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ABSTRACT We examine the hypotheses that (1) Ae. albopictus (Skuse) originated in 16 

continental Asia under monsoon climate, and (2) the broad climatic range in Asia was attained 17 

in part by adaptation to human habitats. We compared climatic distribution ranges between Ae. 18 

albopictus and the five closely-related but wild (non-domesticated) species in southern Asia. 19 

Distribution sites of the wild species concentrate in seasonal forest and savannah climate 20 

zones in India, Indochina, and southern China, supporting the first hypothesis. The 21 

distribution of Ae. albopictus is broader than the wild species under (1) tropical rain-forest 22 

climate, (2) steppe and temperate savannah climate, and (3) continental climate (large 23 

seasonal temperature variation, hot summer and cold winter) at temperate lowlands 24 

(northernmost sites 40°N in Ae. albopictus vs. 32°N in the wild species). However, the 25 

distribution of Ae. albopictus is more limited at tropical and subtropical highlands where 26 

climate is oceanic (small seasonal variation, mild summer and winter). The broader ranges of 27 

Ae. albopictus can be explained as ecological or eco-evolutionary consequences of adaptation 28 

to human habitats where reproduction is facilitated primarily by higher accessibility to 29 

water-holding containers relatively free from competitors and predators. We propose a 30 

hypothesis that the adaptation of Ae. albopictus to human habitats contributed to 31 

establishment of the climatically broad distribution. We also submit a general scenario for the 32 

origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research. 33 

 34 

KEY WORDS Culicidae, Aedes albopictus, origin, human habitat, adaptation 35 
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Aedes albopictus (Skuse), a vector of important viral diseases, has expanded globally since 36 

the end of the 20th century. The origin, dispersal, and adaptation of Ae. albopictus in its 37 

invasive ranges have attracted much attention since Hawley et al. (1987). In contrast, the 38 

biogeographic history in native Asia was discussed only by Porretta et al. (2012) who 39 

presented a hypothesis that Ae. albopictus maintained genetic cohesion during the last 40 

glaciation despite forest fragmentation in expanding drier environments. 41 

 The unusually broad climatic range of Ae. albopictus across tropical and temperate Asia was 42 

well established before the worldwide invasion over the last 30 years. How did Ae. albopictus 43 

establish such a broad Asian range? Artificial containers where it breeds are transported by 44 

humans, but movement may simply result in expansion within the same climate range. 45 

Theoretical models suggest that gene flow to species’ range margins may constrain the 46 

adaptation and range expansion, but this effect can be ameliorated by environmental changes 47 

facilitating population growth (Kirkpatrick and Barton 1997). Human habitats (lands 48 

primarily for human residence and activities without natural vegetation) facilitate Ae. 49 

albopictus reproduction primarily by higher accessibility to water-holding containers 50 

relatively free from competitors and predators (full explanation in Discussion). Did human 51 

habitats contribute to the climate niche expansion of Ae. albopictus? This issue has not been 52 

considered, despite its importance for prediction and prevention of further expansion in both 53 

native and invasive ranges subjected to anthropogenic climate change and other 54 

environmental modifications. 55 

 Analyzing the climate conditions at Ae. albopictus distribution sites in the range from the 56 

easternmost Hawaii through westernmost Madagascar (before the start of worldwide 57 

invasions in 1980’s), we hypothesized that (1) Ae. albopictus evolved on the Asian continent 58 

under monsoon climate with hot, wet and distinct dry seasons, and (2) the broad climatic 59 

range in native Asia was attained in part by using human habitats (Mogi et al. 2015). 60 
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 As a way to pursue further the origin and adaptation of Ae. albopictus in Asia, we considered 61 

the wild (non-domesticated) species belonging to the albopictus subgroup of the scutellaris 62 

group of Stegomyia in southern Asia. Because these wild species primarily inhabit forests 63 

(Huang 1972), their distributions could indicate the distribution of the albopictus subgroup 64 

species before adaptation to human habitats. 65 

 In this paper, we compare the climatic niche of Ae. albopictus with that of the wild species. 66 

The goals of our analyses are three-fold. First, we examine whether the distribution of the 67 

wild species supports a hypothesis of Ae. albopictus origin under the monsoon climate in the 68 

Asian continent. Second, we elucidate the differences in climate ranges between Ae. 69 

albopictus and the wild species. Third, we consider how those differences are related to the 70 

adaptation of Ae. albopictus to human habitats. Combining all of these results, we present a 71 

hypothesis that adaptation to human habitats contributed to the establishment of the broad 72 

climatic range of Ae. albopictus. We also submit a general scenario for the origin, dispersal, 73 

and adaptation of Ae. albopictus in Asia as a hypothesis for future research. 74 

 75 

Materials and Methods 76 

 77 

 Rationale for comparison. In most mosquito taxa, species richness is highest in the tropics, 78 

with a few species extending or endemic to the temperate region, justifying the assumption 79 

that tropical populations or species are ancestral to temperate ones with winter diapause (Ross 80 

1964, Bradshaw and Lounibos 1977). This assumption is applicable to the subgenus 81 

Stegomyia where a few among ≈130 species extend their range or are endemic to the 82 

temperate region. Most Stegomyia species primarily breed in wild-plant containers such as 83 

tree holes, but a few depend on artificial containers in human habitats, a trait derived 84 

following the development of human settlements. 85 
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 The albopictus subgroup (Huang 1972) includes 11 Asian species (Table 1). Of species other 86 

than Ae. albopictus, five have lost the ancestral tropical distribution. Aedes flavopictus 87 

Yamada covers the subtopics through the cool-temperate region up to 45°N (Tanaka et al. 88 

1979). The three morphological subspecies (Ae. f. flavopictus of the temperate region and two 89 

subtropical ones, each of the northern and southern Ryukyu Islands) are genetically well 90 

differentiated (Toma et al. 2002). Similarly, three geographical (temperate, northern and 91 

southern Ryukyus) subspecies in Aedes japonicus (Theobald) (Tanaka et al. 1979) are also 92 

genetically distinct (Cameron et al. 2010). This differentiation pattern is consistent with 93 

separation of the three geographical regions since the middle Pleistocene, ≈1 million years 94 

ago (Mya), at the latest (Ota 1998). The remaining four species, tentatively called as the 95 

galloisi complex (Aedes galloisi Yamada, Aedes sibiricus Danilov and Filippova, Aedes 96 

galloisioides Liu and Lu, and Aedes neogalloisi Chen and Chen) are distributed from 97 

highlands of western and central China to the southern sub-polar region up to 55°N (Danilov 98 

and Filippova 1978, Lei 1989, Dong et al. 2010). A phylogenetic study suggests A. galloisi to 99 

be a distinct lineage as ancient as the scutellaris group (Sota and Mogi 2006). 100 

 Among species of the scutellaris group, only Ae. f. flavopictus, Ae. galloisi, and Ae. sibiricus, 101 

occur widely in the cool-temperate region, with eggs more cold-hardy than Ae. albopictus 102 

(Mogi 2011). These three species primarily breed in tree holes (Tanaka et al. 1979, Gutsevich 103 

and Dubitskiy 1987) in forests having persisted during the Quaternary in eastern Asia 104 

(Harrison et al. 2001). Altogether, these three species (1) or their ancestors appeared in eastern 105 

Asia before the middle Pleistocene, (2) must have acquired and strengthened winter diapause 106 

during the glacial cycles independently each in Ae. flavopictus and the galloisi complex, and 107 

(3) indicate the potential for diapause evolution in the albopictus subgroup species. 108 

 In contrast to the above five species, Ae. albopictus has maintained the ancestral tropical 109 

distribution and also extends to the temperate region without geographic morphological 110 



6 
 

differentiation (Huang 1972, Tanaka et al. 1979, Lu et al. 1997). The tropical populations are 111 

fully inter-fertile with temperate populations that overwinter as diapause eggs (pharate larvae) 112 

(O'Donnell and Armbruster 2009). These facts indicate that winter diapause in Ae. albopictus 113 

evolved independently and later than the species discussed above. In the albopictus subgroup, 114 

only Ae. albopictus is well adapted to artificial containers in human habitats. 115 

 The remaining five albopictus subgroup species, Aedes novalbopictus Barraud, Aedes 116 

patriciae Mattingly, Aedes pseudalbopictus (Borel), Aedes seatoi Huang, and Aedes 117 

subalbopictus Barraud, have maintained their ancestral tropical distribution (Huang 1972). 118 

They breed primarily in tree holes and bamboo stumps and bite humans in forests (Harrison et 119 

al. 1972, Amerasinghe and Munasingha 1988a, Rajavel and Natarajan 2008, Dong et al. 2010). 120 

In Thailand, Ae. seatoi is said to be semi-domestic due to occurrence in bamboo stumps 121 

around rural villages, but rarely breeds in jars near houses (Harrison et al. 1972). For 122 

convenience, we call these five non-domesticated species collectively “the wild species”. 123 

 Phylogenetic relations among Ae. albopictus and the wild species are unknown. However, 124 

the albopictus subgroup is well defined based on adult morphology (Huang 1972). In genetic 125 

analyses including other Stegomyia species, Ae. albopictus forms a clade with Ae. 126 

pseudalbopictus and Ae. subalbopictus (Wang et al. 2012) and with Ae. seatoi (Pashley and 127 

Rai 1983), indicating their evolutionary affinity. Ecologically, Ae. albopictus shares an 128 

ancestral tropical distribution with the others but has unique derived traits (widespread 129 

temperate distribution and human dependence). The comparison between Ae. albopictus and 130 

the wild species could provide insights into the impact of domestication on climatic niches. 131 

 Distribution data. To characterize the whole distribution range of the wild species, we 132 

assembled distribution data regardless of information on population density. Distribution 133 

records span ≈90 years (since 1928 when Ae. pseudalbopictus was described), during which 134 

administrative systems, place names, and English expressions have been changed extensively. 135 
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We identified the distribution sites mainly on Google Earth Pro. To use climate data from 136 

weather stations, each distribution site must be identified generally at county or lower levels. 137 

Distribution data only at upper administrative levels (state, province, etc.) were listed as “site 138 

unspecified”. Sites with information at lower levels that could not be located on maps were 139 

treated as “site unidentified”. Some publications describe altitudes or coordinates in sufficient 140 

detail to pinpoint altitudes. Otherwise, county or village altitudes were represented by 141 

administration centers. All the distribution data (≈400), including references, original 142 

descriptions and our interpretations, are compiled in Table S1. 143 

 The whole geographical range of the wild species extends from the Indian subcontinent to 144 

China, including several islands on the continental shelf (Table 2). Except Ae. seatoi, each 145 

species also ranges from India through China via Indochina; Ae. pseudalbopictus has the 146 

broadest geographical distribution reaching Jiangsu, eastern China to the north and western 147 

Java to the south. Aedes seatoi is known only from Thailand and one site in China, but is 148 

distributed throughout Thailand (Rattanarithikul et al. 2010), and, in rural areas, is the most 149 

common Stegomyia next to morphologically similar Ae. albopictus (Harrison et al. 1972). 150 

Thus, the distribution of Ae. seatoi may be broader than our present knowledge. 151 

 All of the wild species were recorded from lowlands through highlands (Table 2). Altitudinal 152 

ranges in particular regions are also wide; for Ae. pseudalbopictus, 100-2,400 m in Taiwan 153 

(Lien 1978), 320-1,790 m in Sichuan Province, China (Song et al. 1981, see Table S1), and 154 

50-1,250 m in eastern Java (Ramalingam 1974). 155 

 Climate data. In contrast to Ae. albopictus which is associated with humans, the distribution 156 

sites of the wild species may be far apart from weather stations. As each species occupies 157 

wide geographical and altitudinal ranges (Table 2), we used climate data from weather 158 

stations within 200 km and 200 m (higher or lower) in altitude. In total, climate data at 116 159 

stations were included, covering coasts through highlands and also western India through 160 
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Taiwan. Of 116 stations, 20 (17%) and 45 (39%) were related to 2-4 species and 2-8 sites (all 161 

species inclusive), respectively. For convenience, weather station names and locations were 162 

used as a representative of the distribution sites. The nearest distribution site was within 10, 163 

30, 50, 70, 100, and 169 km for 42 (36%), 61 (53%), 82 (71%), 98 (85%), 110 (95%), and 116 164 

(100%) stations, respectively. The station data, including coordinates, altitudes, distance from 165 

each distribution site, and data sources, are also in Table S1. 166 

 Analyses. Climate conditions were analyzed by using a thermal index, WI10, and an 167 

aridity-humidity index, PE (Mogi et al. 2015). Briefly, WI10 = ∑ (t - 10) where summation is 168 

made for n months in which monthly mean temperature t > 10ºC. Thus, WI10 is a simple 169 

indicator of cumulative warmth above 10ºC. WI10 is a modification of Kira’s warmth index 170 

(WI) for the analysis of plant distribution and is related to the thermal series of climate and 171 

vegetation types (Table 3). Thornthwaite’s PE is an indicator of year-round biological 172 

effectiveness of precipitation as the sum of monthly PE incorporating precipitation and 173 

temperature (a determinant of evaporation); PE = 1.645 ∑ {p / (t + 12.2)} 10/9 where p = 174 

monthly total precipitation (mm), t = monthly mean temperature (°C), and summation is made 175 

across 12 months. PE values, expressed as integers, are related to the aridity-humidity series 176 

of climate and vegetation types (Table 3).  177 

 Besides warmth and wetness, thermal continentality (the degree of seasonal temperature 178 

variation) influences dynamics of mosquito populations. Even if the annual mean temperature 179 

is the same (for example, 15°C ), seasonal variation can either be large (the hottest month 180 

25°C , the coldest month 5°C , the difference 20°C ) or small (corresponding values, 20, 10, 181 

and 10°C). Thermal continentality was expressed by Conrad’s continentality index (CCI); 182 

CCI = 1.7R/sin (A + 10) -14, where R = difference between means of hottest and coldest 183 

months, A = latitude. CCI takes smaller values with increasing oceanity. 184 

 Temperature, precipitation, WI10, PE, and CCI at each weather station are presented in Table 185 
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S2. 186 

 Summary of Ae. albopictus distribution. As depicted on Fig. 1, the distribution sites of Ae. 187 

albopictus range from the per-humid, rain-forest climate zone through the semiarid, steppe 188 

climate zone, and throughout the temperature gradient from the tropics through the temperate 189 

zone (Mogi et al. 2015). Northernmost, lowland (altitudes ≤ 200 m) distribution sites in 190 

eastern Asia reach the border with the cool-temperate region (≈40°N, WI10 ≈ 45), and CCI 191 

values in temperate China and Korea are 45-60 (highly continental, hottest months 25-28°C, 192 

coldest months often < 0°C, the differences usually > 25°C) (Mogi et al. 2012 and its 193 

Appendix). 194 

 195 

Results 196 

 197 

The distribution sites of the wild species were concentrated into forest and savannah climate 198 

zones at 86% (68/79) for Ae. pseudalbopictus (Fig. 1A), 78% (43/55) for the other four 199 

species (Fig. 1B), and 84% (97/116) for all the species. Those sites were within the climate 200 

range of Ae. albopictus, except three cool, wet sites (Fig. 1A, B, one site was shared by Ae. 201 

pseudalbopictus and Ae. subalbopictus) and one hot, dry site (Fig. 1B, shared by Ae. 202 

novalbopictus and Ae. subalbopictus). There were only a few distribution sites in the 203 

subtropical rain-forest zone for both Ae. albopictus (4 sites) and the wild species (5) within a 204 

similar PE range. The differences in the distribution features between Ae. albopictus and the 205 

wild species were recognized in three (tropical rain-forest, driest, and temperate) climate 206 

zones. 207 

 In the tropical rain-forest zone, the distribution sites of Ae. albopictus ranged widely up to 208 

PE 260, while the sites of the wild species were limited to a few coastal sites and small 209 

islands with the maximum PE 156 (Table 4). PE values of 128-156, as well as 1-6 dry months 210 
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at four sites, indicates the conditions at these sites are close to the drier forest zone. 211 

 The driest distribution sites (PE < 50, 3-6 dry months) of the wild species were limited to the 212 

tropical and subtropical savannah zones except Anantapur (slightly out of the Ae. albopictus 213 

range but see Discussion, an arrow in Fig. 1B) and Coimbatore in the tropical steppe zone 214 

(Table 5). The Indian sites, other than Kanyakumari near the southernmost coast, were on the 215 

Deccan Plateau. In the temperate zone, the minimum PE was 56 in the upper savannah zone 216 

close to the forest zone. 217 

 The thermally temperate sites (cumulative summer warmth WI10 < 120) of the wild species 218 

were mainly tropical and subtropical highlands, and all the sites where WI10 < 80 were >500 219 

m (Fig. 1A, B). Of coolest (WI10 < 70) and northernmost (>30°N) sites, three (No. 4, 5, 7) at 220 

the foot of the western Himalayas fit both categories (Table 6). These data indicate that (1) 221 

coolest sites (No. 1-12) were all highlands (1,100-2,500 m) and south of 30°N except the 222 

above-mentioned three (No. 4, 5, 7) at 31-34°N, (2) local warmth in the western Himalayas is 223 

also evident from the lower sites (No. 20, 21, 680-1,200 m) which were warmer than the 224 

lower Chinese sites (No. 13-19, 40-670 m) at equivalent latitudes (30-32°N), (3) at the coolest 225 

sites, annual and hottest-month temperatures were also lower than the northernmost sites (No. 226 

13-21), (4) the climate at highland sites (>1,500 m) is oceanic (CCI < 30), especially three 227 

sites out of the Ae. albopictus range (No. 1-3) and one additional Himalayan site (No. 10) 228 

were extremely oceanic (CCI≈12-18, with hottest months≈15-20°C, coldest months≈6-8°C, 229 

differences≈8-12°C), and (5) in contrast, two northernmost lowland sites (No. 14, 17, 230 

30-32°N, <100 m) (two arrows in Fig. 1A) in eastern China were most continental (CCI≈50, 231 

hottest months≈27-28°C, coldest months≈2-4°C, differences≈24-25°C). 232 

 In summary, 84% of the distribution sites of the wild species concentrate in forest and 233 

savannah climate zones. The distribution of Ae. albopictus is broader than the wild species in 234 

(1) the tropical rain-forest zone, (2) the steppe and temperate-savannah zones, and (3) 235 
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temperate lowlands where climate is continental (up to 40°N vs. 32°N of Ae. pseudalbopictus). 236 

In contrast, the distribution of Ae. albopictus is more limited at tropical and subtropical 237 

highlands where climate is cool but oceanic. 238 

 239 

Discussion 240 

 241 

 Adequacy of analyses. Some differences in climate between weather stations and 242 

distribution sites are unavoidable for the wild species. Nevertheless, we think the climate 243 

represents their living conditions, because (1) 39% of the stations were related to multiple 244 

distribution sites, (2) 95% of the stations were within 100 km from the nearest sites, (3) the 245 

stations covered western India through Taiwan and also coasts through highlands, and (4) the 246 

wild species’ distribution ranges are broad in terms of latitude, longitude, and altitude. 247 

 We used warmth and wetness indices with criteria that delineate both climate and natural 248 

vegetation. Natural vegetation is characteristic of broad climate zones but also influenced by 249 

other factors such as soil characteristics (Begon et al. 1986). In our analyses, PE values at 250 

Anantapur and Coimbatore on the Deccan Plateau fell in the steppe climate zone, but the 251 

natural vegetation in central India is primarily tropical deciduous forests intermixed with 252 

savannahs (Roy et al. 2015). Breckle (2002) recognized only two climate categories with 253 

regard to tropical vegetation, namely, equatorial humid climate (yielding evergreen 254 

rain-forests) and humido-arid, tropical summer-rain climate where vegetation can be either 255 

deciduous forests, savannahs or grasslands. Recognizing the complexity and diversity of 256 

conditions experienced in nature, we propose that simple climate indices can be a tool to 257 

analyze the relation between climate and mosquito distribution. 258 

 Origin and adaptation to human habitats: an ecological perspective. Concentration of 259 

the five wild species in forest and savannah climate zones in southern Asia is consistent with 260 
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our hypothesis that Ae. albopictus originated in continental Asia under a monsoon climate 261 

with a dry season often spanning several months. These conditions could have selected for 262 

traits in Ae. albopictus that enabled adaptation to wider climate ranges. Transcriptional 263 

profiling of diapause and nondiapause eggs of temperate Ae. albopictus indicates that 264 

transcriptional differences are primarily due to the quantitative differences in expression 265 

levels of genes common to both conditions, rather than the unique expression of specific 266 

genes under one condition (Armbruster 2016). For example, higher expression of a fatty acyl 267 

coA elongase gene is related to greater desiccation resistance of diapause relative to 268 

non-diapause eggs, but this gene is expressed both under non-diapause conditions and in 269 

tropical populations (Urbanski et al. 2010). Egg dormancy under extended drought in 270 

southern Asia could have selected for increased egg desiccation resistance, which might have 271 

facilitated colonization of sub-tropical or temperate regions where a more fully-elaborated 272 

diapause response was then selected for. 273 

 The Asian monsoon system has persisted during the Quaternary (Wang et al. 2005). Did Ae. 274 

albopictus originate before the last glaciation (Porretta et al. 2012), or in the postglacial age as 275 

a human inquiline like the domestic form of Ae. aegypti (Brown et al. 2014, Crawford et al. 276 

2017)? Pre-mating ethological isolation (choice of conspecifics) between Ae. albopictus and 277 

the wild species (Ae. pseudalbopictus, Ae. seatoi) and between the wild species (McLain and 278 

Rai 1986) supports the former. Similar levels of pre-mating isolation (high, but not perfect) 279 

resulted from geographical isolation since 2-10 Mya (based on estimates of island separation) 280 

among the scutellaris subgroup species (distributed from Indochina through western Pacific 281 

islands) (McLain et al. 1985), and 0.15-6 Mya (based on estimates from genetic divergence) 282 

between two Drosophila flies (Jennings and Etges 2010). These estimates do not indicate the 283 

minimum duration for establishment of pre-mating isolation but favor allopatric divergence 284 

among the albopictus subgroup species preceding to the postglacial sympatry. 285 
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 Opportunities of allopatry probably existed during the Pleistocene due to (1) forest reduction 286 

under drier glacial environments, (2) the complex topography and geological features in 287 

southern Asia that produce local climate and vegetation diversity, and (3) an ability of wild 288 

Aedes (Stegomyia) populations to persist in small, isolated natural forests on uninhabited 289 

islets or those persisting in areas protected for shrines (Mogi 1990). 290 

 Wild (ancestral) populations of Ae. albopictus coexist with the wild species in reserve forests 291 

on the Deccan Plateau (Thenmozhi et al. 2012) and along the coast (Rajavel and Natarajan 292 

2008) in India, and in pre-development forests in Sri Lanka (Amerasinghe and Munasingha 293 

1988b). Information from subtropical southern China is variable. It is said to be dominant at 294 

wild and cultivated bamboo forests in Yunnan Province (Dong et al. 2010), but Lu et al. 295 

(1997) regard it as a semi-wild species inferior to Ae. pseudalbopictus at forests far from 296 

houses. In Guizhou Province, it is absent from forests >2 km apart from houses (Chen 1987). 297 

In a nature reserve of Guizhou Province, Ae. albopictus was recorded together with the two 298 

wild species (Wang et al. 2012), but this reserve includes agro-ecosystems supporting >4,000 299 

residents. In the subtropical Ryukyu Islands, Japan, Ae. albopictus is absent from natural 300 

forests that are separated from developed sites (Miyagi and Toma 1980, Toma and Miyagi 301 

1981). Altogether, Ae. albopictus occurs more often in forested habitats with wild species in 302 

tropical rather than subtropical localities. Thus, available information reinforces the tropical 303 

origin of Ae. albopictus. 304 

 Adaptation to human habitats was an event that occurred within several millennia following 305 

the appearance of villages cultivating wet rice over a wide range from tropical India through 306 

subtropical China (Fuller 2011). The initial adaptation to human habitats in the tropics is the 307 

simplest scenario, but the spread from the subtropics cannot be ruled out. 308 

 Possible impacts of human habitats on the climatic distribution range of Ae. albopictus. 309 

Hawley et al. (1989) estimated the overwintering range of Ae. albopictus in the U. S. by 310 
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considering the compensation of winter mortality by summer reproduction. Mogi et al. (2012) 311 

also assumed that the northern limit depends on the balance between summer reproduction 312 

and winter mortality instead of simple abiotic thresholds (for example, coldest-month 313 

temperature). This approach is common in analyzing the relation between climate and insect 314 

distribution under a seasonal climate. For example, Ry (year-long replacement rate) of 315 

Bradshaw et al. (2004) and λ (annual population growth rate) of Crozier and Dwyer (2006) 316 

both imply the distribution limits may be affected by biotic as well as abiotic factors 317 

influencing summer reproduction or winter mortality. More generally, the classical niche 318 

concept distinguishes between a fundamental niche (a range delineated by physical conditions, 319 

including climate, and essential resources but excluding biotic interactions) and a realized 320 

niche (a narrower range under the presence of competitors and natural enemies) (Hutchinson 321 

1978, Begon et al. 1986). Therefore, even if climate remains unchanged, apparent climatic 322 

limits can either advance or retreat following habitat shifts or environmental changes that 323 

increase or decrease the availability of essential resources and the magnitude of species 324 

interactions, and thereby disturb an existing balance between reproduction and mortality. 325 

Indeed, insect populations around northern limits persist in particular habitats more suitable 326 

for population growth than the other habitats (Oliver et al. 2009), implying the changing 327 

northern limits following the acquisition or loss of favorable habitats. 328 

 Water-holding containers and blood-meal hosts are essential resources for Ae. albopictus and 329 

are abundant in human habitats. Although the impact of these resources has not been 330 

quantitatively compared between natural and human habitats, it could be very large, 331 

especially under historical conditions before the development of water services and 332 

mosquito-proof houses. This view is well illustrated by persistence of Aedes aegypti (L.) at a 333 

small port in central Kyushu during 1944-1952 under abundant concrete tanks for fire 334 

prevention spread during the war (Kurihara 2003). 335 
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 Competition and predation affect adversely Ae. albopictus larvae in forests with rich 336 

mosquito faunas. After inundation, the larvae hatch and develop quickly using detritus 337 

accumulated during drying, but become inferior competitors in durable water occupied by 338 

more specialized container-mosquitoes resistant to starvation and accumulated wastes 339 

(Sunahara and Mogi 1997, 2002). Also, larvae of Ae. albopictus are more vulnerable to 340 

predators than other mosquitoes (Yasuda and Mitsui 1992, Nyamah et al. 2011). In a forest of 341 

Sri Lanka, the larvae shared each plant-container with a maximum of four other species; in 342 

bamboo stumps, the density was one third of Aedes (Stegomyia) krombeini Huang (a species 343 

outside the scutellaris group), and prey mosquito density was reduced to one quarter by 344 

predatory Toxorhynchites (Amerasinghe 1982). 345 

 Larval competition and predation are alleviated in artificial containers in human habitats. 346 

Aedes aegypti, a primary competitor in human habitats, was absent before its invasion into 347 

Asia presumably in the 20th century (Brown et al. 2014). In laboratory competition using 348 

sympatric Asian populations, Ae. aegypti showed some competitive advantages over Ae. 349 

albopictus under certain conditions (Chan et al. 1971, Sucharit et al. 1978). However, field 350 

observations reported segregation between these species at regional, habitat, and container 351 

levels (for example, Kalra et al. 1997, Chan et al. 1971, Preechaporn et al. 2006). Control 352 

trials of mosquitoes in artificial containers by the introduction of poeciliid fish, copepods, or 353 

Toxorhynchites mosquitoes (Chang et al. 2008, Nam et al. 2005, Annis et al. 1989) in southern 354 

Asia indicate the paucity of predators in human habitats. In the temperate region, Ae. aegypti 355 

is absent, and aquatic predators are rare in small containers (Sunahara et al. 2002). 356 

Consequently, human habitats facilitate Ae. albopictus reproduction by higher survival and 357 

faster development (due to higher water temperature) of the larvae (Li et al. 2014). 358 

 Below, we refer to the impacts of human habitats on the distribution of Ae. albopictus as 359 

either ecological or eco-evolutionary. We use ecological impact to mean the range expansion 360 



16 
 

of Ae. albopictus following the expansion of human habitats under the same general climate 361 

when species interactions are the primary limiting factors. We use eco-evolutionary impact to 362 

mean (1) expansion into more severe climatic ranges, and (2) genetic changes under new 363 

climate conditions. 364 

 Impacts under tropical per-humid climate. Broader occurrence of Ae. albopictus than the 365 

wild species in the tropical rain-forest zone is attributable to the ecological impact. The region 366 

from Peninsular Malaysia through New Guinea is the Old World center of mosquito evolution 367 

(Belkin 1962), where plant containers in rain forests are occupied by diverse competitors and 368 

predators. In this region, Ae. albopictus is always associated with humans (Macdonald 1957, 369 

Mogi et al. 1996a, Cooper et al. 1994). Further expansion to eastern islands resulted from 370 

increasing urbanization (Guillaumot et al. 2012). 371 

 Impacts under semiarid climate. Although Anantapur was slightly out of the Ae. 372 

albopictus range, this is due to arbitrary selection of distribution sites (>200 km apart from 373 

each other) from vast records from Hawaii through Madagascar (Mogi et al. 2015). Indeed, Ae. 374 

albopictus occurs widely on the Deccan Plateau (Kaul 2003), and was collected at Anantapur 375 

and Coimbatore together with the wild species (Kanojia and Jamgaonkar 2008, Thenmozhi et 376 

al. 2012). As stated above, natural vegetation of these sites is deciduous forests. Therefore, 377 

distribution at originally treeless sites was not confirmed for the wild species. 378 

 Occurrence of Ae. albopictus in the steppe climate zone from tropical through temperate 379 

zones probably resulted from the eco-evolutionary impact. In semiarid northwestern India 380 

where natural vegetation is open shrubs (Roy et al. 2015), Ae. albopictus breeds in tree holes 381 

at urban sites (Joshi et al. 2006, Angel and Joshi 2008). Planting of trees for comfort or 382 

production must have enabled its persistence at originally treeless sites. Desiccation resistance 383 

of Ae. albopictus increases in response to selection on the egg (Sota1993) and varies by 384 

habitats in the adult (Mogi et al. 1996b), so genetic changes under semiarid climate are likely. 385 
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 Impacts under northern temperate climate. The wild species occur widely at tropical and 386 

subtropical highlands, and some species appear adapted to the highland climate better than Ae. 387 

albopictus. In Taiwan, Ae. pseudalbopictus reaches higher (2,400 m) than Ae. albopictus 388 

(1,000 m) (Lien 1978), while lowland northern limits in China are 32 and 40°N, respectively. 389 

This discrepancy indicates that adaptation to cool, oceanic climate at southern highlands is not 390 

enough for the expansion deep into temperate lowlands under continental climate. This is 391 

consistent with (1) the difference of northern-temperate climate from oceanic 392 

southern-temperate and tropical-highland climate (Troll 1960, Darlington 1965), and (2) the 393 

hemispherical (northern vs. southern) difference in primary overwintering strategies of insects 394 

(Chown et al. 2004). 395 

 Seasonal dynamics and diapause potential of Ae. pseudalbopictus around the northern limit 396 

are unknown as well as factors preventing the expansion further north. For mosquitoes, 32°N 397 

in eastern China is an approximate border between Sino-Indian and Northeast China 398 

subregions (Lu et al. 1997). Probably, this species indicates the northern limit under 399 

continental climate for the wild species that maintain the ancestral tropical distribution.  400 

 How could Ae. albopictus overcome this constraint? Did only Ae. albopictus harbor unique 401 

genetic variation that enabled adaptation to temperate continental climate? We can say 402 

nothing at present. Ecologically, however, Ae. albopictus had a great advantage. We propose 403 

that enhanced reproduction in human habitats enabled it to colonize further north. The present 404 

distribution shows the expansion to the temperate region as a human inquiline. In Beijing, 405 

temperate China, it was recorded as early as 1931, but was absent from tree holes where four 406 

species, including Aedes (Stegomyia) chemulpoensis Yamada (a species outside the scutellaris 407 

group), are common (Feng 1938a, b). In temperate Japan, it is absent from natural forests 408 

apart from developed sites (Eshita and Kurihara 1979) or on uninhabited islets (Mogi 1990). 409 

This pattern is consistent with the higher habitat specificity (restriction to habitats enabling 410 
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higher population growth) around the northern distribution margin observed in other insects 411 

(Oliver et al. 2009). 412 

 An immediate response to cooler climate in Ae. albopictus is cold acclimation in diapause 413 

and nondiapause eggs (Hawley et al. 1989, Hanson and Craig 1994). The earliest genetic 414 

adaptation is changes in photoperiodism as demonstrated by evolution after its invasion into 415 

the Americas (Armbruster 2016 for review). Changes in critical photoperiods for diapause 416 

induction not only adjust seasonal dynamics to the latitudinal temperature gradient but 417 

involve enhanced cold hardiness that is higher in diapause than nondiapause and northern 418 

than southern eggs (Hawley et al. 1987, Hawley et al. 1989, Hanson and Craig 1994).  419 

 Where did photoperiodic diapause appear? This species overwinters as diapause eggs in 420 

southernmost-temperate Kagoshima (31°N, annual mean temperature ≈18°C) (Makiya 1968) 421 

and Yixing (31°N, ≈16-17°C) (Yang 1988). In subtropical Okinawa (26°N, ≈22°C), it 422 

reproduces year-round (Toma et al. 1982), but some eggs enter diapause under short 423 

day-lengths (Toma and Miyagi 1990). A subtropical Foshan (23°N, ≈24°C) population has 424 

diapause-related genes (Chen et al. 2015), but photoperiodic diapause is absent in Yonakuni 425 

and Ishigaki islands (24°N, ≈24°C) (Higa et al. 2007) as well as in Hainan Island (20°N, 426 

≈24°C) (Yang 1988). These facts indicate that egg diapause appeared at least in the northern 427 

subtropics and was reinforced following the expansion to the temperate region with humans. 428 

 Expansion as a human inquiline to a new climate range followed by genetic reinforcement of 429 

diapause is a typical example of the eco-evolutionary impact of human habitats. 430 

 Synthesis. A hypothetical scenario for the origin, dispersal, and adaption of Ae. albopictus in 431 

Asia is; (1) allopatric speciation as a wild species under the monsoon climate during the 432 

Pleistocene, (2) appearance of photoperiodic diapause in the subtropics, (3) adaptation to 433 

human habitats within several millennia in the tropical or the subtropical region, (4) 434 

expansion as a human inquiline to the temperate region where photoperiodic diapause is 435 
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essential for persistence, (5) formation of geographic variation in photoperiodic diapause and 436 

cold-hardiness, and (6) expansion to per-humid tropics and originally treeless dry regions 437 

following urbanization. 438 

 Although the real sequence of events may be more complex (for example, involving 439 

reinforcement of ethological isolation by sympatry, McLain and Rai 1985), we submit this 440 

scenario as an initial hypothesis that needs to and can be verified for improvement. Molecular 441 

phylogenetic analyses including Ae. albopictus and the wild species from broad geographical 442 

and habitat ranges are necessary as well as field, laboratory, and theoretical studies focusing 443 

on this issue. 444 

 The hypothesis that adaptation to human habitats enabled Ae. albopictus to expand not only 445 

under the suitable climate but by producing opportunities for adapting to more severe climate 446 

is of practical importance in view of growing anthropogenic environmental changes and 447 

transportation that favor Ae. albopictus and other arthropods of medical importance. 448 
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Figure legend 698 

 699 

Fig. 1. Climate conditions at distribution sites of (A) Ae. pseudalbopictus and (B) the other 700 

wild species (Ae. novalbopictus, A. patriciae, Ae. seatoi, and Ae. subalbopictus). Dotted 701 

polygon, distribution range of Ae. albopictus before the worldwide invasion since 1980’s 702 

(Mogi et al. 2015). Symbols of sites are distinguished by altitudes; circle, below 500 m, 703 

diamond, 500-1,000 m, and triangle, above 1,000 m. Conditions at sites encircled by solid 704 

lines are detailed in Tables 4-6. For Table 6, only 12 coolest sites were encircled. Two 705 

arrows in the temperate-forest zone of (A) indicate northernmost lowland sites in eastern 706 

China, and a single arrow in (B) indicates a unique driest site slightly out of the Ae. 707 

albopictus range. 708 

  709 
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Table legends 710 

 711 

Table 1. Species of the albopictus subgroup of the scutellaris group of Aedes (Stegomyia) in 712 

Asia, arranged approximately from the ancestral tropical distribution to the derived 713 

northerly distribution. 714 

Table 2. Geographical and altitudinal distributions of the five wild species. 715 

Table 3. Thermal Index (WI10) and aridity-humidity index (PE) criteria for climate 716 

classification. 717 

Table 4. Distribution sites under tropical, per-humid, rain-forest climate (WI10 > 180, PE ≥ 718 

128). 719 

Table 5. Driest distribution sites (PE < 50). 720 

Table 6. Distribution sites where summer is coolest (WI10 < 70) and/or at highest latitudes 721 

(>30°N) arranged by the increasing order of WI1 722 



Table 1. Species of the albopictus subgroup of the scutellaris group of Aedes (Stegomyia) in 

Asia, arranged approximately from the ancestral tropical distribution to the derived northerly 

distribution. 

Species Distribution1 Habitat 

 T ST SWT NWT CT  

Ae. novalbopictus + +    Forest 

Ae. patriciae + +    Forest 

Ae. seatoi + +    Forest 

Ae. subalbopictus + +    Forest 

Ae. pseudalbopictus + + +   Forest 

Ae. albopictus + + + +  Human-made

Ae. flavopictus  + + + + Forest 

Ae. galloisioides  +2    Forest 

Ae. neogalloisi   +2   Forest 

Ae. galloisi   +2 + + Forest 

Ae. sibiricus     + Forest 

1T, tropical; ST, subtropical; SWM, southern part of warm-temperate; NWT, northern part of 

warm-temperate; CT, cool-temperate. 

2Highland; Ae. galloisioides, Yunnan and Sichuan Provinces, China; Ae. neogalloisi, Henan 

Province, China; Ae. galloisi, Kyushu, Japan.



Table 2. Geographical and altitudinal distributions of the five wild species. 

Species Region1 Altitude (m)2 

Described Estimated 

Ae. novalbopictus India, Sri Lanka, Thailand, China (Yunnan), Hainan* 430-1,220 10-1,850 

Ae. patriciae Pakistan, India, Thailand, Vietnam, Peninsular Malaysia, China (Yunnan), Taiwan* 530-2,130 60-1,750 

Ae. pseudalbopictus India, Andaman, Nicobar, Nepal, Myanmar, Thailand, Lao, Peninsular Malaysia, 

Sumatra*, Java, China (South-Central)3, Hainan*, Taiwan  

10-1,860 10-2,400 

Ae. seatoi Thailand, China (Sichuan) 20-60 10-1,250 

Ae. subalbopictus India, Andaman, Nepal, Thailand, Vietnam, China (Sichuan, Yunnan, Guizhou), 

Hainan* 

80-2,480 10-1,840 

1India and China indicate the continental part, respectively. *, site unspecified within the region. 

2Described, publications gave altitudes or detailed coordinates; Estimated, estimated on Google Earth Pro. 

3Jiangsu*, Anhui, Zhejiang, Fujian, Jiangxi, Hunan*, Guizhou, Sichuan, Yunnan, Guangxi, Guangdong* 

 

  



Table 3. Thermal Index (WI10) and aridity-humidity index (PE) criteria for climate 

classification. 

Index1 Value Climate Vegetation 

WI10 ~120 Temperate  

 120~180 Subtropical  

 >180 Tropical  

PE 0~15 Arid Desert2 

 16~31 Semiarid Steppe 

 32~63 Sub-humid3 Savannah3 

 64~127 Humid Forest4 

 ≥128 Per-humid Rain forest4

1See Mogi et al. 2015 for detailed explanations. Note that these indices are indicator of 

warmth and wetness integrating latitudinal and altitudinal gradients. Therefore, the temperate 

zone includes tropical and subtropical highland sites besides northern temperate sites. 

2Deserts may have ephemeral forbs and shrubs but lack continuous vegetation. 

3Naming of vegetation under sub-humid climate depends on whether emphasis is put on tall 

grass or trees. Although trees do not form continuous canopies, their presence separates this 

vegetation from steppes. 

4In tropical and subtropical zones, seasonal forests under humid climate can be discriminated 

from evergreen rain forests. In temperate zones, the same forest types may occupy both humid 

and per-humid zones. 

 



Table 4. Distribution sites under tropical, per-humid, rain-forest climate (WI10 > 180, PE ≥ 128). 

Region Station Latitude 

(°N)  

Altitude 

(m) 

PE1 WI10 AMT2 

(°C)  

ATP3 

(mm) 

No. Dry 

Month4 

Species 

(No. sites)5 

Andaman Islands Port Blair 11.67 79 156 194.1 26.2 2,872 2 pse, sub 

Western India Kozhikode 11.25 4 147 214.5 27.9 3,113 4 nov 

 Goa 15.48 60 137 209.3 27.4 2,813 6 nov 

Phuket Island Phuket 8.12 10 128 208.7 27.4 2,503 1 pse (2) 

Peninsular Malaysia Kota Bharu 6.17 5 140 200.7 26.7 2,599 0 pse (4) 

1Aridity-humidity index. 

2Annual mean temperature. 

3Annual total precipitation. 

4In dry months, monthly PE=0 or 1. At Kota Bharu, the minimum PE was 2. 

5pse, Ae. pseudalbopictus; sub., Ae. subalbopictus; nov, Ae. novalbopictus; No. sites were shown when distribution sites ≥ 2. 

 
  



Table 5. Driest distribution sites (PE < 50). 

Region1 Station2 Latitude 

(°N) 

Altitude 

(m) 

PE3 WI10
4 AMT5 

(°C) 

ATP6 

(mm)

No. Dry 

Mo7 

Species 

(No. sites)8 

C. and S. India Anantapur* 14.58 364 S 24 T 216.2 28.0 560 5 nov (3), sub (3) 

 Coimbatore 11.00 409 S 29 T 200.4 26.7 647 5 nov 

 Kanyakumari 8.08 37 33 T 213.1 27.8 735 3 pse 

 Pune 18.53 559 36 176.4 24.7 741 6 nov, sub 

 Mysore 12.30 760 40 174.1 24.5 804 4 nov, pse 

 Belgaum 15.85 747 49 171.4 24.3 947 4 nov, pse, sub 

N. and C. Thailand Phayao 19.13 397 45 T 182.0 25.2 942 4 nov, pse (3) 

 Kanchanaburi 14.02 29 48 T 215.1 27.9 1,050 4 pse (3), sea 

SW. China Yuanmou 25.73 1,221 32 137.5 21.5 642 6 sub 

 Yuanjiang 23.60 398 37 164.7 23.7 796 4 pse 

 Panzhihua 26.58 1,191 45 129.3 20.8 849 6 pse (2), sea, sub 

1C, central; S, southern; N, northern; SW, southwestern. 

2Stations with asterisks are out of the Ae. albopictus range. 



3 Aridity-humidity index. “S” indicates semiarid, steppe climate, while others are sub-humid, savannah climate. 

4”T” indicates tropical climate, while others are subtropical climate. 

5Annual mean temperature. 

6Annual total precipitation. 

7In dry months, monthly PE=0 or 1. 

8nov, Ae. novalbopictus; sub., Ae. subalbopictus; pse, Ae. pseudalbopictus; sea, Ae. seatoi; No. sites were shown when distribution sites ≥ 2. 

  



Table 6. Distribution sites where summer is coolest (WI10 < 70) and/or at highest latitudes (>30°N) arranged by the increasing order of WI10. 

No. Category1 Region Station2 Latitude 

(°N) 

Altitude 

(m) 

WI10 AMT3 

(°C) 

Hottest 

Mo (°C)

Coldest 

Mo (°C)

Range4

(°C) 

CCI5 Species 

(No. sites)6 

1 C Taiwan Alishan* 23.51 2,413 29.1 11.8 15.2 6.8 8.4 11.9 pse 

2 C E. Himalaya Darjeeling* 27.05 2,128 40.1 12.5 16.9 5.6 11.3 17.9 pse 

3 C W. Himalaya Mukteshwar 29.47 2,311 48.0 13.3 18.3 6.4 11.9 17.8 sub 

4 C, N W. Himalaya Murree 33.92 2,127 50.4 12.7 20.6 3.7 16.9 27.4 pat 

5 C, N W. Himalaya Shimla 31.10 2,202 50.5 13.3 19.8 5.3 14.5 23.5 pat (2) 

6 C E. China Lushan 29.58 1,165 50.9 11.6 22.2 0.3 21.9 44.4 pse 

7 C, N W. Himalaya Manali 32.27 2,039 53.3 13.3 20.6 4.5 16.1 26.7 pse, sub 

8 C W. Himalaya Nainital 29.40 1,953 57.2 14.1 20.0 6.2 13.8 23.0 sub (3) 

9 C SW. China Xishui 28.32 1,181 57.6 13.1 22.7 2.7 20.0 40.8 pse, sub 

10 C E. Himalaya Gangtok* 27.33 1,765 64.0 15.2 19.5 8.4 11.1 17.1 pse, sub (2) 

11 C SW. China Tengchong 24.98 1,655 64.1 15.1 19.9 8.1 11.8 21.0 pat 

12 C SW. China Huili 26.65 1,788 68.9 15.3 21.2 7.3 13.9 25.6 pse (2) 

13 N W. China Wanyuan 32.07 674 71.7 14.7 24.8 3.9 20.9 39.0 pse 



No. Category1 Region Station2 Latitude 

(°N) 

Altitude 

(m) 

WI10 AMT3 

(°C) 

Hottest 

Mo (°C)

Coldest 

Mo (°C)

Range4

(°C) 

CCI5 Species6 

14 N E. China Huoshan 31.40 88 82.8 15.2 27.4 2.4 25.0 50.3 pse 

15 N W. China Liangping 30.68 455 88.1 16.6 26.8 5.7 21.1 41.0 pse 

16 N W. China Langzhong 31.58 385 90.2 16.8 26.6 6.1 20.5 38.5 pse 

17 N E. China Hangzhou 30.23 43 91.2 16.5 28.4 4.3 24.1 49.4 pse 

18 N W. China Dazhou 31.20 344 92.6 17.0 27.5 6.1 21.4 41.2 pse 

19 N W. China Wanzhou 30.81 189 100.9 18.0 28.3 7.0 21.3 41.4 pse 

20 N W. Himalaya Dharmsala 32.27 1,211 109.1 19.1 26.5 10.4 16.1 26.7 nov 

21 N W. Himalaya Dehradun 30.32 682 139.8 21.7 28.9 12.7 16.2 28.6 nov 

1C, coolest distribution sites where WI10 < 70; N, northernmost distribution sites >30°N. 

2 Stations with asterisks are out of the Ae. albopictus range. 

3Annual mean temperature. 

4Difference between hottest month mean and coldest month mean. 

5Conrad’s continentality index. 

6pse, Ae. pseudalbopictus; sub., Ae. subalbopictus; pat, Ae. patriciae; nov, Ae. novalbopictus; No. sites were shown when distribution sites ≥ 2.  
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