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Abstract 

 To improve the accuracy and robustness of 2D/3D registration of digital subtraction 

angiography images and magnetic resonance angiography (MRA) data , we have deve-

loped an automatic method for anatomical labeling of the cerebral arteries in MRA 

data. The anatomical labeling method is a location-based method which segments an 

artery tree to branches and classifies the branches into labeled segments , i.e., internal 
carotid arteries (ICA), basilar artery (BA), middle cerebral arteries (MCA) , Al seg-
ments of the anterior cerebral artery (ACA(A1)), other segments of the anterior 

cerebral artery (ACA), posterior communication arteries (PcomA) and posterior 

cerebral arteries (PCA), according to their location. Arteries were extracted from 

MRA data for this labeling method by the region-growing technique . Fifteen cases 

were examined to evaluate the method accuracy. The number of correctly segmented 

voxels in each artery segment was determined, and the correct labeling percentage 

was calculated based on the total number of voxels of the artery . Mean percentages 

were as follows: ACA, 82.7%; Right (R-) ACA(A1) , 47.1%; Left (L-) ACA(A1), 46.1%; 
R-MCA, 80.4%; L-MCA, 74.1%; R-PcomA , 0.0%; L-PcomA, 3.3%; R-PCA, 60.3%; L-

PCA, 66.9%; R-ICA, 90.7%; L-ICA, 90.7%; BA , 89.9%; and total arteries, 84.1%. The 
ACA, MCA, ICA and BA were consistently identified correctly .
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1. Introduction 

 Several authors have proposed two-dimensional (2D)/three-dimensional (3D) registration methods 

for volume data and fluorography images to aid clinical interventions. Some of the methods 

registered and superimposed preoperative computed tomography volume data onto intraoperative 

fluorographs to aid in recognizing 3D location of lamber vertebrae or a stent in aorta for 

surgeries  1-5). The others register volume data onto a portal radiograph to assess patient setup er-

rors in radiation therapy"). 

 Methods have also been proposed for 2D/3D registration of the cerebral arteries in magnetic 

resonance angiography (MRA) data and digital subtraction angiography (DSA) images8-14)and we 

have developed a 2D/3D registration method of cerebral arteries 15). For proper registration in the 

methods, the corresponding arteries must be selected in the MRA and DSA. In these previous stu-

dies, identification and extraction of the arteries was performed manually. 

 An automatic anatomical labeling method of cerebral arteries in MRA would allow automatic ex-

traction of the arteries of interest and more complete automation of 2D/3D registration methods. If 

arteries appearing in a DSA image are known, the same arteries in MRA can be chosen for registra-

tion automatically according to the anatomical labeling result. Also, such arteries are known if the 

kind of DSA images is known, e.g. internal carotid arteriography or vertebral arteriography and so 

on, because arteries enhanced in DSA images usually depend on the position of a catheter tip. Here, 

we refer to the anterior cerebral artery, middle cerebral artery, and internal carotid artery as arte-

ries for internal carotid arteriography. 

 For these 2D/3D registration methods, we deve-

loped an anatomical labeling method for cerebral

arteries in MRA. This anatomical labeling method 

divides the cerebral artery tree into segments, and 

labels the segments according to their location. In 

this paper, we describe the automatic anatomical 

labeling method and evaluate its accuracy.

2. Materials and Methods 

2.1. Anatomical Labeling Method 

 We developed a location-based anatomical label-

ing method that makes use of a 3D segment map 

of cerebral arteries. This method divides cerebral 

artery trees in MRA into twelve artery segments: 

right (R-) and left (L-) internal carotid artery (ICA), 

basilar artery (BA), R- and L- middle cerebral ar-

tery (MCA), R- and L- posterior cerebral artery 

(PCA), R- and L- posterior communication artery

Fig. 1 Artery segments are classified into 
branches of the cerebral artery tree. 
The twelve segments are defined as 
follows: right (R-) and left (L-) internal 
carotid artery (ICA), basilar artery 

(BA), R- and L- middle cerebral artery 
(MCA), R- and L- posterior cerebral ar- 
tery (PCA), R- and L- posterior com-
munication artery (PcomA), R- and L-
Al segment segment of the anterior cerebral 
artery (ACA(A1)), and other segments 
of the anterior cerebral artery (ACA).
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(PcomA), R- and L- Al segment of the anterior 

cerebral artery (ACA(A1)) and other segments of 

the anterior cerebral artery (ACA) (Fig. 1). This di-

vision was selected to facilitate 2D/3D registration 

of a 2D DSA image and a 3D MRA data set. The 

scheme of this anatomical labeling method is 

shown in Fig. 2. 

 The anatomical labeling method we developed is 

given volume data of cerebral arteries extracted 

from MRA as input. Determination of the center of 

the circle of Willis (CW) is applied to suppress

variation of CW positions between patients with 2D and 3D templates of CW. The cerebral arteries 

are divided into branches at bifurcations and each branch is labeled with one of the 12 artery seg-

ments using a 3D artery segment map. The segment map shows ranges of locations of each cerebral 

artery. Arteries of interest for 2D/3D registration can be extracted to specify the labels.

2.1.1. Extracted Cerebral Artery Trees 

 We used volume data of cerebral arteries ex-

tracted from MRA because there are many 2D/3D 

registration methods of cerebral artery target 

MRA data available. Many vessel extraction 

methods for MRA have been proposed  16-22). The 

region-growing technique is generally used in such 

a segmentation method so that we used a simple 

region-growing technique to extract cerebral arte-

ries from MRA volume data as a preliminary ex-

traction method for this study. For the region-

growing technique, a voxel is extracted if the mean 

value of that voxel and its six nearest neighbors is 

greater than a threshold value, and this is the only 

criterion for the technique. Voxel intensity in MRA 

usually depends upon both the patient and the 

magnetic resonance imaging system used, so 

several threshold values were applied for each 

case, and the lowest threshold value that resulted 

in no inclusion of the surrounding tissues was 

selected. In the future, we will improve the extrac-

tion process to do it automatically. Fig. 3 shows

Fig. 3 Examples of the cerebral arteries ex-
tracted by the region-growing tech-
nique. These are volume rendered im-
ages of the anterior posterior view. 
The cases for the image (a), (b) and (d) 
have one or two giant aneurysms 
(white triangle) and the farther arteries 
did not appear in MRA. Thus, these ar-
teries could not be extracted well. The 
case for image (c) also has an 
aneurysm on R-MCA.
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examples of extracted cerebral artery trees. Extracted arteries were binarized.

2.1.2. Determining the Center of the Circle of Willis

 There are slight positional differences between ar-

tery trees in MRAs. Although the patient's head is 

fixed in a head coil at the correct position, arteries in 

MRA volumes are not located in the same position in 

all patients according to morphological differences of 

the head, brain, arteries, etc. Thus, the positions of 

the arteries must be aligned prior to application of 

the location-based labeling method. We performed 

this registration using a two-step  procedure to deter-

mine the 3D center of the CW as the origin. In the 

first step, the X and Y coordinates of the center of 

the CW are determined using a 2D template, which 

approximates a projection of the CW into the axial 

plane. For this 2D alignment, the binary artery tree 

is projected onto the XY plane and its location is va-

ried to maximize the cross-correlation with the 2D 

template. With the X and Y coordinates of the center 

aligned, a 3D template approximating the CW is then 

used to determine the Z coordinate, by varying the Z 

coordinate of the 3D template and determining the 

maximum in the cross-correlation of the template 

and data. At the end of this registration, the X, Y 

and Z coordinates are again adjusted using Powell's 

optimization method 23). Fig. 4 shows the 2D and 3D 

templates, which were based on preliminary meas-

urements of the anterior communicating artery (Aco-

mA), the R- and L- IC bifurcations (IC-Bif) and the 

top of the basilar artery (BA-top). Averaged coor-

Fig. 4 2D and 3D templates of the Circle of 
  Willis. Image (a) is the 2D template 

  and image (b) is the volume rendered 
  image of the 3D template. The 

  highest voxel value is depicted by 
  white; the lowest voxel value is 
  depicted by black. The form in the 

  2D template is assimilated to a 

  projection of the CW, and tubular 
  structures in the 3D template are as-

  sumed parts of ACA, ICA and PCA 
  on the CW. These templates were 

  modelled from MRAs of five cases.



dinates of the four points (Table 1) were calculated from five of the fifteen cases (see Section 2.3) 

with no aneurysms on the CW for these measurements. 

 We did not determine the rotation angles about the X-, Y- and Z-axes as the patient's head is 

placed in a head coil and is usually positioned in a standard manner. The angular misalignments 

should be small as MRI systems can take arbitrary oblique cross sections. In a preliminary study, 

we found that optimizations without the rotation parameters yielded better final results than those 

with these parameters, probably because the number of local maxima (incorrect alignments) in-

creases with the number of parameters. The optimization searches the global maximum of the cross 

correlation values with varying parameters, but does not check all combinations of the parameters, 

so that, the optimization sometimes takes a local maximum of the value as the global maximum. In-

crementation of the number of the parameters increases the number of their combinations; in-

crementation of the number of combinations increases the number of local maxima and the probabil-

ity to fail.

2.1.3. Dividing the Artery Tree into Branches 

 The cerebral arteries are divided into branches at bifurcations using a procedure like the region-

growing technique. The cerebral arteries have been binarized since they were extracted and the 

voxels have a value of a signal or background. This dividing process aims to detect bifurcations and 

to separate branches, so that a focused voxel is extracted as a part of a branch if the value of only 

the voxel, not the six neighbor voxels, is a signal. Voxels of six neighborhoods of this voxel are 

going to become focused voxels in the next phase. The region growing proceeds throughout an ar-

tery tree (Fig. 5a). To detect bifurcations a labeling process was inserted before going to next

Fig. 5 Division process illustrated in 2D space. 
      The division spreads from a seed pixel to connected 

      pixels (a). When the region-growing splits into two 
      groups, the subsequent arteries are identified as other 

      segments (b).

phase. This labeling process tar-

gets only the next focused voxels. 

A bifurcation in an artery tree can 

be detected if multiple labels are 

given to the next focused voxels; it 

means that the focused voxels are 

split into separate connected 

groups (Fig. 5b).An initial seed 

voxel is found using raster scan-

ning, and this dividing procedure 

continues until an entire artery tree 

is grown. Additional artery trees in 

the volume, if it exists, are identi-

fied using raster scanning of the 

 volume.
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2.1.4. Classifying Branches into Artery Segments 

 The identified branches are classified as belonging to one of the cerebral artery segments. For 

each branch, the location of each voxel in that branch relative to the center of the CW determined 

above is calculated. This location is compared to the 3D segment map containing ranges for the lo-

cations of the various cerebral arteries relative to the center of CW (see Section 2.2). If all voxels in 

the branch correspond to only one vessel of the CW, the segment is labeled accordingly. If the vox-

els in a branch correspond to several different arteries, the segment is labeled as that artery to 

which the majority of the voxels correspond.

2.2. 3D Segment Map 

 The 3D segment map we created and used was a volume data matrix of 256 x 256 X 90 (assumed 

voxel size: 0.5 x 0.5 x 1.0 mm3), the origin of which was located at the center the volume and was 

assumed to be the center of the CW. The 3D segment map had regions corresponding to 12 arteries: 

ACA, R- and L- ACA(A1), R- and L- MCA, R- and L- PcomA, R- and L- PCA, R- and L- ICA and 

BA. The voxels in each region had an individual index number of a corresponding artery segment.

The segment map was divided into

top and bottom blocks separated by 

the XY plane passing through the 

origin. The bottom block included 

the R-ICA, L-ICA and BA regions, 

while the top block included the 

others. These regions made up an 

essentially solid rectangular shape 

(Fig. 6). The 3D segment map was 

based on seven of the 15 cases (see 

Section 2.3). Extracted arteries, es-

pecially MCA and PCA, of the 

seven cases relatively spread more 

widely than the others.

Fig. 6 3D segment map of cerebral arteries. The image (c) on 
the right is a volume rendered image of the 3D segment 
map. The two images on the left are a schematic of the 
top block (a) and a schematic of the bottom block (b). 
These areas were based on seven cases.

2.3 Materials 

 MRA data of the cerebral artery from 15 cases (6 men and 9 women; age range, 29 — 77 years old; 

mean, 59.1 years old) were obtained retrospectively to develop and evaluate the anatomical labeling 

method. All cases already had been diagnosed as cerebral aneurysm by several neuroradiologists in 

a hospital. In all cases, data were obtained with the routine time-of-flight MRA sequence (TR: 

34 — 38 ms; TE: 2.8 — 3.5 ms; variable FA: 25 or 30° ; FOV: 130 mm) on a Signa Horizon 1.5T MRI 

system (GE Medical Systems, Milwaukee, WI, USA). The MRA data sets were output in the digital 

imaging and communication in medicine (DICOM) file format and were transferred to a computer
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for analysis and processing. Each transferred data set consisted of 60 cross-sectional images of 256 

 X 256  x 16 bits (voxel size: 0.51 X 0.51 X 1 mm3).

2.4. Accuracy Evaluation 

 Fifteen cases were examined. The labeling method was applied to seven cases used in the crea-

tion of the 3D segment map, including the five cases for the creation of the 2D and 3D templates as 

training data, with the other eight cases used as test data. The cerebral arteries of these cases auto-

matically classified by the above method were compared with the manually classified cerebral arte-

ries, which were taken as standard truth. The successful classification rates (SCR) for each of the 

cerebral arteries and for the entire artery tree were calculated as accuracy measures. The SCR was 

defined as:

where, Nte is the number of voxels that comprise each of the cerebral arteries and Nsuccessfui is the 

number of voxels classified correctly. Mean SCR of each artery segment of the cases was also calcu-

lated.

3. Results 

 The mean SCRs and standard deviations for the artery segments of the cases are shown in Table 

2. The mean SCRs for major arteries, R- and L- MCA, R- and L-ICA and BA, were over 85% in the 

training data, and that for the entire artery tree was 84.1%. The mean SCRs for the test data were 

almost the same as those for the training data except for R. and L- MCA and R-PCA. 

 In the test data, two cases affected the mean SCRs for MCAs: one case had giant aneurysms on 

both R- and L-CA, and determination of the center of the CW failed in the other case. Intensity of 

further arteries from giant aneurysms usually becomes low because of turbulent flow. In the case



here with giant aneurysms, most of the MCAs did not appear and the slight remaining MCAs were 

close to the giant aneurysms.  Thus,' the MCAs could not be distinguished from the aneurysms, and 

the SCRs for these two arteries were very low. In the case in which CW determination failed, the 

ACA(A1) segments descended first and ascended from around AcomA. We assumed that ACA, in-

cluding ACA(A1) segment, ascended from the origin on the ICA based on the results shown in Ta-

ble 1, and the 3D template was made in accordance with this profile. This difference in the arteries 

with the 3D template caused errors in determination of the center of the CW, although determina-

tion failed only in this one case. 

 Regarding R-PCA, there were two cases in the test data in which blood flow of either PCA fed 

mainly from PcomA affected the mean SCRs for R-PCA. In one of these two cases, about 70% of 

voxels in the R-PCA were classified into BA because the R-PCA fed from R-PcomA and did not 

branch until around the distal end after artery tree extraction and also the R-PCA appeared three or 

four slices below the L-PCA. In the other case, 60% of the R-PCA voxels were classified into BA. In 

this case the L-PCA fed from L-PcomA in contrast to the former case. The R-PCA and BA were not 

divided at the top of BA because these arteries were smoothly interconnected to each other. 

 The mean SCRs for all 15 cases were 82.7% for ACA, 47.1% for R-ACA(A1), 46.1% for L-

ACA(A1), 80.4% for R-MCA, 74.1% for L-MCA, 0.0% for R-PcomA, 3.3% for L-PcomA, 60.3% for 

R-PCA, 66.9% for L-PCA, 90.7 for R-ICA, 90.7% for L-ICA, 89.9% for BA, and 84.1% for the en-

tire artery tree. 

 Four volume rendered images of R-ICA, R-

ACA(A1), ACA and R-MCA, which were extracted 

from MRAs according to the results obtained with 

our anatomical labeling method, are shown in Fig. 

7 as representative results. These were the same 

cases as shown in Fig. 3. The SCRs for the entire 

artery tree for cases (a), (b), (c) and (d) were 

80.1%, 70.9%, 91.3% and 92.8%, respectively. 

Cases (a) and (b) were included in the training data, 

while cases (c) and (d) were included in the test 

data. Fig. 7 (d) contains only a small number of 

voxels for the R-MCA, ACA and R-ACA(A1) arte-

ries due to the giant aneurysms on both sides of 

the ICA. However, this case had the highest SCR 

among all cases because only easily classifiable 

major arteries (i.e., both sides of the ICA and PCA 

and the BA) were present in its original MRA. 

 The case in Fig. 7 (b) caused a gap in the artery 

tree. The SCRs of ACA, R-ACA(A1), R-MCA and

Fig. 7 Examples of isolated arteries rendered 
      by volume rendering. The R-ICA, R-IA-

     CA(A1), ACA and R-IMCA were isolat-
      ed from the MRAs according to the 

      results. These cases are the same as 
      those in Fig. 3. The cases shown in im-

      ages (a), (b), (c), and (d) resulted in 
      SCR of 91.3%, 80.1%, 92.8% and 

      70.9%, respectively.
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R-ICA were 71.2 %, 0.0  %, 100 % and 98.6 %, respectively. This case, and also other cases, caused 

a gap due to the low SCR of the R-ACA(A1) segment in this extraction. To avoid a gap, it is im-

portant to classify arteries of the CW correctly. 

 The volume of an artery branch appears to influence the accuracy of the labeling process. Bran-

ches with sufficient voxels can be classified correctly due to the voting system used in this labeling 

process, even if there are small positional errors in the detected CW center. The correlations be-

tween the SCR and the voxel count of each artery segment are shown in Fig. 8. The graph illus-

trates that the smaller the voxel count an artery segment had, the higher the risk of a low SCR it 

had. Such a tendency can be seen in Table 2. The order of mean voxel counts of the artery seg-

ments matched that of their mean SCR. In particular, both side of the PcomA and ACA(A1) had 

small number of voxels and these artery segments resulted in poor labeling (SCR < 50%). 

 The 48 arteries of all ACA, MCA and BA had relatively small voxel counts (<2000) and SCRs 

for 43 of their arteries (90%) were over 50 %. These arteries spread widely, so that they were classi-

fied more easily than ACA(A1) and PcomA by the location based method. In other words, artery 

segments having small number of voxels and not spreading widely, like ACA(A1) and PcomA

Fig.

               Num ber ofVoxels 

8 Correlation of successful classification rate and voxel 
  count for artery segment. 

  This graph illustrates that the smaller voxel count of an 
  artery segment is correlated with lower SCR. The two 

  markers (white triangles) correspond to larger voxel 
  count and lower SCR, which occurred because of giant 
   aneurysms.

were difficult to classify by the 

method. 

 Two outlying poor results for 

larger voxel counts in Fig. 8 

(white triangles) corresponded to 

arteries located close to giant 

aneurysms. Giant aneurysms 

usually have inhomogeneous sig-

nal intensity in the MRA because 

of turbulent flow, and are there-

fore not extracted as completely 

as homogeneous saccular 

aneurysms, and the pieces are 

identified incorrectly as branches 

in the branch division process.

4. Discussion 

 The accuracy of this anatomical labeling scheme should be evaluated using the mean SCR for all 

cases because of differences in cases between the training data and the test data. Well extracted 

cases were chosen for the training data to create the 3D segment map, so that cases that were not 

easily classified probably remained in the test data. Thus, the results for only the test data would be 

poorer than the true performance in this scheme. 

 Low SCR of ACA(A1) segments caused a gap in the artery tree after the extraction with the ana-
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tomical labeling results (Fig.  7b). To avoid gaps of artery trees, artery segments around the CW 

should be classified correctly. But the results in Table 2 indicated that arteries having a small num-

ber of voxels and not spreading widely were difficult to classify well. Regions for such arteries in 

the 3D segment map would be small and close to each other, so that a small positional error in the 

determination of the center of the CW would lead to segmentation error of these artery segments. 

Wide spreading and large volume artery segments, such as ICA and MCA, could cover the position-

al error due to the voting system. Positional error of the determination of the center of the CW was 

caused by aneurysms on ICAs and by the large difference of the form of the CW with the 3D tem-

plate created from five cases. These deformations necessarily affected accuracy of the determina-

tion of the center of the CW with the 3D template. However, improvement of the initial extraction 

of cerebral arteries from MRA could provide more volume for the artery trees, of course including 

ACA(A1) and PcomA, and might also hold the promise of improved SCRs. 

 The major arteries are more important for robustness of 2D/3D registration than the small arte-

ries because they are widely distributed and aid in global registration in 2D/3D registration. Most of 

the SCRs for major arteries, ACA, MCA, ICA and BA, were also over 80%. These results indicated 

that this anatomical labeling method should be useful for 2D/3D registration of MRA and DSA im-

ages. 

 Fig. 9 shows an example of 2D/3D registration results of 3D MRA data and a DSA image. The 

2D/3D registration 14) was performed using the isolated MRA arteries and the DSA image. The 

cerebral artery tree (consisting of the R-ICA, R-MCA, R-ACA(A1) and ACA) in the 3D volume was 

isolated using the results obtained with the anatomical labeling scheme. The SCR was 89.7% for the 

entire artery tree, which was close to the average SCR. The pair of images indicated that the MRA

arteries were well registered with the DSA image. 

 Further development of the proposed method

will improve its usefulness. Broken artery trees do 

not necessarily result in registration failure, 

although it appears that poor registration occurs 

more frequently for arteries with low SCRs. Fur-

ther investigations into the robustness of the 

2D/3D registration method combined with this ana-

tomical labeling method are currently underway in 

our laboratory. 

 We also think that the anatomical labeling tech-

nique has the potential to facilitate reporting loca-

tions of disease candidates in combination with 

MRA-based CAD systems for cerebral 

aneurysms 24,25), But, currently, accuracy of this 

method must be improved, especially for ACA(A1)

Fig. 9 An example of paired 3D isolated artery 
and a DSA image. Image (a) shows a 
DSA image obtained by internal carotid 
arteriography. Image (b) shows volume 
rendered 3D data of the arteries isolat-
ed from MRA according to our labeling 
results. The 3D arteries were aligned 
using our 2D/3D registration technique. 
The case resulted in an SCR of 89.7%.
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segment and PcomA, because cerebral aneurysms often occur on the CW.

5. Conclusions 

 An automatic anatomical labeling method for cerebral arteries in MRA has been developed. This 

method gave the mean SCR of 84.1% for the entire artery tree, and the  2D/3D registration com-

bined with the anatomical labeling method resulted in an SCR of 89.7 % near the mean SCR. Thus, 

this anatomical labeling method is useful for 2D/3D registration. In addition, it is expected that im-

proved extraction of small arteries would raise the accuracy of the method.
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