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Objective evaluation of cerebrovascular reactivity for acetazolamide predicts cerebral 

hyperperfusion after carotid artery stenting: Comparison with region of interest 

methods    
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Abstract  

BACKGROUND AND PURPOSE: Hemodynamic impairments are considered risk factors 

of cerebral hyperperfusion after carotid artery stenting (CAS); measurement by SPECT using 

a subjective ROI method lacks consistency and reproducibility.  

MATERIALS AND METHODS: The present study compared objective perfusion analysis 

(stereotactic extraction estimation [SEE] method) with the ROI method for preoperative 

SPECT to predict the hyperperfusion phenomenon (HPP) after CAS. Preoperative resting 

asymmetry index (CBF ratio from the affected to unaffected hemisphere) and cerebrovascular 

reactivity (CVR) to acetazolamide were measured by N-isopropyl-p-[123I]-iodoamphetamine 

SPECT using the SEE and ROI method in 84 patients. CBF was also measured the day after 

CAS. Perfusion data with the highest area under the curve (AUC) by receiver-operating 

characteristic (ROC) analysis was considered a perfusion risk factor of HPP. Multivariate 

analyses for clinical characteristics and perfusion risk factors were performed to determine 

predictors of HPP.  

RESULTS: The HPP was observed in 10 patients (11.9%). Female sex, contralateral stenosis, 

and degree of stenosis were significantly associated with HPP development on univariate 

analysis, and symptomatic stenosis was not found to be a significant factor. On SPECT 

analysis, CVR in the MCA area by SEE method had the highest AUC (0.981). Multivariate 

analysis showed that CVR in the MCA area was a significant predictor of HPP (p=0.041). To 
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predict hyperperfusion, the ROC curve of the CVR showed a cutoff value of -0.60%, 

sensitivity of 94.6%, and specificity of 100% (p<0.001). 

CONCLUSIONS: Objective SEE method had better a predictive capability than ROI 

method to identify risk of hyperperfusion after CAS.  

 

Keywords: asymmetry index, carotid artery stenting, cerebrovascular reactivity, 

hyperperfusion, single-photon emission computed tomography, stereotactic extraction 

estimation  
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Introduction 

Carotid artery stenting (CAS) has been performed as an alternative to carotid endarterectomy 

(CEA) for revascularization in cases of carotid artery stenosis in which CEA carries a high 

risk. Although cerebral infarction and in-stent restenosis were reported as common 

complications associated with CAS, cerebral hyperperfusion syndrome (HPS) following CAS 

is a rare but potentially devastating complication that occurs under the conditions of the 

hyperperfusion phenomenon (HPP) [1-12]. The prognosis of HPS has a poor prognosis, with 

mortality rates of 36 to 63%, and survivors have significant morbidity [13]. Consistent with 

reports describing cerebral hyperperfusion after CEA, the reported preoperative risk factors 

of hyperperfusion after CAS are patient age, asymmetry index (ipsilateral/contralateral 

resting cerebral blood flow [CBF]), cerebrovascular reactivity (CVR) to acetazolamide, 

severe internal carotid artery stenosis, contralateral stenosis or occlusion, and periprocedural 

hypertension [14, 4, 3, 1, 15]. Although previous studies assessed CVR and asymmetry index 

using SPECT with the ROI method, the ROI method lacks consistency among studies and has 

poor reproducibility [4, 3, 16]. Conversely, the stereotactic extraction estimation (SEE) 

method can automatically analyze the brain perfusion data in stereotactic space objectively 

and reproducibly [16, 17]. Different from the ROI method, the perfusion data using the SEE 

method were depicted to whole brain surface area, and automatically quantifies the CBF and 

CVR in each pre-defined region of the anterior cerebral artery (ACA), middle cerebral artery 
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(MCA), and posterior cerebral artery (PCA) [17]. No reports have compared the objective 

SEE and ROI method for detection of risk factors of HPP. The present study retrospectively 

evaluated the strongest risk factor of cerebral hyperperfusion after CAS among SPECT data 

with both the SEE and ROI method. 

 

Methods 

The eligibility criterion was stenosis of the internal carotid artery of more than 50% on digital 

subtraction angiography in symptomatic patients, and more than 80% in asymptomatic 

patients. During the study period (January 2007 to December 2015), 106 consecutive patients 

underwent CAS. Of these, 22 patients were excluded from analysis for the following reasons: 

emergent CAS without preoperative SPECT (N=5), previous large old cerebral infarction 

(N=2), staged angioplasty (N=1)[18], subsequent CAS for restenosis after initial CAS (N=1), 

and lack of preoperative SPECT N-isopropyl-p-[123I]-iodoamphetamine (IMP) (N=13). Thus, 

84 patients remained for our analysis (73 men and 11 women). The mean age of the patient 

population was 70.4 ± 7.1 years (range, 52–84 years). The patient characteristics are shown in 

Table 1. 

  This study was reviewed and approved by the institutional ethics committee. Informed 

consent was obtained from all patients or their next of kin. 
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Single Photon Emission Computed Tomography 

We performed preoperative CBF 123I-IMP SPECT study at rest and with an acetazolamide 

challenge. CBF SPECT at rest was also performed the following day after CAS. The 

preoperative CBF SPECT data were obtained using the dual table autoradiography 

(DT-ARG) method, which was modified from the original autoradiography (ARG) method. 

The DT-ARG method can acquire CBF SPECT images both at rest and with an acetazolamide 

challenge in one day [19, 20, 17]. First, patients were administered 111 MBq of 123I-IMP 

intravenously, while resting CBF SPECT acquisition was started simultaneously. Blood was 

sampled from the brachial artery 10 min after the injection. Second, for the drug challenge, 

15 mg/kg of acetazolamide was injected 20 min after the resting 123I-IMP injection. Finally, 

10 min after the acetazolamide injection, 111 MBq of 123I-IMP was administered to the 

patients and CBF SPECT was acquired for the acetazolamide challenge. The SPECT 

acquisition time was 28 min for each of the resting and the acetazolamide challenge 

conditions, and the total examination time was <1 hour. The postoperative CBF imaging was 

performed using the ARG method, which followed the same protocol as the first step of the 

preoperative SPECT. All images were obtained by an e-cam dual-headed gamma camera 

(Siemens Healthcare GmbH, Erlangen, Germany) equipped with low-energy high-resolution 

fan-beam collimators. Projection data were obtained with a 64 x 64 matrix in 4 min x 7 

rotations of 180 degrees from each camera at a sampling step angle of 4 degrees, and with 



7 

 

triple photopeaks for triple energy window (TEW) scatter correction (160 keV, 24% and 134, 

172 keV, 3%). Scanning was performed with a transaxial resolution of 9.6 mm in full-width 

at half-maximum (FWHM). 

  Each projection image was executed with QSPECT, the automated package software 

supplied by Nihon Medi-Physics Co., Ltd. (Tokyo, Japan). The DT-ARG algorithm in the 

software has been described previously; briefly, it is based on the autoradiography method 

using two look-up tables, and it can acquire CBF data under an acetazolamide challenge just 

after performing resting CBF [20]. After scatter correction was performed with the TEW 

method, tomographic images were reconstructed from the 64 x 64 matrix in the transverse 

plane using an ordered subset expectation maximization algorithm with 3 iterations and 5 

subsets. Attenuation correction was performed using the sinogram threshold fitting (estimated 

skull image by filtered back projection of the reciprocal of an emission sinogram) using the 

Chang method (0.167 cm-1). After reconstruction, a 7.0-mm FWHM Gaussian post-filter was 

applied. The reconstructed spatial pixels were 2.85 mm for the x- and y-planes and 3.44 mm 

for the z-plane. Reconstructed images were translated into quantitative tomographic images 

from arterial sampling data using the DT-ARG method for the preoperative study and the 

ARG method for the postoperative study. 

For the SEE method, all imaging data was analyzed using a PC running Windows 7 

(Microsoft, Redmond, WA). Brain surface images were obtained using the three-dimensional 
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stereotactic surface projection (3D-SSP) programs. To ensure the correct transfer to the 

stereotactic brain coordinates, we evaluated the fit of the transferred midsagittal images at 

rest and for the acetazolamide challenge by superimposing the midsagittal images. The SEE 

method can show 3D-SSP format view sets of CBF without acetazolamide (Rest CBF), CBF 

with acetazolamide (acetazolamide CBF), CVR, and staging of hemodynamic ischemia 

(Figure 1A, B). The borderline of ACA, MCA, and PCA territories were preset on the brain 

surface image using 3D-SSP programs (Figure 1B). The SEE method evaluated the mean 

CBF and CVR in the entirety of each territory. CVR and asymmetry index were defined as 

(acetazolamide CBF - Rest CBF)/Rest CBF×100 (%) and the ipsilateral Rest 

CBF/contralateral Rest CBF, which were automatically calculated.  

For the ROI method, slices at the anterior commissure-posterior commissure level +20 mm 

of the standardized images was used [21]. In this slice, six ROIs, the ACA, anterior and 

posterior part of the MCA, anterior and posterior part of the white matter (WM), and PCA, 

were placed (Figure 1C). Rest CBF, acetazolamide CBF, CVR, and asymmetry index at rest 

were measured in each area.  

 

Intraoperative and Postoperative Management 

Carotid artery angioplasty and stenting were performed by three neurointerventionalists. Dual 

(aspirin 100 mg and clopidogrel 75 mg) or triple (aspirin 100 mg, clopidogrel 75 mg, and 
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cilostazol 200 mg) antiplatelet therapy was administered for a minimum of 7 days prior to the 

procedure. The free radical scavenger edaravone (30 mg) (Tanabe Mitsubishi Parma Co, 

Tokyo, Japan) was preoperatively administered in all patients to prevent cerebral 

hyperperfusion [22]. The patients were placed under local anesthesia, and a bolus injection of 

heparin (80 IU/kg) was given immediately before the intervention to increase the activated 

clotting time to a minimum of 250 seconds. A 6 French, 90 cm catheter sheath was inserted 

from the femoral or brachial artery to the ipsilateral common carotid artery. We used 

Angioguard (Johnson & Johnson, Cordis, Minneapolis, MN, USA), FilterWire (Boston 

Scientific, Natick, MA, USA), or GuardWire (Medtronic, Santa Rosa, CA, USA) as the 

embolic protection device for all patients. All but 7 patients underwent predilation of the 

internal carotid lesions using a 3.5-mm balloon catheter protected with the embolic protection 

device. Precise (Johnson & Johnson, Cordis) and Wallstent RP (Boston Scientific) were used 

in 40 and 44 patients, respectively. Postdilation was performed in 70 patients with a 4.5- or 

5.0-mm balloon catheter with 6-atm inflation pressure. In cases with insufficient stent 

expansion, the balloon was further inflated to 10 atm.  

  HPP was defined as an asymmetry index of more than 1.20 compared with the normal side 

on SPECT the day after CAS [18, 23]. HPS was defined as a neurological deficit that 

occurred after cerebral revascularization, was localized ipsilateral to the treated artery, and 

was not related to thromboembolism.  
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Statistical Analysis 

Data are presented as the mean ± standard deviation. Statistical analysis was performed using 

SPSS (version 23.0 for Windows; SPSS Inc, Chicago, IL). We used Fisher’s exact test and the 

χ2 test for categorical variables. The association between HPP and continuous variables was 

estimated by calculating odds ratios (OR) with 95% confidence intervals (CIs), using binary 

logistic regression models. For SPECT data, the factor which had the highest value of the 

area under the curve (AUC) on receiver-operating characteristic (ROC) curve analyses was 

considered as the strongest risk factor of HPP. On multivariate analysis, the models were 

adjusted for variables with P<0.05 in the univariate analyses and the strongest risk factor of 

SPECT data. 

 

Results 

The baseline characteristics of the patients are shown in Table 1. Among 84 patients, 73 

(86.9%) were men and 11 (13.1%) were women, and their mean age was 70.4 ± 7.1 years. 

The overall average degree of ICA stenosis was 74.8 ± 17.6% (range, 52%–95%) according 

to the method of the North American Symptomatic Carotid Endarterectomy Trial [24]. CAS 

was performed without neurological deterioration in all but two patients who suffered minor 

cerebral infarction in the affected MCA area with mild hemiparesis.  
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Ten patients (11.9%) met the CBF criteria for post-CAS HPP on the SPECT imaging 

performed the next day. Of these patients, one developed cerebral HPS with symptoms of 

headache and confusion, which were resolved without neurological deficits by strict control 

of blood pressure (<80 mmHg) under coma therapy. The results of the univariate analysis of 

factors related to the development of cerebral HPP after CAS are summarized in Table 1. 

Female sex, degree of stenosis, and contralateral stenosis were significantly associated with 

the development of post-CAS cerebral hyperperfusion (p<0.05).  

The preoperative cerebral perfusion analyses using SEE method are shown in Table 2. 

CBF at rest was not associated with HPP in the ACA, MCA, and PCA areas. CBF after 

acetazolamide, asymmetry index at rest, and CVR were significantly associated with HPP 

after CAS in the ACA, MCA, and PCA areas (p<0.05).  

The cerebral perfusion analyses using ROI method are shown in Table 3. CBF at rest was 

not associated with HPP in all areas. As with the SEE method, CBF after acetazolamide, 

asymmetry index, and CVR were significantly associated with HPP after CAS in all areas 

(p<0.05).  

The highest value of the AUC (0.981) of CVR was marked in the MCA area by the SEE 

method (Table 2). The CVR of the MCA area in patients with and without HPP was -15.9 ± 

14.0 and 23.5 ± 17.1, respectively (p<0.001). In addition, the highest value of the AUC 

(0.868) of asymmetry index at rest was marked in the posterior part of the MCA area by the 
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ROI method (Table 3). The asymmetry index of this area in patients with and without HPP 

was 0.83 ± 0.08 and 0.97 ± 0.09, respectively (p<0.001). Among all perfusion data measured 

by both the SEE and ROI methods, the CVR in the MCA area by SEE method had the highest 

value of AUC.  

  When the three factors (female sex, contralateral stenosis, and degree of ipsilateral 

stenosis) that showed a significant difference by univariate analyses and CVR of the MCA 

area by SEE method were included as confounders in the logistic regression model for the 

multivariate analysis, only CVR of the MCA area by SEE method (OR, 0.720; CIs, 

0.526-0.987) was significantly associated with the development of postoperative cerebral 

hyperperfusion (p=0.041, Table 4). The ROC curve of the CVR showed a cutoff value of 

-0.60% for the prediction of HPP, with a sensitivity of 0.946 and specificity of 1.000 

(p<0.001, Figure 2).  

 

Discussion 

The present study found that the preoperative mean CVR of the whole MCA area measured 

on SEE analysis, which theoretically produces consistent results across examiners and 

institutions, had a significant predictive value for HPP after CAS. Using a cutoff value of 

-0.60% for CVR, the sensitivity and specificity were 94.6% and 100%, respectively, 

demonstrating that CVR was a good predictive factor. The predictive capability of CVR to 



13 

 

acetazolamide was better than the asymmetry index at rest, consistent with a previous study 

on the predictive factors of cerebral hyperperfusion after CEA [14]. The factor, which had the 

highest AUC by asymmetry index at rest, was the posterior part of the MCA by the ROI 

method (0.868 of the AUC). The ROC curve analysis of asymmetry index in posterior part of 

the MCA showed a cutoff value of 0.86 for the prediction of HPP, with a sensitivity of 0.932 

and specificity of 0.800 (p<0.001, data not shown). Although the asymmetry index is a 

relatively good predictor of HPP following CAS, false negatives (developing HPP contrary to 

expectation) exist, which is different from CVR. Complications of endovascular treatment 

may be associated with disastrous consequences, thus false negatives should be avoided [25, 

26]. Because acetazolamide is associated with frequent adverse effects, including metabolic 

acidosis, hypokalemia, numbness of the extremities, headache, tinnitus, gastrointestinal 

disturbances, and Stevens-Johnson syndrome, the asymmetry index at rest, which is evaluated 

without administration of acetazolamide, may be useful to screen for the need for 

acetazolamide administration [27, 28].  

  The pathophysiological mechanism of cerebral HPS remains unclear. Traditionally, HPS is 

attributed to the failure of normal cerebral autoregulation, secondary to long-standing 

changes in perfusion pressure. Maximal dilation of cerebral arterioles for long periods of time 

causes a loss of CBF autoregulation in areas of chronically under-perfused brain tissue and 

can result in hemorrhage and/or edema [6, 4, 14, 8]. In the present study, all patients with 
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HPP had a preoperative CVR <0%, which means that the CBF decreased after acetazolamide 

administration. Although the particular mechanism of this “steal phenomenon” by 

acetazolamide has not been clarified, it is thought to occur in the territory with the maximum 

vasodilatation of the cerebral vascular bed under chronic hemodynamic stress, which could 

explain the association between postoperative cerebral hyperperfusion and the preoperative 

steal phenomenon by acetazolamide [29, 30]. Chronic hypoperfusion due to carotid artery 

stenosis is believed to induce cerebral infarction, and one previous report showed that 

symptomatic patients tend to experience HPP after CEA [14]. To our knowledge, there is no 

report (including the present study) demonstrating a significant relationship between 

symptomatic stenosis and HPP after CAS [3]. 

  The SEE method analyzes the whole MCA territory, and therefore we excluded patients 

who had a relatively large old infarction in the MCA area [15]. CVRs of the ACA and PCA 

are less predictable than that of the MCA for HPP after CAS. CBF in the ACA and PCA 

territories can be highly influenced by collateral flow from the anterior and posterior 

communicating arteries. Additionally, the CVR of the MCA area reflects all factors, including 

main flow from the MCA and collateral flow from the ACA and PCA areas. These 

characteristics of the MCA area are considered to be the reason for higher predictable value 

of HPP than the ACA and PCA areas. Low CVR by the SEE method indicates widespread 

hypoperfusion in the whole range of the MCA area, whereas hypoperfusion by the ROI 
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method reflects hypoperfusion within the localized area, which is considered to explain the 

predictable capability of the SEE method.  

 The development of HPP is reported to occur in 6.8-18.5% of patients after CAS, and the 

11.9% incidence of HPP observed in this study is comparable to the reported incidences [2-4, 

18]. HPS can occur in a proportion of patients with HPP, and the reported incidence of HPS is 

0.7–6.8% after CAS [8, 1, 31, 6, 9]. Although several reports defined HPP as increasing 

ipsilateral CBF over 100% from baseline (200% compared with preoperative baseline)[6, 13, 

32, 33], moderate relative hyperperfusion of the ipsilateral hemisphere was also reported to 

bring about HPS [34]. In the present study, we defined HPP as a resting CBF of >120% in the 

affected hemisphere compared with the unaffected side [18]. The diagnosis of HPP 

development with SPECT in this study was performed the day after CAS, based on the 

evidence that cerebral hyperperfusion after CAS most often occurred within 12 hours of the 

procedure [8, 6, 31, 1]. 

  Contralateral (bilateral) carotid artery stenosis was reported to be a risk factor for cerebral 

hyperperfusion[1], and in the present study, univariate logistic analysis showed that 

contralateral stenosis was a significant risk factor for cerebral HPP following CAS. In the 

present study, the preoperative resting CBF in the contralateral MCA area with and without 

contralateral carotid artery stenosis was 34.2 ± 5.1 and 37.2 ± 7.9 ml/100 g/min, respectively. 

Although there was no significant difference in CBF in the contralateral MCA area (p=0.074), 
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a slightly decreased CBF in the contralateral MCA area provokes impairment of ipsilateral 

cerebral perfusion due to poor collateral flow, which contributes to the development of 

cerebral hyperperfusion following CAS.  

  Regarding demographic factors, 5/10 patients who developed HPP after CAS were female, 

and female sex was a significant predictor of HPP development by univariate analysis in the 

present study. Coutts et al. and Morrish et al. demonstrated that 2/3 and 2/4 patients with 

postoperative HPS after CAS were female,[8, 9] and another report demonstrated that female 

sex was associated with a decreased CVR [35]. Although these reports suggest female 

patients are at a higher risk for cerebral hyperperfusion following CAS, to the best of our 

knowledge, there is no remarkable evidence of a higher risk for female patients for 

developing postoperative cerebral hyperperfusion.  

  The most important perioperative management strategies for the prevention of HPS are 

controlling systemic blood pressure and the subsequent rise in cerebral perfusion [1, 8]. 

Additional strategies to avoid cerebral hyperperfusion include staged angioplasty, which is 

conventional angioplasty in the first session followed by CAS in the second session [18, 23]. 

In our series, one patient who underwent staged angioplasty did not develop HPP after CAS, 

and this case was not included in the analyses. Other reported stepwise revascularizations 

were superficial temporal artery-MCA anastomosis followed by CEA and angioplasty 

followed by CEA, and there was no evidence that these methods prevented cerebral 
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hyperperfusion [36, 37].   

Various cerebral perfusion tracers, including 123I-IMP, 99mTc-hexam-ethyl-propyleneamine 

oxime (HMPAO), and 99mTc-ethyl-cys-teinate dimer (ECD), have been used in the 

measurement of CBF by SPECT. These tracers necessitate underestimation of CBF in the 

high flow regions due to the nonlinear relationship between CBF and brain uptake of these 

tracers [38]. Among these tracers, IMP was reported to have a closer linear relationship than 

HMPAO and ECD; thus, we selected IMP for measurement of CBF [38,39]. 

  This study has some limitations. First, it was a retrospective analysis with a small sample 

size. The number of female patients in this study was low (11/84); although, female sex was a 

significant factor of HPP by univariate logistic analysis. Second, this study evaluated the 

occurrence of HPP, and the results cannot be applied to the occurrence of symptomatic HPP 

(HPS) or intracranial hemorrhage following CAS. Finally, the ROI method was evaluated in 

only a single slice, and our study does not include analysis of the basal ganglia. 

 

Conclusion 

SPECT using the SEE method can analyze brain perfusion data objectively and reproducibly, 

in contrast with the ROI method. Logistic regression analysis demonstrated that reduced 

preoperative CVR was significantly associated with the development of cerebral HPP 

following CAS. The present study shows that the objective evaluation of cerebral 
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hemodynamic impairment using the SEE analysis could identify patients at risk for 

hyperperfusion after CAS.  

  



19 

 

References 

[1] Abou-Chebl A, Yadav JS, Reginelli JP et al. Intracranial hemorrhage and hyperperfusion 

syndrome following carotid artery stenting: risk factors, prevention, and treatment. J Am Coll 

Cardiol 2004;43:1596-601.  

[2] Iwata T, Mori T, Miyazaki Y et al. Global oxygen extraction fraction by blood sampling 

to anticipate cerebral hyperperfusion phenomenon after carotid artery stenting. Neurosurgery 

2014;75:546-51; discussion 51.  

[3]  Iwata T, Mori T, Tajiri H et al. Predictors of hyperperfusion syndrome before and 

immediately after carotid artery stenting in single-photon emission computed tomography and 

transcranial color-coded real-time sonography studies. Neurosurgery 2011;68:649-55; 

discussion 55-6.  

[4] Kaku Y, Yoshimura S, Kokuzawa J. Factors predictive of cerebral hyperperfusion after 

carotid angioplasty and stent placement. AJNR Am J Neuroradiol 2004;25:1403-8.  

[5] Miyachi S, Taki W, Sakai N et al. Historical perspective of carotid artery stenting in 

Japan: analysis of 8,092 cases in The Japanese CAS survey. Acta Neurochir (Wien) 

2012;154:2127-37.  

[6] Ogasawara K, Sakai N, Kuroiwa T et al. Intracranial hemorrhage associated with cerebral 

hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: 

retrospective review of 4494 patients. J Neurosurg 2007;107:1130-6.  

[7]  McCabe DJ, Brown MM, Clifton A. Fatal cerebral reperfusion hemorrhage after carotid 

stenting. Stroke 1999;30:2483-6.  

[8]  Coutts SB, Hill MD, Hu WY. Hyperperfusion syndrome: toward a stricter definition. 

Neurosurgery 2003;53:1053-58; discussion 8-60.  

[9] Morrish W, Grahovac S, Douen A et al. Intracranial hemorrhage after stenting and angioplasty 

of extracranial carotid stenosis. AJNR Am J Neuroradiol 2000;21:1911-6.  

[10] van Mook WN, Rennenberg RJ, Schurink GW et al. Cerebral hyperperfusion syndrome. Lancet 

Neurol 2005;4:877-88.  

[11] Uchiyama N, Misaki K, Mohri M et al. Association between carotid plaque composition 

assessed by multidetector computed tomography and cerebral embolism after carotid stenting. 

Neuroradiology 2012;54:487-93.  

[12] Misaki K, Uchiyama N, Mohri M et al. Prediction of carotid artery in-stent restenosis 

by quantitative assessment of vulnerable plaque using computed tomography. J Neuroradiol 

2016;43:18-24.  

[13]  Hosoda K, Kawaguchi T, Ishii K et al. Prediction of hyperperfusion after carotid 

endarterectomy by brain SPECT analysis with semiquantitative statistical mapping method. Stroke 

2003;34:1187-93.  

[14] Oshida S, Ogasawara K, Saura H et al. Does preoperative measurement of cerebral blood 



20 

 

flow with acetazolamide challenge in addition to preoperative measurement of cerebral blood 

flow at the resting state increase the predictive accuracy of development of cerebral 

hyperperfusion after carotid endarterectomy? Results from 500 cases with brain perfusion 

single-photon emission computed tomography study. Neurol Med Chir (Tokyo) 2015;55:141-8.  

[15] Suga Y, Ogasawara K, Saito H et al. Preoperative cerebral hemodynamic impairment and 

reactive oxygen species produced during carotid endarterectomy correlate with development of 

postoperative cerebral hyperperfusion. Stroke 2007;38:2712-7.  

[16] Tomura N, Otani T, Koga M et al. Correlation between severity of carotid stenosis and 

vascular reserve measured by acetazolamide brain perfusion single photon emission computed 

tomography. J Stroke Cerebrovasc Dis 2013;22:166-70.  

[17]  Mizumura S, Nakagawara J, Takahashi M et al. Three-dimensional display in staging 

hemodynamic brain ischemia for JET study: objective evaluation using SEE analysis and 3D-SSP 

display. Ann Nucl Med 2004;18:13-21.  

[18] Yoshimura S, Kitajima H, Enomoto Y et al. Staged angioplasty for carotid artery stenosis 

to prevent postoperative hyperperfusion. Neurosurgery 2009;64:ons122-8; discussion ons8-9.  

[19] Iida H, Itoh H, Nakazawa M et al. Quantitative mapping of regional cerebral blood flow 

using iodine-123-IMP and SPECT. J Nucl Med 1994;35:2019-30.  

[20] Nishizawa S, Iida H, Tsuchida T et al. Validation of the dual-table autoradiographic method 

to quantify two sequential rCBFs in a single SPET session with N-isopropyl-[123I] 

p-iodoamphetamine. Eur J Nucl Med Mol Imaging 2003;30:943-50.  

[21] Wodarz R. Watershed infarctions and computed tomography. A topographical study in cases 

with stenosis or occlusion of the carotid artery. Neuroradiology 1980;19:245-8.  

[22] Ogasawara K, Inoue T, Kobayashi M et al. Pretreatment with the free radical scavenger 

edaravone prevents cerebral hyperperfusion after carotid endarterectomy. Neurosurgery 

2004;55:1060-6.  

[23] Uchida K, Yoshimura S, Shirakawa M et al. Experience of Staged Angioplasty to Avoid 

Hyperperfusion Syndrome for Carotid Artery Stenosis. Neurol Med Chir (Tokyo) 2015;55:824-9.  

[24]  North American Symptomatic Carotid Endarterectomy Trial. Methods, patient 

characteristics, and progress. Stroke 1991;22:711-20.  

[25] Misaki K, Uchiyama N, Mohri M et al. Pseudoaneurysm formation caused by the withdrawal 

of a Trevo ProVue stent at a tortuous cerebral vessel: a case report. Acta Neurochir (Wien) 

2016;158:2085-8.  

[26] Misaki K, Uchiyama N, Nambu I et al. Optimizing the Volume of the Initial Framing Coil 

to Facilitate Tight Packing of Intracranial Aneurysms. World Neurosurg 2016;90:397-402.  

[27] Ogasawara K, Tomitsuka N, Kobayashi M et al. Stevens-Johnson syndrome associated with 

intravenous acetazolamide administration for evaluation of cerebrovascular reactivity. Case 

report. Neurol Med Chir (Tokyo) 2006;46:161-3.  

[28]  Saito H, Ogasawara K, Suzuki T et al. Adverse effects of intravenous acetazolamide 



21 

 

administration for evaluation of cerebrovascular reactivity using brain perfusion 

single-photon emission computed tomography in patients with major cerebral artery 

steno-occlusive diseases. Neurol Med Chir (Tokyo) 2011;51:479-83.  

[29] Kuwabara Y, Ichiya Y, Sasaki M et al. Time dependency of the acetazolamide effect on 

cerebral hemodynamics in patients with chronic occlusive cerebral arteries. Early steal 

phenomenon demonstrated by [15O]H2O positron emission tomography. Stroke 1995;26:1825-9.  

[30] Nariai T, Senda M, Ishii K et al. Posthyperventilatory steal response in chronic cerebral 

hemodynamic stress: a positron emission tomography study. Stroke 1998;29:1281-92.  

[31] Meyers PM, Higashida RT, Phatouros CC et al. Cerebral hyperperfusion syndrome after 

percutaneous transluminal stenting of the craniocervical arteries. Neurosurgery 

2000;47:335-43; discussion 43-5.  

[32] Sundt TM, Jr., Sharbrough FW, Piepgras DG et al. Correlation of cerebral blood flow and 

electroencephalographic changes during carotid endarterectomy: with results of surgery and 

hemodynamics of cerebral ischemia. Mayo Clin Proc 1981;56:533-43.  

[33] Piepgras DG, Morgan MK, Sundt TM, Jr. et al. Intracerebral hemorrhage after carotid 

endarterectomy. J Neurosurg 1988;68:532-6.  

[34] Karapanayiotides T, Meuli R, Devuyst G et al. Postcarotid endarterectomy hyperperfusion 

or reperfusion syndrome. Stroke 2005;36:21-6.  

[35] Chaer RA, Shen J, Rao A et al. Cerebral reserve is decreased in elderly patients with 

carotid stenosis. J Vasc Surg 2010;52:569-74; discussion 74-5.  

[36]  Egashira Y, Yoshimura S, Yamada K et al. Stepwise revascularization by carotid 

endarterectomy after balloon angioplasty for symptomatic severe carotid artery stenosis. Ann 

Vasc Surg 2012;26:731 e9-13.  

[37] Yoshimoto T, Shirasaka T, Yoshidumi T et al. Stepwise revascularization for prevention 

of postoperative hyperperfusion. Neurol Med Chir (Tokyo) 2006;46:283-7; discussion 8-9.  

[38] Tsuchida T, Yonekura Y, Nishizawa S et al. Nonlinearity correction of brain perfusion 

SPECT based on permeability-surface area product model. J Nucl Med 1996;37:1237-41.  

[39] Ohnishi T, Yano T, Nakano S et al. Acetazolamide challenge and technetium-99m-ECD versus 

iodine-123-IMP SPECT in chronic occlusive cerebrovascular disease. J Nucl Med 1997;38:1463-7.  

  



22 

 

Figure legends 

Figure 1 

A: Representative case with the development of cerebral hyperperfusion. Preoperative 

cerebral blood flow (CBF) at rest (left) and after the administration of acetazolamide 

(ACZ; middle) showed a marked decrease in CBF in the left middle cerebral artery 

(MCA) area after ACZ. Asymptomatic cerebral hyperperfusion occurred the day after 

carotid artery stenting (right). 

B: The stereotactic extraction estimation (SEE) method demonstrated CBF of the anterior 

cerebral artery (ACA), MCA, and posterior cerebral artery (PCA) at rest and after 

acetazolamide. The SEE analyses also automatically calculated the cerebrovascular 

reactivity (CVR) of each region. The border zone of ACA, MCA, and PCA, which was 

automatically set by these analyses, is shown on the brain surface image (arrows).   

C: Perfusion analyses using the region of interest (ROI) method of a representative case is 

shown. The ACA, anterior and posterior part of the MCA, anterior and posterior part of 

white matter (WM), and PCA were placed on the slice at the anterior 

commissure-posterior commissure level +20 mm. CBF at rest and after ACZ, asymmetry 

index (AI), and CVR of each region is presented.  
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Figure 2 

 Receiver-operating characteristic curve of the cerebrovascular reactivity (CVR) of the 

middle cerebral artery area using the stereotactic extraction estimation (SEE) method for 

prediction of the cerebral hyperperfusion phenomenon (HPP) after carotid artery stenting. 

The area under the curve was 0.981, and a cutoff value of -0.60% for the prediction of 

HPP with a sensitivity of 0.946 and specificity of 1.000 (p<0.001) 
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Table 1. Univariate analysis of clinical characteristics related to the development of 

cerebral hyperperfusion after carotid artery stenting 

  Cerebral Hyperperfusion   

Variables Yes (n = 10) No (n = 74) P Value 

Age, y 73.1±6.3 69.8±7.2 0.109 

Female 5 (50%) 6 (8%) 0.003 

Symptomatic lesion 8 (80%) 51 (69%) 0.716 

Degree of stenosis, % 86.1±9.4 72.7±18.1 0.026 

Contralateral stenosis 5 (50%) 11 (15%) 0.019 

Risk factors       

  Hypertension 10 (100%) 51 (69%) 0.055 

  Diabetes mellitus 3 (30%) 35 (48%) 0.500 

  Dyslipidemia 5 (50%) 30 (41%) 0.735 

  Renal insufficiency 3 (30%) 23 (31%) 1.000 

  Current smoking 2 (20%) 17 (23%) 1.000 

Medication       

  Aspirin 10 (100%) 74 (100%) 1.000 

  Clopidogrel 10 (100%) 69 (93%) 0.698 

  Cilostazol 3 (30%) 22 (30%) 1.000 

  Statin 9 (90%) 52 (71%) 0.272 

CAS procedure       

  Balloon protection 2 (20%) 15 (21%) 1.000 

  Predilatation 10 (100%) 67 (91%) 0.591 

  Open-cell stent 5 (50%) 35 (47%) 1.000 

  Postdilatation 7 (70%) 63 (85%) 0.359 
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Peak systolic velocity, cm/s       

  Pre-CAS 392±252 424±181 0.475  

  Post-CAS 139±92 113±47 0.239  

 CAS: carotid artery stenting 
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Table 2. Univariate analysis of cerebral perfusion analyses using the stereotactic extraction estimation 
method related to the development of cerebral hyperperfusion after carotid artery stenting  

    Cerebral Hyperperfusion       
Cerebral 
perfusion 
data 

  Yes (n = 10) No (n = 74) AUC 
95% confidence 

interval 
P 

Value 

ACA 
CBF at rest, ml/100 
g/min 

33.3 ± 4.2 35.9 ± 7.5 0.607  0.446 - 0.768 0.275 

  
CBF after ACZ, 
ml/100 g/min 

30.9 ± 5.5 44.1 ± 10.7 0.901  0.823 - 0.979 <0.001 

  
Asymmetry index at 
rest 

0.93 ± 0.08 0.98 ± 0.05 0.703  0.496 - 0.910 0.038 

  CVR, % -7.1 ± 12.8 22.7 ± 14.3 0.970  0.937 - 1.000 <0.001 

MCA 
CBF at rest, 
ml/100g/min 

32.0 ± 4.3 35.0 ± 7.2 0.641  0.484 - 0.798 0.149 

  
CBF after ACZ, 
ml/100 g/min 

26.9 ± 6.0 43.1 ± 9.7 0.926  0.862- 0.989 <0.001 

  
Asymmetry index at 
rest 

0.85 ± 0.09 0.97 ± 0.09 0.804  0.658 - 0.950 0.002 

  CVR, % -15.9 ± 14.0 23.5 ± 17.1 0.981  0.956 - 1.000 <0.001 

PCA 
CBF at rest, ml/100 
g/min 

36.2 ± 6.8 37.4 ± 7.0 0.572  0.393 - 0.751 0.460 

  
CBF after ACZ, 
ml/100 g/min 

41.0 ± 13.9 50.0 ± 9.8 0.734  0.532 - 0.935 0.017 

  
Asymmetry index at 
rest 

0.91 ± 0.07 0.98 ± 0.05 0.800  0.665 - 0.935 0.002 

  CVR, % 13.2 ± 29.7 33.7 ± 15.2 0.714  0.498 - 0.929 0.029 
 ACZ: acetazolamide, AUC: area under the curve, CAS: carotid artery stenting, CBF: cerebral blood flow, CVR: 
cerebrovascular reactivity, SEE: stereotactic extraction estimation 
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Table 3. Univariate analysis of cerebral perfusion analyses using the region of interest method related to the 
development of cerebral hyperperfusion after carotid artery stenting  

    Cerebral Hyperperfusion       
Cerebral blood 
flow 

  
Yes (n = 

10) 
No (n = 

74) 
AUC 95% confidence interval 

P 
Value 

ACA CBF at rest, ml/100 g/min 29.1 ± 4.4 32.2 ± 8.5 0.618  0.460 - 0.775 0.229 

  
CBF after ACZ,ml/100 
g/min 

26.4 ± 6.6 40.5 ±12.4 0.870  0.775 - 0.966 <0.001 

  Asymmetry index at rest 0.90 ± 0.13 0.99 ±0.13 0.746  0.589 - 0.903 0.012 
  CVR, % -9.3 ± 15.7 26.3 ±21.8 0.926  0.861 - 0.990 <0.001 
MCA anterior CBF at rest, ml/100 g/min 30.2 ± 4.1 33.5 ± 8.3 0.635  0.480 - 0.790 0.167 

  
CBF after ACZ,ml/100 
g/min 

24.6 ± 5.2 41.7 ±12.7 0.923  0.863 - 0.983 <0.001 

  Asymmetry index at rest 0.87 ± 0.16 0.98 ±0.28 0.655  0.437 - 0.874 0.112 
  CVR, % -18.4 ±12.7 24.5 ±21.5 0.973  0.941 - 1.000 <0.001 
MCA posterior CBF at rest, ml/100 g/min 31.8 ± 6.1 34.9 ± 8.1 0.647  0.472 - 0.821 0.134 

  
CBF after ACZ,ml/100 
g/min 

24.9 ± 6.4 43.3 ±13.5 0.923  0.852 - 0.994 <0.001 

  Asymmetry index at rest 0.83 ± 0.08 0.97 ±0.09 0.868  0.723 - 1.000 <0.001 
  CVR, % -21.6 ±14.7 23.7 ±21.5 0.969  0.934 - 1.000 <0.001 
PCA CBF at rest, ml/100 g/min 37.6 ± 7.6 38.4 ± 8.9 0.528  0.346 - 0.711 0.772 

  
CBF after ACZ,ml/100 
g/min 

40.7 ± 16.9 50.6 ±12.6 0.743  0.554 - 0.933 0.013 

  Asymmetry index at rest 0.87 ± 0.08 0.97 ±0.10 0.776  0.652 - 0.900 0.005 
  CVR, % 7.4 ± 30.6 32.7 ±19.5 0.757  0.585 - 0.929 0.009 
WM anterior CBF at rest, ml/100 g/min 30.6 ± 3.7 33.4 ± 9.0 0.564  0.411 - 0.718 0.512 

  
CBF after ACZ,ml/100 
g/min 

22.8 ± 4.8 39.6 ±12.1 0.935  0.881 - 0.989 <0.001 

  Asymmetry index at rest 0.84 ± 0.11 0.97 ±0.16 0.797  0.659 - 0.935 0.002 
  CVR, % -25.3 ±13.3 18.8 ±21.7 0.961  0.920 - 1.000 <0.001 
WM posterior CBF at rest, ml/100 g/min 32.1 ± 4.6 34.6 ± 8.4 0.599  0.435 - 0.764 0.310 

  
CBF after ACZ,ml/100 
g/min 

21.8 ± 6.6 39.3 ±11.8 0.916  0.842 - 0.990 <0.001 

  Asymmetry index at rest 0.86 ± 0.11 0.98 ±0.10 0.846  0.675 - 1.000 <0.001 
  CVR, % -32.5 ±17.0 13.6 ±20.9 0.955  0.913 - 0.998 <0.001 
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ACZ: acetazolamide, AUC: area under the curve, CAS: carotid artery stenting, CBF: cerebral blood flow, CVR: 
cerebrovascular reactivity, ROI: region of interest, WM: white matter 
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Table 4. Multivariate logistic regression analysis results 

  Odds ratio (95% confidence interval) 
P 

value 
Female 829.973  ( 0.502  － 1371393.865  ) NS 
Contralateral stenosis 134.642  ( 0.435  － 41647.018  ) NS 
Degree of stenosis 0.917  ( 0.740  － 1.136  ) NS 
CVR 0.720  ( 0.526  － 0.987  ) 0.041 
CVR: cerebrovascular reactivity 
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