
Dissertation 
 
 
 

Parametrization of Data-driven Controller 
with Kautz Expansions 

 
 
 

Graduate School of  

Natural Science & Technology 

Kanazawa University 

 

Division of Electrical Engineering and 

Computer Science 

 

Student ID No. 1524042005 

Name: Hnin Si 

Chief advisor: Professor Shigeru YAMAMOTO 

Date of Submission: March 2018 





DOCTORAL DISSERTATION 

 
 
 

Parametrization of Data-driven Controller with 
Kautz Expansions 

 
 
 

Hnin Si 

Student ID No: 1524042005 

 

 

 

 

Division of Electrical Engineering and Computer Science 

Graduate School of Natural Science and Technology 

Kanazawa University 

March 2018 

 





 

 

 

 

 

 

 

Parametrization of Data-driven Controller 

with Kautz Expansions 

 

 

 

 

 

 
Hnin Si 





Acknowledgements

First of all, I would like to express my greatest thanks to Professor Osamu Kaneko from

the University of Electro-Communications, Tokyo, Japan. This thesis is the continuous

outcomes of his initiatives in fictitious reference iterative tuning since a decade ago, our

hard works and discussions. Thank you very much for giving me the opportunity to

study data-driven controller tuning. Without his suggestions, guidance, support and

encouragement, I cannot accomplish my research work.

Special thanks goes to Professor Shigeru Yamamoto, my chief advisor in Kanazawa

University, for his always kind support. I have learned a lot from him during my Ph.d

course work and in MoCCoS seminars. I envy his teaching style and his problem solving

approach. I can apply these experience in my career as a university teacher. Thanks

appreciate to Associate Professor Ichiro Jikuya for his motivations, advices and under-

standings. I can continue my endeavour in my hardest time with his motivations. Special

thanks to Professor Satoshi Yamane and Professor Akihiro Hirano, the members of my

dissertation committee, for reviewing my dissertation thoroughly and fruitful comments.

I also would like to show my sincere thanks to Japan International Cooperation Agency

(JICA) for starting technical cooperation project for enhancement of engineering higher

education (EEHE) in Myanmar, especially for the university sta↵s from Yangon Techno-

logical University (YTU) and Mandalay Technological University (MTU). I would like to

say thank you, Mr. Toru Saito, in charge for long term participants of EEHE project in

JICA Hokuriku, and all the sta↵s of JICA Hokuriku, for taking care of our daily lives in

Kanazawa and for giving us the chances to participate in many social activities.

Thank you my tutor, Mr. Naka Nishi, for helping me in preparing Japanese documents

related to choosing the subjects for course work, renting accommodation and so on. Thank

you very much Mr. Yuki Okano, we had unforgettable times in playing badminton and

bowling together. Because of you, two, I had a comfortable environment in Kanazawa

University. Thank you so much all MoCCoS members, we had happy and relaxing times

in every MoCCoS parties.

i



ii

Sincere thanks to Mr. Nguyen Quang Huy who supported me in translating some

Vietnamese reference books about control theory and discussing data-driven theories with

me.

I cannot leave Japanese language teachers, the members of international student com-

mittee and Myanmar students from Kanazawa University, and also Myanmar families in

Kanazawa, to show my deepest thanks for having enjoyable and relaxing time together in

social activities, other than the research work.

I am thankful to my colleagues from my country who always encourage and send me

messages, my teachers from kindergarten to university and all the people who support me

directly and indirectly to get such an accomplishment.

Last, but not least, my deepest appreciations to my family for always giving me

strength and being through thick and thin.

Hnin Si, Kanazawa University

20th November 2017



Abstract

In recent years, the data-driven controller design receives attention from many control

engineers and researchers as it requires only the measured input and output (I/O) data

of the system. The controller can be designed by direct utilization of the measured I/O

data since these data reflect the dynamics of an actual system. In this way, a plant model

identification step from the physical laws or from the measured data can be skipped, and

as the results, it can reduce time and cost for the identification step and can avoid the

dependence of the controller design on the plant model (which may be under-modeled).

Di↵erent kinds of data-driven controller tuning methods have been developed by many

researchers and each method has its own advantages. In this research work, we will

focus on fictitious reference iterative tuning (FRIT), one of the data-driven methods, to

design the controller. FRIT requires only one-shot (i.e a single experiment is needed)

experimental input and output data to obtain the optimal parameters for the controller.

The merit of FRIT is that the plant model can be obtained simultaneously as a by-

product of the controller tuning. The obtained plant model can be used to re-design of the

more advanced controller for the system. So, the plant model structure selection strategy

is also essential. In real world, non-minimum phase zeros or time delay may be inherent

parts of the actual system so they need to be considered in the plant model structure.

Special orthonormal basis functions, Laguerre and Kautz series, can solve this problem

and they are being used in identification of the stable and linear systems in many research

work.

This research work combines the benefits of FRIT and special orthonormal basis func-

tions to obtain the controller for the desired set point tracking and the plant model

simultaneously. Furthermore, plants with complex poles cannot be avoided in practical

applications and Kautz series can approximate them more e↵ectively than Laguerre series.

Truncated Kautz series will be used to parametrize the controller and to approximate the

plant model. Kautz series in general need priori information of the system poles. In our

proposed method, these Kautz poles are also tunable parameters.

iii
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In this research work, firstly, we consider FRIT in internal model control (IMC) struc-

ture of the conventional feedback loop system. Then we extend our research to two

degree-of-freedom (2DoF) control structure. The parameters of the feedforward con-

troller is approximated by the Kautz expansions. By using Kautz expansions in FRIT,

some assumptions about the plant model (e.g, the priori knowledge of the relative degree

and the number of unstable zeros of the plant) that are used in former FRIT methods

can be reduced.

In this research work, we consider stable, linear time-variant (LTI) continuous-time

single-input-single-output (SISO) systems. The controller is tuned for a step reference sig-

nal using data from noise-free simulations. The validity of our proposed method is shown

with several numerical examples of non-minimum phase systems, time-delay systems and

poorly damped systems. We also show the e↵ectiveness of our proposed method with an

illustrated example using the actual parameters of the vibrating system for positioning

control and model estimating of that system.
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Chapter 1

Introduction

1.1 Motivation and objectives

A variety of controller designs which directly utilize the measured input and output data

of the system (data-based) rather than using the mathematical model of the plant (model-

based) have been developed by many researchers more than two decades ago. In contrast

to the model-based controller design, the data-driven (data-based) controller design tech-

niques skip the system identification steps for the plant model, as a consequence, these

techniques can avoid the dependence of the controller on the plant model which can be

under-modeled and model-mismatch in the model-based controller design.

In most of the data-driven controller tuning methods, (for example, in iterative feed-

back tuning (IFT) [3, 4, 7], virtual reference feedback tuning (VRFT) [8, 9] and fictitious

reference iterative tuning (FRIT) [14, 15, 16, 20] in unfalsified control [1] and etc.), the

controllers are designed in model reference framework and a fixed controller structure is

used. The most important thing is how to design the reference model and the controller

structure in order to reflect the actual closed loop system. The choice of the desired

reference model is the critical issue when the plant to be controlled contains time-delay

or non-minimum phase parts which are inherent in most practical applications. Since the

plant is unknown, it is desirable to give some freedom to the reference model to overcome

this issue.

The reference model with tunable parameters has been considered in [6, 7, 10, 12, 16,

20] to cope the mismatch between the desired reference model and the actual closed-loop

transfer function which contains the time-delay or non-minimum phase plant. To design

such a reference model with tunable parameters, orthonormal basis functions, Laguerre

functions and Kautz functions with truncated model can be used as the alternatives to

1
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rational transfer functions. In [6, 7], the truncated Laguerre series was used for tunable

closed loop reference model to obtain the desired set point tracking. In these research,

the priori knowledge of the poles in Lagauerre series has been used.

The reference model of tunable parameters with Laguerre expansions was also con-

sidered in fictitious reference iterative tuning in internal model control (IMC) and two

degree-of-freedom (2DoF) control architectures [21, 22]. The simultaneous attainment of

controller and plant model with one-shot experimental input-output data and without

using the prior knowledge of Laguerre poles has been discussed. The attainment of the

plant model from one-shot experimental data is meaningful from practical point of view

as the obtained plant model can be used for monitoring the actual status of the plant,

the re-design of the more advanced controller and so on. In [22, 21], the desired set point

tracking and model estimation have been done very well for non-minimum phase and time

delay systems with Laguerre expansions.

In practical applications, the unknown system may introduce oscillatory behavior and

Laguerre functions cannot approximate such systems very well. Laguerre approximations

are suitable for well-damped systems [35] but it cannot approximate the system with

complex poles very well with the appropriate small model order. So Laguerre functions

are extended to two-parameter Kautz functions [27] for approximating the system with

the complex conjugate poles [32]. Actually, Kautz functions are the general forms of

Laguerre functions and they have more flexibility than Laguerre functions.

This research aims to extend the application area of the former work of [21, 22] to

the systems with oscillatory behavior and the controllers as well as the desired reference

model will be parametrized with Kautz expansions.

The objectives of this research work are as follows;

1) to design the reference model with free parameters instead of the fixed reference

model in order to reflect the actual closed loop system, using Kautz expansions

2) to parametrize the data-driven the controllers in Kautz expansions with fictitious

reference iterative tuning

3) to obtain the approximate model of the unknown plant as well as the optimal

controller for the desired tracking.
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1.2 Background

This section discusses the needs of data-driven controller tuning over model-based control

and briefly introduces some data-driven controller tuning methods which have similar

characteristics (for example, the methods that are mainly used for controlling the linear

time-invariant, single-input and single-output systems with o↵-line input and output data

sets in fixed controller structure). The e↵ectiveness of the orthonormal basis functions

are also figured out and the special orthonormal basis functions, Laguerre and Kautz

functions, are also briefly discussed.

Model-based and data-driven controller tuning

In the applications of model based control theory, the first step is modeling the plant, or

identifying the plant model, and then designing the controller based on this plant model

assuming that it represents the actual system. The modeling or identification of the plant

is necessary to the model based control. The practical industries, such as the chemical

industry, metallurgy, machinery, electronics, electricity, transportation and so on, have

production technologies and equipments in a large scale and production processes have

become more complex. Modeling processes using the physical laws or identification has

become more di�cult. For this reason, traditional model based control theory has become

impractical for control issues in such kind of enterprises.

In recent years, several data-driven techniques have been proposed as an alternative to

the model-based approaches described above. In a data-driven approach, the data are used

directly to minimize a control criterion. The identification and controller design steps are

thus lumped together, resulting in a direct “data-to-controller” algorithm. Compared to a

model-based approach, the modeling step is omitted and the problem of undermodeling of

the plant is avoided. Furthermore, since there is no intermediate model, the structure of

the designed controller does not depend on the structure of this model, and the order and

structure of the controller can be fixed. Both model based and data driven control has their

own advantages. Model based control is suitable when the accurate mathematical models

or roughly accurate mathematical models with moderate uncertainties are available. Data-

driven control is appropriate when the mathematical models are complicated with too high
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order and too much nonlinearity or the mathematical models are di�cult to establish or

unavailable.

Previous data-driven controller tuning methods related to the research work

Unfalsified control

Unfalsifed control [1] is designed by input and output data of the controlled plant and it

is a type of switching control method. The controller which cannot stabilize the control

system is falsified before it is inserted into the feedback loop. An invertible controller

candidate set, cost-detectable performance specifications and the switching mechanism

are the main elements of the unfalsified control.

With the measured data u(✓), y(✓), the fictitious reference signal r̃j(✓) of controller Cj

can be expressed as

r̃(✓) = C
�1
j (u(✓)) + y(✓) (1.1)

In unfalsified control, in order to select an appropriate replacement for the falsified con-

troller, a switching mechanism is needed. For a finite controller set, the scheme has to

evaluate all the controller candidates and select the optimal controller switching into the

closed loop system. Due to the combination of the performance requirement and controller

structure, the approximate update of the unfalsified set can be computed analytically, re-

sulting in a computationally cheap algorithm [13].

Model reference control

Data-driven controller tuning methods mostly use the model reference control.

Figure 1.1: A concept of model matching technique

In the model reference control design, the designer creates a transfer function whose

behavior is the one expected from the closed-loop system. This target transfer function is
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called the desired reference model, Td(s). The response desired for the closed-loop system

under a given reference signal r(t) is then yd(t) = Td(s)r(t). The response actually

obtained in closed-loop from the reference signal is yr(t, ⇢) defined above, which should

be as close as possible to yd(t). Then the controller design consists in finding the controller

parameters that make these two signals as close as possible to each other.

The performance index related to model reference criterion is described by

J
MR(⇢) = kyr(t, ⇢)� yd(t)k2

= kyr(t, ⇢)� Td(s)r(t)k2 (1.2)

With this setting, the objective is to find the optimal parameter, ⇢⇤ := argmin⇢ J
MR(⇢),

using the input, u(t, ⇢), and output, y(t, ⇢).

Iterative feedback tuning (IFT)

Iterative feedback tuning (IFT) was first proposed in [30]. The control objective is formu-

lated as a desired trajectory for the given reference signal. The control objective is then

minimized using a gradient approach to find a (local) optimum, with the initial controller

as a starting point. It is iterative in nature. At each iteration, closed-loop experiments

are performed and the response of the plant is used directly to estimate the gradient. No

plant model is needed and the estimate of the gradient is unbiased. IFT was initially

developed for LTI SISO systems. The method was then extended to LTI MIMO systems

[27]. Analysis of the method for nonlinear systems is provided in [26]. Performance of

the method has been shown in several application examples, see [28] for an overview. A

gradient approach that is similar to IFT is proposed in [37].

Virtual reference feedback tuning (VRFT)

Virtual reference feedback tuning (VRFT) is a method for optimizing the reference track-

ing criterion [8]. It is non-iteravite (one-shot) in nature, that is controller parameters

are estimated based on one batch of experimental input and output data. By using a

specific filtering scheme, an error signal corresponding to an approximate model reference

error can be evaluated for each controller using only one experiment and no iterations
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are needed to minimize an approximate model reference criterion. The error between

the input of the plant and the output of the controller is minimized to get the optimal

parameter for the controller. If the controller is parameterized linearly, the optimization

problem becomes convex and converge to global optimum. The method is developed for

noise-free measurements. For noisy measurements, the use of instrumental variable is

proposed. The method has been extended to the two degree-of-freedom controllers [9]

and to the nonlinear plants [11].

Fictitious reference iterative tuning (FRIT)

Fictitious reference iterative tuning (FRIT) [14, 15] is a data-driven controller tuning

method which needs a single set of experimental input and output data of the plant. It

uses the concept of fictitious reference in unfalsified control [1]. When it was introduced in

[14], the feedback controller tuning for the conventional closed loop system was considered.

Extension to 2DoF system is considered in [17]. The merit of FRIT is the simultaneous

attainment of controller and plant model with one-shot experimental data [19]. FRIT in

internal model control structure (IMC) and 2DoF control structure is considered for the

simultaneous attainment of controller and plant model in [16, 20, 24].

Orthonormal basis functions

In many areas of signal, system, and control theory, orthonormal basis functions play an

important role in the issues of analysis and design, to increase the speed of convergence in

a series expansion and to obtain a good approximation by retaining only a finite number

of expansion coe�cients [36]. In this section, the special orthonormal basis functions,

Laguerre functions and two-parameter Kautz functions are introduced briefly. For more

details, the readers are referred to [39].

Laguerre expansions

Laguerre functions are the special orthonormal basis functions and they are used in system

identification and reduced-order modeling. They are suitable for accurate modeling of the

systems with dominant first-order dynamics.
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The Laguerre functions in continuous form [28]is

Li(a) =

p
2a

(s+ a)


s� 1

s+ 1

�i�1

(1.3)

where a > 0, and i is are non-negative integers. Laguerre functions in discrete form is

Li(a) =

p
1� a2

z � a


1� az

z � a

�i�1

(1.4)

where |a| < 1, and i is are non-negative integers.

Kautz expansions

Kautz functions are generalized form of Laguerre functions. Kautz functions are suitable

for the systems with dominant second-order resonant dynamics.

Two-parameter Kautz functions in continuous form [28] can be expressed in

 2k�1(b, c) =

p
2bs

s2 + bs+ c


s
2 � bs+ c

s2 + bs+ c

�k�1

(1.5)

 2k(b, c) =

p
2bc

s2 + bs+ c


s
2 � bs+ c

s2 + bs+ c

�k�1

(1.6)

where b > 0, c > 0, and k are non-negative integers. In discrete form [32] is

 2k�1(b, c) =

p
1� c2(z � b)

z2 + b(c� 1)z � c


�cz

2 + b(c� 1)z + 1

z2 + b(c� 1)z � c

�k�1

(1.7)

 2k(b, c) =

p
(1� c2)(1� b2)

z2 + b(c� 1)z � c


�cz

2 + b(c� 1)z + 1

z2 + b(c� 1)z � c

�k�1

(1.8)

where |b| < 1, |c| < 1, and k are non-negative integers.

1.3 Outline of the dissertation

We now proceed to give a summary of the contents of this dissertation. The material

presented in this thesis is based on the papers of Hnin Si and Osamu Kaneko [48, 49, 50,

51]. Here we summarize the contents of the thesis.

Chapter 2. This chapter discusses the parameterization of feedback controller with
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Kautz expansions. For simultaneous attainment of controller and plant model, FRIT

in internal model control (IMC) structure is considered. The desired reference model

and the feedback controller are parameterized by the Kautz expansions. We also set the

constraints to compensate for steady state error. The validity of the proposed method

is shown with numerical example of poorly damped system. Measured input and output

data with measurement noise are also considered in simulation.

Chapter 3. This chapter proposes a new method for the feedforward controller

parameter tuning for poorly damped system. Simultaneous attainment of the controller

and the plant model with one-shot experimental data is obtained with the use of FRIT in

two degree-of-freedom (2DoF) control structure. Feedforward controller and the desired

reference model are parameterized in Kautz expansions. Steady state error constraint is

also considered in this method. The e↵ect of measurement noise in the output data is

also simulated in the numerical example. The e↵ectiveness of the our proposed method

is also shown in comparison with Laguerre expansions.

Chapter 4. In this chapter, we try to control and approximate time delay system

with FRIT in 2DoF control structure. Di↵erent from the previous research, we unify the

lumped part and time delay part as a parametrized lumped transfer function with Kautz

expansions. A numerical example is used to show the validity of our method. Time delay

approximation methods, such as Pade approximation and Laguerre approximations, are

also considered and the results are compared with the model approximated by the Kautz

expansions.

Chapter 5. Positioning control and model estimation of the vibrating system is

considered in this chapter to show the practical application of our proposed method.

Actual parameters of the mass-spring-damper system are used to built the plant model to

get the simulated initial input and output data. The simulation results are satisfactory.

Chapter 6. We discuss the results and future work of our proposed method.



Chapter 2

Paremetrization of Feedback

Controller with Kautz Expansions

using FRIT in IMC Structure

2.1 Introduction

Designing a controller based on a mathematical model (model-based approach) is the

most rational strategy for achieving the desired specifications. In many industrial ap-

plications, the identification of simple and reliable mathematical model is di�cult and

time-consuming process, and as a result, the designed controller could not realize the es-

timated performance. In such a situation, an alternative and e↵ective approach is to use

the experimental closed loop data directly for fine-tuning of the implemented controller.

Such kind of controller tuning is called data-driven controller tuning and it only used

measured input and output data of closed loop system. In addition, it is meaningful to

obtain a more refined mathematical model simultaneously with the optimal controller be-

cause this model can be used for fault detection and for monitoring the operated system.

Parametrization of controller in the internal model control (IMC) scheme can attain the

plant model and the optimal controller simultaneously [2]. With the internal model con-

trol (IMC) scheme, the data-driven approach to realize the controller and the plant model

at the same time with fictitious iterative tuning (FRIT) using only one-shot experimental

data has been done in [16, 22].

According to reference [22], for a class of well-damped systems, the second author

and his colleagues developed a data-driven approach in which the internal model is pa-

rameterized by the truncated Laguerre expansion. Utilizing fictitious reference iterative

9
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tuning (FRIT) proposed in [14] and [15], not only a model and a controller can be realized

simultaneously but also the mechanism of the simultaneous achievement of the model and

the controller can be explained based on the analysis of the cost function that is to be

minimized in the o↵-line calculation. As stated in [29] and [32], Laguerre approxima-

tion and finite impulse response (FIR) approximation are not suitable for poorly damped

linear time-invariant systems. Although the Laguerre approximation is superior to FIR

modeling, it cannot describe the systems with several scattered dominating poles appro-

priately. Moreover, in this case, the resonant poles lead to slow convergence because they

have complex conjugate pairs. The problem of the orthogonalization of a set of continuous

time exponential functions has been solved by Kautz as stated in [27]. The Laguerre basis

functions are extended to two-parameter Kautz functions which can have complex poles

as stated in [29],[32] and [28].

This chapter presents the controller parameter tuning and model approximation of

the system which may have complex poles. For simultaneous attainment of the controller

and the plant model, fictitious reference iterative tuning (FRIT) in internal model control

(IMC) structure is considered. Truncated Kautz series is used to parametrize the desired

reference model to avoid the mismatch between the actual closed loop and the desired

reference model.

2.2 Problem formulation

The internal model control (IMC) [2] structure with tunable parameters is illustrated in

Fig. 2.1.

Figure 2.1: Basic internal model control (IMC) structure



2.3. Concept of fictitious reference iterative tuning 11

The plant, P , is assumed to be single-input single-output (SISO), linear time-invariant

(LTI) and has stable dynamics. P is also assumed to be unknown and it may have

unstable zeros or complex poles. The implemented internal model is denoted by P̃ , which

is parameterized by a tunable parameter vector ⇢P as

P̃ (⇢P , s) =
⇢P,µs

µ + ...+ ⇢P,1s+ ⇢P,0

⇢P,µ+vs
v + ...+ ⇢P,µ+1s+ 1

(2.1)

where ⇢P := [⇢P,0 ⇢P,1 ...⇢P,µ+v]. The feedback controller CIMC is parametrized as

CIMC(⇢C , s) =
⇢C,ds

d + ...+ ⇢C,1s+ ⇢C,0

⇢C,d+ls
l + ...+ ⇢C,d+1s+ 1

(2.2)

where ⇢C := [⇢C,0 ⇢C,1 ... ⇢C,d+l]. The reference model from r to y of the closed loop

is denoted by Td . The desired output is denoted by yd = Tdr. As shown in [16], if the

feedback controller is set as

CIMC = TdP̃ (⇢P )
�1 (2.3)

then it is possible to obtain the desired output. Therefore, (2.3) is used as the feedback

controller instead of (2.2) and the plant model of (2.1) will be parametrized by truncated

Kautz expansions. The notation ⇢ will be used instead of ⇢P . Input u and output y

depend on ⇢, so they can be denoted by u(⇢) and y(⇢), respectively. The transfer function

from r to y(⇢) of the closed loop system with tunable parameter is denoted by Try(⇢, s).

In this research, the measured data are assumed to be noise-free data for simplicity.

2.3 Concept of fictitious reference iterative tuning

The concept of FRIT [15] in the closed loop system is illustrated by Fig. 2.2.

First of all, the initial parameter vector, ⇢0, have to be chosen by the designer. Then,

the first experiment is performed in the closed loop system with C(⇢0) and the initial

data u
0 := u(⇢0) and y

0 := y(⇢0) is obtained. In this case, C(⇢0) is assumed to tentatively

stabilize the closed loop system such that u
0 and y

0 are bounded. By using u
0 and y

0,

the fictitious reference signal, r̃(⇢), is described by

r̃(⇢) = C(⇢)�1
u
0 + y

0 (2.4)
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Figure 2.2: Concept of fictitious reference iterative tuning

Using the trivial relation of the initial experiment, y0 = Pu
0, the output of the closed

loop transfer function, Try(⇢), from the reference input, r(t), to the output, y(t), using

the fictitious reference signal, r̃(⇢), can be obtained as

Try(⇢)r̃(⇢) =
PC(⇢)

1 + PC(⇢)
r̃(⇢)

=
PC(⇢)

1 + PC(⇢)

✓
1

C(⇢)
u
0 + y

0

◆

=
PC(⇢)

1 + PC(⇢)

✓
1

C(⇢)P
+ 1

◆
y
0

= y
0 (2.5)

which holds for any parameter ⇢. According to (2.5), the actual output of the closed loop

Try(⇢) with respect to the fictitious reference signal, r̃(⇢), is completely equal to the initial

output, y0. The conventional cost function for the model reference control is

J(⇢) = kTry(⇢)r � Tdrk2 (2.6)

Using (2.5) and the fictitious reference signal of (2.4), the cost function to be minimized

in FRIT is

JF (⇢) = ky0 � Tdr̃(⇢)k2 (2.7)

It can be clearly seen that (2.7) with the fictitious reference, r̃(⇢), requires only u
0 and

y
0. This means that the minimization of JF (⇢) can be performed o↵-line by using only

one-shot experimental data. This is a practical advantage of FRIT.
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2.3.1 FRIT in IMC control scheme

The FRIT in IMC control structure is shown in Fig. 2.3.

Figure 2.3: IMC structure with feedback controller

The feedback controller, C(⇢), of Fig.2.3 with the plant model, P̃ (⇢), and the internal

model controller, CIMC(⇢), is

C(⇢) =
CIMC(⇢)

1� CIMC(⇢)P̃ (⇢)
(2.8)

By substituting (2.3) into (2.8), then

C(⇢) =
TdP̃ (⇢)�1

1� TdP̃ (⇢)�1P̃ (⇢)
=

Td

1� Td
P̃ (⇢)�1 (2.9)

As there is an inverse plant model in (2.3) and (2.9), these equations are only applicable

for the minimum phase plants. Non-minimum phase systems are considered as follows.

2.3.2 FRIT in IMC for non-minimum phase system

For non-minimum phase system, the plant model can be parametrized as

P̃ (⇢) = P̃n(⇢n)P̃m(⇢m) (2.10)

where P̃n(⇢n) and P̃m(⇢m) are the non-minimum phase part and the minimum phase part

of the plant, respectively. To avoid the mismatch between the desired reference model and

the actual closed loop system, it is desirable to add the free parameters in the reference
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model [7, 16] as

Td(⇢) = Td0P̃n(⇢n) (2.11)

where Td0 is the nominal reference model. Then, the feedback controller of (2.9) becomes

C(⇢) =
Td0

1� Td0P̃n(⇢n)
P̃m(⇢m)

�1 (2.12)

and the closed loop transfer function from the input to the output is

Try(⇢) =
C(⇢)P

1 + C(⇢)P
=

Td0P̃m(⇢m)�1
P

1 + Td0P̃m(⇢m)�1(P � P̃ (⇢))
(2.13)

2.3.3 Simultaneous attainment of the controller and the plant

model in FRIT-IMC

In this section, the cost function of (2.7) is analyzed. It can be derived as follows.

JF (⇢) = ky0 � Td(⇢)r̃(⇢)k2

=

����y
0 � Td(⇢)

Try(⇢)
y
0

����
2

(2.14)

Using (2.13) in (2.14), the cost function becomes

JF (⇢) =

�����

 
1� Td0P̃n(⇢n)

(1 + Td0P̃m(⇢m)�1(P � P̃ (⇢)))

Td0P̃m(⇢m)�1P

!
y
0

�����

2

=

�����

 
1� P̃ (⇢)

P

⇣
1 + Td0P̃m(⇢m)

�1(P � P̃ (⇢))
⌘!

y
0

�����

2

=

�����

 
1� P̃ (⇢)

P
� Td0P̃m(⇢m)�1

P̃ (⇢)(P � P̃ (⇢))

P

!
y
0

�����

2

=

�����

 
1� P̃ (⇢)

P
� Td0P̃n(⇢n)

 
1� P̃ (⇢)

P

!!
y
0

�����

2

=

�����

 
1� P̃ (⇢)

P

!
(1� Td0P̃n(⇢n))y

0

�����

2

=

�����

 
1� P̃ (⇢)

P

!
(1� Td(⇢))y

0

�����

2

(2.15)
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(2.14) shows the identification of the closed loop system and (2.15) shows the attainment

of the plant model simultaneously.

2.4 Plant model in Kautz expansion

Kautz expansion [27] is used for the identification of the stable linear time-invariant

systems in the literature [28, 29, 32, 31, 32, ?, 39], especially for the systems with an

oscillatory behavior [30, 37, 40] and also used in model reduction [38].

Kautz expansion is the sum of two functions, even function and odd function, which

are given by

 2k�1(b, c) =

p
2bs

s2 + bs+ c


s
2 � bs+ c

s2 + bs+ c

�k�1

(2.16)

 2k(b, c) =

p
2bc

s2 + bs+ c


s
2 � bs+ c

s2 + bs+ c

�k�1

(2.17)

where b > 0, c > 0, and k is a nonnegative integer. (2.16) and (2.17) represent Kautz

model expansions of the odd terms and even terms, respectively. Kautz functions depend

on two parameters, b and c, where b and c are real numbers. The selection of these

two parameters influences in the computation of the suitable coe�cients to obtain a

stable plant. Kautz poles are the functions of the optimization parameters; frequency

and damping factor. In [29] and [32], it is clarified that the Kautz models are constructed

with the prior knowledge of the dominating time constants and damping factor of the

system.

Here, the plant model parameterized by Kautz expansion with truncated model order

is described as

P̃ (⌘, b, c) =
MX

k=1

[⌘2k�1 2k�1(b, c) + ⌘2k 2k(b, c)] (2.18)

where ⌘i, (i = 1, 2, · · · , 2M) are the tunable coe�cients and M is the model order of the

Kautz function. By substituting (2.16) and (2.17) in (2.18), the parameterized model can

be rewritten as follows .

P̃ (⌘, b, c) =

p
2b

s2 + bs+ c

MX

k=1

(
(⌘2k�1s+ ⌘2k

p
c)

✓
s
2 � bs+ c

s2 + bs+ c

◆k�1
)

(2.19)
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The plant model in (2.19) contains the unstable zeros and it is not invertible. So the

plant model is decomposed as

P̃ =
Ñ

D̃
=

Ñ

Ñ 0

Ñ
0

D̃
(2.20)

by inserting a stable polynomial, Ñ 0, with the order 2M � 1 or 2M .

Here, Ñ 0 is expressed as follows

Ñ
0(⇢d) = ⇢d2Ms

2M + ⇢d2M�1s
2M�1 + ...+ ⇢d1s+ 1 (2.21)

After this decomposition, the minimum phase and the possibly1 non-minimum phase are

given by

P̃m(b, c) =
Ñ

0

D̃
=

p
2bÑ 0

(s2 + bs+ c)M
(2.22)

P̃n(⌘, b, c) =
Ñ

Ñ 0
=

PM
k=1{(⌘2k�1s+ ⌘2k

p
c)(s2 + bs+ c)M�k(s2 � bs+ c)k�1}

Ñ 0
(2.23)

respectively.

In [32], [37] and [38], Kautz expansion is used to approximate the resonant systems

with the known values of the two parameters (b and c) or with the calculation of these

two parameters from the prior knowledge of the frequency and the damping ratio.

Here, in the research with FRIT, the information of the plant is assumed to be unknown

and the two parameters, b and c, as well as ⌘i and ⇢d are tuned. Let a tunable parameter

vector ⇢ be ⇢ = [⇢Tn ⇢
T
m]

T where ⇢n = [⌘Todd ⌘
T
even]

T and ⇢m = [⇢m1 ⇢m2 ⇢d]T , respectively.

Here ⌘odd and ⌘even are an even and odd coe�cient parameter vectors, respectively, of

length M . Parameters ⇢m1 and ⇢m2 represent b and c, respectively. ⇢d = [⇢d2M ... ⇢d1 ]
T

is the tunable parameter vector for Ñ 0. By inserting the tunable parameters in (2.22) and

(2.23), the minimum phase plant can be expressed as

P̃m(⇢m) =

p
2⇢m1Ñ

0(⇢d)

(s2 + ⇢m1s+ ⇢m2)M
(2.24)

1The terminology ’possibly’ implies that this part might be minimum phase in some case.



2.5. Algorithm 17

and the possibly non-minimum phase plant is expressed as

P̃n(⇢) =

PM
k=1{(⌘2k�1s+ ⌘2k

p
⇢m2)(s2 + ⇢m1s+ ⇢m2)M�k(s2 � ⇢m1s+ ⇢m2)k�1}

Ñ 0(⇢d)
(2.25)

2.4.1 Setting constraint to compensate for the steady state error

In order to achieve the desired performance, the designed system has to produce a zero

steady state error.

lim
s!0

C(⇢, s) = lim
s!0

Td0P̃
�1
m (⇢m)

1� Td0P̃n(⇢)
(2.26)

If the reference model Td0 is given such that Td0(0) = 1, then (2.26) can be rewritten as

lim
s!0

C(⇢, s) = lim
s!0

P̃
�1
m (⇢m)

1� P̃n(⇢)
(2.27)

The steady state error is eliminated if and only if lims!0 C(⇢, s) = 1. According to

(2.27), P̃n(⇢, 0) must be 1. This implies that we have to add the constraint

MX

k=1

⌘2k =
1

p
⇢m2(⇢m2)M�1

(2.28)

From the constraint given in (2.28), the last even coe�cient of the Kautz expansion can

be expressed as

⌘2M =
1

p
⇢m2(⇢m2)M�1

�
M�1X

k=1

⌘2k (2.29)

for the compensation of the steady state error. Then ⌘even becomes an even coe�cient

parameter vector of length M � 1.

2.5 Algorithm

The algorithm for finding the optimal parameters of the proposed method is summarized

as follows.

1. The plant model is estimated using Kautz expansion with the specified order M as

in (2.19).
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2. The plant model is then decomposed as shown in (2.20), (2.22) and (2.23).

3. Parameter vector ⇢ is determined using ⇢n and ⇢m where ⇢n = [⌘Todd ⌘
T
even]

T and

⇢m = [⇢m1 ⇢m2 ⇢d]T , respectively.

4. Initial parameter vector ⇢
0 is set and then one-shot experiment is conducted to

obtain the initial input ,u(⇢0), and the initial output, y(⇢0), data of the plant.

5. Fictitious reference signal, r̃(⇢), is calculated using (2.4). Cost function JF (⇢) is

constructed as shown in (2.7), and it is minimized using the o↵-line data with

nonlinear optimization. In this research, CMA-Evolution Strategy [34] is used for

nonlinear optimization.

6. After optimization, the optimal parameter vector ⇢⇤ = argmin⇢ JF (⇢) is obtained.

7. The optimal parameters are implemented in the closed loop system, and the simu-

lated result is analyzed.

2.6 Numerical example

In order to show the validity of the proposed method, an illustrated example is given

as follows. The unknown plant which may contain unstable zero and complex conjugate

poles is considered as follows

P =
s
2 � 1.6s+ 4

s4 + 1.8s3 + 5.32s2 + 2.4s+ 4
(2.30)

The desired system is assigned as (2.11) by including the possibly non-minimum phase

part and the reference model is chosen as

Td0 =
1

2s+ 1
(2.31)

We set the model order M = 3 and the initial parameter vectors as ⌘0odd = [1 1 1]T ,

⌘
0
even = [0.33 0.33]T and ⇢

0
m = [1 1 1 6 15 20 15 6]T . After setting the initial

parameters, a one-shot experiment is performed on the closed loop system to obtain the

initial input and output data. Sampling period 4 = 0.1 s is used in this example.
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Figure 2.4: Initial output y(⇢0) and the desired output Td(⇢0)r with the step reference
input

Initial output y(⇢0) and the desired output Td(⇢0)r after the one-shot experiment can

be seen in Fig. 2.4.

Using these initial input and output values and minimizing the cost function of (2.7),

the optimal parameter vector is obtained as ⇢⇤ := [⇢⇤
T

n ⇢
⇤T
m ]T where ⇢⇤n = [�0.8006 0.9695 �

0.1658 0.8431 �0.1718]T and ⇢
⇤
m = [0.5273 1.0093 1.3163 7.3183 13.6187 20.0475 14.0621

4.6720]T , respectively. Then, the final experiment is performed by using ⇢
⇤.

Figure 2.5: Optimal output y(⇢⇤) and the desired output Td(⇢⇤)r

In Fig. 2.5, it can clearly be seen that the optimal output y(⇢⇤) and the desired output

Td(⇢⇤) are almost the same. It means that the desired set point tracking has been done

with the optimal controller.
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To check the approximation of the plant model, frequency responses of the plant and

plant model are simulated in Fig. 2.6 and 2.7 and the simulated results show that the

plant model reflects the actual plant, especially in the low frequency.

Figure 2.6: Gain characteristics of the plant and plant model with Kautz model order 3

Figure 2.7: Phase characteristics of the plant and plant model with Kautz model order 3

So both the plant model and the optimal controller for the desired set point tracking

are obtained simultaneously with our proposed method.

Even though the measured data are assumed as noise-free in the problem formulation,

the initial output with measurement noise is also considered to check the e↵ect of the

measurement noise. Gussian white noise with variance amplitude of 1.1x10�3 is added

to the output of the initial experiment. Fig. 2.8 shows the initial output of the system

with the measurement noise in comparison with the desired output. Using these initial

values with measurement noise, the optimal parameters are tuned by minimizing the cost
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function. Optimal outputs of the system in Fig. 2.9 show that desired output can still be

achievable even in the presence of the measurement noise.

Figure 2.8: Initial output y(⇢0) with the measurement noise and the desired output Td(⇢0)r
of the system with Kautz model order 3

Figure 2.9: Optimal output y(⇢⇤) with the measurement noise and the desired output
Td(⇢⇤)r of the system with Kautz model order 3

The frequency responses of the plant and plant model with the optimal parameters

with the measurement noise are shown in Fig, 2.10 and 2.11. Even though the gain and

phase of the plant model is changed, it can still approximate the resonant peak of the

actual plant. So our proposed method is still e↵ective when the measured data with noise

are used.
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Figure 2.10: Gain characteristics of the plant and plant model with noise

Figure 2.11: Phase characteristics of the plant and plant model with noise

2.7 Summary

In this chapter, the parametrization of the feedback controller with Kautz expansion in

internal model control structure has been discussed. With the application of FRIT to the

IMC, it is possible to realize a plant model and a controller simultaneously using only one-

shot experimental data. The validity of the proposed method is examined with a system

that contains unstable zeros and complex conjugate pairs of poles. We simulated the

system with and without measurement noise. In the future research work, the performance

of the obtained controller and the accuracy of the identified model will be clarified from

the quantitative point of view. Noise, stability, and the e↵ect of the initial controller will

be analyzed from both the theoretical and practical points of view.



Chapter 3

Parametrization of Feedforward

Controller with Kautz Expansions

using FRIT in 2DoF Structure

3.1 Introduction

In the modern industries, the change of set point variable is frequently required and

sometimes the plant with the controller in the closed loop is unknown. In such cases

of practical importance, the conventional feedback control is not compatible and two-

degree-of-freedom (2DoF) control structure has received attention in the literature [5, 9,

33, 17, 20, 18]. It is well-known that the desired tracking property can be achieved if

a feedforward controller is written as a product of the inverse of the plant model and

the desired closed loop. So the model-based feedforward results in good performance if

the mathematical model the plant is accurate enough to reflect the behavior of the true

process.

In the case where the dynamics of a plant is unknown, applying fictitious reference

iterative tuning (FRIT) in the 2DoF architecture yields the desired tracking property as

well as the plant model. In FRIT, only a one-shot experimental input and output data is

needed to find the optimal parameters of the controller. FRIT in 2DoF control structure

has been introduced in [17] and the optimal parameter tuning for both the controller and

the plant model have been done simultaneously in [18, 20]. The proposed methods in

[17, 18] can only applicable for the minimum phase systems and the non-minimum phase

systems are considered in [20]. In these studies, the relative degree of the plant and the

number of non-minimum phase zeros are assumed to be known.

23
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To reduce such assumptions, the special orthonormal basis function, Laguerre expan-

sions, has been used in [21] for the parametrization of the feedforward controller and the

reference model. In Laguerre structure, the real valued poles are used and so Laguerre

expansions are suitable for approximation of the well-damped systems. Since the systems

in the real applications are much more complicated, it is desirable to consider the complex

valued poles to characterize such kind of systems.

In the previous chapter, the feedback controller parameterized by Kautz expansion

for the poorly damped system is studied using FRIT in IMC structure. In this chapter,

we extend our research to two degree-of-freedom control structure and the feedforward

controller is parameterized by the Kautz expansion. FRIT is used to get simultaneous

attainment of the controller and the plant model with only one-shot experimental data.

3.2 Problem formulation

Two degree-of-freedom architecture with a tunable parameter vector ⇢ is illustrated in

Fig. 3.1.

Figure 3.1: Two-degree-of-freedom control structure

A plant to be controlled is considered as a linear, time-invariant, single input-single

output, stable plant. The plant is assumed to be unknown and it is already operated in the

closed loop system with the fixed feedback controller, Cfb. The feedback controller Cfb,

is assumed to stabilize the closed loop system so as to obtain the bounded experimental

data. The feedforward controller Cff (⇢) is considered with a tunable parameter vector ⇢.



3.3. FRIT in 2DoF control structure 25

Let Try(⇢) be a closed loop transfer function from r to y and it can be described by

Try(⇢) =
P (Cff (⇢) + TdCfb)

1 + PCfb
(3.1)

u(⇢) and y(⇢) are the experimental input and output data, obtained in the closed loop

with controller parameter ⇢. A mathematical model of the plant is denoted as P̃ . If it is

possible to set P = P̃ , it is well-known that

Cff (⇢) = TdP̃ (⇢)�1 (3.2)

yields that Try(⇢) = Td. The cost function is defined by

J(⇢) = ky(⇢)� Tdrk2 (3.3)

The problem in this chapter focuses on the point for deriving the parameter vector ⇢0 such

that y(⇢) = Try(⇢)r achieves the desired output and the identification of the unknown

plant simultaneously based on the experimental data. For simplicity, the experiment data

is assumed as noise-free data.

3.3 FRIT in 2DoF control structure

FRIT in 2DoF control structure is introduced in [17] for closed loop system identification.

In [17], both the feedback and the feedforward controller are tuned, however, in this

research, it is assumed that the system is already operated in the closed loop with the fixed

feedback controller which gives the stabilized output. As in the FRIT of the conventional

feedback control system, an initial parameter vector, ⇢ is chosen by the designer. Then, an

initial experiment is performed in the 2DoF system of Fig. 3.1 with the initial parameter

vector, ⇢0, with the tunable feedforward controller Cff (⇢0).

The fictitious reference equation with initial input u0 and output y0 in the two degree-

of-freedom control structure is described by

r̃(⇢) =
u
0 + Cfby

0

Cff (⇢) + TdCfb
(3.4)
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Using the trivial relation for the initial experiment, y0 = Pu
0, the actual output of

the closed loop system of Fig. 3.1 with respect to the fictitious reference, r̃(⇢), of (3.4)

can be derived as

y(⇢) = Try(⇢)r̃(⇢)

=

✓
P (Cff (⇢) + TdCfb)

1 + PCfb

◆✓
u
0 + Cfby

0

Cff (⇢) + TdCfb

◆

=
Pu

0 + PCfby
0

1 + PCfb

= y
0
. (3.5)

The cost function to be minimized with FRIT in 2DoF control structure is

JF (⇢) = ky0 � Tdr̃(⇢)k2 (3.6)

Since the reference model Td of Fig. 3.1 is fixed and it may not reflect the actual

closed loop system when the unknown plant contains non-minimum phase or time delay

part. Furthermore, the feedforward controller of (3.2) can only applicable to the minimum

phase systems. So, the FRIT in 2DoF control for non-minimum phase part is considered

in the following section.

3.3.1 FRIT in 2DOF control for non-minimum phase plant

In the case of non-minimum phase systems, the plant model is parameterized in terms of

the minimum phase part and non-minimum phase part as follows [20]

P̃ (⇢) = P̃m(⇢m)P̃n(⇢n) (3.7)

P̃m(⇢m) and P̃n(⇢n) of (3.7) are the minimum phase and non minimum phase parts

of the plant model respectively. To reflect the actual closed loop system with the non-

minimum phase part, the desired reference model should include the information on non-

minimum phase properties and it is defined as

Td(⇢n) = Td0P̃n(⇢n) (3.8)
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Substituting (3.7) and (3.8) into (3.2), the feedforward controller for the non minimum

phase system as follows

Cff (⇢m) = Td0P̃m(⇢m)
�1 (3.9)

By using (3.8) and (3.9), we can re-illustrated Fig. 3.1 as Fig. 3.2.

Figure 3.2: Two-degree-of-freedom control structure for non-minimum phase plant

The closed loop transfer function from reference signal r(⇢) to y(⇢) of Fig. 3.2 is

denoted by

Try(⇢) :=
P (Td0P̃m(⇢m)�1 + Td0P̃n(⇢)Cfb)

1 + PCfb
(3.10)

Cost function to be minimized in 2DoF-FRIT control structure for non-minimum

phase system is re-defined as

JF (⇢) = ky0 � Td0P̃n(⇢)r̃(⇢)k2 (3.11)

3.3.2 Simultaneous attainment of controller and plant model in

2DoF-FRIT

For the simultaneous attainment of controller and plant model, the definition of cost

function of FRIT in 2DoF control structure is analyzed. The cost function with the

tunable reference model is

JF (⇢) = ky0 � Td(⇢)r̃(⇢)k2 (3.12)

Substituting the relation of (3.5), Try(⇢)r̃(⇢) = y
0, into (3.12), it becomes
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JF (⇢) =

����y
0 � Td(⇢)

Try(⇢)
y
0

����
2

=

����

✓
1� Td(⇢)

Try(⇢)

◆
y
0

����
2

(3.13)

(3.13) shows that the optimal parameters for the closed loop identification can be

obtained by minimizing the cost function. For the identification of the plant model, (3.4)

is used in the (3.12), then

JF (⇢) =

����y
0 � Td(⇢)

✓
u
0 + Cfby

0

Cff (⇢) + Td(⇢)Cfb

◆����
2

=

�����y
0 � Td(⇢)

 
u
0 + Cfby

0

Td(⇢)P̃ (⇢)�1 + Td(⇢)Cfb

!�����

2

=

�����y
0 � P̃ (⇢)

 
u
0 + Cfby

0

1 + P̃ (⇢)Cfb

!�����

2

=

�����(y
0 � P̃ (⇢)u0)

1

1 + P̃ (⇢)Cfb

�����

2

=

�����

 
1� P̃ (⇢)

P

!
1

1 + P̃ (⇢)Cfb

y
0

�����

2

(3.14)

(3.14) shows that the minimization of cost function can also yield the optimal parameters

for the identification of the unknown plant model. (3.13) and (3.14) are analysis results

of (3.12) and they show simultaneous attainment of the controller and the plant model.

Only (3.12) is used in the optimization procedure.

3.4 Parametrization of the feedforward controller in

Kautz expansions

Plant model approximated by the truncated Kautz series with model order, M , can be

described as

P̃ (⌘, b, c) =

p
2b

s2 + bs+ c

"
MX

i=1

⌘2i�1s

✓
s
2 � bs+ c

s2 + bs+ c

◆i�1

+ ⌘2i

p
c

✓
s
2 � bs+ c

s2 + bs+ c

◆i�1
#

(3.15)
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Similar to the previous chapter, the plant model is parametrized into minimum phase

part and non-minimum phase part as

P̃ (⌘, b, c) = P̃m(b, c)P̃n(⌘, b, c) (3.16)

P̃m(b, c) =

p
2bN 0

(s2 + bs+ c)M
(3.17)

P̃n(⌘, b, c) =
1

N 0

MX

i=1

⇥
(⌘2i�1s+ ⌘2i

p
c)(s2 + bs+ c)M�i(s2 � bs+ c)i�1

⇤
(3.18)

N
0 is a stable polynomial to make the minimum phase and non-minimum phase parts

proper. Here, we consider N 0 as a fixed polynomial, (s+ 1)2M , to reduce the free param-

eters in the plant model. The optimal parameter, ⇢, is defined as ⇢ := [⇢Tm ⇢
T
n ]

T , where,

⇢m := [b c]T and ⇢n := [⌘Todd ⌘
T
even]

T .

3.4.1 Setting constraint to compensate for the steady state error

In order to achieve the desired performance, the designed system has to produce a zero

steady state error. The steady state error to the unit step change of the set point variable

becomes zero robustly if

lim
s!0

Try(⇢) = 1 (3.19)

To satisfy this condition, the feedback controller must contain the integrator [33]. With

this specification, (3.19) becomes

lim
s!0

Td0P̃n(⇢) = 1 (3.20)

As it can be chosen as Td0(0) = 1, lims!0 P̃n(⇢, s) must be 1. This implies that the

constraint is added as
MX

i=1

⌘2i =
1

c
(M� 1

2 )
(3.21)

From the constraint given in (3.19), the last even coe�cient can be expressed as

⌘2M =
1

c
(M� 1

2 )
�

M�1X

i=1

⌘2i (3.22)
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for the compensation of the steady state error. Then ⌘even becomes an even coe�cient

parameter vector of length M � 1.

3.5 Numerical example

To show the validity of the proposed method, the non-minimum phase plant with complex

conjugate poles is considered (the same plant as in chapter 2). The transfer function of

unknown plant is defined as

P =
s
2 � 1.6s+ 4

s4 + 1.8s3 + 5.32s2 + 2.4s+ 4
(3.23)

Reference model is defined as

Td0 =
1

2s+ 1
(3.24)

and feedback controller which satisfies (3.19) is defined as

Cfb =
0.2

s2 + s
(3.25)

In this example, the model order is considered as M = 3 so N 0 is considered as (s+1)6.

Sampling period, 4 = 0.01 s, is used in the example. Initial parameter vector is set as

⇢
0 = [0.2 0.2 0.1 0.2 0.1 0.5 1]T and the initial experiment is performed in 2DoF

control system of Fig. 3.2.

Figure 3.3: Initial output y(⇢0), (solid line), the desired output, Td(⇢0)r, (dash-dot line)
and the step reference input of the closed loop system (dotted line)
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Initial output, y0, and the desired output Td(⇢0)r of the experiment can be seen in

Fig. 3.3. Then, the minimization of cost function of (3.12) has been done with o↵-line

nonlinear optimization using the initial input and output data.

As a result, the optimal parameter vector ⇢⇤ = [�0.7705 1.0604 � 0.1341 0.8091 �

0.2167 0.6267 1.0388]T is obtained. Using this optimal values in Cff (⇢) and Td(⇢), the

second experiment of the 2DoF system is performed again. From Fig. 3.4, it can be clearly

seen that the optimal output y(⇢⇤) and the desired output Td(⇢⇤)r are almost the same.

The unstable zeros approximated by the Kautz model are 0.8497±1.7826i, while those of

actual plant are 0.8± 1.833i. So, our proposed method can also approximate the number

and locations of unstable zeros of the actual plant.

Figure 3.4: Optimal output y(⇢⇤) (solid line), the desired output Td(⇢⇤)r (dash-dot line)
and step reference input of the closed loop system (dotted line)

Figure 3.5: Frequency responses of plant and plant model

Frequency responses of plant and plant model can be seen in Fig. 3.5. From the
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simulation results, the desired set point tracking and the model estimation in the low

frequencies is done very well with our proposed method.

Even though the measured data are assumed as noise-free data in the problem formu-

lation, the initial output with measurement noise is also considered to check the e↵ect of

measurement noise. Gussian white noise with variance amplitude of 1.1x10�3 is added to

the output of the initial experiment.

Figure 3.6: Initial output y(⇢0), (solid line) with measurement noise, the desired output,
Td(⇢0)r, (dash-dot line) and the reference input of the closed loop system (dotted line)

Figure 3.7: Optimal output y(⇢⇤) (solid line) with measurement noise, the desired output
Td(⇢⇤)r (dash-dot line) and the reference input of the closed loop system (dotted line)

Fig. 3.6 shows the initial output of the system with measurement noise, the desired

output and the step reference. Using these initial output values with measurement noise,

the cost function is minimized to get the optimal parameters. Fig. 3.7 shows that the
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desired output can still be achievable in the presence of measurement noise. The plant

model estimated by the optimal parameters of noise-added output is shown in Fig. 3.8.

It can be seen from the figure that the measurement noise can a↵ect the identification of

the unknown plant model.

Figure 3.8: Frequency responses of plant and plant model with measurement noise is
considered

Figure 3.9: The optimal outputs of Laguerre order 6, Laguerre order 20, Kautz order
3 compared with the desired output of Kautz order 3 and the step response of nominal
reference model

The e↵ectiveness of our proposed method with Kautz expansions for poorly damped

system is shown in comparison with Laguerre expansions. The controller and the desired
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Figure 3.10: Frequency responses of plant and plant models with Laguerre order 6, La-
guerre order 20 and Kautz order 3

reference model parameterized by Lauguerre expansions with model order 5 and 20 are

considered and the optimal outputs are compared with that of Kautz model order 3. In

Fig. 3.9, the optimal outputs of Lauguerre order 6 and 20 cannot follow the desired set

point whereas, Kautz model order can follow it. It means that Laguerre approximation

needs very much high order than Kautz approximation for the poorly damped systems.

3.6 Summary

In this chapter, the plant model estimation and set point tracking for the poorly damped

system using Kautz expansions is discussed. FRIT in 2DoF control structure is used

and the validity of our proposed method is shown with numerical example. The output

with measurement noise is also considered and the simulated results are shown. The

e↵ectiveness of Kautz approximation for poorly damped system is also compared with

Laguerre approximations.
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Set Point Tracking and Model

Estimation for Time Delay System

4.1 Introduction

Time delays appear frequently in many practical systems. They often cause instability

and poor performance. So, many researchers in the field of control theory try to design the

robust controllers for the time-delay systems. Approximation and control of time-delay

system with the feedback controller has been studied in both the data-driven and model

based approach [23, 24, 26, 43, 42] .

The system with a feedforward controller plus the feedback controller can give better

performance than that with the feedback controller only, so the researchers also pay atten-

tion to the two degree-of-freedom (2DOF) control system (in e.g., [33] and its references).

The feedforward controller design for time-delay system is considered in [41] which is a

kind of model-based controller design. In the data-driven framework, the feedforward

controller tuning for time-delay system has been considered in [44, 25]. In most of the

research works, the structure of lumped part is assumed to be known and the time-delay

part is approximated by the well-known Pade approximation and a special orthonormal

basis function, Laguerre expansions.

Di↵erent from the previous researches, this chapter proposes a new method to control

and approximate the time-delay system with Kautz expansions which is also the special

orthonormal basis function. FRIT in 2DoF controller structure is used for simultaneous

attainment of the controller and plant model from one-shot experimental data. In the

proposed method, the structure of the lumped part is unknown and the lumped part and

the time delay part are constructed together as a parameterized lumped transfer function.

35
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4.2 Problem setting

In this section, we address the 2DOF control system with tunable feedforward controller

for linear time-delay systems as shown in Fig. 4.1 with a fixed feedback controller. The

feedback controller is assumed to stabilize the closed loop system.

Figure 4.1: FRIT in 2DOF control architecture for time delay system

A plant to be addressed here is a single-input, single-output, linear time invariant

system with time-delay as

P = Pl(s)e
�Ls (4.1)

where Pl(s) and L are the lumped part and time delay of the system, P , respectively. It

is assumed that the information of the system, i.e., P , is unknown.

Let T (⇢, s) be transfer function from r to y and it can be described by

T (⇢) =
P (Cff (⇢) + TdCfb)

1 + PCfb
(4.2)

A mathematical model of the plant which is implemented in the controller is denoted

as P̃ (⇢). If it is possible to set P = P̃ (⇢), it is well-known that

Cff (⇢) = TdP̃ (⇢)�1 (4.3)

yields the achievement of the desired closed loop system as T (⇢) = Td.

To obtain optimal parameters for the controller, the cost function to be minimized is

defined by

J(⇢) = ky(⇢)� Tdrk2 (4.4)
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The problem in this chapter focuses on the point for deriving the parameter vector, ⇢,

such that minimization of (4.4) achieves the desired output and an approximate model of

the unknown time-delay plant simultaneously.

4.3 FRIT for 2DOF control architecture

At first, the initial parameter,⇢0, is set by the designer and a one-shot experiment is

performed to obtain the initial data u(⇢0) and y(⇢0), respectively. Then the fictitious

reference signal for 2DOF structure is computed as in [15] by the equation

r̃(⇢) =
u(⇢0) + Cfby(⇢0)

Cff (⇢) + Td(⇢)Cfb
. (4.5)

Since the time-delay part works as the limitation of the tracking performance, it is natural

to be included in the transfer function. As the plant is unknown, which implies that the

time-delay part is also unknown. Similar to the previous studies such as [20, 25, 26], the

desired reference model which contains the time-delay part is considered as

Td(⇢) = Td0P̃n(⇢n) (4.6)

where Td0 is a nominal reference model. Then the feedforward controller in (4.3) becomes

Cff (⇢) = Td0P̃m(⇢m)
�1 (4.7)

The cost function is described by

JF (⇢) =
��y(⇢0)� Td(⇢)r̃(⇢)

��2 . (4.8)

Similar to our previous derivations in chapter 2 and 3, this cost function can be also

written as

JF (⇢) =

����

✓
1� Td(⇢)

T (⇢)

◆
y(⇢0)

����
2

(4.9)

and

JF (⇢) =

�����

 
1� P̃ (⇢)

P

!
1

1 + P̃ (⇢)Cfb

y(⇢0)

�����

2

(4.10)
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simultaneously. The equations of both of (4.9) and (4.10) imply that the minimization of

(4.8) leads to the attainment of both of the desired tracking property and more accurate

mathematical model. This minimization of cost function (4.8) can be completely done in

the o↵-line because the required materials are only the initial data.

4.4 Parameterized models by Kautz expansions

In this section, Kautz expansions is utilized to approximate the mathematical model im-

plemented in the feedforward controller of (4.7) and the desired tracking transfer function

in (4.6). Time-delay plant model estimated by using Kautz expansions is described as

P̃ (⌘, b, c) =
MX

i=1

[⌘2i�1 2i�1(b, c) + ⌘2i 2i(b, c)]

=

p
2b

s2 + bs+ c

MX

i=1

"
(⌘2i�1s+ ⌘2i

p
c)

✓
s
2 � bs+ c

s2 + bs+ c

◆i�1
#

(4.11)

As the plant contains time delay, the plant model is parametrized with minimum

phase and non-minimum phase part similar to the previous chapter. Here, P̃m and P̃n are

defined as

P̃m(b, c) =

p
2bN 0

(s2 + bs+ c)M
(4.12)

P̃n(⌘, b, c) =
1

N 0

MX

i=1

[(⌘2i�1s+ ⌘2i

p
c)(s2 + bs+ c)M�i(s2 � bs+ c)i�1] (4.13)

N
0 is a stable polynomial to make P̃m and P̃n proper. Let the tunable parameter vector

⇢ be ⇢ = [⇢Tn ⇢
T
m]

T , where ⇢n = [⌘Todd ⌘
T
even]

T and ⇢m = [b c]T respectively. ⌘odd and ⌘even

are even and odd coe�cient parameter vectors, respectively.

4.5 Comparison with the previous FRIT methods

Many studies have been done for controlling the time delay systems with fictitious refer-

ence iterative tuning (FRIT) [23, 24, 25, 26]. So it is necessary to compare these studies

with the current approach to show the di↵erences in the plant model design, the reference
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model design and the controller design.

Plant model design

In [26], the pre-filter design to improve the set point tracking for the time delay system is

considered and the simultaneous attainment of the plant model is beyond the scope. In

[23, 24, 25], simultaneous attainment of the model and controller is considered and the

delay plant model in parametrized with a tunable lumped part and a time delay part.

Time delay parts are approximated by Pade approximations or Laguerre expansions. The

relative degree or the numbers of poles and zeros of the plant model are assumed to be

known.

In the current approach, the delay plant model is parametrized with the truncated

Kautz series as (4.11) by unifying lumped part and time delay part. The information of

the plant (i.e relative degree or the number of poles and zeros) is not necessary.

Reference model design

For the reference model design, all of the previous research [26, 23, 24, 25] consider the

tunable reference model that reflects the actual closed loop system. So the reference

model contain nominal reference model given by the designer and Pade or Larguerre

approximated time delay.

In the current research, the reference model design is similar to [26, 23, 24, 25] and

the time delay part is approximated by (4.13) using the Kautz expansions.

Controller design

For the simultaneous attainment of the controller and the plant model, the controller

includes the inverse of the plant model. The controller design of [26] does not include the

plant model and it is simple. In [24, 25], to make the feedback or feedforward controller

proper, the design of nominal reference model depends on the relative degree of the plant

model, so some information of the plant is necessary.

In this proposed method of the feedforward controller design (4.7), the design of nom-

inal reference model does not depend on the plant model and the user can design it freely

for the desired response.
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4.6 Numerical Example

To show the e↵ectiveness of the proposed method, we illustrate a numerical example.

The transfer function of the unknown plant, the nominal reference model and the

feedback controller are defined as

P =
1

(0.1s+ 1)(s+ 1)
e
�7s (4.14)

Td0 =
1

2s+ 1
(4.15)

Cfb =
0.05

s
(4.16)

In this example, N 0 is considered as a fixed polynomial, (s + 1)2M , and model order,

M = 3. ⇢0 = [0.2 0.2 0.1 0.2 0.1 0.5 1]T is used as the initial parameter vector and the

initial experiment is performed in 2DOF control system of Fig. 4.1. Initial output y(⇢0)

and desired output Td(⇢0)r of the experiment can be seen in Fig. 4.2. Then, minimization

of cost function (4.7) has been done with o↵-line nonlinear optimization using initial input,

output data obtained from initial experiment.

Figure 4.2: The initial output y(⇢0) and the desired output Td(⇢0)r (dash-dot line)

As a result, we obtain optimal parameter vector ⇢
⇤ = [�0.0689 � 0.1944 �

0.1372 0.0536 � 0.0232 2.0005 1.26]T . Using these optimal values in Cff (⇢) and

Td(⇢), the experiment of the 2DOF system is done again. From Fig.4.3, it can be clearly

seen that the optimal output y(⇢⇤) and the desired output Td(⇢⇤)r are almost the same.
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Figure 4.3: Initial output y(⇢⇤) and the desired output Td(⇢⇤)r

Figure 4.4: Gain characteristics of the plant and plant model

Figure 4.5: Phase characteristics of the plant and plant model
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It means that the optimal output of the proposed method can follow the desired set

point for the time-delay system. Fig. 4.4 and 4.5 show the gain and phase characteristics

of actual plant and plant model approximated by Kautz expansion.

The proposed method with Kautz expansions is also compared by other time-delay

approximation methods such as Pade approximations and Laguerre expansions. Same

numerical example is used and also, the same nominal reference model and the feedback

controller are used in the comparison.

In Pade approximation method for the time-delay system with FRIT, the minimum

phase part is defined as

P̃m(Pade) =
⇢0

⇢1s+ 1
(4.17)

and the non-minimum phase part (time-delay part) with Pade approximation of order 4

is described as

P̃n(Pade)(L) =
1� L

2 s+
3L2

28 s
2 � L3

84 s
3 + L4

1680s
4

1 + L
2 s+

3L2

28 s
2 + L3

84 s
3 + L4

1680s
4

(4.18)

The tunable parameter vector, ⇢ := [⇢0 ⇢1 L]T . Initial parameter vector, ⇢0, is set

as ⇢
0 = [2 2 3]T and the optimal parameters obtained after optimization is ⇢

⇤ =

[1.0013 1.3045 6.9325]T . So the actual delay time of 7 seconds is estimated by the Pade

approximation as L = 6.9325 seconds.

In Laguerre approximations method for the time-delay system with FRIT, the min-

imum phase part is defined the same as in (4.17) and the the non-minimum phase part

(time-delay part) with Laguerre expansions of order M = 6 is described as

P̃n(Laguerre)(⌘, a) =
MX

i=1

⌘i

p
2a

s+ a


s� a

s+ a

�i�1

(4.19)

The tunable parameter vector, ⇢ := [⌘1 ⌘2.....⌘5 a ⇢0 ⇢1]T . Initial parameter vector, ⇢0,

is set as ⇢0 = [0.6 0.3 0.3 0.2 0.2 3 2 2]T and the optimal parameters obtained after op-

timization is ⇢⇤ = [�0.0075 �0.5578 0.2210 �1.2596 �0.1950 1.4078 1.0049 0.7103]T .

The simulation results of three methods are compared in Fig. 4.6 for the set point

tracking and in Fig. 4.7 for the model estimation of time-delay system. According to the

simulation results and optimal values obtained after optimization, the proposed method

of time-delay system with Kautz expansions can give the satisfactory results.
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Figure 4.6: Optimal outputs with Laguerre order 6 (solid-line), Kautz order 3 (dash-dot
line) and Pade order 4 (dotted line) compared with the nominal reference model

Figure 4.7: Frequency characteristics of plant (solid line) and plant model with Laguerre
order 6 (dashed line), Kautz order 3 (dashed-dot line) and Pade order 4 (dotted line),
with optimal parameters
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4.7 Summary

In this chapter, FRIT of feedforward controller with Kautz expansion in 2DoF control

structure for linear time-delay system is proposed. With Kautz expansion, time-delay

is not explicit parameter for the plant model compared with Pade approximations. The

linear time-delay system is approximate with the proposed method. Comparison with

the well-known Pade approximations and Laguerre expansions, and the proposed method

is also done. Ideal noise-free system is considered in this chapter. Inherent feature of

noise in measured input and output data and approximation of systems with large time

constant are further investigations of our current research work.



Chapter 5

Positioning Control and Model

Estimation of the Vibrating System

5.1 Introduction

Positioning is one of the most important control techniques in factory automations; such as

flexible robot arms, precision machineries, transport machineries and so on. Vibrations

cannot be avoided in these apparatuses and many researchers pay their attentions to

positioning control of vibrating systems. In [45, 46, 47], the positioning control and

vibration suppression have been studied. All of these research works are model-based

approaches and a mathematical model of the process needs to be built or identified before

the controllers are designed. In contrast to these research works, this chapter shows

data-driven approach with the fictitious reference iterative tuning (FRIT) for positioning

control and the model estimation of vibration system.

Using Kautz expansions in 2DoF-FRIT control structure, the proposed method of

chapter 3 is applied in a practical system to show its applicability and e↵ectiveness. The

vibrating system of [52] is considered as the practical application for this chapter.

In [52], the authors proposed a method for the sensorless parameter estimation of

an electromagnetic transducer. With that method, the parameters of the mechanical,

electromechanical coupling, and electrical system models are simultaneously estimated

without using the position, velocity or acceleration sensors. For more details, the readers

are referred to original paper and its references. In this chapter, the vibrating system

of [52] is used for di↵erent purpose, especially for positioning control and estimating the

mathematical model of the system using the actual parameter values of [52] .

45
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5.2 Problem formulation

A plant to be addressed in this chapter is a single-input, single-output, linear time invari-

ant system. It is assumed that the information of the system, i.e., P , is unknown except

its natural frequency. The 2DOF control system with tunable feedforward controller is

addressed. The cost function is defined by

J(⇢) = ky(⇢)� Td(⇢)rk2 (5.1)

The cost function is minimized to achieve the optimal parameter for the desired output

and an approximate model of the plant using one-shot experimental input and output

data. System disturbance is not considered in this chapter.

The truncated Kautz series is used to parametrize the controller and approximate the

vibrating system and the parametrized plant model is described as

P̃ (⌘, b, c) =

p
2b

s2 + bs+ c

"
MX

i=1

⌘2i�1s

✓
s
2 � bs+ c

s2 + bs+ c

◆i�1

+ ⌘2i

p
c

✓
s
2 � bs+ c

s2 + bs+ c

◆i�1
#

(5.2)

5.3 Unknown plant Model

The schematic of a simple mass-spring-damper system coupled to electromagnetic trans-

ducer as shown in Fig.5.1.

Figure 5.1: Schematic of mass-spring-damper system coupled to electromagnetic trans-
ducer (It is simplified diagram of the vibrating control system in [52])
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In this system, the electromagnetic transducer is used as an actuator for the vibrating

control. An electrical system of the electromagnetic transducer is modeled by the series

connection of the inductor, L [H], internal resistance in the coil, R [⌦], and motional

electromotive force, vemf (t) (as shown in the blue box of Fig. 5.1). The di↵erential

equations of the system are obtained as

m
d
2
x(t)

dt2
+ c

dx

dt
+ kx(t) = fd(t) + fl(t) (5.3)

L
die(t)

dt
+Ri(t) = ve(t)� vemf (t) (5.4)

where m [kg] is the mass, c [Ns/m] is the damping coe�cient, k [N/m] is the spring

constant, x(t) [m] is the displacement of the mass-spring-damper system, fl(t) [N] is

the Lorentz force generated from the electromagnetic transducer, and fd(t) [N] is the

disturbance force, ve(t) [V] is the voltage across the electromagnetic transducer. The

motional electromotive force, vemf (t), and Lorentz force, fl(t), are described as

vemf (t) = �
dx(t)

dt
(5.5)

fl(t) = �ie(t) (5.6)

where � [N/A or Vs/m] is the electromechanical coupling coe�cient and ie(t) [A] is the

current flowing through the electromagnetic transducer. The e↵ect of the disturbance

force, fd(t), caused by the exciter is neglected. The purpose of this research work is to

control the displacement, x(t), of mass-spring-damper system by changing the voltage

across the electromagnetic transducer, ve(t). Substituting (5.5) and (5.6), in (5.4) and

(5.3), respectively, and taking Laplace transform, (5.3) and (5.4) become

(ms
2 + cs+ k)X(s) = �Ie(s) (5.7)

(R + Ls)Ie(s) + �sX(s) = Ve(s) (5.8)

Rearranging (5.7) and (5.8), the transfer function of the vibrating system is obtained as

P (s) =
X(s)

Ve(s)
=

�
m

(R + Ls)(s2 + c
ms+ k

m) + �2

m s
(5.9)
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5.4 Positioning Control

The coe�cient values of (5.9) are L = 0.786 mH, R = 2.57 ⌦, c = 1.92 Ns/m, k =

4.47⇥103 N/m, m = 1.73 kg and � = 2.51 N/A. Damping factor ⇣ and natural frequency

! are ⇣ = cp
4mk

and ! =
q

k
m , respectively.

By substituting these values in (5.9), the transfer function of the system becomes

P =
1.451

7.86e�4s3 + 2.5708s2 + 8.5247s+ 6640.4
(5.10)

(5.10) is used as an unknown plant for the proposed method expect the natural fre-

quency of the system (! = 50.8 rad/s) is assumed to be known.

Nominal reference model and the feedback controller are defined as

Td0 =
1

0.1s+ 1
(5.11)

Cfb =
500

s
(5.12)

The model order, M , is considered as 2 and the polynomial, N
0, is considered as

(s+ ⇢nn)2M . The initial parameter vector ⇢0 is set as ⇢0 = [0.02 0.01 0.01 5 7]T . Using

these initial values, Cff (⇢0) and Td(⇢0) are implemented in 2DoF system and then the

initial experiment is performed. Fig. 5.2 shows the step responses of desired and actual

closed loop transfer function, Td(⇢) and Try(⇢) respectively. In Fig. 5.3 and 5.4, initial

input, u0, and initial output, y0, are illustrated. Using initial input and output data, u0

and y
0, minimization of (5.1) has been done by o↵-line optimization. CMA-Evolution

Strategy [34] is used as an o↵-line non-linear optimization. As a result, the optimal

parameter vector is obtained as ⇢
⇤ = [�0.0001 0.0001 0.004 4.4895 6.8303]T . The

optimal input, u⇤, and optimal output, y⇤ are illustrated in Fig. 5.3 and 5.4, respectively.

Then final experiment is performed again using the optimal parameters obtained from

o↵-line optimization. Step responses of desired and actual closed loop transfer functions,

Td(⇢⇤) and Try(⇢⇤), with optimal parameters are shown in Fig. 5.5. It can clearly be seen

that set point tracking has been done very well with the proposed method and it implies

that the desired output can be achieved by using ⇢
⇤.
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Figure 5.2: Step responses of the actual closed loop transfer function, Try (solid line), and
the desired closed loop transfer function, Td (dash-dot line), with initial parameters

Figure 5.3: Initial input (dash-dot line) after initial experiment and optimal input (solid
line) after optimization

Figure 5.4: Initial output (dash-dot line) after initial experiment and optimal output
(solid line) after optimization
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Figure 5.5: Step responses of the actual closed loop transfer function, Try (solid line), and
the desired closed loop transfer function, Td (dash-dot line) with optimal parameters

5.5 Estimation of vibrating system

Kautz poles are functions of frequencies and damping factors. In this research, the same

set of poles are used for the expansions (i.e same b and c in all expansions). Fig. 5.6 and

5.7 show the step responses and frequency responses of plant and plant model with initial

parameters.

Figure 5.6: Step responses of plant (solid line) and plant model (dash-dot line) with initial
parameters

After optimization, the step responses and frequency characteristics of the plant and

plant model with optimal parameters can be seen in Fig. 5.8 and Fig. 5.9, respectively.
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Figure 5.7: Frequency responses of plant (solid line) and plant model (dash-dot line) with
initial parameters

From these simulation results, the approximation of plant with our proposed method

is also done very well.

Figure 5.8: Step responses of plant (solid line) and plant model (dash-dot line) with
optimal parameters

Damping factor of actual plant is 0.01 and approximated damping factor is 0.067. Fig.

5.10 show the peak values of gain (in dB) of actual plant and estimated plant model. By

looking this figure, the results of estimation of vibrating plant is acceptable even though

damping factor cannot be exactly estimated.
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Figure 5.9: Frequency responses of plant (solid line) and plant model (dash-dot line) with
optimal parameters

Figure 5.10: The gain characteristics of plant (solid line) and plant model (dash-dot line)
to show the peak values of them

5.6 Summary

This chapter shows one of the application area of our proposed method. According to

simulation results, positioning control and estimation of the vibration system are done

well. Natural frequency of the system is assumed to be known and considered as constant

in this research and the next step is to check the results if the natural frequency vary. For

further study, the selection of Td and design of N 0 are needed to be considered in details

for the specific high frequency cases. Selection of the initial parameters and the e↵ects of

the disturbance are also needed to clarified.
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Conclusions and Future Work

This research work proposes a new method related to the parametrization of data-driven

controller with the special orthonormal basis functions, Kautz expansions. Feedback con-

troller of FRIT in IMC control structure and the feedforward controller of FRIT in 2DoF

control structure as well as the desired closed loop transfer function are parameterized

with the truncated Kautz series. Basically, the proposed method aims to control and esti-

mate the systems with resonant poles simultaneously, using one-shot experimental input

and output data without using a mathematical model of system. The proposed method

is also applicable to the non-minimum phase systems, the systems with time-delay and

the minimum phase systems as well.

For the non-minimum phase systems, the proposed method can estimate the number

of unstable zeros. For the time-delay systems, the lumped part and the time delay part

are constructed together as a parameterized lumped transfer functions using Kautz ex-

pansions. The e↵ectiveness of Kautz expansions for the poorly damped system from the

set point tracking and model estimation points of view is compared with the Laguerre

expansions. Our proposed method with the reduced-order Kautz series can give better re-

sults than Laguerre series. In the model estimation and control of time-delay systems, the

well-known time delay approximations methods; Pade approximations and the truncated

Laguerre series are compared with our proposed method. Although our proposed method

for time-delay system is not superior than Pade and Laguerre approximations, it is still

applicable for time-delay system according to the simulation results. As many studies

has been done for controlling the time-delay system with FRIT, the comparisons of these

studies and the current approach is also done in the plant model design, the reference

model design and the controller design. Even though the experimental data are assumed

as noise-free data, the e↵ects of measurement noise in the output data is also checked and

53
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simulated. The validity of the proposed method is also tested with the actual parameters

of the vibrating system and the satisfactory results are obtained.

The major contribution of the research work is that the controllers and the desired

reference model parameterized with small model order Kautz expansion can be applied

to the non-minimum phase system and the time-delay system as well as the processes

with oscillatory behaviors. To get the desired set point tracking and to approximate the

plant model with one single set of measured input output data, FRIT in IMC structure

and FRIT in 2DoF structure are used. The current approach is used in the continuous

systems but it is applicable to the discrete systems also.

There are many research directions for the future. The problem of choosing an appro-

priate nominal reference model Td0 is still unsolved. So far, it is chosen by the experience

of the designer. In addition, the design of the stable polynomial N 0 needs to be consid-

ered. In chapter 2, we consider N 0(⇢d) = ⇢d2Ms
2M +⇢d2M�1s

2M�1+ ...+⇢d1s+1. We found

that fixed polynomial N 0 can give better simulation results. But for the high frequency,

we need to use N 0 = (s+⇢n)2M due to the steady state error constraint. So more analysis

are needed to be studied for N 0. Furthermore, the appropriate selection of Kautz model

order is needed to be considered in future. So far, the current work is applicable for stable,

linear time invariant (LTI) systems with single input, single output (SISO) and the input,

output data are assumed as noise free. For the noisy data, we need some modifications

in our proposed methods. I/O data with measurement noise are also left to study in the

future. As other data-driven methods, we still need the stability analysis that will be

further part of our research.
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