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Abstract

We treat an interface motion with an obstacle according to the hyper-
bolic mean curvature flow. In order to realize this motion, we follow the
approximation method that is the so-called Hyperbolic MBO (HMBO) algo-
rithm. We modify the scheme to treat the obstacle problem. The HMBO
algorithm requires us to solve the wave equation. Therefore, we modify the
wave equation based on the hyperbolic obstacle problem.

Moreover, we investigate the behaviour of the interface when it hits the
obstacle. We consider two cases of the interface motion based on the choice
of the initial curve. In the first case, we consider that the initial curve is a
closed curve and the obstacle is located inside the curve. The interface stops
moving and lies on the obstacle after touching it, following the shape of the
obstacle. For the second case, the initial curve is fixed at the boundary of
the domain and the obstacle is below the curve. After touching the obstacle,
the interface reflects and vibrates above the obstacle. We plot the points
when the interface contacts with the obstacle at every time. We call it the
free boundary shape. The slope of the free boundary shape approaches the
free boundary condition.
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1 Introduction

In this study, we treat the interface motion with an obstacle. We consider
the interfacial motion problem which is the so-called hyperbolic mean cur-
vature flow [2]. We suppose that the interfaces are given by a parametrized
family of curves γ : I × [0, T ) → R2, where I = [a, b] and T > 0. Let us
consider the region P ⊂ R2 which the boundary of P coincides with the
interface. Also, the interface is considered as an oriented curve, such that
the region P is on the left side of the curve. Then, the hyperbolic mean
curvature flow is the problem to find γ(s, t) satisfying

∂2γ

∂t2
(s, t) = −κ(s, t)n(s, t), γ(s, 0) = γ0(s),

∂γ

∂t
(s, 0) = v0(s)n0(s), (1)

with s ∈ I and t ∈ [0, T ). Here, κ(s, t) is the curvature, n(s, t) is the unit
outer normal vector to the curve γ at a point (s, t) and the unit outer normal
vector at t = 0 is denoted by n0(s). This geometric evolution says that the
normal acceleration of the interface is proportional to its curvature [3] and
given by

a = −κ. (2)

To realize this interface motion, we follow the approximation method
introduced by Ginder and Svadlenka [1, 2] that is the so-called Hyperbolic
MBO (HMBO) algorithm. In those papers, the authors construct the numer-
ical scheme for computation the problem according to (1). In this work, we
focus in the obstacle problem when the interface touches the obstacle. The
aims of this work are to modify the scheme for the obstacle problem using
the HMBO algorithm and investigate the behaviour of the interface when it
touches the obstacle.

2 Interface model with an obstacle

We assume that the obstacle O ⊂ R2 is a convex open set. As we men-
tioned before, the interface is expressed by a parametrized curve γ(s, t). Here,
we suppose that γ is a Lipschitz function and γ ∈ C2({γ ∈ Ōc}). According
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to (1), we formally solve the following obstacle problem

∂2γ

∂t2
= −κn if γ ∈ Ōc,

∂γ

∂t
· ν∂O ≤ 0 if γ ∈ Ō,

γ ∈ Oc,

γ(s, 0) = γ0(s),

∂γ

∂t
(s, 0) = v0(s)n0(s),

(3)

with ν∂O is the unit outer normal vector to the obstacle. To simulate the
interface motion with an obstacle, we apply the HMBO algorithm using the
level set method.

3 Numerical method

3.1 The original HMBO algorithm

In this case, we consider that the interface will evolve up to a time T . We
take the time step be ∆t = T

M
, where M is a positive integer and 0 < ∆t� 1.

Then, the approximation method is as follows:

1. For k = 0, we assume that the initial curve is Γ0. Then, construct the
signed distance function to Γ0 to be d0(x). We find u : Ω × (0,∆t) →
R,Ω ⊂ R2, satisfying

utt(x, t) = ∆u(x, t) in Ω× (0,∆t),

u(x, t) = d0(x) on ∂Ω× (0,∆t),

u(x, 0) = d0(x) in Ω,

ut(x, 0) = 0 in Ω.

(4)

For simplicity, we restrict the initial velocity ut(x, 0) = 0. Then, we de-
fine the zero level set of u(x,∆t) as Γ1 and compute the signed distance
function to Γ1.

2. For k = 1, 2, . . . ,M − 1, repeat the following steps
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(a) Solve the equation
utt(x, t) = 2∆u(x, t) in Ω× (0,∆t),

u(x, t) = dk(x) on ∂Ω× (0,∆t),

u(x, 0) = 2dk(x)− dk−1(x) in Ω,

ut(x, 0) = 0 in Ω.

(5)

(b) Update the surrounded region and the interface using the zero
level set of the solution to (5):

Ek+1 = {x ∈ Ω|u(x,∆t) > 0}
Γk+1 = ∂Ek+1.

(c) Compute the signed distance function to Γk+1.

We apply the finite difference approximation to solve the wave equation
in the HMBO algorithm. Hence, utt and ∆u are approximated by the central
difference. Here, the domain Ω is a subset of R2, Ω = (a, b) × (a, b). Each
(a, b) is divided into N equal intervals, that is h = ∆x = ∆y = b−a

N
. So, we

have xi = a + ih, yj = a + jh, for i, j = 0, . . . , N . Also, the time (0,∆t) is
divided into m equal intervals, that is ∆τ = ∆t

m
and τl = l∆τ, l = 0, . . . ,m.

3.2 The modification of the HMBO algorithm for the
obstacle problem

3.2.1 The hyperbolic obstacle problem

In [5], the author describes the hyperbolic obstacle problem as the string
vibration with an obstacle. Here, the shape of the string is described by the
graph of a scalar function v : Ω̂ × [0, T ) ≡ Ω̂T → R, where Ω̂ ⊂ Rn and
the obstacle is the graph of a fixed function ψ : Ω̂ → R. In [5], the author
considered that ψ is the zero function. When the energy conservation law
holds, the stationary points of the following action functional describe the
motion of the string: J(v) =

∫ T
0

∫
Ω̂

((vt)
2 − |∇v|2)χ{v>ψ} dxdt, where χ{v>ψ}

is the characteristic function of the set {(x, t) ∈ Ω̂T |v(x, t) > ψ(x)}. By
calculating the first variation, we get the weak formulation for the wave-type
equation

vtt = ∆v in Ω̂T ∩ {v > ψ}. (6)

4



From the inner variation, we obtain the free boundary condition [5]

|∇v|2 − (vt)
2 = 0 on Ω̂T ∩ ∂{v > ψ}. (7)

From (6) and (7), we can derive the equation [4]

χ{v>ψ}vtt = ∆v in Ω̂T .

Hence, we introduce the problem as
χ{v>ψ}vtt = ∆v in Ω̂T ,

v(x, 0) = f0(x) on Ω̂,

vt(x, 0) = g0(x) on Ω̂,

v(x, t) = p(x, t) on ∂Ω̂T , with p(x, 0) = f0(x) on ∂Ω̂,

(8)

where the first equation is understood in the sense of distributions. When
the string touches the obstacle, the solution v also satisfies{

v ≥ ψ, ∆v ≥ vtt in Ω̂T ,

∆v = vtt on Ω̂T ∩ {v > ψ}

in the sense of distributions.
We solve (8) using the finite difference approximation. Consider Ω̂ ⊂ R,

Ω̂ = (a, b) is divided into N equal intervals, so we have h = b−a
N

and xi =
a+ ih, i = 0, . . . , N . For tk = k∆t, k = 0, . . . ,M , we approximate vtt and ∆v
by central difference. Also, the characteristic function is defined by [4]

χ{v>ψ}(xi, tk) =

{
1 if vki−1 > ψi−1 or vki > ψi or vki+1 > ψi+1,

0 otherwise,

where vki = v(xi, tk) and ψi = ψ(xi). Hence, we get the scheme{
vk+1
i = 2vki − vk−1

i + ∆t2

h2
(vki+1 + vki−1 − 2vki ), if χ{v>ψ}(xi, tk) = 1,

vk+1
i = ψi, if χ{v>ψ}(xi, tk) = 0,

(9)

for k = 0, . . . ,M − 1 and i = 1, . . . , N − 1.
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3.2.2 The HMBO algorithm for the obstacle problem

In the HMBO algorithm, the interface is expressed as the zero level set of
a function u : Ω× (0,∆t)→ R. Similarly, the obstacle is also represented by
the zero level set of a fixed function. We define w : Ω → R such that {x ∈
Ω|w(x) = 0} is the obstacle. Let µ : Ω→ R be the signed distance function
to the obstacle. To treat the obstacle problem, we follow the discretization
of the hyperbolic obstacle problem given in scheme (9) for solving equations
(4) and (5). Let uli,j = u(xi, yj, τl) and µi,j = µ(xi, yj). Then, we have the
following scheme

ul+1
i,j = 2uli,j − ul−1

i,j + c2 ∆τ2

h2
(uli+1,j + uli−1,j + uli,j+1 + uli,j−1 − 4uli,j),

if χ{u>µ}(xi, yj, τl) = 1,

ul+1
i,j = µi,j,

if χ{u>µ}(xi, yj, τl) = 0,

(10)
for l = 0, . . . ,m−1 and i, j = 1, . . . , N−1. The constant c2 = 1 for equation
(4) and c2 = 2 for equation (5). Here, we define

χ{u>µ}(xi, yj, τl) =

{
1 if uli,j > µi,j,

0 otherwise.
(11)

By implementing this scheme, we obtain

u(x, t) ≥ µ(x) for (x, t) ∈ Ω× (0, T ).

However, scheme (10) is still developed. We will investigate the results using
this scheme.

4 Numerical results

4.1 First case

For the numerical test, we consider a circle evolving by (1) with initial
radius r0 and initial velocity v0. We give a fixed circle with a smaller radius
as an obstacle. The circle will shrink before touching the obstacle and stop
after touching it. Before touching the obstacle, the curve is the circle with
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radius r(t) satisfying

r′′(t) = − 1

r(t)
, r(0) = r0, r′(0) = v0. (12)

In this part, we take the condition that is close to the case of a circle
evolving by the hyperbolic mean curvature flow in [2], so we can compare
both results. The error of the radius of the circle before touching the obstacle
is obtained by the comparison between the result from the HMBO algorithm
and the solution of (12) using Runge Kutta fourth order method. The L2

error is

e =

√√√√∆t
29∑
k=1

(rkr − rkn)2,

where rn is the maximum distance to the center from the HMBO algorithm
result and rr is the solution to (12). The error and the convergence order
related to L2 error are shown in the table below.

Table 1: Error and convergence order using the HMBO algorithm

N e convergence order

16 0.107927 -
32 0.0966846 0.159
64 0.0813308 0.249
128 0.0573378 0.504
256 0.0324356 0.822
512 0.0181595 0.837

From Table 1, as the mesh size decreases, the error value also decreases.
Moreover, the L2 error and its convergence order agree with the result of the
circle case given in [2].

4.2 Second case

In this case, we consider the curve having small displacement, such that
the interface motion by the hyperbolic mean curvature flow coincides with
the wave equation. Therefore, we compare between the results of the HMBO
algorithm for the obstacle problem and the hyperbolic obstacle problem using
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scheme (9). In this trial, the initial curves are given by a piece-wise linear
function and a quadratic function with small displacement. Also, we set the
position of an obstacle below the curve such that it is not too close to the
curve but the curve motion can touch it.

4.2.1 Constant function

In this part, the obstacle is given by a constant function. The initial
conditions and the obstacle for both schemes are described below. Here,
u(x, y, 0) and w(x, y) are the initial value and the obstacle function for the
HMBO algorithm, respectively. For scheme (9), the initial conditions are
v(x, 0) and vt(x, 0) with the boundary conditions are v(−1, t) ≡ v(−1, 0)
and v(1, t) ≡ v(1, 0). Also, ψ(x) represents the obstacle function. More
precisely, we have

• Case 1 (Initial curve is a piece-wise linear function)
u(x, y, 0) = −0.05|x| − y + 1.05

on Ω,
w(x, y) = 0.975− y
v(x, 0) = −0.05|x|+ 1.05, vt(x, 0) = 0

on Ω̂.
ψ(x) = 0.975

• Case 2 (Initial curve is a quadratic function)
u(x, y, 0) = −0.05x2 − y + 1.05

on Ω,
w(x, y) = 0.975− y
v(x, 0) = −0.05x2 + 1.05, vt(x, 0) = 0

on Ω̂.
ψ(x) = 0.975

From the simulation, the curve reflects after touching the obstacle and
vibrates above the obstacle. We plot the points when the curve contacts with
the obstacle at every time step. To get the contact points with the obstacle,
we find the end points in both sides when the curve is close enough to the
obstacle. Furthermore, we plot the contact points every time step for each
mesh size using both schemes. These graphs are called the free boundary
shape [5].

Moreover, we find the slope of the free boundary shape when the curve
is going up for both sides. This slope represents the free boundary condition
(7). According to this free boundary condition, we expect that the slope
of the free boundary shape should be ±1. The slopes of the free boundary
shape using both schemes for each mesh size are given in the following tables.
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By the curve motion, we consider that t∗ denote the time when the curve
starts going up.

Table 2: The slope of the free boundary shape for Case 1

N
Slope

HBMO algorithm scheme (9)
right and left sides t∗ right and left sides t∗

128 ± 0.76 1.119 ± 1.01 1.556
256 ± 0.91 1.338 ± 1.01 1.521
512 ± 0.93 1.425 ± 1 1.518
1024 ± 0.99 1.454 ± 1.01 1.493

Table 3: The slope of the free boundary shape for Case 2

N
Slope

HBMO algorithm scheme (9)
right and left sides t∗ right and left sides t∗

128 ± 0.75 1.167 ± 1 1.628
256 ± 0.9 1.392 ± 0.99 1.628
512 ± 0.93 1.478 ± 0.99 1.61
1024 ± 0.95 1.509 ± 0.99 1.606

4.2.2 Linear function

We simulate the curve motion with the obstacle given by a linear function
using the HMBO algorithm and scheme (9). We take

• Case 3 (Initial curve is a piece-wise linear function)
u(x, y, 0) = −0.05|x| − y + 1.05

on Ω,
w(x, y) = 0.015x− y + 0.975
v(x, 0) = −0.05|x|+ 1.05, vt(x, 0) = 0

on Ω̂.
ψ(x, y) = 0.015x+ 0.975

We find the slope of the free boundary shape when the curve is going up.
The tables below represent the slopes of the free boundary shape for both
schemes.
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Table 4: The slope of the free boundary shape for Case 3

N
Slope

HBMO algorithm scheme (9)
right side left side t∗ right side left side t∗

128 -0.66 0.8 1.187 -1 1 1.652
256 -0.85 0.91 1.427 -1.01 1 1.65
512 -0.92 0.93 1.524 -0.99 1 1.621
1024 -0.94 0.94 1.557 -1 1 1.619

From all cases, the slopes of the free boundary shape obtained by using the
HMBO algorithm and scheme (9) coincide as the mesh size becomes smaller.
It means that the curve motion using both schemes gives similar results.
Also, the slope of the free boundary shape approaches the free boundary
condition.
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