-bonded imidazole-ammonia (ImH+-

Am) and ammonia-water (AmH+-Wat) pairs as hetero-molecular systems. In the fol-

lowing, the specific introduction of this chapter is explained in section 1; theoretical

background and computational methods are explained in section 2; results and discus-

sion are explained in section 3; and finally conclusion of this chapter is explained in

section 4.
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3.1 Introduction

Most approaches to chemical reactions analyze the PES by quantum chemical calcula-

tions derived under the Born-Oppenheimer approximation, also known as the adiabatic

PES. Although quantum chemical calculations are becoming possible for large molec-

ular systems, accurate PES calculations for understanding chemical reaction tend to

be unfeasible. In addition, tough analytical function for PES requires to analyze the

reaction, the global function has not been known.

Rather than examine the adiabatic PES, another approach to chemical reactions

is to analyze the diabatic PES. In contrast to the adiabatic PES, the diabatic PES

presents electronic states that change constantly to confine the eigenstates of the elec-

tronic Hamiltonian. There are some approaches to describing the diabatic potential [4],

constructing using some valence bond (VB) electronic wave functions [5–8]. Especially,

empirical valence bond (EVB) [9] or multistate empirical valence bond (MS-EVB) [10]

approach extended EVB is used the molecular mechanical functions to construct the

PES and applied to the molecular dynamics (MD) simulations for many proton transfer

systems [11–27]. To basic idea, consider a two-state VB electronic wave function as the

diabatic basis:

|ψ⟩ = c1|ϕ1⟩+ c2|ϕ2⟩, (3.1)
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where |ϕ1⟩ and |ϕ2⟩ are VB wave functions that describes the electronic structure of

the reactant (RS) and product states (PS), respectively. As discussed in chapter 2, the

lowest adiabatic potential energy V ad is then given by the lower root of the 2×2 secular

equation; specifically

V ad =
V di
11 + V di

22

2
−

√(
V di
11 − V di

22

2

)2

+ V di
12

2
, (3.2)

where

V di
11 = ⟨ϕ1|H|ϕ1⟩, (3.3)

V di
22 = ⟨ϕ2|H|ϕ2⟩, (3.4)

V di
12 = ⟨ϕ2|H|ϕ1⟩, (3.5)

V di
11 and V di

22 are the potential energies for the two VB structures of the RS and PS,

respectively. In this approach V di
11 , V

di
22 , and V di

12 function forms including parameters

can be obtained to fit in experimental or ab initio data. In these works, V di
11 and

V di
22 are related to use of molecular mechanics potential functions, especially, which

are taken as the harmonic normal-mode potential or Morse potential [12, 13, 15, 16,

23, 24]. On the other hand, although the selection of V di
12 is less obvious, Gaussian
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function as V di
12 proposed by Chang and Millar [12] has been widely used. However,

they did not be confirmed whether the obtained diabatic potentials produce the reliable

adiabatic potentials or not, although these functions are obtained to fit in some data. In

addition, to obtain these analytical functions including parameters uniquely using fewer

information is an important task to apply widely to describing the chemical reactions.

Therefore, a proposal of simple method for light or more uniquely construction of the

diabatic potentials (V di
11 and V di

22 ) and non-diagonal matrix element (V di
12 ) using the

analytical functions is important to analyze the chemical reaction and it can be widely

applied to describing the large molecular systems such as proteins.

In this chapter, a simple construction method of global PES for intermolecular

proton transfer by use of Morse potential as V di
11 and V di

22 , and Gaussian function as

V di
12 in diabatic potential matrix is suggested, and the validity to use these potential

functions is confirmed. Here, we focus on the (a) AmH+-Am and (b) ImH+-Im pairs

as homo-molecular proton transfer systems and on the (c) ImH+-Am and (d) AmH+-

Wat pairs as hetero-molecular systems, the structures of which are shown in Fig. 3.1.

We investigate the portability to use the Morse potential and Gaussian function as the

diabatic potential matrix elemetns by comparison of the transformed adiabatic potential

from the diabatic one and the calculated by DFT calculation in these systems. Finally,

we discuss the proton transfer characters using obtained V di
11 , V

di
22 , and V di

12 for homo-
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and hetero-molecular pairs.

3.2 Theoretical and calculation methods

3.2.1 Calculation models

In the construction of PES for proton transfer, the four proton transfer models were

focused: (a) AmH+-Am, (b) ImH+-Im as homo-molecular pairs, and (c) ImH+-Am, (d)

AmH+-Wat as hetero-molecular pairs (Fig. 3.1). Figure 3.2 shows also these models and

PES coordinates. For homo-molecular pairs, coordinate R denotes the intermolecular

distance and x is the translating proton position, which is defined as a displacement

from the center of the intermolecular distance. For hetero-molecular pairs, r is used as

the displacement between a proton-bonded atom and the proton.

3.2.2 Diabatic potential functions (V di
11 , V

di
22 and V di

12 )

In this chapter, for the proton transfer models, the PES of proton transfer were con-

structed by using diabatic picture. Diabatic PES can be constructed using a variety of

VB configurations [4–8]. Here, we considered a two-state VB electronic wave function

as the diabatic basis corresponding to the RS and PS, i.e., Eq. (3.1). In particular, the

EVB approach can be related to use of molecular mechanical potential functions de-
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scribing the molecular vibration, which is rational for understanding chemical reaction.

In most cases, the diagonal matrix elements (V di
11 and V di

22 ) are taken as the harmonic

normal-mode or Morse potentials [12,13,15,16,23,24]. On the other hand, Chang and

Millar [12] suggested the use of a generalized Gaussian function as the non-diagonal

matrix element (V di
12 ).

Therefore, we selected the Morse function as the V di
11 and V di

22 , and Gaussian function

as the V di
12 to construct PES for proton transfer. For homo-molecular pairs, V di

11 , V
di
22

and V di
12 are explicitly defined as

V di
11 (x;R) = D(1− e−k(x+x0))2 + c, (3.6)

V di
22 (x;R) = D(1− ek(x−x0))2 + c, (3.7)

V di
12 (x;R) = A exp(−bx2). (3.8)

For hetero-molecular pairs, V di
11 , V

di
22 and V di

12 are defined as

V di
11 (r;R) = D1(1− e−k1(r−r0))2 + c, (3.9)

V di
22 (r;R) = D2(1− e−k2(R−r−r′0))2 + c+D3, (3.10)

V di
12 (r;R) = A exp(−b(r − rc)

2). (3.11)
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The PES was constructed by optimization of the potential parameters in these functions

(V di
11 , V

di
22 and V di

12 ). For V
di
11 and V di

22 , the parameters D,D1, and D2 are binding energies;

x0, r0, r
′
0 are the equilibrium bond lengths; k, k1, and k2 are the decay constants. For

V di
12 , parameter A is the amplitude of the Gaussian function, parameter b corresponds

to the spread of the function, and rc is the point of the maximum value of the function.

3.2.3 Optimization of potential parameters

Optimization of the potential parameters was conducted according to the following

procedures.

First, we estimated the parameters of V di
11 and V di

22 . Parameters D,D1, and D2 were

estimated by dissociation energy of the proton corresponding to one side of the molec-

ular pairs, i.e., ammonium, imidazolium, and oxonium ions. x0, r0, r
′
0 were used the

equilibrium bond lengths of these molecules. The estimated values of these parameters

are shown in Table 3.1. For hetero-molecular pairs, parameter D3 was obtained from

the difference between V ad(r0;R) and V
ad(r′0;R):

D3 = V ad(r′0;R)− V ad(r0;R). (3.12)

The remaining parameters k, k1, and k2 included in V di
11 and V di

22 are considered to be

52



dependent on the R coordinate. These parameters were estimated by comparison with

the adiabatic potential obtained from DFT calculations according to Eq. (3.2). V di
11

and V di
22 describes molecular vibration for the RS and PS, respectively. Therefore, we

assumed that V di
11 and V di

22 reproduced the adiabatic potential, when the proton position

was closer to a binding atom than a stable point (r < r0). Here, the parameter k was

estimated by comparing with the V di
12 and adiabatic potential at x = 2x0 for homo-

molecular pairs for fixed R. In the same way, for hetero-molecular pairs, k1 and k2

were determined by comparing with the adiabatic potential at r = 2r0−R/2 ≡ rk1 and

r = 3R/2 − 2r′0 ≡ rk2 , respectively, for fixed R. These relations are explicitly defined

as

V di
22 (2x0) = V ad(2x0), (3.13)

V di
11 (rk1) = V ad(rk1), (3.14)

V di
22 (rk2) = V ad(rk2). (3.15)

for homo- and hetero-molecular pairs, respectively. Parameters k, k1, and k2 are then
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denoted as

k =
1

x0
ln

(
1 +

√
V ad(2x0)− c

D

)
, (3.16)

k1 =
1

r0 − rk1
ln

1 +

√
V ad(rk1)− c

D1

 , (3.17)

k2 =
1

rk2 + r′0 −R
ln

1 +

√
V ad(rk2)− c−D3

D2

 . (3.18)

Subsequently, parameters A and b of V di
12 depending on the coordinate R were es-

timated. These parameters were also estimated by comparison with the adiabatic po-

tential obtained from DFT calculations and using obtained diabatic potentials (V di
11

and V di
22 ). Determination of these parameters was conducted according to the following

steps for each pairs.

First, parameter A was estimated. Because this parameter represents the amplitude

of the Gaussian type function, parameter b vanishes at x = 0 for homo-molecular pairs.

Thus, the relationship between the adiabatic and diabatic potentials at x = 0 and fixed

R is given by

V di
11 (0) + V di

22 (0)

2
−

√(
V di
11 (0)− V di

22 (0)

2

)2

+ V di
12

2
(0) = V ad(0). (3.19)

Parameter A was then estimated by using obtained V di
11 and V di

22 , which was expressed
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as

A = V di
11 (0)− V ad(0), (3.20)

for homo-molecular pairs. For hetero-molecular pair, parameter A was estimated at

the cross point (r = rc) of V di
11 and V di

22 substituted D3 = 0. Parameter A was then

expressed as

A = V di
11 (rc)− V ad(rc), (3.21)

for hetero-molecular pairs.

Next, the remaining parameter b of V di
12 was estimated. This parameter corresponds

to the spread of the Gaussian type function. For homo-molecular pair, the midpoint

between the local minimum (x0) and local maximum (x = 0) is assumed to define the

spread of V di
12 . Therefore, the relationship between the adiabatic and diabatic potentials

at x = x0/2 and fixed R is also given by

V di
11 (

x0

2
) + V di

22 (
x0

2
)

2
−

√(
V di
11 (

x0

2
)− V di

22 (
x0

2
)

2

)2

+ V di
12

2
(x0
2

)
= V ad

(x0
2

)
. (3.22)
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According to this relation, parameter b is expressly defined by

b =
2

x20

[
lnA2 − ln

{(
V di
11 (

x0

2
) + V di

22 (
x0

2
)

2
− V ad

(x0
2

))2

−
(
V di
11 (

x0

2
)− V di

22 (
x0

2
)

2

)2
}]

.

(3.23)

In the same way, for hetero-molecular pairs, b was determined by comparing with the

adiabatic potential at r = (rc + r0)/2 ≡ rb for fixed R, which was defined by

b =
1

(rb − rc)2

[
lnA2 − 1

2
ln

{(
V di
11 (rb) + V di

22 (rb)

2
− V ad(rb)

)2

−
(
V di
11 (rb)− V di

22 (rb)

2

)2
}]

. (3.24)

3.2.4 Adiabatic potential energy calculation

To obtain the adiabatic PES V ad(x,R) or V ad(r, R) for the proton transfer reaction,

quantum chemical calculations were performed with stepwise movement of the proton

and intermolecular distances by 0.02 and 0.05 Å, respectively. The geometries of the

molecules were then kept in the minimum energy structures, except for the proton

position (x or r) and the intermolecular distance (R). Minimum energy structures, as

shown in Fig. 3.1, were determined by geometrical optimization. Finally, the adiabatic

potential energies were fitted using a polynomial series function of the fourth order with

respect to x or r, and of the third order with respect to R [52, 53]. In the previous
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works [54,55], the proton transfer of ImH+-Im systems was discussed with the B3LYP

approach. Therefore, all DFT calculations were performed at the B3LYP/aug-cc-pVDZ

level using the Gaussian-09 package [56].

3.3 Results and Discussion

First the potential parameters k, k1, k2, and D3 of V di
11 and V di

22 were estimated using

Eqs. (3.12) and (3.16)-(3.18) and obtained parameters (Table 3.1) for (a) AmH+-Am,

(b) ImH+-Im, (c) ImH+-Am, and (d) AmH+-Wat. The parameters A and b were then

estimated using Eqs. (3.20),(3.21), (3.23), and (3.24). Figure 3.3 shows the computed

V di
11 , V

di
22 and V di

12 values using obtained the potential parameters at some intermolec-

ular distance for (a) AmH+-Am, (b) ImH+-Im, (c) ImH+-Am, and (d) AmH+-Wat,

respectively. To compare with the adiabatic potential by DFT calculation, Figs. 3.4

and 3.5 show the transformed adiabatic potential derived from the diabatic potential

matrix elements, V di
11 , V

di
22 and V di

12 , using Eq. (3.2) and one obtained from DFT. Al-

though the potentials using diabatic model not reproduce the ones using DFT around

the local minimum of the potentials, however, the figures show that the transformed

adiabatic potentials are qualitatively in good agreement with those calculated by DFT

calculations for all proton transfer systems at various intermolecular distance R. Thus,
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it is indicated that PES for various proton transfer systems can qualitatively reproduce

by using V di
11 and V di

22 with Morse potential described the vibrational motion and V di
12

with the Gaussian function by assumption of two-state VB wave functions as a diabatic

basis.

In our approach, parameters k,A, and b can be uniquely determined not necessary to

fit the potential energy. Especially, the construction procedures of the diabatic potential

employed four reference points (x = x0, 2x0, 0, and x0/2) at fixed R for homo-molecular

pairs, while five reference points (r = r0, rk1 , rk2 , rc, and rb) for hetero-molecular pairs.

Thus, the whole PES of proton transfer are described by using energies of approximately

40 or 50 reference points, while the number of DFT data points to describe the whole

adiabatic potential required approximately 500 points. Therefore, the PES describing

the entire proton transfer system for diabatic picture can be obtained using less than

one-tenth of the reference points required for the adiabatic picture. Furthermore, our

method can be applied to proton transfer systems, even when the transition state (TS)

cannot be calculated, although the information of TS requires the PES construction in

the previous work [12]. Therefore, it is concluded that our construction procedures are

appreciate and useful method for construction of PES by using the diabatic picture for

the proton transfer systems and can be applied to the large molecular system such as

proteins.
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Finally, the obtained potential parameters are discussed. Figure 3.6 shows that

intermolecular dependence of potential parameter b of V di
12 for (a) AmH+-Am, (b) ImH+-

Im, (c) ImH+-Am, and (d) AmH+-Wat. The values of parameter b, which describes the

spread of the Gaussian function, decreased as R increased. This result indicates that

the non-diagonal matrix element (V di
12 ) is broadly distributed along the proton transfer

coordinate and the bond mixture between the RS and PS occurs over a wide range, not

only at the TS. In addition, because V di
12 is broadly distributed along the intermolecular

distance, proton can be formed mixture between RS and PS and transferred at the

location formed hydrogen bond. To clarify the effect of non-diagonal matrix element

V di
12 , the ratio of amplitude for the V di

12 (parameter A), divided by the crossing point

energy of the V di
11 and V di

22 was estimated, the results of which were shown in Fig. 3.7.

According to Eq. (3.2), V di
12 contributes to the stability of the adiabatic potential V ad,

and the A/V di
11 (x = 0 or r = rc) is assumed to be determined the rate of contribution

to the possibility of proton transfer. For both homo-molecular pairs, Fig. 3.7 shows

that the values of A/V di
11 decrease as R increase and are approximately 50 to 80% at

various intermolecular distance. Thus, proton can easily transfer at the area formed

hydrogen bond for homo-molecular pairs. On the other hand, for both hetero-molecular

pairs, the values of A/V di
11 were constantly about 20% over wide range intermolecular

distance, which was lower than homo-molecular pairs for all intermolecular distance. It
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indicates that the proton for homo-molecular pairs can transfer easily than for hetero-

molecular pairs. From the above discussion, we find that the obtained potentials give

the qualitative information about proton transfer even if a simple two-state diabatic

model is used.

3.4 Conclusion

PES is an important theoretical approach for understanding chemical reactions. Di-

abatic potentials are used to understand proton transfer reactions. Especially, EVB

approach based on the diabatic picture is used to the molecular mechanical function

to construct PES and applied to many applications including molecular dynamics sim-

ulation. In this chapter, the PES were constructed based on the diabatic picture for

proton transfer models: (a) AmH+-Am, (b) ImH+-Im, (c) ImH+-Am, and (d) AmH+-

Wat. We confirmed that Morse potentials as the diagonal matrix element (V di
11 and V di

22 )

and Gaussian function as the non-diagonal matrix element (V di
12 ), which are important

to apply widely to understanding the chemical reaction including the classical or quan-

tum dynamics simulations, described the proper PES for proton transfer. In addition,

we proposed a simple method to uniquely construct the diabatic potentials using these

analytical functions. The diabatic potentials at various intermolecular distance were
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obtained using fewer reference points than the adiabatic potentials to describe an en-

tire proton transfer system. Therefore, our construction method is useful and can be

applied to the large molecular systems such as proteins.

From the values of estimated the potential parameters, the non-diagonal matrix

element (V di
12 ) was broadly distributed and the proton-bonded mixture between the

RS and PS occurred over a wide range of reaction coordinates, and not only at the

TS. Furthermore according to the relation between diagonal and non-diagonal matrix

elements, it is found that the proton for homo-molecular pairs can transfer easily than

for hetero-molecular pairs.
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Table 3.1: Diabatic potential energy parameters for (a) AmH+-Am, (b) ImH+-Im, (c)
ImH+-Am, and (d) AmH+-Wat.

(a) AmH+-Am  (b) ImH+-Im  

�(kJ mol-1) �
�

(Å) �(kJ mol-1) �
�

(Å) 

664.758 1.027 668.81 1.0148 

(c) ImH+-Am    

�
�

(kJ mol-1) �
�

(kJ mol-1) �
�

(Å) �
�

� (Å) 

668.81 664.758 1.015 1.027 

(d) AmH+-Wat    

�
�

(kJ mol-1) �
�

(kJ mol-1) �
�

(Å) �
�

� (Å) 

725.69 593.731 1.027 0.977 

 

(b) ImH+-Im (a) AmH+-Am 

(d) AmH+-Wat (c) ImH+-Am 

Figure 3.1: Structures of the proton-bonded (a) AmH+-Am, (b) ImH+-Im, (c) ImH+-
Am, and (d) AmH+-Wat pairs.
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Figure 3.2: Proton transfer model and potential energy coordinates for (a) AmH+-Am,
(b) ImH+-Im, (c) ImH+-Am, and (d) AmH+-Wat.
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Figure 3.3: Diagonal matrix elements, V di
11 (blue line) and V di

22 (red line), and non-
diagonal matrix element V di

12 (yellow line) in diabatic potential matrix computed using
obtained potential parameters at some intermolecular distance R for (a) AmH+-Am,
(b) ImH+-Im, (c) ImH+-Am, and (d) AmH+-Wat.
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Figure 3.4: Transformed adiabatic potential derived from the diabatic potentials using
Eq.(3.2) (red line) and from DFT (blue dots) at some intermolecular distance R for (a)
AmH+-Am, (b) ImH+-Im.
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Figure 3.5: Transformed adiabatic potential derived from the diabatic potentials using
Eq.(3.2) (red line) and from DFT (blue dots) at some intermolecular distance R for (c)
ImH+-Am, and (d) AmH+-Wat.
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Figure 3.6: Intermolecular dependence of potential parameter b of V di
12 for (a) AmH+-

Am, (b) ImH+-Im, (c) ImH+-Am, and (d) AmH+-Wat.

Figure 3.7: Ratio of amplitude for non-diagonal matrix element divided by the crossing
point energy of the diabatic potential at x = 0 for homo-molecular pairs or r = rc for
hetero-molecular pairs, i.e., A/V di

11 (x = 0 or r = rc ).
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Chapter 4

Quantum Dynamics Simulation for

Rate Constants of Intermolecular

Proton Transfer in the Diabatic

Picture

In this chapter a method of quantum dynamics simulation for rate constants of in-

termolecular proton transfer based on the diabatic picture discussed in chapter 3 is

discussed. This chapter is focused on the proton-bonded (a) water (WatH+-Wat) and

(b) ammonia (AmH+-Am) pairs as homo-molecular proton transfer systems, and on the

(c) ammonia-water (AmH+-Wat) pairs as hetero-molecular systems. In the following,

the specific introduction of this chapter is explained in section 1; theoretical methods

are explained in section 2; results and discussion are explained in section 3; and finally

conclusion is explained in section 4.
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4.1 Introduction

The theoretical study of chemical reactions has been often advanced by following nu-

clear motions on an adiabatic potential energy surface (PES) obtained from quantum

chemical calculations within the Born-Oppenheimer approximation. Reactive scatter-

ing studies based on a single electronically adiabatic PES have demonstrated that it is

possible to obtain detailed information concerning chemical reactions involving a simple

few-atom systems from accurate quantum mechanical calculations [57–66]. The scatter-

ing matrix obtained from the quantum scattering calculations, known as the S-matrix,

provides the quantum mechanical transition probability amplitudes.

Previously, Tannor et al. [67–71] developed a time-dependent reactive scattering

formulation for estimating individual S-matrix elements, and cumulative reaction prob-

abilities have been obtained from time-correlation functions between reactant (RS)

and product (PS) wavepackets. Similar time-dependent wave packet formulations have

also been introduced and applied by other researchers [72–75]. In these approaches,

changes with time are determined by the action of the time-evolution operator on the

wavepacket. Several methods to accomplish the time-evolution of wavepacket have been

developed [50]. For example, the split-operator, Lanczos, and Chebyshev methods have

been successfully used with the time-dependent wavepacket approach. Furthermore,

Miller and co-workers have used the reactant partition function to show that the cumu-
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lative reaction probability can be directly related to the thermal rate constant [28–30].

Therefore, detailed analyses of chemical reactions can be carried out using these ap-

proaches, which possess a number of attractive features for various molecular systems,

such as proton transfer requiring a quantum mechanical treatment.

The quantum dynamical approach using wavepackets intrinsically tends to be com-

plicated and imbalanced because the least and most appropriate wavefunctions corre-

sponding to the RS and PS wavepackets are required to calculate the time-correlation

functions.

In the diabatic picture, the Hamiltonian is divided into nonreactive (reactant and

product) and reactive parts. In particular, the reaction probability is evaluated in terms

of the transition between two nonreactive surfaces. The wavefunctions corresponding

to the RS and PS, which are necessary to calculate the time-correlation functions, can

be easily obtained in the diabatic picture. Therefore, to employ a simple potential con-

struction and quantum dynamics simulation using the diabatic picture for the quantum

mechanical rate constant is important for analyzing proton transfer reactions, including

large molecular systems [76], based on a quantum mechanical treatment.

In this chapter, a simple method for thermal rate constant of intermolecular proton

transfer reactions using quantum dynamics simulations on the constructed diabatic

potential is proposed. The diabatic potential construction is performed referring to the
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previous chapter. This chapter is focused on the (a) WatH+-Wat and (b) AmH+-Am

pairs as homo-molecular proton transfer systems, and on the (c) AmH+-Wat pairs as

hetero-molecular systems, the structures of which are shown in Fig. 4.1. The validity

of proposed the method is then demonstrated for these proton transfer systems.

4.2 Theoretical methods

4.2.1 Adiabatic and Diabatic representations

In this section, the adiabatic and diabatic representations used for PES construction

and the quantum dynamics simulation are explained. An outline of the formalism

of these representations is given in chapter 2. Here, the important equations in this

chapter are shown.

In the adiabatic and diabatic representations, for two-state system, the nuclear

wavefunction {χn} satisfies the following equation:

ih̄
∂

∂t

χ
ad
1

χad
2

 =

 T1 Λ12

Λ21 T2


χ

ad
1

χad
2

+

ϵ1 0

0 ϵ2


χ

ad
1

χad
2

 , (4.1)

ih̄
∂

∂t

χ
di
1

χdi
2

 =

T1 0

0 T2


χ

di
1

χdi
2

+

V
di
11 V di

12

V di
21 V di

22


χ

di
1

χdi
2

 . (4.2)
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In the adiabatic representation, the adiabatic potential V ad is diagonal, while the kinetic

energy operator T ad includes the non-adiabatic coupling matrix. On the other hand,

in the diabatic representation, the kinetic energy operator T di is diagonal, but the

potential energy operator V di contains off-diagonal matrix elements, where V di
11 and

V di
22 are diabatic potentials; V di

12 and V di
21 are non-diagonal matrix elements.

4.2.2 Quantum dynamics simulation

In this section, the reactive scatting theory using quantum dynamics simulation is

explained. An outline of the theory is also given in chapter 2. Here, the important

formulations are shown. We consider the two general wave packets that correspond

to the RS and PS: the incoming |ϕα⟩ and outgoing |ϕβ⟩ wavepackets. According to

the Eq. (2.81), using the Fourier transform of the time-correlation function, a time-

dependent reactive scattering formula is equivalent to the following:

|Sβ,α(E)|2 =
|
∫∞
−∞⟨ϕβ|e−iHt/h̄|ϕα⟩eiEt/h̄dt|2

|
∫∞
−∞⟨ϕα|e−iHt/h̄|ϕα⟩eiEt/h̄dt||

∫∞
−∞⟨ϕβ|e−iHt/h̄|ϕβ⟩eiEt/h̄dt|

. (4.3)

However, to compute the state-to-state matrix elements, the incoming and outgoing

wavepackets corresponding to the RS and PS need to be obtained. In addition, while

these wave packets are obtained using the Møller operator, the Hamiltonian must be
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divided into an asymptotic part and an interaction potential that goes to zero asymp-

totically in the adiabatic picture.

On the other hand, in the diabatic picture, if diabatic potentials V di
11 and V di

22 are

obtained, the reactant and products states can be easily separated. In a diabatic

representation, according to Eq. (4.2), the time correlation function of the reaction can

be written as

⟨ϕβ|e−iHt|ϕα⟩ =
∫
drχ∗

β(r) exp(−iV di
12 (r)t)χα(r) (4.4)

using the eigenfunction χα,β of diabatic potentials V di
11 and V di

22 . The S-matrix is then

obtained by the Fourier transform of the time correlation function.

In this work, the one-dimensional diabatic potentials V di
11 and V di

22 , and V
di
12 for proton

transfer were first constructed. According to Eq. (4.4), the time correlation function is

then calculated using the V di
12 and the eigenfunction of obtained the V di

11 and V di
22 poten-

tials as χα,β. The analytical function as χα,β using eigenfunction of Morse potentials

as V di
11 and V di

22 was utilized. Finally, S-matrix was calculated by the Fourier transform

obtained the time correlation function.

According to chapter 2, |Sα,β(E)|2 corresponds to the reaction probability from the

RS (α) to PS (β) denoted by Pαβ. Using the reaction probability, the thermal rate

constant for proton transfer systems was estimated. In this work, the state selected
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total reaction probability with the ground state as the reactant state,
∑

β P0β(E) was

used. Thus, the rate constant can be written as

kQD(T ) =
1

h

1

Q

∑
β

∫ ∞

0

exp

(
− E

kT

)
P0β(E)dE, (4.5)

where Q is the reactant partition function.

In this study, for one-dimensional intermolecular proton transfer, the proton transfer

rate constant was estimated using Eq. (4.5). P0β based on the set of squares of the

obtained S-matrix using the ground state of V di
11 and the eigenfunctions set of V di

22 .

Transition state theory (TST) is widely used to estimate rate constants for proton

transfer systems if transition states (TS) are found. In TST, rate constants can be

estimated from the free energies for the optimized RS and TS geometries. In this work,

to compare with the TST, the proton transfer rate constant was estimated using TST

for (b) AmH+-Am as an example of having a TS.

4.2.3 Calculation model

In the construction of the PES for proton transfer, we began by focusing on three proton

transfer models: (a) WatH+-Wat and (b) AmH+-Am as homo-molecular pairs and (c)

AmH+-Wat as a hereto-molecular pair, as shown in Fig. 4.1. Figure 4.2 also shows
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these models and PES coordinates. For homo-molecular pairs, coordinate R denotes

the intermolecular distance and x is the translating proton position, which is defined as

the displacement from the center of the intermolecular distance. For a hetero-molecular

pair, r is used as the displacement between a proton-bonded atom and the proton.

4.2.4 Diabatic potential functions (V di
11 , V

di
22 ) and optimization

of potential parameters

In this chapter, a PES for proton transfer was constructed using the diabatic picture.

The PES was constructed using the Morse potentials as V di
11 and V di

22 functions. The

explicit functional forms were defined in the previous chapter, i.e., Eqs. (3.6)-(3.8) and

(3.9)-(3.11). The detailed optimization procedure of the potential parameters in V di
11

and V di
22 was also shown in the previous chapter. Although the Morse potential as V di

11

and V di
22 was used to construct the PES, the Gaussian function as non-diagonal matrix

element V di
12 , which was utilized in the previous chapter, was not used in this chapter.

Here, to construct the exact PES, polynomial function was used as V di
12 .

4.2.5 Adiabatic potential energy calculation

To obtain the one-dimensional adiabatic PES V ad(x;R) or V ad(r;R) for the proton-

transfer reaction, quantum chemical calculations were performed with stepwise move-
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ment of the proton by 0.02 Å. The geometries of the molecules, except for the proton

position and the intermolecular distance, were then kept as the minimum energy struc-

tures. The minimum energy structures, as shown in Fig. 4.1, were determined by

geometrical optimization. The adiabatic potential energies were calculated by moving

the proton position for a fixed intermolecular distance. The following intermolecular

distances were then used: 2.39 Å for (a) WatH+-Wat, 2.69 Å for (b) AmH+-Am, and

3.03 Å for (c) AmH+-Wat. Finally, the adiabatic potential energies were fitted using

a polynomial series function of the fourth order with respect to x or r. All DFT cal-

culations were performed the CAM-B3LYP/aug-cc-pVTZ level using the Gaussian-09

package [56].

4.3 Results and Discussion

4.3.1 Construction of diabatic potential

After construction of the diagonal part of the potentials as V di
11 and V di

22 for (a) WatH+-

Wat, (b) AmH+-Am, and (c) AmH+-Wat, we turned our efforts to estimating the

non-diagonal part as V di
12 . Using V di

11 , V
di
22 , and V

ad obtained by the DFT calculations,
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we estimated the defined values of V di
12 based on Eq. (3.2) using the following equation:

V di
12 =

√(
V di
11 + V di

22

2
− V ad

)2

−
(
V di
11 − V di

22

2

)2

. (4.6)

Figure 4.3 shows the computed V di
11 and V di

22 and possible V di
12 values with V ad for (a)

WatH+-Wat, (b) AmH+-Am, and (c) AmH+-Wat. For all pairs, V di
11 and V di

22 reproduce

the adiabatic potential at the location where the proton position is closer to a binding

atom than a stable point (r < r0). For homo-molecular pairs, V di
12 shows similar sym-

metrical behavior with respect to x = 0, which has its maximum value at the crossing

point of V di
11 and V di

22 . On the other hand, for a hetero-molecular pair, the V di
12 exhibits

asymmetrical behavior with respect to the crossing point of V di
11 and V di

22 , while the

maximum value of V di
12 is located at the crossing point of V di

11 and V di
22 and shows the

same behavior for homo-molecular pairs.

Therefore, a PES for various proton transfer systems can be reproduced using V di
11

and V di
22 with the Morse potential to describe the vibrational motion, and V di

12 with the

maximum value at the crossing point of V di
11 and V di

22 . Eq. (4.6) shows that the value

of V ad is lower for larger values of V di
12 . Thus, V di

12 contributes to the stability of the

adiabatic potential. In addition, according to the VB picture, V di
12 generally corresponds

to the mixture or interaction between the two VB states, which contributes to the
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possibility of proton transfer. Figure 4.3 shows that the ratio of the contribution to

the stability of the potential and the possibility of proton transfer is the largest at the

crossing point of V di
11 and V di

22 for all proton transfer systems. For (c) AmH+-Wat, the

V di
12 values over the water molecule side region (r > rc) are larger than the ones over

the ammonia molecule side region (r < rc). This result indicates that proton transfer

occurs easily over the water molecule side region (r > rc).

In this work, the shape of the V di
12 curve obtained from Eq. (4.6) showed a different

behavior than the Gaussian function when the conventional EVB approach was utilized,

and it should be especially noted that the Gaussian function did not reproduce the

asymmetrical shape of V di
12 for AmH+-Wat. Therefore, in this chapter to construct the

exact PES, the V di
12 values were fitted using a sixth-order polynomial series with respect

to x for homo-molecular pairs, and a fifth-order polynomial series with respect to r for a

hetero-molecular pair. Figure 4.4 shows the transformed adiabatic potentials obtained

using Eq. (3.2) as V di
12 , which were derived from the diabatic potentials obtained from

polynomial and Gaussian functions, along with the adiabatic potentials from DFT for

(c) AmH+-Wat. The figure shows that the transformed adiabatic potential using the

Gaussian function as V di
12 does not explicitly reproduce the one calculated using DFT

over a region with a potential barrier.
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4.3.2 Quantum dynamics simulation

Next, a quantum dynamics simulation was performed using obtained the diabatic ma-

trix elements. Table 4.2 shows the rate constant and correlation time of proton transfer

using quantum dynamics obtained from Eq. (4.5) at 298 K. For (b) AmH+-Am, the

rate constant obtained using TST, which is also listed in the table, was good agreement

with the one obtained using quantum dynamics. Previously, the quantum dynamics

simulation was carried out for (a) WatH+-Wat in order to calculate the vibrational fre-

quency [79], while Born-Oppenheimer molecular dynamics simulation was carried out

for (c) AmH+-Wat [80]. Table 4.2 lists the results for reference purposes, which were

also in good agreement with the values in previous works. Thus, the validity of our

method using diabatic potentials was confirmed.

In this study, we focused on the proton transfer system, which required the use of

the quantum dynamics approach in order to treat the quantum effects, and proposed

a simple quantum dynamics approach for the system using diabatic potentials. Us-

ing this approach, the computational costs can be reduced, and the simulation can be

stably implemented. For example, the conventional split-operator method requires a

large number of Fourier transforms, which is more than one million in this case, while

our approach requires less than fifty Fourier transforms. Additionally, since the eigen-

functions of the Morse potential were used for the wavefunctions and, using Eq. (4.4),
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were used to carry out the quantum dynamics simulation, wavefunction collapse was

prevented.

Our quantum dynamics approach can be applied to the EVB potential, which has

been used to carry out classical molecular dynamics, because the approach is based on

the diabatic potential. Additionally, in contrast to TST, this approach can be used to

estimate the proton transfer rate constant, even when it is difficult or impossible to

search for a TS, such as when a large-scale system is used, or when no TS exists.

4.4 Conclusion

In this chapter, a simple method for thermal rate constant of intermolecular proton

transfer reactions using quantum dynamics simulations on the constructed diabatic

potential was proposed. For all homo- and hetero-molecular pairs, the potentials de-

termined using a Morse potential as V di
11 and V di

22 and polynomial function as V di
12 were

in good agreement with the ones determined using DFT. The proton transfer rate

constants determined by applying a quantum dynamics simulation to the diabatic po-

tentials were also in good agreement with the reference values. In this approach, wave-

functions corresponding to the RS and PS were determined uniquely for the quantum

dynamics simulation. Furthermore, since the construction of the PES and the quantum
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dynamics simulation can be carried out easily for homo- and hetero-molecular pairs,

this method can be applied to intermolecular proton transfer estimations for various

large molecular systems such as proteins, even when it is impossible to search for the

TS.
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Table 4.1: Diabatic potential energy parameters for (a) WatH+-Wat, (b) AmH+-Am,
and (c) AmH+-Wat.

(a) WatH+-Wat  (b) AmH+-Am  

�(kJ mol-1) �
�

(Å) �(kJ mol-1) �
�

(Å) 

663.3 0.974 735.0 1.024 

(c) AmH+-Wat     

�
�

(kJ mol-1) �
�

(kJ mol-1) �
�

(Å) �
�

� (Å) 

735.0 663.3 1.024 0.974 

 

Table 4.2: Proton transfer rate constants and correlation times using quantum dynamics
at 298 K.

 (a) WatH+-Wat (b) AmH+-Am (c) AmH+-Wat  

   Forward Reverse 

R value (Å) 2.39 2.69 3.03 

Rate constant (s-1) 
���� � ��

�� ���� � ��

�� 
���� � ��

�� 	�
	 � ��

�� 

Correlation time (fs) 18.0 7.94 21.6 12.5 

Reference (s-1) 
��� � ��� � ��

��[*]  ���	 � ��

��[**]  ��� � ���� � ��

��[***]  

* The rate constant was obtained by converting the frequency determined in a previous work [79]. 

** The rate constant was obtained using transition state theory (TST). 

*** The rate constant was obtained from Born-Oppenheimer molecular dynamics simulations [80]. 

 

 (a) (b) (c) 

Figure 4.1: Stable structures of the proton-bonded (a) WatH+-Wat, (b) AmH+-Am,
and (c) AmH+-Wat pairs.
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Figure 4.2: Proton transfer model and potential energy coordinates for (a) WatH+-Wat,
(b) AmH+-Am, and (c) AmH+-Wat.
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Figure 4.3: Diabatic potentials V di
11 (blue line) and V di

22 (red line) computed using ob-
tained parameters, and adiabatic potential from DFT calculations (black dots), and the
possible V di

12 values (yellow dots) estimated based on the Eq. (4.6) for (a) WatH+-Wat,
(b) AmH+-Am, and (c) AmH+-Wat.
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Figure 4.4: Transformed adiabatic potential using Eq. (3.2) derived from the diabatic
potentials obtained from polynomial (red dots) and Gaussian functions (green dots)
and from DFT (blue dots) for AmH+-Wat.
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Chapter 5

Application to Intermolecular

Proton Transfer using Diabatic

Potential in Proton Conductive

Material

In chapters 3 and 4, we discussed the construction of potential energy surface (PES)

using diabatic picture and quantum rate constants using quantum dynamics simulation

on the PES for intermolecular proton transfer. In this chapter, this approach is applied

to intermolecular proton transfer in proton conductive material as an example of a

large molecular system. In addition, the proton conductive path is discussed in terms

of intermolecular proton transfer. In the following, the specific introduction of this

chapter is explained in section 1; theoretical and computational methods are explained

in section 2; results and discussion are explained in section 3; and finally conclusion is
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explained in section 4.

5.1 Introduction

Anhydrous proton-conductive materials can be utilized as solid electrolytes in fuel cells

and have been widely developed for their applications due to stability above 100 ℃.

Especially, composite materials of strong acids polymers and basic molecules such as

imidazole and its derivatives have been considered to be polymer electrolytes under an-

hydrous conditions and has been proposed [84–95]. For instance, poly(vinylphosphonic

acid) (PVPA)-imidazole (Im) (PVPA-xIm) [86,88] and alginic acid (AA)-Im (AA-xIm)

composite materials [87], where x represents the number of moles of Im per mole of

polymer repeat unit, are examples of the composite materials, of which proton conduc-

tivity increase with increasing x. The proton conductivities of PVPA-xIm and AA-xIm

have maximum values of 7× 10−3 at 150 ℃ for x = 8 [88] and 2× 10−3 S/cm at 130 ℃

for x = 2 [87], respectively. PVPA-xIm includes a strong phoshonic acid polymer with

the high proton-exchange capacity, while AA-xIm is non-toxic and low cost biopolymer

formed from mannuronic and guluronic monomers with a carboxylic group. For these

materials, Im molecules are intercalated into host polymers PVPA and AA, while these

polymers function as source of excess protons and encourage the proton conduction.
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To develop the high proton-conductive materials, it is important to understand the

proton conductive mechanism in these materials. The widely recognized mechanism

is the proton transport in the materials involving structural diffusion known as the

Grotthuss-type mechanism [96]. In the Grotthuss-type mechanism, intermolecular pro-

ton transfer occurs followed by reorganization of hydrogen bond. The rate limiting step

then involves a molecular motion of breaking of short, strong hydrogen bonds such as

rotation of imidazole molecule.

In the previous works, for a system of only Im molecules, a number of researches for

microscopic proton conductive mechanism have been conducted using various tech-

niques such as solid-state NMR [97, 98], molecular dynamics simulation [24, 27, 81,

99, 100], and quantum chemical calculation [20, 83]. For example, Münch and co-

workers [81] reported that the presence of an excess proton results in local disorder

in a system of imidazole chains, and proton transfer along the hydrogen bonding in

imidazole is 2 orders of magnitude faster than the reorientation of imidazole by us-

ing Car-Parrinello molecular dynamics (CPMD) simulations. Their results emphasize

that the reorientation of imidazole is a limiting step of proton conduction. Voth and

co-workers [24] performed a multi empirical valence bond (MS-EVB) method to es-

timate a proton diffusion coefficient and Grotthuss hopping rate and investigate the

relationship between proton transport and structures of solvation shell of imidazolium
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cation. In construct, solid-state NMR was also measured to investigate the relationship

between proton conductivity and molecular motion by considered proton conductivity

as proton diffusion [97]. Furthermore Kumar and Venkatnathan [83] characterized the

proton transport and rotation energy barriers in a system of imidazole chains by den-

sity functional theory. They showed that the presence of the proton had stronger effect

on the immediate neighboring imidazole molecules, and the effect was negligible after

two molecules. They also found that the rotational barrier was higher than the proton

transport barrier along the hydrogen bond and the rate determining step of proton con-

duction. Therefore the formation and cleavage of hydrogen bonds between imidazole

molecules play a key role in proton conduction by molecular motion of imidazole like

rotation in liquid or crystal of only imidazole, which is the rate limitting step of proton

conduction.

On the other hand, there have been proposed some proton-conductive materials

in the crystalline solid [77, 78]. Imidazolium hydrogen succinate (Im-Suc) crystals can

be utilized as solid electrolytes and have gained considerable attention. The proton

conductivity increased from 1×10−5 to 1×10−3 S/cm in a temperature range of 330-400

K in the fact of crystalline solid of the material [78]. Such proton conductivity results

from continuous proton transfer between the imidazolium ions and the carboxyl groups

in the hydrogen network and the reorientational motion of the imidazolium ions based
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on the Grotthuss-type mechanism [81–83]. Figure 5.1 shows the projection of a single

layer parallel to the (01-1) plane obtained by X-ray diffraction measurements. [77, 78]

The distance between the layers is 3.385 Å. The proton diffusion path was along the

[100] direction or along the [14-9] direction and includes the proton transfer process

between imidazole and succinic acid and between succinic acid and succinic acid. In

the previous work [82], the dynamics of imidazolium ions for Im-Suc was investigated

using solid-state 2H and 13C NMR. These measurements indicated that imidazolium ion

libration played an important role in the proton conductive process. However, there

has been little in the way of investigation into the local proton transfer process used

by Im-Suc even though proton transfer certainly occurs during the proton conductive

process.

In an analysis of proton transfer for large-scale system such as Im-Suc, transition

state theory (TST) generally cannot be used to estimate the proton transfer rate con-

stants, because it is difficult or impossible to search for TS. Therefore, in this chapter,

to estimate the rate constant of intermolecular proton transfer for Im-Suc, diabatic po-

tentials construction and quantum dynamics simulation on the potentials are performed

using the approach discussed in chapters 3 and 4. In addition, the proton conductive

path is discussed in terms of intermolecular proton transfer.
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5.2 Theoretical and computational methods

Figure 5.1 shows the projection of the single layer parallel to the (01-1) plane obtained

by X-ray diffraction measurement [77,78] for Im-Suc. The distance between the layers

is 3.385 A. The proton diffusion path was along the [100] direction or along the [14-

9] direction and includes the proton transfer process between imidazole and succinic

acid (N. . .O) and between succinic acid and succinic acid (O. . .O). In this chapter, we

focus on three layers (a single layer is shown in Fig. 5.1) as a model of the material

and performed processing using“ our own n-layered integrated molecular orbital and

molecular mechanics”(ONIOM) approach. The potential energies and proton transfer

rate constant for between imidazole and succinic acid (N. . .O) and between succinic

acid and succinic acid (O. . .O) in the middle layer of three layers were calculated. Fur-

thermore, to add the influence of the other two up-and-down layers, which interact

electronically with the middle layer, the other two layers except for the middle layer

were also calculated. The high-level region has one imidazole and two succinic acids

related to concerted proton transfer, as shown in Fig. 5.2 (ball and stick model), while

the other molecules correspond to the low-level region. The high- and low-level re-

gions were calculated at the CAM-B3LYP/aug-cc-pVDZ and AM1 levels, respectively.

Geometrical optimization was performed using the initial structure obtained by X-ray

diffraction [78], and the structures were maintained with the exception of the proton
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positions in the high-level region. To estimate the proton transfer rate constant for

between imidazole and succinic acid (N. . .O) and between succinic acid and succinic

acid (O. . .O), diabatic potentials construction and quantum dynamics simulation on

the potentials were performed using the approach discussed in chapters 3 and 4. The

detailed procedures of potential construction and rate constant estimation were utilized

the ones discussed in chapters 3 and 4. In the PES construction using diabatic picture,

Morse potential was used as V di
11 and V di

22 , while a fifth-order polynomial series was used

as V di
12 .

5.3 Results and Discussion

Table 5.1 shows the lengths of the hydrogen bonds and intermolecular distances (Å) for

the concerting proton transfers. The table shows that a proton between the imidazole

and succinic acid is bonded to the imidazole molecule instead of O2 and the proton

between the succinic acids is bonded to O1. This result indicates that the stable

structure for Im-Suc is the charge-separated state corresponding to the imidazolium

cation and the succinic anion. This result is in agreement with previous works on

probability density function analysis using X-ray diffraction.

The diabatic potential for proton transfer and estimated its rate constant were
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then constructed. Figure 5.3 shows the transformed adiabatic potential derived from

the obtained diabatic potentials using Eq. (3.2) for N→O and O1→O2. This result

indicates that proton transfer PES for large-scale system such as Im-Suc, even when

there is no TS, can be reproduced using V di
11 and V di

22 with Morse potential described

the vibrational motion and V di
12 with the polynomial function.

Table 5.2 also shows the obtained rate constant results. Because the corresponding

correlation times are approximately 4 − 20 fs for all proton transfer systems, proton

transfer is faster than the molecular motion of imidazole in Im-Suc crystals. Comparing

the rate constants of the proton transfers between imidazole and succinic acid (N. . .O)

and between succinic acid and succinic acid (O. . .O), we find that the rate constant for

N→O, k(N→O), is larger than that for O1→O2, k(O1→O2). The rate constant ratio

of the proton transfer k(N→O)/k(O1→O2) was 1.50, which indicates that the N→O

proton transfer was one-and-a-half times as large as that of O1→O2.

From the stable structures, we find that the proton is bonded to imidazole in Im-

Suc. If the proton diffusion process contributes to the proton conductive mechanism,

imidazole plays the role of carrier for proton conduction. In a previous work, it was

suggested that the conductive path for continuous proton transfer was in the hydrogen

network of the (01-1) plane, and an analysis of the anharmonic probability density

functions [78] indicated that the potential barriers to proton diffusion along the [100]
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axis were lower than those along the [14-9] axis. The two results suggested the direction

of the proton diffusion path, as shown in Fig. 5.1. In the previous work [78], it was

shown that the proton diffusion path along the [100] direction occurred only through

proton transfer between N. . .O, while that along the [14-9] direction occurred via proton

transfer between both N. . .O and O. . .O. Therefore, the proton diffusion path along the

[100] direction occurs more easily than along the [14-9] direction. The rate constant

results from Table 5.2 show that the proton transfer between O. . .O is more difficult

than that between N. . .O. This result is consistent with the suggested proton diffusion

path.

In the previous work [82], the dynamics of imidazolium ions for Im-Suc was inves-

tigated using solid-state 2H and 13C NMR. These measurements indicated that imida-

zolium ion libration played an important role in the proton conductive process. There-

fore, we can conclude that the proton conductivity in Im-Suc crystal results from the

continuous proton transfer between N. . .O in the hydrogen network with [100] direction

and the imidazole ion libration based on the Grotthuss-type mechanism.

In this chapter, it was confirmed that it was possible to construct the PES for proton

transfer using a diabatic picture for large molecular systems. In addition, a rigorous

rate constant using a quantum dynamics simulation was estimated for Im-Suc. This

approach can facilitate simple proton transfer estimations for various large molecular
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systems, and it is possible that this approach can be applied to biomolecular systems.

5.4 Conclusion

To develop the high proton-conductive materials, it is important to understand the

proton conductive mechanism. The proton conductivity for Im-Suc crystal results from

continuous proton transfer between the imidazolium ions and the carboxyl group in the

hydrogen network and the reorientational motion of the imidazolium ions. The proton

diffusion path was along the [100] direction or along the [14-9] direction and includes

the proton transfer process between imidazole and succinic acid and between succinic

acid and succinic acid. In this chapter, to estimate the rate constant of intermolecular

proton transfer for Im-Suc, diabatic potentials construction and quantum dynamics

simulation on the potentials were performed using the method discussed in chapters

3 and 4. The results indicated that the proton transfer rate constant of N→O was

one-and-a-half times as large as that of O1→O2. Furthermore, in the Im-Suc crystal, it

was found that in terms of local proton transfer, proton diffusion with proton transfer

occurred more easily along the [100] axis than along the [14-9] axis.

Considering the results using solid-state NMR in the previous work, we conclude that

the proton conductivity in Im-Suc crystal results from the continuous proton transfer
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between N. . .O in the hydrogen network with [100] direction and the imidazole ion

libration based on the Grotthuss-type mechanism.
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Table 5.1: Lengths of hydrogen bonds and intermolecular distances (Å) for concerting
proton transfer for Im-Suc. Atomic labels are shown in Fig. 5.2.

N…O2 2.72 

N�H 1.04 

O1…O2 2.48 

O1�H 1.06 

 

Table 5.2: Proton transfer rate constants between nitrogen and oxygen (N. . .O), and
oxygen and oxygen (O. . .O) using quantum dynamics at 298 K for Im-Suc. Atomic
labels are shown in Fig. 5.2.

 N…O  O…O  

Direction of proton transfer N�O2 O2�N O1�O2 O2�O1 

Rate constant (s-1) 
���� � ��

�� ���� � ��

�� 
	�	� � ��

�� ���� � ��

�� 

Correlation time (fs) 10.13 4.46 15.14 5.33 

 

Figure 5.1: Projection of the single layer parallel to the (01-1) plane for Im-Suc, and
illustration of the suggested proton paths in the layer [78].
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O1 

O2 

N 

Figure 5.2: The partition of high and low level areas is shown for ONIOM calculations.
The high-level area model is shown as the ball and stick model in the middle of three
layers. The low-level area model is the other region. The concerting protons are aqua,
and the nitrogen and oxygen atoms are labeled with atom numbers.
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Figure 5.3: Transformed adiabatic potential derived from the diabatic potentials using
Eq. (3.2) (black dots), diabatic potentials V di

11 (blue line) and V di
22 (red line), and the

V di
12 values (yellow dots) for (a) N→O and (b) O1→O2.
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Chapter 6

Application to Analysis of Reaction

Involving a Proton using the

Adiabatic Potentials

In this chapter an analysis of the reaction involving proton using adiabatic potentials

instead of diabatic potentials is discussed. This chapter is investigated the hydride

transfer process including a proton and intrinsic reaction coordinate (IRC) as adiabatic

potential. Using the IRC, the details of change in geometries, solvent effect, and charge

transfer process can be investigated. This chapter is focused on a hydride transfer sys-

tem in which formaldehyde (CH2O) acts as the hydride acceptor and lithium aluminum

hydride (LiAlH4) or lithium borohydride (LiBH4) acts as the hydride donor. In the fol-

lowing, the specific introduction of this chapter is explained in section 1; computational

details are explained in section 2; results and discussion are explained in section 3; and
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finally conclusion of this chapter is explained in section 4.

6.1 Introduction

Reductions involving hydride transfers are some of the most important chemical reac-

tions in biochemistry and organic chemistry [101–103]. As an example, NADPH [104],

FADH2 [105], tetrahydrofolate [106] and ascorbic acid [107], all of which play vital roles

in biological redox systems, are naturally-produced organic hydride donors. The reduc-

tions of ketones [108], aldehydes [109], alkenes [110], alkyl halides [111] and imines [112]

are also well-known reactions involving hydride transfers. As such, there is considerable

interest among researchers regarding the design and synthesis of new organic compounds

via hydride reductions.

Hydride transfer is a key process in hydride reduction and so, to elucidate the

associated reaction mechanism, it is important to understand the hydride reduction

mechanism. In previous works, the hydride transfer mechanisms in many biological

and organic reduction systems were investigated using either experimental or theoretical

approaches [113–124]. Although these mechanisms have not yet been fully explained

due to the variety of possible pathways involving the overall transfer of two electrons

and one proton, the following hydride transfer mechanisms have been proposed: (1)
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direct transfer of a hydride ion (H−) in a single step, (2) two-step transfer of an electron

before or after the transfer of a hydrogen atom and (3) transfer of two electrons and one

proton in three separate steps. Several experimental studies have provided evidence for

the single-step mechanism [125–128], although the multi-step mechanism has also been

suggested [119,128,129]. Therefore, although the hydride transfer mechanism has been

researched over a significant time period, there is little agreement as to the detailed

reaction steps.

Theoretical studies aimed at understanding the hydride transfer mechanism have

also been conducted, focusing on the effects of the charge density, ionization potential

and proton affinity of the reactant and transition state [113–118,121,123,124]. However,

as far as we know, there are no reports of detailed charge density analysis along the

reaction coordinates during hydride transfer, although it requires complete information

regarding the dynamics of the mechanism. Furthermore, hydride transfer process would

be strongly affected by various solvent species, because the process involves the transfer

of two electrons and it is well known that the dynamics and kinetics of such transfers

are affected by the solvent.

In the present chapter, we focused on a hydride transfer system in which CH2O acts

as the hydride acceptor and LiAlH4 or LiBH4 acts as the hydride donor. LiAlH4 and

LiBH4 have both been widely used in organic syntheses as reducing agents, although
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LiAlH4 is more powerful than LiBH4 owing to the weaker Al-H bond compared to the

B-H bond [103]. A suggested hydride reduction mechanism using these reducing agents

is shown in Fig. 6.1. The reaction path, geometries and energies of the complexes and

transition state (TS) structures in these reactions have been previously investigated

using many experimental and theoretical approaches [130–139]. These studies have

identified the importance of the association of the lithium cation with the carbonyl

oxygen during reduction by LiAlH4 or LiBH4. In addition, it was found that this

structures remained in solvent by Car-Prrinello molecular dynamics simulations about

a solution of NaBH4 in liquid methanol [139]. Both carbonyl carbon-14 and deuterium

isotope studies during the reduction of benzophenone with NaBH4, LiBH4 and LiAlH4

have shown that changing the metal atom from Al to B shifts the transition state

geometry from reactant-like to central, and that varying the solvent can generate a

product-like TS [139]. Furthermore it is necessary to study the behavior of hydrides

in terms of their geometries, energies and charge densities to fully understand the

hydride transfer mechanism. Tetrahydrofuran (THF) is often used as the solvent during

laboratory-scale hydride reduction with LiAlH4 and LiBH4. Therefore, we also study

the behavior of hydrides for polarizability of THF.

In this work, we calculated optimized geometries for the reactant, transition and

product states both under vacuum and in THF, focusing on changes in the dynamics of
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transferring the H atom as well as the charge density along the reaction coordinate. The

reduction of CH2O using either LiAlH4 or LiBH4 was assessed. To accomplish this, we

calculated IRC both under vacuum and in THF for these reaction systems, and analyzed

the molecular and electronic structures along the IRC using density functional theory

(DFT). Based on the results, we deduced the essential hydride transfer mechanism by

clarifying the charge transfer behavior along the IRC. Herein we discuss the differences

in the reaction process observed when employing either LiAlH4 or LiBH4 as reagents by

comparing the two systems in terms of their geometries, energies and charge densities.

6.2 Computational details

In this section, the computational details to calculate the hydride transfer are shown.

All DFT calculations were conducted at the CAM-B3LYP/Aug-cc-pVTZ level with the

Gaussian 09 software package [56]. The hydride transfer TS was optimized based on the

results of previous studies [132, 138]. In addition, we calculated the energy of RS, TS,

and PS using CCSD(T)/Aug-cc-pVTZ level for obtained above geometries to confirm

the accuracy of CAM-B3LYP calculations. The polarizability of THF as the solvent

effects was considered. The solvent effects were evaluated using the self-consistent re-

action field polarizable continuum model (SCRF/PCM) [43, 140]. In previous work,
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the solvation free energies and dipole moments of organic molecules obtained using

SCRF/PCM were found to be in good agreement with experimental data [43]. To

investigate the hydride transfer process in detail, we estimated the rearrangement pa-

rameter (α) and charge density of the fragments involved in the hydride transfer process

along the IRC. Here α denotes the extent of transfer of a H atom from the reactant to

product structures, and is defined as:

α ≡ ∆RX−H

∆RC−H +∆RX−H

(X = Al,B), (6.1)

where ∆RC−H is obtained by subtracting the length of the bond between the carbon

and the transferring H atom from the C-H bond length in the methoxide ion (CH3O
−)

and ∆RX−H is obtained by subtracting the length of the bond between the X atom and

the transferring H atom from the X-H bond length in the XH−
4 reactant. A value of

α = 0 indicates that the structure at a given stage is close to the initial structure (that

is, XH−
4 ), while a value of α = 1 corresponds to a structure more closely resembling

that of the product (CH3O
−). Charge density values were obtained by calculating the

electrostatic potential fit (ESP) charges using the Merz-Killmann (MK) method. The

charge distribution derived from ESP typically exhibits the best performance in both

theoretical and experimental investigations [42,141,142], compared to data derived from
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the Mulliken, Hirshfeld and Natural Population Analysis schemes [143], and is also used

for the analysis of chemical trends [144].

6.3 Results and Discussion

To investigate the role of the lithium cation (Li+) during hydride reduction by LiAlH4

and LiBH4, we first calculated the IRC for hydride transfers with and without Li+.

The activation energy (∆Ea) and the energy difference (∆E) between the reactant

state (RS) and product state (PS) were then estimated, where ∆Ea and ∆E were

obtained by subtracting the energy of the TS from the RS and the energy of the PS

from the RS based on the IRC results, respectively. Table 6.1 summarizes the ∆Ea

and ∆E values for hydride transfer under vacuum. To confirm the accuracy of CAM-

B3LYP calculations, we also calculated the ∆Ea and ∆E values using CCSD(T) for

obtained above geometries. The obtained ∆Ea and ∆E values were respectively 14.6

and −192 kJ/mol for LiAlH4 system, while that values were 82.7 and −115 kJ/mol

for LiBH4 system, which were close agreement with the values using CAM-B3LYP (see

Table 6.1). In the case of both reagents, these values indicate that ∆Ea is significantly

decreased in the presence of Li+, while ∆E is not greatly changed. These results are

consistent with those of previous work [131]. These data suggest that the lithium cation
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contributes to stabilization of the TS, and is an important factor promoting the hydride

reduction.

Figure 6.2 shows the RS, TS and PS structures associated with hydride transfer

via LiAlH4 and LiBH4-formaldehyde complexes under vacuum. The TSs were obtained

by an optimization process, and the RS and PS were located along both sides of the

IRC compared to the TS. The complex formation energies, obtained by subtracting the

energies of formation of formaldehyde and LiAlH4 or LiBH4 from the RS energy, were

determined to be −87.1 and −76.5 kJ/mol, respectively. These results indicate that

formation of the complex (the RS), meaning the coordination of lithium to oxygen,

occurs prior to transfer of the hydride to the carbonyl carbon [132]. With regard to the

structures of the RS, TS and PS, no differences in bonding state were found between the

LiAlH4 and LiBH4 complexes. In the RS and TS of both complexes, a lithium tridentate

structure was identified, corresponding to the coordination of lithium to an oxygen and

two hydrogens. The TS structures were found to be both six-centered cyclic forms, in

which the C· · ·H bond lengths generated when employing LiAlH4 and LiBH4 were 1.76

and 1.12 Å, respectively. Therefore the TS structure associated with LiAlH4 reduction

has a reactant-like geometry, whereas TS structure associated with LiBH4 reduction

is product-like. The PS obtained from both complexes has the same conformation,

in which aluminum and boron are associated with oxygen, and the AlH3 and BH3
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moieties are rotated to allow the coordination of lithium to one hydrogen, respectively.

Furthermore, by comparing the ∆Ea and ∆E values for both complexes, we also found

that the use of LiAlH4 resulted in lower ∆Ea and ∆E compared to the results obtained

with LiBH4 [132, 138], in agreement with the experimental observation [139] that the

reducing power of LiBH4 is less than that of LiAlH4.

To examine the solvent effects on the hydride transfer, we perform IRC calculation

including one explicit molecule of THF and under PCM for LiAlH4 system as the same

method under Vacuum. Since THF is well-known to complex lithium, in explicit THF

molecule, TS is explored based on the configurations in Vacuum and interacted THF

to the lithium. Figures 6.3, 6.4(a) and table 6.2 show the structures of the RS, TS, PS,

and relative energies (∆Ea and ∆E) in explicit model and PCM for LiAlH4 system.

These results indicate that RS, TS, and PS structures have similar conformations for

explicit model and PCM of THF. Also, relative energies are close values for these two

models. In calculations of the explicit model with THF molecules, various geometries

are expected to be obtained by the relative positions, orientations, and number of THF

molecules. In this study, we focus on a local dynamics of hydride transfer, not the

relationship between LiAlH4 or LiBH4 systems and explicit THF in detail. Therefore,

the PCM calculation as the solvent effects was employed in following.

Table 6.3 shows the total energies of the RS, TS and PS as well as the ∆Ea and ∆E
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values both under vacuum and in THF. In the case of both reagents, the total energies

of the RS, TS and PS are all reduced when performing the reaction in THF, as are ∆Ea

and ∆E. These results suggest that the TS and PS are more highly stabilized than the

RS in the presence of THF.

Figure 6.4 presents the structures of the RS, TS and PS in THF. For both complexes,

different TS structures were obtained with and without the solvent. When using LiAlH4,

the TS structure contains bidentate lithium, in which lithium is coordinated to an

oxygen and a hydrogen, while a tridentate structure appears under vacuum. In contrast,

for the LiBH4 system, a linear structure with a Li-O-C bond was identified. It is evident

that these structures involve more charge separation, and thus is more highly stabilized

by the presence of a solvent, in agreement with the results of previous work [132,

136]. Especially, when using LiBH4, the solvent thus has a more significant effect on

the activation energy compared with the LiAlH4 system. This stabilization could be

related to the conformational changes induced in the RS and TS by the solvent. The

RS structures for both complexes have similar conformations to the TS structures in

THF, while the PS structures are significantly different from the TS due to structural

relaxation, as was also observed under vacuum.

From the above, we confirmed that the calculated energies and geometries of the

RS, TS and PS were consistent with those determined in previous studies. We next
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investigated changes in the structure and energy during the hydride transfer process

in detail, using the rearrangement parameter; α, and the relative energies of the RS

along the IRC. From this, the H atom transfer mechanism during the hydride transfer

process was elucidated. Herein, the transferred H atom is denoted by‘ H ’, which

is not distinguished from the hydride ion (H−), hydrogen atom (H) and proton (H+).

Figures 6.5 and 6.6 summarize the values of α and the relative energies of the RS along

the IRC for LiAlH4 and LiBH4-formaldehyde complexes under vacuum and in THF.

From these figures it is evident that α is not varied by the presence or absence of THF

for the LiAlH4 system, and remains at 0 up to the point at which the TS appears.

These data indicate that the TS exists as a reactant-like structure in this chemical

reaction. Once the‘H’has completely transferred to the carbonyl carbon, the energy

decreases drastically and the structure changes to the PS due to structural relaxation,

moving from IRC = 7 to 15.

Conversely, in the case of the LiBH4 system, different values of α were found de-

pending on the presence of the solvent. With THF, the α value at the RS has already

exceeded 0.5, signifying that the‘ H ’transfer is more than halfway complete. The

change in α at the RS can be explained by the conformational changes resulting from

charge responses to the solvent effect. Thus, the carbonyl carbon more closely ap-

proaches the boron in the RS in THF because a Li-O-C bond is generated by the
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solvent effect. In the case of both vacuum and THF conditions, the‘ H ’transfer to

the carbonyl carbon initiates prior to passing the TS, such that the transfer is complete

just before formation of the TS (IRC = 0), corresponding to a product-like structure.

When using LiBH4, once the‘ H’has completely transferred to the carbonyl carbon,

as is also the case with LiAlH4, the energy has decreased and the structure changes to

the PS due to structural relaxation.

Comparing the mechanisms of both complexes moving from the RS to TS, we de-

termined that the‘ H ’transfer in the case of LiAlH4 begins in the vicinity of the

TS, and thus can be considered an early barrier reaction, while the‘ H’transfer with

LiBH4 had finished in the vicinity of the TS, indicating a late barrier reaction. These

results are consistent with the Hammond postulate [145] based on the fact that a TS

structure having a low activation energy is reactant-like, while a structure with a high

activation energy is product-like. The data indicate that the rate determine step in the

hydride transfer is different when using LiAlH4 compared to the use of LiBH4.

Finally, to clarify the charge transfer dynamics, we calculated the changes in charge

density during the hydride transfer process along the IRC. Charge densities were ob-

tained by considering four fragments: CH2O, AlH3 or BH3,‘H’and Li+. Figures 6.7 and

6.8 show the charge density results obtained for the LiAlH4 and LiBH4-formaldehyde

complexes under vacuum and in THF, respectively. The charge density for Li+ was
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not plotted in these figures because, for both LiAlH4 and LiBH4, the Li+ charge was

invariant over the course of the reaction. In either system, the negative charge of the

CH2O fragment is seen to increase, while that of the AlH3 or BH3 decreases during

‘ H’transfer. These results indicate electron transfer from the AlH3 or BH3 fragment

to CH2O during the‘ H ’transfer.

We subsequently focused on the charge density of the LiAlH4 system under vacuum,

because the solvent effect was not observed in the case of the charge density for this

system. The charge transfer parameter for the CH2O fragment was estimated so as

to clearly understand the relationship between the‘ H ’and electron transfers. This

parameter was calculated by setting the charges at the RS and PS to 0 and 1, respec-

tively. Figure 6.9 summarizes the variations in the rearrangement and charge transfer

parameter with IRC. From Fig. 6.9(a), it can be seen that the charge transfer parame-

ter increases prior to the‘ H’transfer, suggesting that a one electron transfer occurs

before the‘ H ’transfer. Figure 6.7(a) shows that the negative charge of the CH2O

fragment increases during the‘ H’transfer, while the negative charge of the transfer-

ring‘ H ’gradually decreases. Therefore, the‘ H ’transfers to the carbonyl carbon

along with the electron transfer. We also calculated the bond order of the Al-H and

C-H bonds to investigate the behavior of the chemical bond during hydride transfer.

The calculated bond orders for Al-H and C-H were 0.73 and 0.00 at the RS, but 0.57
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and 0.28 at the TS, respectively. These results indicate that an Al-H-C bond is formed

as the one electron transfer takes place prior to the‘H’transfer. In summary, hydride

transfer using LiAlH4 proceeds as follows: (1) a one electron transfer to the carbonyl

carbon occurs, (2) a bridge bond (the Al-H-C bond) forms, (3) the‘H’transfer begins,

with electron transfer as the driving force, and finally (4) a single electron subsequently

moves gradually toward the carbonyl carbon through the Al-H-C bond while the‘ H’

transfers.

In the case of LiBH4, a solvent effect on the charge density was observed. The

changes in charge could be explained by conformational changes of the RS and TS

structures by solvent effects. We estimated the charge transfer parameter in the same

manner as for the LiAlH4 system. Figure 6.9(b) shows that the negative charge of the

CH2O fragment increases before the‘H’transfer, which is the same result as obtained

with LiAlH4. The bond order calculated for B-H and C-H were 0.78 and 0.00 at the

RS, and 0.71 and 0.26 at IRC = 5, respectively. From these results, we found that a

B-H-C bond was formed via one electron transfer in advance of the‘ H’transfer, just

as with LiAlH4. In summary, we found that the essential mechanism of the hydride

transfer using LiBH4 was the same as that when using LiAlH4.

From these charge density analyses, we ascertained that the relationship between

charge transfer and hydride transfer is the same when employing either LiAlH4 or
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LiBH4. However, the TS structures in both systems are different, representing reactant-

like and product-like structures, respectively. By comparing the TS structures of both

systems, we also found that the rate-determining steps in the hydride transfer are

one electron transfer to the carbonyl carbon for the LiAlH4 system, and B-H bond

dissociation for the LiBH4 system. The presence of THF affects the structure and

energy values throughout the reaction by influencing charge separation, although the

hydride transfer and the charge are not affected by the solvent.

6.4 Conclusion

We studied the differences in the geometry of the RS, TS and PS under vacuum and

in THF as well as the dynamic changes associated with the transfer of the H atom and

the charge density along the reaction coordinate for the reduction of formaldehyde by

LiAlH4 or LiBH4, using DFT calculations. We obtained information about the hydride

transfer mechanism that allowed us to investigate the behavior of the hydride and

the charge density along the IRC. The resulting data indicated that Li+ contributes

to the stabilization of the TS, and this effect is more pronounced in the presence of a

solvent. The TS structure associated with the LiAlH4-fomaldehyde complex is reactant-

like, while the LiBH4 structure is product-like. These results are consistent with the

114



Hammond postulate, because the activation energy for the LiAlH4 system is lower than

that for LiBH4. Although these results are also in agreement with various previous

reports, the work presented herein goes further so as to allow a detailed understanding of

the hydride transfer mechanism based on our computational results for the geometries,

energies and charge densities and comparison of both systems.

The essential mechanism of the hydride transfer is the same for both reducing agents,

and may be summarized as follows: (1) one electron transfer to the carbonyl carbon,

(2) formation of a bridge bond (X-H-C bond; X = Al or B), (3) initiation of‘ H ’

transfer driven by electron transfer and (4) one electron flow through the X-H-C bond

in conjunction with transfer of the‘ H ’, during which the hydrogen atom or proton-

coupled electron transfer occurs. The presence of a solvent affects the structure and

energy values through charge separation, but has no effect on the hydride transfer and

charge. Finally, this study suggests that the rate-determining steps in the hydride

transfer when employing LiAlH4 and LiBH4 are one electron transfer to the carbonyl

carbon and B-H bond dissociation, respectively.

115



Table 6.1: Activation energy (∆Ea) and energy difference (∆E) between reactant and
product states for hydride transfer in the vacuum state.

Hydride reagent �Ea (kJ/mol) �E (kJ/mol) 

AlH4
- 49.9 -189 

LiAlH4 10.1 -196 

BH4
- 144.9 -121 

LiBH4 80.8 -117 

 

Table 6.2: Calculated Bond lengths (Å), Angles (deg), Dihedral angles (deg) with
hydride transfer of TS, and activation energy ∆Ea, and energy difference ∆E in Explicit
model and PCM for LiAlH4 system.

  Explicit model PCM 

Length (Å) Al-H 1.67 1.66 

 C-H 1.82 1.79 

Angle (deg) Al-H-C 118 133 

Dihedral angle (deg) Al-H-C-O 25 4 

��

�

 (kJ/mol)  6.51 2.37 

�� (kJ/mol)  -199 -224 
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Table 6.3: Total energies of the RS, TS and PS and activation energy (∆Ea) and energy
difference (∆E) between the RS and PS for hydride transfer.

Hydride 

reagent 
Solvent E (a.u.) �  �  

�Ea 

(kJ/mol) 

�E 

(kJ/mol) 

  
RS TS PS 

  
LiAlH4 �  �  �  �  �  �  

 
Vacuum -366.88584 -366.88201 -366.96052 10.1 -196 

 
THF (�b=7.58) -366.91245 -366.91155 -366.99774 2.37 -224 

LiBH4 �  �  �  �  �  �  

 
Vacuum -149.29184 -149.26107 -149.33650 80.8 -117 

�  THF (�=7.58) -149.30878 -149.29741 -149.37483 30.0 -173 
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Figure 6.1: The generally supported hydride reduction mechanism.
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Figure 6.2: Reactant, transition and product state structures for hydride transfer of (a)
LiAlH4- and (b) LiBH4-formaldehyde complexes in the vacuum state.
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Reactant Product Transition 

Figure 6.3: Reactant, transition and product state structures for hydride transfer of
LiAlH4-formaldehyde complexes including one explicit THF molecule. (This calculation
is carried out using Aug-cc-pVDZ basis set.)
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Figure 6.4: Reactant, transition and product state structures for hydride transfer of (a)
LiAlH4- and (b) LiBH4-formaldehyde complexes in THF.
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Figure 6.5: Rearrangement parameter values (blue) and relative energies (red) for the
RS along the IRC for the (a) LiAlH4- and (b) LiBH4-formaldehyde complexes in the
vacuum state.
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Figure 6.6: Rearrangement parameter values (blue) and relative energies (red) for the
RS along the IRC for the (a) LiAlH4- and (b) LiBH4-formaldehyde complexes in THF.
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Figure 6.7: Charge densities of CH2O (blue), AlH3 (red) and H (purple) and energy
values (black) along the IRC for the (a) LiAlH4- and (b) LiBH4-formaldehyde complexes
under vacuum.
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Figure 6.8: Charge densities of CH2O (blue), BH3 (red) and H (purple) and energy
values (black) along the IRC for the (a) LiAlH4- and (b) LiBH4-formaldehyde complexes
in THF.
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Figure 6.9: Rearrangement (blue) and charge transfer parameters (red) for (a) LiAlH4

and (b) LiBH4 under vacuum.
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Chapter 7

Conclusion

Potential energy surface (PES) is an important theoretical approach for understanding

chemical reactions. Once the PES is obtained, the analysis of the reactions such as

determination of rate constants and reaction path can be performed using the PES. In

addition, the quantum effect of nucleus in the reaction, which is important for proton

transfer, can be treated using quantum dynamics simulation on the PES. Therefore, to

investigate the chemical reaction mechanism, it is important work to construct the PES

and perform the quantum dynamics simulation on the PES, which possesses a number

of attractive features for various molecular systems.

In this dissertation, a simple construction method of global PES and analytical

method using the PES for intermolecular proton transfer were discussed. Chapter 3 was

found that PES for intermolecular proton transfer could be constructed by using Morse

potential as the diagonal matrix elements and Gaussian function as the non-diagonal
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matrix element in the diabatic picture. In addition, a simple method to uniquely

construct the diabatic potentials was proposed using these analytical functions. In

chapter 4, a simple thermal rate constant estimation method for using a quantum

dynamics simulation on the diabatic potentials were proposed. The proton transfer

rate constants determined by this approach were in good agreement with the reference

values. Furthermore, since this approach can be performed easily for homo- and hetero-

molecular pairs, it can be applied to intermolecular proton transfer estimations for

various large molecular systems. Therefore this approach was applied to the proton

transfer in proton conductive material in chapter 5. The results showed that the proton

diffusion path in this material in terms of local proton transfer. Finally a detailed

analysis of hydride transfer using adiabatic potential was discussed in chapter 6. The

analysis using IRC was found that the change in geometries, solvent effect, and charge

transfer process in detail during the hydride transfer process.

From the above, it was concluded that an analytical approach to various proton

transfer systems using PES, especially diabatic picture, was developed.
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