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A power-law corrected entropy based on a quantum entanglement is considered to be a viable black-hole
entropy. In this study, as an alternative to Bekenstein-Hawking entropy, a power-law corrected entropy is
applied to Padmanabhan’s holographic equipartition law to thermodynamically examine an extra driving
term in the cosmological equations for a flat Friedmann-Robertson-Walker universe at late times.
Deviations from the Bekenstein-Hawking entropy generate an extra driving term (proportional to the
αth power of the Hubble parameter, where α is a dimensionless constant for the power-law correction) in
the acceleration equation, which can be derived from the holographic equipartition law. Interestingly, the
value of the extra driving term in the present model is constrained by the second law of thermodynamics.
From the thermodynamic constraint, the order of the driving term is found to be consistent with the order of
the cosmological constant measured by observations. In addition, the driving term tends to be constantlike
when α is small, i.e., when the deviation from the Bekenstein-Hawking entropy is small.

DOI: 10.1103/PhysRevD.96.103507

I. INTRODUCTION

An accelerated expansion of the late universe implies a
positive cosmological constant Λ in standard lambda cold
dark matter ðΛCDMÞmodels [1,2]. However, the measured
cosmological constant is much smaller than the theoretical
value from quantum field theory [3]. Various cosmological
models [4–9] have been proposed to resolve this problem
with the cosmological constant. In particular, thermody-
namic scenarios have been examined using the holographic
principle, which assumes that the information of the bulk is
stored on the horizon [10]. For example, cosmological
equations in a Friedmann-Robertson-Walker (FRW) uni-
verse [11,12] have been studied from the viewpoint of
entropic forces [13–15], while an entropic cosmology,
which assumes the usually neglected surface terms on
the horizon, has been suggested [16–20]. In these studies,
the Bekenstein–Hawking entropy [21] is generally used,
replacing the horizon of a black hole with the horizon of the
universe.
Recently, another thermodynamic scenario called the

“holographic equipartition law” has been proposed [22],
for which cosmological equations in a flat FRW universe
were successfully derived using the Bekenstein-Hawking
entropy from the expansion of cosmic space due to the
difference between the degrees of freedom on the surface
and in the bulk. The emergence of the cosmological
equations has been examined from various viewpoints
[23–30]. However, an extra driving term, related to Λ
and a time-varying ΛðtÞ, has not been directly derived from
the Bekenstein-Hawking entropy [31].

The Bekenstein-Hawking entropy is considered to be
additive based on Boltzmann-Gibbs statistics. However,
self-gravitating systems exhibit peculiar features, such as
nonextensive statistics [32–34]. Therefore, the Tsallis-Cirto
entropy [35] and a modified Rényi entropy [36,37] have
been proposed for black-hole entropy. In fact, the present
author has applied the modified Rényi entropy to the
holographic equipartition law [31]. Consequently, a
deviation from the Bekenstein-Hawking entropy is found
to play an important role. In particular, a constantlike
driving term can be derived when a specific condition is
mathematically satisfied [31]; however, the mathematical
condition cannot be explained from a physical viewpoint.
In addition, the physical origin of the modified Rényi
entropy is unclear [31]. Therefore, it is worthwhile using
an alternative type of entropy to develop a deeper under-
standing of the extra driving term in cosmological equa-
tions from the holographic equipartition law.
For example, quantum corrections, such as logarithmic

corrections and power-law corrections, have been proposed
for black-hole entropy. The logarithmic correction arises
from loop quantum gravity [38–40], while the power-law
correction appears in treatments of the entanglement of
quantum fields between the inside and outside of the
horizon [41,42]. The present author has found that the
power-law corrected entropy [41] is suitable for the holo-
graphic equipartition law, due to both its power-law
formula and small corrections at late times. In fact, the
power-law corrected entropy has been used to study the
generalized second law in universes [42–44], holographic
dark energy models [45], fðTÞ-gravity models [46,47], and
other applications.*komatsu@se.kanazawa-u.ac.jp

PHYSICAL REVIEW D 96, 103507 (2017)

2470-0010=2017=96(10)=103507(9) 103507-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.103507
https://doi.org/10.1103/PhysRevD.96.103507
https://doi.org/10.1103/PhysRevD.96.103507
https://doi.org/10.1103/PhysRevD.96.103507


In this context, we apply the power-law corrected
entropy to the holographic equipartition law to thermody-
namically examine an extra driving term in cosmological
equations in a flat FRW universe. The value of the driving
term is expected to be restricted by the second law of
thermodynamics. Through the present study, the order of
the extra driving term can be discussed from a thermody-
namics viewpoint.
The remainder of the present article is organized as

follows. In Sec. II, entropies on the Hubble horizon of a
flat FRW universe are discussed. The Bekenstein-Hawking
entropy is reviewed in Sec. II A, while a power-law cor-
rected entropy is introduced in Sec. II B. Padmanabhan’s
holographic equipartition law is briefly reviewed in Sec. III.
In Sec. IV, the power-law corrected entropy is applied to the
holographic equipartition law, to derive an acceleration
equation that includes an extra driving term. In Sec. V, the
generalized second law of thermodynamics for the present
model is examined and the order of the driving term is
discussed from a thermodynamics viewpoint. Finally, in
Sec. VI, the conclusions of the study are presented.
It should be noted that an assumption of equipartition

of energy used for the holographic equipartition law has
not yet been established in a cosmological spacetime. In
addition, a power-law corrected entropy looks strange,
due to its power-law formula. However, the holographic
equipartition law with the power-law corrected entropy is
expected to play an important role in examining an extra
driving term in cosmological equations thermodynami-
cally. Therefore, in this paper, as a viable scenario, the
power-law corrected entropy is applied to the holographic
equipartition law.

II. ENTROPY ON THE HUBBLE HORIZON

The Bekenstein-Hawking entropy [21] is generally used
as an associate entropy on the horizon of the universe.
Accordingly, in Sec. II A, the Bekenstein-Hawking entropy
is briefly reviewed. In Sec. II B, a power-law corrected
entropy [41] is introduced. In the present study, the power-
law corrected entropy is used for entropy on the Hubble
horizon in a flat FRW universe because its power-law
formula is suitable for the holographic equipartition law.
Logarithmic corrections based on loop quantum gravity
[38–40] are not discussed in this paper.

A. Bekenstein-Hawking entropy

The Bekenstein-Hawking entropy SBH is written as

SBH ¼ kBc3

ℏG
AH

4
; ð1Þ

where kB, c, G, and ℏ are the Boltzmann constant, the
speed of light, the gravitational constant, and the reduced
Planck constant, respectively [21]. The reduced Planck
constant is defined by ℏ≡ h=ð2πÞ, where h is the Planck

constant. AH is the surface area of the sphere with the
Hubble horizon (radius) rH, given by

rH ¼ c
H
; ð2Þ

where the Hubble parameter H is defined by [18–20]

H ≡ da=dt
aðtÞ ¼ _aðtÞ

aðtÞ ; ð3Þ

and aðtÞ is the scale factor at time t. Substituting AH ¼
4πr2H into Eq. (1) and using Eq. (2), we obtain [18–20,31]

SBH ¼ kBc3

ℏG
AH

4
¼

�
πkBc5

ℏG

�
1

H2
¼ K

H2
; ð4Þ

where K is a positive constant given by

K ¼ πkBc5

ℏG
¼ πkBc2

L2
p

; ð5Þ

and Lp is the Planck length, written as

Lp ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
: ð6Þ

From Eq. (4), the rate of change of entropy is given by

_SBH ¼ d
dt

�
K
H2

�
¼ −2K _H

H3
: ð7Þ

Numerous observations imply H > 0 and _H < 0 [30]. (For
observed data, see, e.g., Ref. [48].) Therefore, the second
law of thermodynamics for the Bekenstein-Hawking
entropy should satisfy

_SBH ¼ −2K _H
H3

> 0: ð8Þ

B. Power-law corrected entropy

Das et al. have suggested a power-law corrected entropy,
based on the entanglement of quantum fields between the
inside and outside of the horizon [41]. The formula of the
power-law corrected entropy is summarized in the work of
Radicella and Pavón [42]. In addition, Sheykhi and Hendi
have pointed out that power-law corrections are expected to
be small in the late universe, whereas the corrections are
large in the early universe [44].
According to Ref. [42], the power-law corrected entropy

can be written as

Spl ¼ SBHð1 − KαA
1−α

2

H Þ; ð9Þ
where α is a dimensionless parameter and Kα is given by
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Kα ¼
αð4πÞα2−1

ð4 − αÞr2−αc
; ð10Þ

and rc is the crossover scale. When α ¼ 0, Spl becomes
SBH. Note that Kα is different from K in Eq. (5).
Substituting Eq. (10) and AH ¼ 4πr2H into Eq. (9) and

using rH ¼ c=H and rH0 ¼ c=H0, we obtain

Spl ¼ SBH

�
1 −

αð4πÞα2−1
ð4 − αÞr2−αc

ð4πr2HÞ1−
α
2

�

¼ SBH

�
1 −

α

4 − α

�
rH
rc

�
2−α

�

¼ SBH

�
1 −

α

4 − α

�
rH0

rc

H0

H

�
2−α

�
; ð11Þ

whereH0 and rH0 are the Hubble parameter and the Hubble
radius at the present time, respectively. Therefore, from
Eq. (11), the entropy SH on the horizon can be rewritten as

SH ¼ Spl ¼ SBH

�
1 −Ψα

�
H0

H

�
2−α

�
; ð12Þ

where Ψα is a dimensionless parameter given by

Ψα ¼
α

4 − α

�
rH0

rc

�
2−α

; ð13Þ

and α and Ψα are considered to be constant. In this study,
Ψα is assumed to be positive for an accelerating universe,
as examined in Sec. IV. Thus, 0 < α < 4 is obtained from
Eq. (13) and Ψα > 0. (The crossover scale rc can likely be
identified with rH0 [42,49]. In this case, Ψα reduces to α

4−α.)
To discuss the second law of thermodynamics, we

examine the rate of change of SH. Differentiating
Eq. (12) with respect to t and using Eqs. (4) and (7), we
have

_SH ¼ _SBH

�
1 −

ΨαH2−α
0

H2−α

�
þ SBH

�ð2 − αÞΨαH2−α
0

_H
H3−α

�

¼ −2K _H
H3

�
1 −

ΨαH2−α
0

H2−α

�
þ K
H2

2ð1 − α
2
ÞΨαH2−α

0
_H

H3−α

¼ −2K _H
H3

�
1 −

ð2 − α
2
ÞΨαH2−α

0

H2−α

�

¼ _SBH

�
1 −

�
4 − α

2

�
Ψα

�
H0

H

�
2−α

�
; ð14Þ

where _SBH > 0 from Eq. (8). Accordingly, to satisfy
_SH > 0, we require

1 −
�
4 − α

2

�
Ψα

�
H0

H

�
2−α

> 0: ð15Þ

Substituting Eq. (13) into Eq. (15) and using rH ¼ c=H and
rH0 ¼ c=H0, we get an equivalent inequality,

1 −
α

2

�
rH
rc

�
2−α

> 0: ð16Þ

Using these constraints, we can discuss the order of an extra
driving term in cosmological equations, as examined later.
The inequality given by Eq. (16) is consistent with that in
Ref. [44]. If rc ¼ rH, Eq. (16) reduces to α < 2, which is
consistent with the result in Refs. [43,44]. That is, the
constraint on a positive α can be written as 0 < α < 2. This
constraint is stricter than the previously mentioned one,
0 < α < 4, which is related to an accelerating universe.
Therefore, the strict constraint, 0 < α < 2, is used here.
(The generalized second law of thermodynamics is exam-
ined in Refs. [43,44]. Those works are discussed in Sec. V.)
The power-law corrected entropy looks strange due to its

power-law formula although it is considered to be a viable
black-hole entropy. However, as examined in Sec. IV, both
its power-law formula and small corrections at late times
are suitable for the holographic equipartition law. (The
small correction could be interpreted as a weak quantum
entanglement in the late universe.) Accordingly, in this
paper, the power-law corrected entropy is applied to the
holographic equipartition law.
In the present study, we consider an entropy on

the Hubble horizon of a flat FRW universe. In a flat
universe (k ¼ 0), the Hubble horizon rH ¼ c=H is equiv-
alent to an apparent horizon rA because rA is given by
rA ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðk=a2Þ

p
, where k is a curvature constant.

A nonflat universe for the holographic equipartition law
is examined in Ref. [24] and an apparent horizon for
power-law corrections is studied in Refs. [42–44].

III. HOLOGRAPHIC EQUIPARTITION LAW

In this section, Padmanabhan’s holographic equipartition
law is introduced [22]. A brief review of the law is also
given in my previous study [31], based on Padmanabhan’s
work [22] and other related works [23–28].
In an infinitesimal interval dt of cosmic time, the

increase dV of the cosmic volume can be expressed as

dV
dt

¼ L2
pðNsur − ϵNbulkÞ × c; ð17Þ

where Nsur is the number of degrees of freedom on a
spherical surface of Hubble radius rH, while Nbulk is the
number of degrees of freedom in the bulk [22]. Lp is the
Planck length given by Eq. (6) and ϵ is a parameter
discussed below. In the present study, c is not set to be
1 and, therefore, the right-hand side of Eq. (17) includes
c [31]. Using rH ¼ c=H, the Hubble volume V can be
written as
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V ¼ 4π

3
r3H ¼ 4π

3

�
c
H

�
3

: ð18Þ

From Eq. (18), the rate of change of volume is given by

dV
dt

¼ d
dt

�
4π

3

�
c
H

�
3
�

¼ −4πc3
�

_H
H4

�
: ð19Þ

In this calculation, r has been set to be rH before the time
derivative is calculated [22].
The number of degrees of freedom in the bulk is assumed

to obey the equipartition law of energy [22],

Nbulk ¼
jEj

1
2
kBT

; ð20Þ

where the Komar energy jEj contained inside the Hubble
volume V is given by

jEj ¼ jðρc2 þ 3pÞjV ¼ −ϵðρc2 þ 3pÞV; ð21Þ

and ρ and p are the mass density of cosmological fluids and
the pressure of cosmological fluids, respectively [31]. ϵ is a
parameter defined as [22,23]

ϵ≡
�þ1 ðρc2 þ 3p < 0∶ an accelerating universeÞ;
−1 ðρc2 þ 3p > 0∶ a decelerating universeÞ:

ð22Þ

The temperature T on the horizon is written as

T ¼ ℏH
2πkB

: ð23Þ

The number of degrees of freedom on the spherical surface
is given by

Nsur ¼
4SH
kB

; ð24Þ

where SH is the entropy on the Hubble horizon [31].
Various types of entropy can be used for SH. In the next
section, SH is set to be a power-law corrected entropy given
by Eq. (12).
We now derive an acceleration equation from the holo-

graphic equipartition law. In this paper, ρc2 þ 3p < 0 is
selected [22] and, therefore, ϵ ¼ þ1 from Eq. (22). (The
following result is not affected by this selection, because
the same result can be obtained even if ρc2 þ 3p > 0 is
selected [23].) We first calculateNbulk in the right-hand side
of Eq. (17). Substituting Eqs. (21) and (23) into Eq. (20)
and using Eq. (18), we obtain Nbulk given by [31]

Nbulk ¼
jEj

1
2
kBT

¼ −
ð4πÞ2c5

3ℏ

�
ρþ 3p

c2

�
1

H4
: ð25Þ

In addition, substituting ϵ ¼ þ1 and Eqs. (6), (19), (24),
and (25) into Eq. (17) and solving the resultant equation
with regard to _H [31], we have

_H ¼ −
4πG
3

�
ρþ 3p

c2

�
−
SHH4

K
; ð26Þ

where K is given by Eq. (5). Substituting Eq. (26) into
ä=a ¼ _H þH2 and using SBH ¼ K=H2 given by Eq. (4),
the acceleration equation is written as

ä
a
¼ _H þH2 ¼ −

4πG
3

�
ρþ 3p

c2

�
−
SHH4

K
þH2

¼ −
4πG
3

�
ρþ 3p

c2

�
þH2

�
1 −

SH
SBH

�
: ð27Þ

When SH ¼ SBH, the second term H2ð1 − SH=SBHÞ on the
right-hand side is zero [22]. However, when SH ≠ SBH, the
second term is nonzero, i.e., an extra driving term appears.
The driving term depends on the deviation of SH from SBH.
As mentioned previously, an assumption of equipartition

of energy is used for the holographic equipartition law,
according to Ref. [22]. However, the assumption has not
yet been established in a cosmological spacetime. This task
is left for future research. In the present study, the
assumption of equipartition is considered to be a viable
scenario even in the cosmological spacetime.

IV. HOLOGRAPHIC EQUIPARTITION LAWWITH
A POWER-LAW CORRECTED ENTROPY

In this section, a power-law corrected entropy given by
Eq. (12) is applied to the holographic equipartition law. The
power-law corrected entropy is written as

SH ¼ Spl ¼ SBH

�
1 −Ψα

�
H0

H

�
2−α

�
; ð28Þ

where α and Ψα are dimensionless positive constants.
Substituting Eq. (28) into Eq. (27), we have the acceleration
equation

ä
a
¼ −

4πG
3

�
ρþ 3p

c2

�
þ ΨαH2−α

0 Hα: ð29Þ

The second term on the right-hand side, ΨαH2−α
0 Hα, is an

extra driving term proportional to Hα. A positive second
term is required for an accelerating universe. Accordingly,
Ψα > 0 is required because an expanding universe requires
H > 0. Consequently, 0 < α < 4 is obtained from Eq. (13)
and Ψα > 0. (The above acceleration equation is different
from that examined in previous studies [28,31,42–47]. A
similar driving term was discussed in Ref. [29].)
In this paper, the present model is considered to be a

particular case of ΛðtÞCDM models in time-varying ΛðtÞ
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cosmologies [31]. Accordingly, the Friedmann, accelera-
tion, and continuity equations can be written as

H2 ¼ 8πG
3

ρþ fαðHÞ; ð30Þ

ä
a
¼ −

4πG
3

�
ρþ 3p

c2

�
þ fαðHÞ; ð31Þ

_ρþ 3
_a
a

�
ρþ p

c2

�
¼ −

3_fαðHÞ
8πG

; ð32Þ

where fαðHÞ is the extra driving term given by

fαðHÞ ¼ ΨαH2−α
0 Hα: ð33Þ

When fαðHÞ is constant, the continuity equation is written
as _ρþ 3ð _a=aÞðρþ p=c2Þ ¼ 0, as for ΛCDM models. In
contrast, when fαðHÞ varies with time, the right-hand side
of the continuity equation is nonzero. In the holographic
principle, the nonzero right-hand side can be interpreted as
a kind of transfer of energy between the bulk (the universe)
and the boundary (the horizon of the universe) [31]. The
energy transfer is expected to be small, as discussed later.
We now observe evolutions of fαðHÞ in the late universe.

To this end, Eq. (33) is rewritten as

fαðHÞ ¼ ΨαH2−α
0 Hα ¼ ΨαH2

0

�
H
H0

�
α

; ð34Þ

where ΨαH2
0 is constant. The normalized extra driving

term fαðHÞ=ðΨαH2
0Þ given by ðH=H0Þα is observed here.

Typical results for α ¼ 0.1, 0.5, and 1 are plotted in Fig. 1.
In this figure, H=H0 varies from 1 to 3, which approx-
imately corresponds to the range of redshift z from
0 to 2.4 [48]. As shown in Fig. 1, the normalized extra
driving term is not greatly influenced by H=H0 when α is

small, e.g., α ¼ 0.1. That is, the extra driving term tends to
be constantlike for small values of α. In the next section, the
order of the driving term is examined from a thermody-
namics viewpoint.
As discussed in Ref. [44], power-law corrections based

on the entanglement of quantum fields are expected to be
small in the late universe, whereas they are large in the early
universe. Therefore, the small value of α could be inter-
preted as a weak entanglement in the late universe.
Of course, the present result depends on the choice of
entropy. Note that a similar constantlike term can be
obtained when the deviation of a modified Rényi entropy
from the Bekenstein-Hawking entropy is small [31].
The cosmological equations in the present model are

considered to be equivalent to those in ΛðtÞCDM models.
Various driving terms have been examined in theΛðtÞCDM
model [6,7]. In particular, a combination of the constant
and H2 terms, i.e., ΛðtÞ ¼ C0H2

0 þ C1H2, was found to be
favored [50], where C0 and C1 are dimensionless constants.
For example, Solà et al. [50] have found that extra driving
terms slightly deviate from a constant value because C1H2

terms exist and are small. That is, the extra driving term is
constantlike and the deviation from a constant is small.
Similarly, in the present model, the extra driving term,
fαðHÞ, should be constantlike. Consequently, the energy
transfer across the horizon, related to the right-hand side of
Eq. (32), is expected to be small.
The background evolution for the present model can be

calculated from Eqs. (30), (31), and (33), using a method in
Ref. [31]. The solution is written as

a
a0

¼
�

1 − Ψα

ðH=H0Þ2−α −Ψα

� 2
3ð2−αÞ

; ð35Þ

where Ψα is given by Eq. (13) and a0 is the scale factor
at the present time. In the ΛCDM model, the background
evolution is given by

a
a0

¼
�

1 − ΩΛ

ðH=H0Þ2 −ΩΛ

�1
3

; ð36Þ

where ΩΛ is the density parameter for Λ. From Eqs. (35)
and (36), it is found that when α is small, Ψα can behave as
if it is ΩΛ.
The present model is considered to be a particular case of

ΛðtÞCDM models. However, it may be possible to discuss
this model from a different viewpoint. For example, when α
is small, a power-law corrected entropy given by Eq. (9) is
approximately equivalent to SBH. In this case, it can be
considered that a small deviation from SBH should be
included in constants in Eq. (1), e.g.,G could be interpreted
as a varying gravitational constant. That is, when α is small,
the present model can behave as if it is a scalar field
cosmology with a slowly varying action. For scalar field
theories, see, e.g., Ref. [9] and references therein. From this

FIG. 1. Evolutions of the normalized extra driving term
fαðHÞ=ðΨαH2

0Þ in the late universe. The normalized term is
given by ðH=H0Þα from Eq. (34).
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viewpoint, it should be natural that the properties of
the present model for small α are similar to those of
the ΛCDM model. (Possibly, the present model may be
related to environment-dependent fundamental physical
constants [51].)

V. GENERALIZED SECOND LAW FOR THE
PRESENT MODEL

In this section, we examine the generalized second law of
thermodynamics for the present model. To this end, both
the power-law corrected entropy on the Hubble horizon SH
and the entropy of matter inside the horizon Sm are
considered [44]. The total entropy St is given as

St ¼ SH þ Sm: ð37Þ

From Eq. (14), the rate of change of SH is written as

_SH ¼ _SBH

�
1 −

�
4 − α

2

�
Ψα

�
H0

H

�
2−α

�
: ð38Þ

In contrast, the rate of change of Sm for the present model
can be calculated from the first law of thermodynamics.
From Eq. (A6) in the Appendix, we have

_Sm ¼ _SBH

�
αΨα

2

��
H0

H

�
2−α

: ð39Þ

For details, see the Appendix.
It should be noted that the generalized second law for the

modified Friedmann equations has been examined using
the power-law corrected entropy [42–44]. Radicella and
Pavón studied the generalized second law, based on the
Clausius relation and the principle of equipartition of
energy [42]. In contrast, Karami et al. [43] and Sheykhi
and Hendi [44] used the first law of thermodynamics to
discuss the generalized second law. In this sense, the
present study is similar to the latter because _Sm is calculated
from the first law of thermodynamics. However, the
cosmological equations given by Eqs. (30)–(32) are differ-
ent from the equations in those works. Therefore, the
generalized second law discussed below is slightly different
from that in those works.
Using Eqs. (37)–(39), the rate of change of the total

entropy is

_St ¼ _SH þ _Sm

¼ _SBH

�
1 − ð2 − αÞΨα

�
H0

H

�
2−α

�
; ð40Þ

where _SBH > 0 from Eq. (8). To satisfy _St > 0, we require

ð2 − αÞΨα

�
H0

H

�
2−α

< 1: ð41Þ

Substituting Eq. (13) into Eq. (41) and using rH ¼ c=H and
rH0 ¼ c=H0, we have

αð2 − αÞ
4 − α

�
rH
rc

�
2−α

< 1: ð42Þ

If rc ¼ rH, 0 < α < 4 is obtained from Eq. (42). This
constraint agrees with that from an accelerating universe
discussed in the previous section. In contrast, from
Eq. (16), 0 < α < 2 is required for _SH > 0, as examined
in Sec. II B. The strict constraint, 0 < α < 2, is used in the
present paper. Multiplying Eq. (41) by a positive value
H2=ð2 − αÞ gives

ΨαH2−α
0 Hα <

H2

2 − α
; ð43Þ

and using Eq. (33), we obtain

fαðHÞ < H2

2 − α
: ð44Þ

The inequality given by Eq. (44) indicates that the extra
driving term fαðHÞ is restricted by the generalized second
law of thermodynamics, i.e., _St > 0. Keep in mind that
fαðHÞ < 2H2

4−α is obtained directly from _SH > 0, without

using _St > 0. In this way, the second law of thermody-
namics can constrain the value of an extra driving term
because a power-law corrected entropy is employed in the
present study.
Numerous observations imply _H < 0 [30], as discussed

in Sec. II A. Therefore, when H ¼ H0, the right-hand side
of Eq. (44) is a minimum. The strictest constraint can be
written as

fαðHÞ < H2
0

2 − α
: ð45Þ

Excluding a case of α ≈ 2 and using Oð 1
2−αÞ ≈ 1, the order

of the extra driving term, fαðHÞ, can be approximately
written as

OðfαðHÞÞ ⪅ OðH2
0Þ: ð46Þ

The constraint given by Eq. (46) is derived from the
generalized second law of thermodynamics, _St > 0. As a
matter of fact, Eq. (46) can be obtained directly from
fαðHÞ < 2H2

4−α, which is based on _SH > 0. That is, the

equivalent constraint can be obtained from _SH > 0, without
using _St > 0. (A similar constraint was discussed in
Ref. [31]. However, it was derived from a mathematical
condition to obtain a constantlike term, unlike in the
present study.)
In the ΛCDM model, the order of the density parameter

ΩΛ for Λ is 1, e.g., ΩΛ ¼ 0.692 from the Planck 2015
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results [2]. Accordingly, the order of the cosmological
constant term, Λ=3, in the Friedmann and acceleration
equations, can be approximately written as

O

�
Λ
3

�
¼ OðΩΛH2

0Þ ≈OðH2
0Þ; ð47Þ

where ΩΛ is defined by Λ=ð3H2
0Þ [31]. From Eqs. (46) and

(47), the order of fαðHÞ is found to be consistent with the
order of Λ=3 measured in cosmological observations. This
result may imply that the cosmological constant problem
could be discussed from a thermodynamics viewpoint.
So far, we have focused on the late universe. We now

briefly consider the inflation of the early universe. It is well-
known that higher exponents such as H4 terms are required
for inflation. The higher exponent has been closely exam-
ined in ΛðtÞCDM models, see, e.g., Ref. [52]. In this study,
an extra driving term proportional toHα is derived from the
holographic equipartition law with a power-law corrected
entropy. It is found that 0 < α < 4 is obtained from an
accelerating universe (and _St > 0), whereas 0 < α < 2

results from _SH > 0. Therefore, in the present model,
the higher exponent for inflation is likely to be restricted
by the latter constraint. The constraint on α has been closely
studied in Ref. [42]. However, cosmological equations in
Ref. [42] are different from those in the present study.
Further studies should be required. This task is left for
future research.

VI. CONCLUSIONS

We have applied a power-law corrected entropy based on
a quantum entanglement to Padmanabhan’s holographic
equipartition law to thermodynamically examine an extra
driving term in the cosmological equations for a flat FRW
universe at late times. Because of a deviation from the
Bekenstein-Hawking entropy, an extra driving term (pro-
portional toHα) in the acceleration equation can be derived
from the holographic equipartition law. Interestingly, the
obtained driving term in the acceleration equation is found
to be restricted by the second law of thermodynamics. The
thermodynamic constraint indicates that the order of the
driving term is consistent with the order of the cosmologi-
cal constant measured by observations. When α is small
(i.e., when the deviation from the Bekenstein-Hawking
entropy is small), the extra driving term is found to be
constantlike as if it were a cosmological constant. The
small value of α could be interpreted as a weak quantum
entanglement in the late universe. Therefore, it may be
possible to discuss the so-called cosmological constant
problem from a thermodynamics viewpoint, using the
holographic equipartition law with the power-law corrected
entropy for the weak quantum entanglement. In this way,
the present study is expected to provide new insights into
cosmological models from a thermodynamics viewpoint.

Keep in mind that the obtained results depend on the choice
of the entropy on the horizon.
Note that the generalized second law of thermodynam-

ics, _St ¼ _SH þ _Sm > 0, has been used here in discussing a
thermodynamic constraint. However, an equivalent con-
straint can be obtained directly from _SH > 0, without
using _St > 0.
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APPENDIX: ENTROPY OF MATTER

In this appendix, we examine the rate of change of the
entropy of matter inside the horizon. For this purpose, the
first law of thermodynamics for nonadiabatic processes [4]
is briefly reviewed, according to Ref. [20]. First, consider a
closed system containing a constant number of particles in a
volume V. From the first law of thermodynamics, the heat
flow dQ across a region during a time interval dt is given by

dQ ¼ dEþ pdV; ðA1Þ

where dE and dV are changes in the internal energy E and
volume V of the region, respectively [53]. Dividing this
equation by dt and calculating several operations [20],
we have

dQ
dt

¼ d
dt

ðρc2VÞ þ p
dV
dt

¼
�
_ρþ 3

_a
a

�
ρþ p

c2

��
c2
�
4π

3
r3
�
: ðA2Þ

In this calculation, we consider a sphere of arbitrary radius
expanding along with the universal expansion [54]. For
details, see Ref. [20]. In the following, r is set to be rH. In
addition, dQ=dt is assumed to be related to reversible
entropy [55], and the entropy change dS is assumed to be
expressed by

dS ¼ dQ
T

: ðA3Þ

If adiabatic (and isentropic) processes are considered, the
continuity equation given by _ρþ 3ð _a=aÞðρþ p=c2Þ ¼ 0 is
obtained from Eq. (A2). In the present model, the continuity
equation is given by Eq. (32), assuming energy flows across
theHubble horizon, because the presentmodel is considered
to be a particular case ofΛðtÞCDMmodels. The energy flow
is small when the extra driving term fαðHÞ is constantlike.
The temperature of matter, Tm, is assumed to be

equivalent to the temperature on the Hubble horizon, T,
given by Eq. (23) [44]. That is, energy flows across the
horizon are considered to be small. Therefore, from
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Eqs. (A2) and (A3), the rate of change of entropy of matter
can be written as

_Sm ¼ 1

T

�
_ρþ 3

_a
a

�
ρþ p

c2

��
c2
�
4π

3
r3H

�
: ðA4Þ

In ΛðtÞCDM models, small energy flows are favored
[6,7,50], as discussed in Sec. IV. Thus, the small energy
flow considered here is consistent with those works.
Substituting Eqs. (2), (23), and (32) into Eq. (A4) and

using Eq. (5), we have

_Sm ¼ 1
ℏH
2πkB

�
−
3_fα
8πG

�
c2
�
4π

3

c3

H3

�
¼ − _fα

H4

�
πkBc5

ℏG

�

¼ − _fαK
H4

: ðA5Þ

In addition, substituting Eq. (33) into Eq. (A5) and using
Eq. (7), we obtain

_Sm ¼ − d
dt ðΨαH2−α

0 HαÞK
H4

¼ −2K _H
H3

�
αΨα

2

��
H0

H

�
2−α

¼ _SBH

�
αΨα

2

��
H0

H

�
2−α

: ðA6Þ

It can be confirmed that _Sm > 0 is satisfied because _SBH,H,
α, and Ψα are positive.
To observe contributions of _Sm, the dependence of _Sm= _St

on α is plotted in Fig. 2. Here the rate of change of the total
entropy, _St ¼ _SH þ _Sm, is given by Eq. (40). In addition, rc
included in Ψα is set to be rc ¼ rH0. As shown in Fig. 2,
_Sm= _St rapidly decreases with decreasing α. The contribu-
tion of _Sm is sufficiently small when α < 1. The small value
of α is consistent with small energy flows. In this case, _SH
rather than _Sm is dominant in _St.
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Gómez-Valent, J. Solà, and S. Basilakos, J. Cosmol.
Astropart. Phys. 01 (2015) 004.

[8] S. Nojiri and S. D. Odintsov, Phys. Lett. B 639, 144 (2006);
Y. Wang, D. Wands, G.-B. Zhao, and L. Xu, Phys. Rev. D
90, 023502 (2014); N. Tamanini, Phys. Rev. D 92, 043524
(2015); Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D
95, 103504 (2017).

[9] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012).

[10] G. ’t Hooft, arXiv:gr-qc/9310026; L. Susskind, J. Math.
Phys. (N.Y.) 36, 6377 (1995); R. Bousso, Rev. Mod. Phys.
74, 825 (2002).

[11] A. Sheykhi, Phys. Rev. D 81, 104011 (2010); K. Karami,
A. Sheykhi, N. Sahraei, and S. Ghaffari, Eur. Phys. Lett. 93,
29002 (2011).

[12] H. M. Sadjadi and M. Jamil, Eur. Phys. Lett. 92, 69001
(2010); S. Mitra, S. Saha, and S. Chakraborty, Mod. Phys.
Lett. A 30, 1550058 (2015).

[13] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).

FIG. 2. Dependence of _Sm= _St on α for H=H0 ¼ 1, 2, and 3,
plotted from α ¼ 10−2 to α ¼ 2. Note that rc is set to be rc ¼ rH0.

NOBUYOSHI KOMATSU PHYSICAL REVIEW D 96, 103507 (2017)

103507-8

https://doi.org/10.1038/34124
https://doi.org/10.1086/300499
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/PhysRevLett.82.896
https://doi.org/10.1142/S0218271800000542
https://doi.org/10.1142/S0218271800000542
https://doi.org/10.12942/lrr-2001-1
https://doi.org/10.1016/S0370-1573(03)00120-0
https://doi.org/10.1103/PhysRevLett.106.101302
https://doi.org/10.1073/pnas.85.20.7428
https://doi.org/10.1073/pnas.85.20.7428
https://doi.org/10.1103/PhysRevD.53.4287
https://doi.org/10.1103/PhysRevD.64.063501
https://doi.org/10.1103/PhysRevD.64.063501
https://doi.org/10.1103/PhysRevD.90.044067
https://doi.org/10.1088/1475-7516/2016/03/027
https://doi.org/10.1088/1475-7516/2016/03/027
https://doi.org/10.1016/0550-3213(87)90129-5
https://doi.org/10.1103/PhysRevD.58.043506
https://doi.org/10.1103/PhysRevD.87.047302
https://doi.org/10.1103/PhysRevD.80.083511
https://doi.org/10.1103/PhysRevD.80.083511
https://doi.org/10.1088/1475-7516/2011/08/007
https://doi.org/10.1088/1475-7516/2015/01/004
https://doi.org/10.1088/1475-7516/2015/01/004
https://doi.org/10.1016/j.physletb.2006.06.065
https://doi.org/10.1103/PhysRevD.90.023502
https://doi.org/10.1103/PhysRevD.90.023502
https://doi.org/10.1103/PhysRevD.92.043524
https://doi.org/10.1103/PhysRevD.92.043524
https://doi.org/10.1103/PhysRevD.95.103504
https://doi.org/10.1103/PhysRevD.95.103504
https://doi.org/10.1007/s10509-012-1181-8
http://arXiv.org/abs/gr-qc/9310026
https://doi.org/10.1063/1.531249
https://doi.org/10.1063/1.531249
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/PhysRevD.81.104011
https://doi.org/10.1209/0295-5075/93/29002
https://doi.org/10.1209/0295-5075/93/29002
https://doi.org/10.1209/0295-5075/92/69001
https://doi.org/10.1209/0295-5075/92/69001
https://doi.org/10.1142/S0217732315500583
https://doi.org/10.1142/S0217732315500583
https://doi.org/10.1103/PhysRevLett.75.1260


[14] T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010).
[15] E. Verlinde, J. High Energy Phys. 04 (2011) 029.
[16] D. A. Easson, P. H. Frampton, and G. F. Smoot, Phys. Lett.

B 696, 273 (2011); Int. J. Mod. Phys. A 27, 1250066
(2012).

[17] Y. F. Cai, J. Liu, and H. Li, Phys. Lett. B 690, 213 (2010);
T. S. Koivisto, D. F. Mota, and M. Zumalacárregui,
J. Cosmol. Astropart. Phys. 02 (2011) 027; S. Basilakos
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