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Methylation status of the CYP11B1 promoter in cortisol-producing adenoma.  To examine the 
role of DNA methylation on high CYP11B1 expression in CPA, we compared the DNA methylation level of five 
CpG sites in the CYP11B1 promoter (Fig. 2a, Figure S6) in CPA with the same sites in AUAT, white blood cells 
(WBC), zona fasciculata (ZF) of normal adrenal cortex, non-functioning adrenal tumor (NFT) and H295R cells. 
The methylation of all five sites in CPA was significantly lower than in AUAT, WBC, ZF, NFT and H295R cells 
(Fig. 2b). Furthermore, methylation status was also significantly lower in AUAT, ZF and NFT, compared to WBC 
and H295R cells. Additionally, CPAs that carried somatic mutations (n = 8) were significantly less methylated in 
the five CpG sites of the CYP11B1 promoter compared to those without mutations (n = 5) (Fig. 3a).

All patients
CPA with PRKACA 
or GNAS mutation

CPA without PRKACA 
or GNAS mutation

Number of cases, n 13 8 5

Age, y [mean (range)] 53 (33–65) 52 (37–64) 53 (33−65)

Sex, males/females 4/9 2/6 2/3

Body mass index, kg/m2 24 ± 4 24 ± 2 25 ± 6

Systolic blood pressure, mmHg 146 ± 25 150 ± 9 139 ± 2

Diastolic blood pressure, mmHg 90 ± 15 93 ± 6 85 ± 3

Serum potassium, mEq/L 3.8 ± 0.3 3.7 ± 0.1 3.8 ± 0.2

Baseline F, nmol/L 362 ± 31 373 ± 41 343 ± 50

24 h urinary F, µg/day 58 ± 10† 64 ± 15‡ 46 ± 8§

Midnight F, nmol/L 268 ± 50† 255 ± 61‡ 290 ± 98§

F after 1 mg DST, nmol/L 241 ± 51 249 ± 55 227 ± 110

Adrenal tumor size, mm 26 ± 2 23 ± 2 30 ± 4

Table 1. Summary of clinical characteristics of patients with cortisol-producing adenomas in this study. 
†n = 11, ‡n = 7, §n = 4. Data presented as mean ± SEM, except where noted otherwise. F, serum cortisol 
concentration; DST, dexamethasone suppression test.

Figure 2. Hypomethylation of the CYP11B1 promoter in cortisol-producing adenomas. (a) CpG sites and 
transcription factor-binding sites in the human CYP11B1 promoter. Nucleotide numbers are relative to the 
transcription start site. CpG sites around the transcription factor-binding sites are denoted as lollipops and 
numbered. b, Comparison of methylation levels of the CYP11B1 promoter among cortisol-producing adenomas 
(CPA) (n = 13), adjacent unaffected adrenal tissue (AUAT) (n = 13), white blood cells (WBC) (n = 13), zona 
fasciculata (ZF) of normal adrenal cortex (n = 7), non-functioning adrenal tumor (NFT) (n = 7), and H295R 
cells (H295R) (n = 13). Methylation levels at five CpG sites were measured by pyrosequencing. Data are 
shown as the mean ± SEM, and analyzed with the Mann-Whitney U test between each two groups. *P < 0.05, 
**P < 0.01.
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regulation of CYP11B1 expression14. In the present study, we identified five CpG sites in the CYP11B1 promoter, 
all of which were present near transcription factor-binding sites. DNA methylation in the CYP11B1 promoter 
reduced its activity. We therefore conclude that DNA methylation interferes with the binding of transcription 
factors to the CYP11B1 promoter.

Recent genetic analysis identified a mutation in the PRKACA gene that causes CPA4. This mutation results 
in the release of PRKACA from the inhibitory R subunits, leading to the constitutive, cAMP-independent acti-
vation of PKA5. Moreover, GNAS mutations that activate PKA through a constitutive increase in intracellular 
cAMP concentrations are also frequently identified in CPA5, 16. Thus, both PRKACA and GNAS mutations lead 
to activation of the cAMP/PKA signaling pathway. Activated PKA phosphorylates CREB, and activated CREB 
binds to the Ad1/CRE site in the CYP11B1 promoter to induce CYP11B1 expression. A previous study reported 
that mutations in PRKACA and GNAS were associated with small tumors, young age at presentation, and a severe 
phenotype17. Another study also reported that patients with CPA containing PRKACA mutations had higher basal 
serum cortisol concentrations than patients without PRKACA mutations, which persisted after dexamethasone 
suppression tests15. However, in our study, the presence of somatic mutations made no difference in patients’ clin-
ical characteristics. This might be because our study contained fewer cases than previous studies.

Multiple causal genes of APA have also been newly discovered. Mutations in KCNJ518, ATP1A119, ATP2B319, 
and CACNA1D20 upregulate CYP11B2. Previous studies reported that there was no correlation between somatic 
mutations and DNA methylation in APA6, 8. However, in the case of CPA carrying PRKACA or GNAS mutations 
CYP11B1 promoters are significantly hypomethylated compared to wild-type CPA. More interestingly, PRKACA 
or GNAS mutations reduced DNA methylation at the two CpG sites around the Ad1/CRE binding site signifi-
cantly, but not at the other three CpG sites. Since these mutations result in the continuous PKA activation, to 
mimick the effect of these mutations, we treated H295R cells with dbcAMP, which activates PKA constitutively. 
Similarly, we observed that short-term stimulation with dbcAMP also led to the demethylation of these two CpG 
sites, but not the other CpG sites in the promoter. These data suggest that mutations in PRKACA or GNAS have 
an impact on the methylation status of the CYP11B1 promoter region, especially around the Ad1/CRE site. Since 
several studies have demonstrated that the binding of transcription factors affects DNA methylation status21–23, 

Figure 5. Activation of cAMP signaling results in hypomethylation of the CYP11B1 promoter. (a) dbcAMP 
stimulation increases CYP11B1 expression. H295R cells were stimulated with 125 µmol/L dbcAMP for three 
days, and then the expression level of CYP11B1 was examined with real-time RT-PCR analysis. The value of 
no stimulation (None) was set to 1.0, and data are shown as the mean ± SEM (n = 6) and analyzed with the 
Mann-Whitney U test. **P < 0.01. (b) dbcAMP treatment reduces methylation in the CYP11B1 promoter. 
After stimulation with dbcAMP, methylation levels at all five CpG sites (upper panel) and two CpG sites around 
the Ad1/CRE binding site (lower panel) in the CYP11B1 promoter were measured by pyrosequencing. In both 
experiments, data are shown as the mean ± SEM (n = 3), and analyzed with the Mann-Whitney U test. NS, not 
significant. *P < 0.05.
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these results suggest that somatic mutations commonly found in CPA that facilitate the binding of activated 
CREB to the Ad1/CRE site should influence DNA methylation of the CYP11B1 promoter.

In this study, we used H295R cells to examine the effect of dbcAMP on CYP11B1 expression. This cell line is 
derived from adrenal cancer and has the ability to produce adrenal androgens, but not cortisol. To correspond 
with this, the CYP11B1 promoter in H295R cells is more methylated than those in CPA and AUAT. Thus, our 
results regarding dbcAMP-stimulated hypomethylation in H295R cells might not reflect the effect of dbcAMP on 
CPA. The establishment of cortisol-producing cell line or primary culture from adrenal cortex would clarify the 
effect of dbcAMP on CPA in future.

DNA methylation might be important to not only disease states, but also to the normal physiological status of 
the adrenal glands. The adrenal cortex forms a laminar structure24 where cortisol is produced by ZF in the middle 
layer of the adrenal cortex, whereas the zona glomerulosa in the outer layer produces aldosterone. Our methylation 
analysis revealed that in CPA, the CYP11B1 promoter is significantly hypomethylated, as is CYP11B2 in APA7–9. 
These observations suggest that expression of both CYP11B1 and CYP11B2 are regulated by DNA methylation in 
adrenocortical adenomas. This raises the possibility that hypomethylation at the promoter regions of CYP11B1 
and CYP11B2 might be associated with the production of cortisol in ZF and aldosterone in the zona glomerulosa. 
In this study, we used the samples from normal adrenal cortex with non-CPA patients in order to examine the 
methylation status of normal ZF. This is because AUAT with CPA patients had atrophied due to exposure to excess 
cortisol, and we could not identify the obvious remaining ZF (Figure S3). Our results indicated that the CYP11B1 
promoter in normal ZF was significantly more hypomethylated than that in WBC or H295R cells. However, there 
was no difference in methylation status between ZF and NFT. Then, there may be the difference by the molecular 
mechanism unlike DNA methylation among both. It would be interesting to evaluate the methylation levels of the 
CYP11B1 and CYP11B2 promoters in each layer of the adrenal cortex samples in future studies.

In summary, DNA demethylation at the promoter region of the CYP11B1 gene plays an important role in 
the production of excess cortisol in CPA. Furthermore, somatic mutations associated with CPA, which result in 
the activation of the cAMP/PKA signaling pathway, induce DNA hypomethylation at the CYP11B1 promoter. 
Methylation analysis of the promoter of key enzymes appears to play a significant role in the expression of the 
enzymes and physiological regulation of hormone biosynthesis. Therefore, DNA methylation at the promoters 
might make a significant contribution to not only the pathogenesis of hormone producing adenomas, such as 
hypercortisolemia and PA, but also the hormonal synthesis mechanism of the normal adrenal gland. Our results 
might be important for the clarification of the hormonal synthesis mechanism, and the development of better 
treatments for hypertension due to hormone excess, such as hypercortisolemia and PA.

Materials and Methods
Study Patients.  We studied 13 hypercortisolemia patients with CPA diagnosed between 2011 and 2015 at 
Kanazawa University Hospital. The diagnostic criteria for hypercortisolemia was based on the Endocrine Society 
Clinical Practice Guideline2. These guidelines recommend the measurement of late-night salivary cortisol for 
the diagnosis of hypercortisolemia, but this is not available in Japan. The measurement of late-night serum cor-
tisol was used instead. We also performed 131I-adosterol scintigraphy as an additional evaluation method25. In 
all patients, cortisol levels were not suppressed (>49.7 nmol/L) after 1.0 mg dexamethasone treatment. Eleven 
patients had unsuppressed cortisol concentration at midnight and/or abnormally high urinary free cortisol. In 
two other patients, both the midnight serum cortisol test and the measurement of urinary cortisol concentra-
tion could not be performed, but 131I-adosterol scintigraphy showed unilateral uptake. All patients underwent 
a unilateral adrenalectomy and needed hydrocortisone replacement treatment temporarily after surgery. They 
discontinued the replacement from 3 to 20 months (mean 8 months). In addition, we studied 7 NFT patients 
(Table S2). NFT was defined as the adrenal tumor that cortisol-, aldosterone-, androgen-producing tumor and 
pheochromocytoma were excluded by various endocrine testing.

Immunohistochemical analysis.  Immunohistochemical staining of formalin-fixed paraffin-embedded 
sections of adrenal tumors was performed using monoclonal rat anti-CYP11B1 antibody and monoclonal mouse 
anti-CYP11B2 antibody with Chem Mate ENVISION kits (DAKO, Glostrup, Denmark) as previously reported26.

Protein extraction and Western blot analysis.  Protein was extracted from samples T-PER Tissue 
Protein Extraction Reagent (Thermo Fisher, Bremen, Germany). Western blot was performed a previously 
reported27. Samples were mixed with an SDS sample buffer (5 × buffer: 50 mM Tris-HCl (pH 6.8), 30% glycerol, 
10% SDS, 250 mM dithiothreitol, 10 mM EDTA, and 0.01% Coomassie Brilliant Blue R250), subjected to SDS-
10% PAGE, and transferred to a nitrocellulose membrane. The membrane was incubated with antibodies for 
anti-CYP11B1 antibodies (1:20,000 dilution)11 or GAPDH (Thermo Fisher), followed by horseradish peroxidase 
(HRP)-conjugated goat anti-mouse or anti-rabbit IgG (EMD Millipore). The blot was visualized using enhanced 
chemiluminescence reagents (PerkinElmer Life Sciences, Boston, MA) with an LAS-1000 image analyzer (Fuji 
Film, Tokyo, Japan).

Gene mutation analysis.  Exons 6 and 7 of the PRKACA gene and exons 8 and 9 of the GNAS 
gene were PCR amplified using the following primers: 5′-GTTTCTGACGGCTGGACTG-3′ and 
5′-AGTCCACGGCCTTGTTGTAG-3′ for exon 6–7 of PRKACA4, 5′-ACTATGTGCCGAGCGATCA-3′ and 
5′-CAGTTGGCTTACTGGAAGTTGA-3′ for exon 8 of GNAS, and 5′-ACCCCAGTCCCTCTGGAATA-3′ 
and 5′-CCAAAGAGAGCAAAGCCAAG-3′ for exon 9 of GNAS17. Exons 3 of the CTNNB1 gene 
were PCR amplified using the following primers: 5′-GCTGATTTGATGGAGTTGGAC-3′  and 
5′-CAGGACTTGGGAGGTATCCA-3′16. Direct sequencing was performed with an ABI PRISM 310 Genetic 
Analyzer (Thermo Fisher).
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