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ABSTRACT

Shared resources reside on server nodes in a tketRequests arrive separately
in succession to access the resources. Severdepm®lare unavoidable in managing
the server locations in order to reduce the loadedivork. There is no way to apply
optimal algorithms, because the future data arenowk. The design of online
algorithms to efficiently solve these problemshis topic of our study.

We introduce the bases of online problems as gdhha systematic approaches to
finding solution. After that, we have a survey abthe server problems and design
techniques with their algorithmic qualities in ternof competitiveness in basic
networks. Two specific networks of Euclidean spam®d rings are focused,
independently. The server problem of migrating & data upon access requests is
enquired in both networks towards designing deteistic algorithms. For the case of
Euclidean space, an efficie2t75-competitive online algorithm is designed and
equipped by a lower bound 2f732. It improves the forme2.8-competitive and 24-
year-old algorithm. As for general ring networks3.826-competitive algorithm is
achieved with a tight analysis. Then, we proposetefficient definitions of server

problems which arise in modern networks.
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CHAPTER 1

I ntroduction

Daily-life is greatly influenced by electronic dees (e.g. smartphones, laptops,
personal computers, workstations, supercomputery, &€he desired functionality of
these appliances depends on their processing Bryitdeveloping the applications, the
needs for faster processors are increased. Intrdeeade, there is no big improvement
to the clock speed of processors, due to the liiita of electrons. One resolution is
to interconnect multiple processors in a networkcWishares resources for gaining
more performance. The running of such and othedskof networks requires to deal
with several challenging problems.

In informatics, the study of networks has been drgwmore attention,
continually. The structure of connected componeppears in various areas and
different platforms. For example, social networksplogical networks, computer
networks, telecommunication networks, semantic agkg; distributed systems, and
graph theory, all are about investigating the catioe or interaction among separate
elements. The power of computation and computisgueces is essential for coping
with so many challenges which are arising to obsaitions in the investigation.

Depending on the properties and models of the n&tvwemme problems are
taken into consideration and need to be resohedards utilizing the network in a
desirable way. “How to find a set of specific elensein the network?”, “What is the
fastest way to reach a node?”, “Which represemasithe best for storing the network,
altogether or partially?”, “Are there any partsnetwork subject to reconfiguration?”,

“Which elements are the optimum choice to carryetaa resources shared in the
1



network?”, “How to serve the requests emerging ftbennodes?”, “We need to know
about some unknown properties of network; then,twshategy is proper enough for
processing the entire network?”, and many othestiues are real problems to study
the networks in the contemporary world. These moisl need computation for
attaining resolution. Efficient solutions for bigtworks are demanding since they are
coming into view of human life.

In practical point of view, agile electrons aregiel and widely available via
processing units to accelerate the computatiorsdpal computers have great ability,
and can be equipped well by programming tools aaining approaches, in a
reasonable cost for tackling the problems withaeswhich can fit the resources. It is
obvious that PCs are restricted to handle the problfor a size that is small enough,
even with a parallel processing attitude. More posieeomputing for larger problems
can be found through suitable but hardly-availagproaches like high-performance
computing, cloud computing, grid computing, disiitded processing, etc. To design a
method for the problem, it is needed to take bb#hlimitations of platform and the
model of network into account. Usually, the arptainning a method to fully utilize the
resources need specific expertise and deep thinkegent efforts on quantum and
biological computation seem likely to reach a stiégé could provide even more power
for a significant amount of larger problems. A laange of network problems has
been studied practically.

In theoretical point of view, the network problemformally defined, first of
all. After that, depending on the attributes of ljemn, an efficient technique is
employed to design an algorithm which guaranteésvel of optimality through a

comprehensive analysis. There exist some basicnigpods (e.g. randomization,



dynamic programming, backtracking, approximatidmid® and conquer, efd.which
have been widely applied to the design of algorghim real problems, including
network problems. It is quite usual to represeatrttwork as a graph, in which there
is a bijection between the vertices of graph amdsiparate components of network,
such that each connection between two componengplissented as an edge between
corresponding vertices of the graph. In this waw, problem in the network can be
regarded as a graph problem. Graph problems, ilmusaspects, are dramatically
studied under the area of graph thépiso that the achieved methods might be
considered as the principal or subsidiary solufmmdesigning of algorithms in real
network problems.

Theoretically, depending on the aspect of view,dtablems are subject to be
divided into two or more categories. For each aatggsome specific frameworks are
known to be utilized for dealing with the probleRar example, suppose considering
the availability of input data to the network foaking decision about the design. If the
whole data of the problem are given in advance) the scope of design would be
offline algorithms Otherwise, i.e. the input data are given oneris; then the problem
needs to be coped with throughline algorithmsAs another example, an algorithm is
deterministicor randomized depending on the behavior of algorithm to be egith
functional or based on random distribution, regpett. One more example; if the
amount of computation to solve a problem incredsesarly regarding the size of

network, then the algorithm is categorized as lin@gher categories like constant-time,

170 study more about these techniques, there atteoieks like [8] and [49].

2 Some fundamental algorithms in graph theory aseudised in [50] and [51].



polynomial-time, exponential-time, etc., exist twow the complexity of algorithm.
Since the exponential-time algorithms are lesstjwaldy the enlargement of network
(e.g. take tens of years to obtain optimal solytitimere are helpful approaches like
approximation algorithms, which give solution walyuarantee of maximum gap from
the optimal solution, and applicable in a reasomaiohe. The similar thing happens
also for online algorithms, which are the themeooff study. A deterministic online
algorithm guarantees a maximum gap with the optsoéition. Moreover, we focus
on theserver problemsf networks, for which sequential requests to sscghared

resources appear one by one, and must be served.per

1.1 Structure

This thesis is a collection of published and unaigld results and articles
during a doctoral program of philosophy, and isaniged as follows:

CHAPTER 1 firstly introduces the foundation and iwation of the program
from two viewpoints, surrounded by some informatéd prospection about related
topics, narrowed into a more specific target ofiscth at which the main study has been
accomplished. After this structure, there is agdubhical discussion about the quiddity
of this study, followed by specialized sectionsect®n 1.3 specifies the area of
problems in which our problem can be defined. Thlksections discuss about the
theoretical framework and techniques availablegpecwith the problems, as well as
analytical methods and tools to measure proposegotations. Section 1.4 has further
explanation about networks and section 1.5 nartbgange of problems to a more
specific case of this study. Section 0 preciseliinde some concentrated problem
through proposing mathematical notations, and vevigne relevant study of problem

in literature, followed by a sketch of our novehtibutions in this study.



CHAPTER 2 focuses on a specific research work alaospecial kind of
network in this topic. After a preamble, an unpdesged online algorithm with its
detailed analysis and conclusion is demonstratbi i§ a successful achievement of
our work for the problem, and has been alreadyiphud. [1]

CHAPTER 3 investigates another particular netwarlaaeparate project, and
suggests a new online algorithm with a tight analysr the network. The algorithm
and analysis are illustrated and followed by rermaltk the proposed analysis, there is
a slight extension to a standard analytical meth&ithough this work has been
submitted for publication from long time ago, th&estill no response from decision
makers despite several contacts with editorialceffiAn earlier version of work is
preprinted for reference. [2]

CHAPTER 4 is proposing an initial idea to devel@me network problems
with the goal of efficiently reduce the time (ratkiean the load), inspired by the original
cases of study, which seem essential and integesbn modern applications.
Finally, CHAPTER 5 concludes the dissertation byeasay on its main themes with

some remarks and summaries.

1.2 Philosophy

In theoretical aspect of problem solving, onlingagithms are considered as a
framework forinteractive computatiorthat is a paradigm with modeling interactive
agents, which can do computation concurrently [Bferaction is suggested as an
extended model of Turing machines for understandiegprinciples of computing.
This shift in the modes of thinking accords witlmsobases, including the assumption
that interaction provides an empirical foundationdomputer problem solving [4], as

well as a theory saying that computing is the arigf informatics [5]. A formal



definition of interactive computational problemsidae found in [6]. Anyway, after
accepting this paradigm as a generalized compudipgroach towards finding
mathematical truth, this potential question coma® imind whether the current
framework for studying online problems (see secfidh?2) also gets a capacity for a

kind of generalization?

1.3 Online Problems

The ‘main problem’ obnline problemss that there is ‘partial knowledge’ about
the whole data. Finding a solution depends on @0g the input data of problem.
The problem is that the entire data are not avialab once, but the input data are
coming one by one. The computation must providelatisn upon each input, and the
solution is subject to get change by the next irgstival. In this way, each input can
be interpreted as a request of task that may chéveggtate of solution. The final goal
is to reduce the total cdsteeded to process the inputs and change the, sdatés as
possible. As mentioned at the preface of CHAPTER&Gh problem needs to be
formally defined. In the case of online problemmgtrical task systenig] have been
widely utilized as a formal framework for definiramline problems. This model is
established based ometric spaces discussed in the following section. Note tlaahe
section may borrow the notations of its precedegjiens. For the notations which are

not mentioned, the readers are referred to [8].

3 This cost depends on the definition of the probée its specific platform.



1.3.1 Metric Space

For a sefs and a functiory: S X S - R, the pairM = (S,y) is a metric space if
y satisfies the conditions of identity of indiscéales (i.e.y(s;,s;) =0 o s; =s5),
symmetry (i.ey(s;, s;) = y(s;, s;)), and triangle inequality (i.@.(s;, sx) < y(s;,s;) +
Y (sj, Sx)), which imply non-negativity (i.qz(sl-,sj) > 0), wheres;, s;, s, € S. [9]

In online problems, we regafias the set of all computable states of solution,
andy as the cost of computation to change from a stedaother state. In the literature,
y is intuitively denoted as a function obstor distancebetween two states [7], [10].

Besides)S| denotes the finite number of states.

1.3.2 Metrical Task System

Task is an abstraction of the request, and a$air(M,T) is a metrical task
system (MTS) ifM = (S,y) is a metric space (see section 1.3.1), Ansl the set of
tasks. Each task is denoted by= (7;(s1),7:(s2),...,7:(s5|s))), Wherei>1 and
rl-(sj) > 0 is the cost of processing tagkat states;. Based on this system, a huge
number of online problems are defined and studielll Ww addition,s, € S is set as a
starting state of the problem for dealing with. Atnical task systerf(S,y), T) is called

uniform[7] if ¥ (s;, s;) is identical for every;, s; € S wheres; # s;.

(89, s
_S_I v(s2,51) :Y:?
a La
I I
b b/
¥(s1, 52)
Figure 1. Both states ands, of an MTS are shown as a simple network with twdes and one resource




The network branch of online problems is oftenahlé to be represented using
graphs. For example, suppose a network with onbyrtades and one shared resource
(showed as filled square in Figure 1). Figure Teasents the set of all possible states
(i.e.s; ands,) of the corresponding metrical task system fas tratwork. This example
is very simple, because its network has only twafigarations which can be
reconfigured to each other.

We think that, for studying the details of more gdicated examples, MTS can
be adopted as a practical application under a tigcproposed, and actively studied
framework called reconfiguration graphs[11]-[13], where each node of a
corresponding graph maps to one state of the MT@uestion here arises, whether or
not, some way exits to classify online problemsrira hardness point of view, since
reconfiguration directly works on the frameworkaooifline problem definition.

Machine learning appears everywhere and so atgilizations. As for online
problems, there exist research efforts recentlyp@sed, to adopt some learning
methods for coping with similar problems to MTSngsrandomized approaches [14],
[15]. But it is worth paying attention that such nk® lose the important property of

MTS that considers changing the states.

1.3.3 OnlineAlgorithms

Having the initial state of solution 8§ € S, an online algorithnA sets4, =
Sp, and processes a request sequeneer, 1, ..., 1, one by one, while determining a
state sequencé,;, A,, ..., A, whered; € S denotes the state at whighis processed.
In other words, according to the framework [7], ngach request, the algorithm first

changes the state of solution frahy; to 4;, and after that, processes requesthus



and so0,4; may be interpreted as the responsd &b request;. The objective of an
online algorithm is to lessen the total cost foamging the states and processing
requestsA(ry, 1y, ..., ) = e (Y(4;_1, 4;) + 1;(4;)) as far as possible. In this way,
we denoted(ry, 15, ...,rm)sj as the total cost ifl,, = s;. Note that if4; = A;_;, then

we havey(4;_1,4;) = 0 and no change occurs to the state upon request
In our example of Figure 1, the resource at statie on nodeb and far from
nodea, therefore it makes sense if wetgt= (5,1) for every request; on nodea to
access the resource, and similarlyrfoe (1,5) on nodeb. Additionally, let the cost of
changing the statg(s;,s;) = y(s,,5;) = 10. Lets, = s, for any algorithm and the
sequencer of requests sequentially arrive anb, a, a, a, anda. If we assume an
online algorithmU keeps the initial state unchanged (i.e. the resous always
maintained orb). Then, the total cost equalsli§o) = 26, incurred only by request
processing. Let another examplechange the state once, e.g. upon the third request
thenV (o) = 20 caused by the costs of request processing amdcstanging. Although
V took the heavy cost of changing a state,, s,), it finally yielded a better gain than
U for the example sequenee= a, b, a,a,a, a.
“Does V work better thart/?
For this sequence of example, yes!
“How about other sequences?
This is the actual question that challenges thegdesf online algorithms,
because in online problems, the algorithm doespossess the whole sequence of
requests in advance. The requests come one byonestance, if the sequence was

o=b,b,b,b,b, b, thenU worked much better thdh of course.
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“Which one wins in this competition} or V?

The quality of an online algorithm is measuredtre¢ato the other algorithms
by taking all possibilities into account. The aligfoms U andV aredeterministicsince
they uniquely decide the state upon each requeastth® other handrandomized
algorithmsdistribute probability on the states for randormichs, upon each request.

In this fashion, a framework is invented [16] tcabse the efficiency of an
online algorithm in a breathtaking comparison vaithoptimal algorithm which already
possesses the request sequence. Next sectiorbasdtre goal of this invention that is
broadly used as a method of investigating onlirgordthms and quantifying their

gualities.

1.3.4 Competitiveness

Competitive analysigprovides a method to measure the quality of online
algorithms. This measurement yields a vatu®r an online algorithnA that gives
solution for a problen®. In a nutshell, this value shows a maximum rataculated
by dividing the cost incurred by over the cost of any other offline algorithm, &y
sequence of requests= 1y, 13, ...,%,. The maximum ratio can be obtained using a
comparison between the online algoritdnand an optimal algorithrk.

For example, suppose the set of all possible regeegsiencess1, ...,010} are
determined by an algorithdf and evaluated as shown in Figure 2 beside theeagua
above eaclri. The costs for an optimal algorithti are shown near circles4 obtains
the maximum ratio ol 6/6. This example is proposed to provide a kind ofiitrdn,

though it loses some minor condition of actual migbn that is discussed as follows.
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Figure 2. Representing a competition between amemwligorithmA’ and an optimal algorithid’. The total cost
of responding and processing each request sequeigshown above it, near a square4band near a circlg
for X'

Formally [7], an online algorithr is c-competitive, if there exists a constant
a, such thatd(o) < cX(o) + a, for any finite sequence. If « = 0 thenA is strictly
c-competitive. IfA is a randomized algorithm, thdifo) denotes the expected value of
cost, rather than denoting the determinable cotarcase of deterministic algorithm.
Against a deterministic algorithe, the optimal algorithnX cannot be online because
X must know the entire sequenc®f requests in advanceé.is competitivef it hits a
constantompetitive ratiac.

In this area, the worst-case of efficiency is bemgasured in a comparison, and
it is noteworthy that the computational complexatyalgorithms (i.e. the amount of

computation by algorithm) is not the case of stngyonline problems.

1.35 Adversary

Adversary modelsllow to analyse online algorithms in more detdihe
analysis can be viewed as an unfair game, betweeddsigned online algorithm and
a malicious adversary against it. The adversaryrbe algorithm well and produces

a sequence of requests as difficult as possibdgrils maximizing its competitive ratio.
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Depending on the nature of an online algorithnthree different models of adversary
exist as follows:

Adaptive offline adversamynows everything about, and is commonly utilized
whenA is deterministic. This adversary generates a semuef requests, based on
the complete information about the algorithm’s masge for any request. Hence, at each
step, it chooses the next request according teefonses of the algorithm so far. The
algorithm X of the adversary behaves optimally for the produsguest sequenee
and pays the optimal cak¥{(o). The other two models of adversary are definedHer
randomized case of online algorithms.

Adaptive online adversargannot determine the behavior &f sinceA is a
randomized algorithm. This adversary produces e@afuest according tai’s
definition and against its random (not determinjstiesponses so far. Hence, the
behavior of adversary is non-deterministic and ac@n online fashion. This manner
incurs an expected cas{o) for its generated sequence of requests

Oblivious adversaryloes not know anything about the random behaviar o
and its responses, but still knows well the degbiniof A. In this model, the adversary
produces the entire sequence of requesitsadvance, only based on the definition of
algorithm. This adversary shares a common behawitin the adaptive offline
adversary that pays optimal cd&<io) too. Oblivious adversary is even weaker than the
adaptive online adversary, because it does notttekbehavior ofl into account.

Regarding the adversary models, an online algorghisic-competitive, if for
an additive constant we haveA(o) < cX(o) + a. At this point, we mention some

useful relations among these models.
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Theorem 1. [17]: If A is ac-competitive randomized algorithm against any adegpt
offline adversary, then there exists also-eompetitive deterministic algorithm.
Theorem 2. [17]: If A is ac-competitive randomized algorithm against any adegpt
online adversary, andd’ is a c'-competitive randomized algorithm against any
oblivious adversary, theA is a(cc')-competitive randomized algorithm against any

adaptive offline adversary.

1.3.6 Amortized Analysis

Initially, a kind of amortization used to bound tt@mputational complexity by
aggregating a sequence of operations [18]. Lats,mhethod was generalized as an
approach to analyse algorithms [19] by amortizihg efficiency over a part of
computation, in the form of a constant or functidhe functional idea has been adapted
as an analytical method of online computation [7].

In the case of online algorithms, the goal is tarbthe competitiveness of an
algorithm upon each request. After receiving a estyt, the algorithmA processes the
request by some actions and responses to the tdgussme other actions. Similarly,
the adversary also processes and responses to the request leyatdians. These
actions are specified by the definitionsd&ndX. Let(a; 1, a; ,, ..., a; ,) be any order
of all the mentioned actions performed upon theuesty;, andC; be the set of all
computable configurations of an algoritgm

Moreover, letE = {a; 1, ..., Q1 n, 21, o) Aoy ooor A1, -+, A ) D€ @N ordered
set of all actions for a sequencemfequests, and is partitioned intp subsetd; for
1 < j < p, such that the actions i), happen before the actionsApfor k < L. In the

analysis of an online algorithihfor showing itsc-competitiveness, it would be enough
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to define a functiond:C, x Cx - R and show thatA|; + ®; < c|X|; + ®;_, for
everyE;, where|{|; denotes the total cost incurred dyo performk;, and®; > g
denotes the value ob right after finishing the accomplishment & by both
algorithms, for a constam®. Setd, as the value ofp just before performing any
actions.

In this analysisA® = ®; — ®;_; prepares an upper-boundor the algorithm,
so that the art of choosing proper subsets to nim@rthe amortized value as well as
mapping the configuration of algorithms in an appiate way are the basic ideas of
this investigation. We denote By¢| = |{|; — [{] -, the change of value in the cost of
¢ by two consequent partitions of actions. Eachipamtis called an event.

To analyse the algorithm of our second project HARTER 3, we utilize this
method, and also unearth the initial technique giregation [18], which leads to
combine two consecutive subsets for following thalgsis by somehow disturbing the

common approach that is discussed above.

1.3.7 Work Functions

Work function algorithmsprovide a natural procedure for confronting
adversaries. An adversay knows the online algorithm and acts against ie (se
section 1.3.5), thus a work function algoritth attempts to know the adversary as
soon as possible and reacts against it. This defisrdone through designiig, such
that upon request, W; minimizesW (1o, 71, ..., 7i-1)s; + y(sj, W;) + ri(wy) foralls; €
S and W(ro)sj = y(So0,5;). Here,W (ry, 1y, ...,ri_l)sj = X(ry, 1y, ...,ri_l)sj is awork

function which can be optimally calculated through dynamfogramming. In the
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underlying abstraction, for any deterministic oalproblem, the work functions always
provide an online algorithm which shows the powfethcs technique.

Theorem 3. [20]: The work function algorithm i$2|S| — 1)-competitive for any
metrical task systerf(S,y), T).

Later in CHAPTER 4, we will propose new online gevbs of telecommunicational
servers and telecommunicational server, as timekaft variants of some traditional
problems in modern networking. For these probleimspuld be very reasonable to

think of designing online algorithms based on winrkctions.

1.4 Networks

The scope of networks has been broadened to stuahus topics. For example,
a computer network allows its nodes to share ressur(e.g. printers).
Telecommunication networks and multiprocessor systalso share resources (e.g.
packets, and data, respectively). The resourcemeated on the nodes of a network
which are connected to other nodes for communigatid sharingServeris a node of
the network that is holding a resource. For exampleomputer networks, the data are
stored on powerful computers called servers [2Hpdéhding on the restrictions and
construction of infrastructure, as well as thee¢aand the scale of usage, each network
is established with a specific topology. Some nletatnd basic topologies include
complete graphs, paths, stars, rings, trees, arstiesg22]. Some examples of small

networks with basic topologies are shown in Figlire

The concentration of our study considers the tapptaf networks in the metric

space (see section 1.3.1). This space covers #ie fopologies such as general and
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path O—O—0O—0—-0 O—Q%O%O tree

ring m star
complete graph

Figure 4. Examples of some basic network topologies

restricted graphs (Figure 4), and the inherenticootis systems such as Euclidean and

taxicab geometries (Figure 3).

15 Server Problems

Perhapslist accessing problens one of the most extensively studied online
problems. Minimizing the total cost for accessingequested item in an ordered list
and self-reordering of the list is the objectivetios problem. Reordering strategies
basically include moving the accessed item to tbetfof the list, transposing the item
with its preceding one, and sorting according ®ftequency of access&3he page
replacing problem(a.k.a.paging problemis a variant of the list accessing problem,
which arises in the management of a virtual mentgran operating system. Assume
the fast memory is limited to hokd pages of the virtual memory. Faster response to
access the pages is desirable for online requssisual but fetching a page from the
virtual memory into the fast memory is costly. if anline algorithm drops the least

recently used or the oldest fetched page from fasinory for fetching a newly

4 2-competitiveness of first strategy is known [16hdais privately noted to be the best possible
competitiveness for deterministic algorithms [52].
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requested page, then it achiekesompetitiveness, and no other deterministic online
algorithm can achieve a better ratio [16]. The athm of evicting the least recently
used page is recognized as a forrmafking a general strategy that works in phases
[23]-[25].

The study of server problems is roughly about mangagesources in networks.
k-server problenanddata management probleane two of extensively studied online

problems that come out in the management of datatworks.

151 k-Server Problem

k-server problem [26] is a general form of pageaeiplg problem, in which the
cost of fetching different pages may differ. Moteaely, in a metric spacgs, &), there
arek copies of data on each nodesgf; c S, and upon each requestate S, if r; €
s;_1 then a copy of data one s;_; moves tar; with the cost ob (x, ;), wheres, is
the initial set of servers. The objective is to imize the total cost of movements.

Figure 5 displays an examplelofserver problem. Note that we would haye= s, in

this example.
OOk OO/C; O® 0
O8SHX, Ot Pt
N4 A ' S9
o FoPh wG ol

Figure 5. Example of an online algorithm to demmatstk-server problem wherk = 5, for the first triple of
requestsy, r,, andr;. Each circle represents a node in the network ta@dopies of data on nodes are dengted
by filled squares. Each grey area covers a;sef servers.

Sitis interestingly worth mentioning there areignfficant number of efficient online algorithms igh
work in a phase-based style for famous online @mmisl Hastily speaking, in each phase, a part olesq
sequence is being investigated with a length thatfunction of some property of data (e.g. date)si
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There is nac-competitive deterministic [26], or randomized alton against
adaptive online adversaries [10], wherg k. It is an important open question if the
work function algorithm isk-competitive, though itg2k — 1)-competitiveness is
known [27]. The lower bound of problem is shown][&8beQ(log(k)/log?(log(k))
against oblivious adversaries, and is conjectundae® (log(k)) [10]. If |S| = k + ¢,

then there is & (c®log®(k))-competitive algorithm against oblivious adversg9].

1.5.2 Data Management Problem

Suppose there is a unique data in the networkransquence of requests arrive
either to ‘obtain’ or to ‘update’ the data. Thistalanay be in the form of a file or
database and may be replicated among serversridlihg ‘read’ or ‘write’ tasks arrive
at the nodes,, r,, ..., 1;, in an online manner. The corresponding metric sppd@ task
system(S,y) is specified in such a way thgte S is the set of nodes which hold the
copies of data, right after serving the request ahd before receiving a next request.
v(si—1,s;) is the minimum cost to move copies of data fegm to s; such that moving
each copy of data from € s;,_; to v € s; costs the data siZze multiplied byé§(u, v),
the distance betweeam andv. The cost of processing at states;_; is denoted by

r;(s;—1). If 7 is a ‘read’ request, then(s;_,) equals to the distance of the closest

Figure 3. Examples of Euclidean distance in 3D syiksft) and Manhattan distance in 2D space (ridgiejween
two nodesA andB
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S()

ro

Figure 6. Representation of a sample algorithm &a dnanagement problem in a graph. The ‘read’ iqure
r; is served through a minimal path (slightly shadedn sy. After that, the algorithm moves a copy of data
through a minimal path (strongly shaded) to anotfzete. A ‘write’ request on, then sets both copies of data
through a minimum Steiner tree (slightly shaded).

s;_1 tor; in the network. If the network is represented lgraphG = (V, E) andr; is
a ‘write’ request, then; (s;_,) is the weight of a minimum weight tree that spgng U
{r;}. Here we open an interesting question: “how tandef (s;_,) for the metric spaces
other than graphs”™? One answer might be “the maxirdistance frons;_; tor;” for
the case of Euclidean space. Anyway, the problelkn@vn asdata management
problem (a.k.a. file allocation probleny targeted to minimize},(r;(s;_1) +
Y(Si-1,5:))-

If the metric space is a graph abd= 1, as well as if there is no ‘write’ request
and ‘read’ requests always cause replication, thermproblem is callednline Steiner
tree problemThe study of this restricted case of the problas¢lose connection with
the original problem in such a way that angompetitive online Steiner tree algorithm
against adaptive online adversary can derive amegR + v3)c-competitive data
management algorithm against adaptive online adwef80], and the results of data
management problem apply to online Steiner treblpno for every graph.

Theorem 4. [30]: For every graph, if there existscacompetitive algorithm on data
management problem, then there exists a stricttpmpetitive algorithm for online

Steiner tree problem.
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Data management problem has been received a stigissamount of interests.
For arbitrary graphs, there exists a phase-baggditam that considers only one part
of the request sequence at each phase. Each ptatrsoexactlyD ‘write’ requests if
there are enough, and the algorithm copes only vatd’ requests at each phase [31].
Some existing results in the literature of data ag@ment problem include the
followings.
Theorem 5. [31]: There exists a® (min{log(|V]),log(max{é(v;, v;)})}-competitive
algorithm on general graphs, for alf, v; € V.
Theorem 6. [30], [32]: There exists a grapfi(V, E) such that the competitive ratio of
any randomized algorithm against oblivious adveysarinQ(log(|V])).
Theorem 7. [33]: There exist an optim&-competitive deterministic algorithm, as well
as a(2 + 1/D)-competitive randomized algorithm against obliviatversary, for
trees.
Theorem 8. [34]: There is no deterministic algorithm and no randadialgorithm
against adaptive online adversary, witltcompetitiveness on uniform ring networks,
wherec < 4.25 andc < 3.833, respectively.

Other available results include the lower bound @r both deterministic [35]
and randomized algorithms against adaptive onldveisary [30], as well &+ 1/D
for randomized algorithms against oblivious adveesa[33], in a network with only
two points. As for ring networks, randomized alffums against adaptive online
adversary [30] and against oblivious adversary g&8hbined, [36] exist, each with the
competitiveness df(2 + v/3) and2(2 + 1/D) respectively. In the study of outerplanar

graphs, randomized algorithms with the competigsnof8(2 + 1/D) and (3 +
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2v/2)(2 ++/3) are designed, against oblivious adversary [33] bined, [37], and
against adaptive online adversary [38], respedtivel

As for the uniform ring networks, there is no ramumed c-competitive
algorithm against adaptive online adversarycfer 3.833 [34], and in addition, if there
is no ‘write’ requests in the network, then a loweund of2.311 [39] and an upper
bound of3 [40] for deterministic algorithms are proposed.

Another well-studied server problem, callpdge migration problemis a
restricted variant of the data management probiemwhich |s;| = 1. In other words,
data management problem is the same as page rmoigpatblem, if there is no ‘write’
request. Since here is no ‘write’, there is no era#tbout defining the problem in
Euclidean and Manhattan spaces which are diffdrem the metric space of finite
graphs. Our new algorithms are concentrated on pageation (also known as data
migration, and file migration) problem, so that wdl contemplate it with more details

in the rest of these sections.
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Figure 7. Representing an example of an online @lgorcomputings; ands,, uponr; andr,, for the page
migration problem. The slightly shaded edges shmnpaths of servicing requests, and the stronglgleth edges
show the paths of migrating the page.

1.6 PageMigration Problem

In the page migration problem, there is only omgle data (i.e. page or server),
located on one of the nodes of a network. Onliggests arrive on nodes to access the
page. Before the first request, the page is loaaesh initial server. Upon each request,
the request must be served with a cost equal tdigih@nce between the requested point
and the server location. After this service, thé&nenalgorithm decides if the server
shall move (i.e. page shall migrate) to a new iocabf network or not. The cost of the
page migration equals to the page size, multifdethe distance between former and
new locations of the page. The problem is to deargonline algorithm that efficiently
migrates the page, so that the total cost of ses\anid migrations is as small as possible.
Figure 7 shows an example of a scenario for thablpm for a couple of requests
andr,, as well as the responses of a sample onlineitdlgoshown as; ands,.

This problem is a formulation for the efficient nag@ment of memory shared

among a network of processors, such as multiprocessts, multicore processors, and
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graphical processing units. The problem can alswideed as a formulation for the
efficient handling of shared objects in the netwofka distributed system, such as

computer and telecommunication networks.

1.6.1 Notations
To provide a formal definition for the problem, Bawe first summarize the
notations, which will be used in the rest of agj@nd are subject to get slight changes

according to each context.

Table 1. Notations

S set of nodes in the network

(S,6) metric space of network with distance functibn

So ES initial page location (i.e. initial server beforeetfirst request)
rES location ofith request to access the pageson, wherei > 1
S;€ES location of server after serving requestwherei > 1

o=r1,1,..,1, Sequence of the first requests

A =s4,s,,..,5, designed algorithm (i.e. response of algorithmimst £ requests)

6(a,b) distance between two nodes € S

D page size (i.e. data size)

|S] number of nodes in network§| = 2

AlA| amount of change in cost of algoritbthrbefore and after an event
cost,(sg, 0) cost ofA to respona for the initial server locatios,

X algorithm of an adversary; (See section 1.3.5)

c competitiveness of against4; (See section 1.3.4)

Here, we have mapped the metrical task systemidgett3.2) to the page
migration problem, such tha, r;, ands denote théth statejth task, and the function
y in the corresponding metrical task system respelgti noting that changing the state

is done after processing the request.
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1.6.2 Definition

For a given initial page locatiany € S, a sequence of requests=r, ..., 1;, €
S, and a page siz2 > 1, the page migration problem is to compute theessiv.e. the
sequence of page locations,...,s,, such that the objective of cost function

™ 1(8Csi—y, 1) + D - 8(si_1,5;)) is minimized.

If the requests come one by one, then offline dlgms do not adapt, so that an
online algorithm4 is required to reduce the cost of producing ontasponses as far
as possibled does not have any information about the futureiests. An adversary
generates the requests against the algorithm,depikg the algorithm far from the
minimum cost as possible. This competition is eatdd as a ratio AA's cost oveX's
cost and quantifies the quality of algorithm in gosense. Smaller is better for this
competitiveness. Oblivious, adaptive online, andptide offline adversaries have
different powers against an online algorithm, deldem on its design as an either

deterministic or randomized algorithm.

1.6.3 Uniform Model

A restricted form of the page migration problemthad = 1, is regarded as
uniform page migration problemnd received interests in the area. For this pnoble
the objective is to minimizBL,(8(s;_1, 1) + 8(s;_1,51))-

The results of the current thesis are achieved ¢(Bslissed in the next two
chapters) for thisiniform modebf page migration, in which the page has a ung.siz
In other words, the uniform page migration probliendentical to the page migration
problem if the cost incurred by servicing a request from the servea, equals to the

cost incurred by the migration of server framo b for everya,b € S. The problem
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arises when the requests are always issued tosatitesntire page for a ‘read’ or
‘write’ task.

Refer again to the example shown in Figure 7 oreR&g Suppose the weight
of all edges are equal to one, as an example. Thertptal cost incurred by the first

two requests equals to 8, i.e. the number of shadgds.

1.6.4 Review and Contribution

The starting work to efficiently cope with the pagegration problem was
initially reported more than 28 years ago by prapgp3-competitive algorithms which
work based on counters, in uniform graphs and tiesew/ell as showing a lower bound
of 3 for any metric space [35], and conjecturing theroglity of the lower bound.

Note thatcounter-based algorithnpay a significant role in designing efficient
online algorithms for server problems. This kind aforithms usually work by
considering counters on the nodes of network, shi@hthe total amount of counts is
bounded by a function of the page size from ab&aeh counter-based algorithm
follows a specific strategy of decrementing andrententing the counters for the
management of resources while maintaining its caitieness. In a private
communication, a simplified version of tBecompetitive counter-based algorithm for
trees fixes the bound for the total number of cersitand modifies the original

algorithm [41].

6 The conjecture was disproved by showing a highvwet bound oB5/27 [45], which later improved
to 3.1639 for uniform model [47], as well &+ Q(1/D) with respect td [46], and disproved even in
an asymptotic sense with a lower bound af 7.4 x 107° [53].



26

For general graphs,4086-competitive algorithm is known [42] that works in
consecutive phases. Essentially, in this algoriflemparametera andg, the sequence
of requests is separated into subsequemcesr;, 1;,, ..., Ij; Of a fixed lengthk = a x
D. The algorithm is shown to eax(3 + 2/a, 1.5a + /2 + 1)-competitive, if at the
end of each phase, the page migrates from itsrilaeations;_ to a locatiorx (called
local minimum) that minimizesy.XP 6(x,7;;) + B X D X 8(s;—1,x). The best
competitiveness is achieved by the setting af 1.841 andf =~ 0.648, which yields
a 4.086-competitive ratio. This algorithm was known as thest efficient online
algorithm from 17 years ago. But just recentlysttatio has been improved4pby a
new algorithm that considers to dynamically chatigelength of the subsequence in
each phase [43], rather than the approach of figitength throughout the algorithm.
Moreover, in the study of randomized algorithmsiagfeadaptive online adversaries, a
3-competitive algorithm for general metric spaces weoposed [44] that matches the
lower bound on two points [30].

About continuous metric spaces, a randomiz@dh- 1/2D)-competitive
algorithm against oblivious adversary is proposadgiwork functions, and showed to
be optimal, for a segment between two points. atlgerithm is utilized as a module
for designing a new algorithm for the network oftouous tree (a concatenation of

two-point segments), while preserving its competitiess. The new randomized
algorithm migrates its server to a distributign= 2521%% upon request; ; = ;.
The rest of; ; are determined using an initial subtfee [s; ,s;_1,] that is developed
ass;j gets the nearest point M to s;_;; andT grows toT U [s; j, s;—q,;]; While j

increases fron2 to 2D. This algorithm works even on finite products @ersuch as
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continuous hypercubes and meshes. The algoritheersndomized by migrating to
5, = 2 x5;(x), thebarycenterof s; while keeping the same competitive ratio2of
1/2D, as the best ratio on continuous trees. The cativesiess is admitted even in
R™ but still under.t norm. [45]

Theorem 9. [45]: If there exists ac-competitive algorithm with finite distribution
against oblivious adversary dR", then a deterministic-competitive algorithm also
exists.

For general metric spaces, a randomizgd)-competitive algorithm is
available [44] against oblivious adversary, whefe) = 2.8 andc(D) gets smaller to
approach2.618 asD enlarges. This algorithm is derandomizedih underL? norm
for anyn and p, by Theorem 9. For this reason, a determinigtR-competitive
algorithm exists ofR™ in Euclidean space fd = 1 from 24 years ago, and our first
online algorithm in this thesis is to propose a enefficient and deterministi2.75-
competitive algorithm. The algorithm is quite simplt is discussed with details
in CHAPTER 2 alongside its analysis. Roughly spegkthe algorithm maintains the
server at the center of two assumptive points,e@h new request grabs the farthest
point. We bound the ratio for the algorithm wif¥32 from below.

Note that for the intervdl0, 1], we have2 + 1/2D as a lower bound for any
randomized or deterministic algorithm [45]. Thisvier bound is also admitted @®f
under any norm, because for the inteival [0, 1] on a dimensiok in R", any online
algorithmA locating its server ifR™ \ I for requests only ith has a cost of at least that
of a certain algorithm locating its server onlyjn.e., projection on thith coordinate

of A’s server location if the projection is Inand the closer endpoint bbtherwise. It
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was a longstanding question how the gap(@f) and2 + 1/2D can be tighter under
LP norm withp > 2. The question is partially answered in CHAPTER 2.

For the graphs restricted with only three pointk.éa three-node ring networks,
three-node cycles), optim&@-competitive deterministic algorithms with € {1,2}
[45], [46], and asymptotically optim&B + 1/D)-competitive deterministic algorithms
with D > 3 [46] are proposed. Specifically for ring netwoskgh more nodes (i.e.
|S| > 3), there is no general study and the curdenbmpetitive upper bound [43] is

still the best known fob > 1. In the uniform model, this upper bound is reduteed

2 ++/2 = 3.4142 which works on general graphs including the ririggiether with
showing a lower bound &.1213 for a ring with five nodes [47]. In our seconddstu
of uniform model (CHAPTER 3), we propose a quitanpticated deterministic
algorithm with the competitiveness 8f326 on ring networks, provided by a tight
analysis.

We find it appropriate to mention about two obsé&ores on the page migration
problem. Unlike the case of continues spaces ukideorm, we showed on Euclidean
metric that the optimum cost is not always obtaibganigrating the page only to the
requesting points, due to the counterexample ahkepoint. As for the path network
(a tree with only two leaves), the states of thefwork functions and counter-based
algorithms do not behave the same. These obsemggilayed a useful and important

role in conducting the research project of CHAPTER a proper way.

" These observations are done as disprovements of/tamg statements, given to us to be proved. The
basic motivation of considering these statementstavdesign work function algorithms under the rorm
larger than 1.
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Mobile server problens a variant of page migration problem that rettribe
movement distance of the page in Euclidean space.pfFoblem is introduced and
provided by a deterministic and near-optimal aldponi that migrates the server towards

the center of some requesting points [48].



CHAPTER 2

Euclidean Space

The paradigm of cloud computing authorizes the estsi to access the
resources which are present and found everywhée classical problem of uniform
page migration is revisited, covering such recehditopics, where a server is able to
take the natural Euclidean distances for the pwrpafsreducing the overhead of
management.

In this chapter, the uniform page migration problema network of Euclidean
system is considered. Any point in a space with twme, or even more dimensions, is
likely to be a source for the request or the laratf server. The distance functiéns
defined by norm.? (i.e. Euclidean metric), which yields the lengthaostraight-line
segment between two points as their distanceallyitithe page is located at a pasgt
of the space. Each request at a priig served by the cost of ordinary distance between
s;_, andr;, and after that, the page may migrate by the a@bdistance betwees}_,

ands;, the new server location.

ms = (ab) |->| B—e |-
ms; = (d, V)

Figure 8. An example to show the behavior of arnenhlgorithm for the problem of uniform page migwa in
a two-dimensional network of Euclidean space afteample request at (¢, d). The serves;_, is located af
(a,b) upon the request, so that firstly serves the r&lqueith the service cost ob(s;_q,1;) =
J(c—a)? + (d — b)?, and then migrates to a new server locatipmt (a’,b") with the migration cost o

6(si_1,81) = \/(a’ —a)?+ (b —b)2.

30
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Figure 8 shows an example of online algorithm fos problem that incurs a
cost of 6(s;_1,17) + 8(si_q1, s;) for a request;. The total cost for a sequenoe=
Ty, ., Ty Of mrequestit, (8(s;_1, 1) + 6(s;_1,5:)) is the aim of this problem for
minimization, and we design an efficient deterntinisnline algorithm PQ [1], which
improves the former online algorithm for this pretol.

Note that 25 years ago, the former algorithm wagirmally proposed as a
randomized algorithm [44], but later (24 years adedandomized to a deterministic
algorithm [45], and there is no improvement knovefdpe our study. The algorithm
PQ maintains two auxiliary points in the networkctmtrol its configuration in such a
way that it moves the farthest point to the regugspoint of network, and always
migrates the page to the center of the two points.

Intuitively, the algorithm determines the locati@h the page using two
locations from previous requests. In the followsegtions of this chapter, the algorithm

PQ is formally defined, and analysed to boundatspetitiveness.

2.1 Algorithm PQ
This algorithm maintains the server at the centéwo pointsp andgq, both of
which are initially located at the initial servexchtion. Upon each request at location

r, if 8(p,v) = 6(q,7), thenp moves tor; otherwise,g moves tor. The algorithm

Py q. 50 q
* B

. S1 HO

- . -=> -—>

r,p P r3.q P

Figure 9. Showing the responses of PQ to thetfirste examples of requests in two dimensions
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migrates its server to = pzﬂ afterp or g moves. Figure 9 shows the behavior of PQ

for a sequence example of first three requgsts,, andr; in two-dimensional space.

2.2 Analysisof PQ

We prove the competitivenessa¥5, claimed in Theorem 10, using a potential
function®. As mentioned in Section 1.3.6, defining suitadents and showing that
A|lPQ| + AP < 2.75A|X| for any defined partition of actions is sufficiefitor the
proof of the theorem, we need to show an inequdiffgrent from a triangle inequality.
We separately provide a technical part for thatjuadity as Lemma 1. The lemma is
about points computed by the algorithm.

Lemma 1. For anyp > 2 andp, q,7,s € R? such that # q, §(p,r) = 6(q,7) > 0,
i - p_1). —_(P_1).
and s is the center ofp and q, g=4(s,r)— (E_E) 6(p,r) (2 1)

(6(q,7) — 8(p,q)) is maximized iB(p,r) = 8(q,7), or §(p,q) = 8(p,7) + 6(q,7),
oré(p,r) =48 q) +46(q,7).

Proof. We may assume without loss of generality that (—1,0),s = (0,0),q =
(1,0),andr = (€ cos8,¢ sinf) with0 < 6 < /2. Moreover, we fix§(s,r) = £ and
regardg as a function of. The aim is to prove that is maximized ab = 0 or 6 =
/2.

It follows that:

s(p,r) = J(£ cosO + 1)% + £2sin*6 = /€2 + 2¢ cos6 + 1

5(q,r) = \/(f cosf — 1) + £2sin’6 = /#2 — 2¢ cosO + 1

dé(p,r) _ —£sinf _ ¢sing
do V2 +2£cosf + 1 §(p,7)
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and

dé(q,r) £sing _?sing
do V#Z —2¢cosh+1 6(q,1)

Therefore, we have

d_gzgsmg{ﬂ.;_(ﬁ_l) 1 }

do 2 Spr) \2 . 6(q,1)
_(p- 1)-€-sin9{5(q,r) P 2}
B 26(([,7”) 6(pl T') p— 1

é(q, £2-2¢cosf+1 . . £-1
@ _ f monotonically increases frof— to 1 asd changes frond to
8(p,1) £24+2¢ cosf+1 £+1

/2. If % > Z—:i, thenZ—z > 0 for any 8. Therefore,g is maximized ab = /2.

. - . 0220 -
Otherwise, sinc® < 22 < 1, there exist§ < t < m/2 such that/w =22
p—-1 £242¢cost+1  p-1

SinceZ—g >0for6 >t andZ—g <0forf <t,gismaximizedad =0or6 =n/2. R

Theorem 10. PQ isp-competitive fop = %.
Proof. We use the following potential function for X’srger locationt, PQ’s serves,

and point locationg andg:

-2
@ = g (6(p,t) +6(q, 1)) —pT'MP;CI)

We separate the online events into two parts. ifeei$ to consider only the migration
costs incurred by X’s server, and the second t®tsider the service costs incurred by
X together with the migration and service costsimned by PQ. It is sufficient to show
that the inequalityl|PQ| + 4@ < p - A|X| follows in both parts, upon each request
Part 1. The migration of X’s server fromto t’ induces a change 61{t,t") to

the total cost of the optimal algorithm X but n@aolye to the cost incurred by PQ. The
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total change ofp is theng- (6(p,t") —8(p,t) +8(q,t") — 8(q,1)). Therefore, it is
sufficient to show the following inequality:

p NP p ‘N P p ‘NP ’

- - = - - = < = -

26(p,t ) 58, 1) +26(q,t ) 58(q,0) < 26(t,t )+ 26(t,t )
This follows by the symmetry of the distance fuancti§(a,b) = §(b,a)) and the
triangle inequalities (p, t') < §(t,t") + 6(p,t) ands(q,t") < 5(t, t") + 6(q,t).

Part 2. We may assume, without loss of generality, it r) > §(q,7). By

this assumption, PQ movego r. Since PQ maintains its server at the center arfd
q, the migration cost incurred by PQ is th;e&(p,r). For this part, we have the

following equalities:

41PQI = 5(5,7) + 55(p.1)

40 = (56,0 = 6(,0) + (5 - 1) - (6(.9) — 80, 1)
AlX| =8t 1)

Therefore, we shall show the following inequality:

1
5(5,1) +50(1) +5- (80,0 = 80,0) + (5-1)- (5. @) - 8(a,)

—pS(t,r)<0
Sinced(r,t) + 8(p,t) = §(p, 1), itis sufficient to show:

1

66,1 - (5-3)- 8w - (5-1)-(6an -s@.) <0 ®

This follows for the casep =q and q =r, becauses =p =q and §(s,r) =

% 6(p, 1), respectively. We assume+# q andq # r. It is sufficient to show that the

maximum value of the left-hand side of Equationi¢lless than or equal to zero. If we

regardp, q, r, ands as vectors ifR™, then at most three vectors of them, gay, and
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r, are independent. Therefore, the pomtg, r, ands are on a plane iR™. Applying
Lemma 1 on this plane, the left-hand side of Equmatll) is maximized in one of three
situations. Situation 15(p,r) = 6(q,r), Situation 2:6(p,q) = 6(p,r) + 6(r,q), or
Situation 35(p,r) = 6(p,q) + 6(q,r). We proceed to show inequality (1) for each of
these three situations.

Situation 1:Substitution of6 (p,q) by 2-6(s,q) in Equation (1) reveals the

following inequality.
3
66,1 +(p=2)-6G5,9) < (p—3) - 8(a,1)
By applyingp = % and dividing both sides tiy it is sufficient to show
4 3
§6(s,r)+§ 85(s,q) < 6(q,1) (2)

since(8(q,7))" = (8(s,)” + (8(s,¢))", Equation (2) can be written as:

2o 42 (6@ - (56,1 = 5.
By taking the derivative with respectd@s, r) on the plane containing r, ands, the
left-hand side of Equation (2) is maximized &ts,r) =§ 6(q,r) and 6(s,q) =
26(q,r). Therefore, Equation (2) follows.

Situation 2:The inequality in Equation (1) can be rewritten as:

5,7 = (5-1) (5 + 507 - 50.0) < 55(p.7) ®
In this situation, we recall that s,r, andq are all located on the same line segment.
Sinced(p,q) = 6(p,r), ands is located at the center of and g, it follows that
%6(;9,7‘) =8(p,s) =6(s,q) =6(s,r) +6(r,q) = (s, r). Sinced(p,r) +6(q,r) —

6(p,q) = 0, the inequality in Equation (3) follows.



36

Situation 3:Sincep = %, we rewrite Equation (1) as:

7 3 3
8(s,7) ~50(@.1) — 58,1 +56(p.q) < 0
The pointsp, s, r, andq are also located on the same line segment irsitigtion. By
8(p,v) = 6(p,q) + 6(q,7), we haves(s,r) —>6(p, @) — %6(q,r) <0.Byé(p,q) =
268(s,q) we have §(s,r) —6(s,q) — 26(q,r) < 0. In addition, by 6(s,r) =
6(s,q) +6(q,r) we haves(q, ) —Z6(q,r) <0.

Therefore, the proof completes. W

2.3 Bound of Analysis

In this section, we show that the exact competiggs of the algorithm is
greater thar2.732. We introduce an adversary through Theorem 11 paode the
existence of such a lower bound. The adversary snalspecial sequence of requests
on R? against the proposed algorithm. The requestsiaem gt vertices of a triangle
that tends to be equilateral. After the second estjuhe server repeatedly migrates
between the center points of two sides of the gfan
Theorem 11. For a sufficiently large integet, there exist a request sequence
1, -, Tane1, three request locatioash, ands on a plane, and the initial server location
s, such thatostp,(s,0) = p - costopr(s,0) forp =1+ V3 ~ 2.732.
Proof. We describe our approach before more technicalidgon in the subsequent
paragraphs. In Figure 10, we illustrate the behagfoPQ against requests by our
adversary. We assume thi(ts, b) is slightly larger thad(s,a) = §(b, a). Pointsu
and v are the centers ot and s, and a and b, respectively. For requests

a,b,s,b,s,b,s, ... PQ migrates its server along the dashed lineaussp does not
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b

request 2k
request 1

request 2kt 1
P
S

Figure 10. The request sequenagh, s, b, s, b, s, ... to access the page at the serker; 1.

move froma. A request occurs & when the server is at, and a request occurssat
when the server is at. Note thata, b, ands tend to be the vertices of an equilateral
triangle ash (s, b) approaches(s,a) = 6(b,a).

Forr, = a, ryx = b, andry,; = s, wherel < k < n anda, b, ands are the
vertices of an equilateral triangle with a unitesigtngth, the cost of the optimal
algorithmcost,pr(s, o) is at most + 1 by keeping the server at the initial location

The adversary infinitesimally perturbs the distanbg slightly increasing the
distance betweesrandb. Upon the first request at PQ serves the request by the cost
of 6(s,a) and migrates the server #9 which is the center of anda, by the cost of
6(s,u). This is because poiptats moves taa. The2kth request ab is served with
the cost of5(u, b), causing poing ats to move tob, and the server migrates o
which is at the center af andb, with the cost ob(u, v). The(2k + 1)st request at
is served with the cost 6{v, s). The pointg atb moves ta; hence, the server migrates
to u with the cost ob (u, v).

We compute the total cost of PQ by using the dcsarof the unperturbed
triangle, since the actual distances (and henceadhel costs of PQ and OPT) may

differ by an infinitesimally small amount from tleesomputations. Therefore, we have
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costpg(s,0) =6(s,a) +8(s,u) +n- (5(u, b) + 5(u,v) + 8(v,s) + &(v, u))

~ 15+ (\/§ + l)n
Since

. 15+ (V3+1)n
lim =
n- oo n+1

V3+1

costpq(s,0)

costopr(s,0)

is at leasR.732. This completes the prooll

24 Remarks

In this chapter, we proposed a deterministic atborifor the uniform page
migration problem in Euclidean space. In this peofl the server is able to migrate in
any direction and choose any destination of theepBhe2.75-competitiveness of the
algorithm is an improvement on the forn2es ratio. An adversary was found to express
a lower bound o0f2.732 for the algorithm. If possible, one could seekfited an
algorithm to cover the page migration problem oheyal page size with better
competitiveness thah618. Another area of improvement is to narrow the ugrel
lower bounds of the algorithm, though we conjecthed this gap can be closed towards
the lower bound. Moreover, the generalization efdlgorithm under norms other than

the Euclidean and Manhattan ones remains an opdtepn in this research area.



CHAPTER 3

Ring Networks

This chapter explores the problem of uniform paggration in ring networks.
A ring network is a connected graph, in which eagtie is connected with exactly two
other nodes. In this problem, one of the nodesgivan network holds the page. This
node is called the server and the page is a nohedbfe data in the network. Requests
are issued on nodes to access the page one aftbearEvery time a new request is
issued, the server must serve the request and nugtento another node before the
next request arrives. A service costs the distartseen the server and the requesting
node, and the migration costs the distance of igeation. Figure 11 shows an example
to deal with the requests on a ring network, inchlshaded parts represent the service

and migration costs.

Si—1

Si

Figure 11. An example of online algorithm to seavequest; and migrate t@; in a ring network

The problem is to minimize the total costs of sesi and migrations. A
deterministic3.326-competitive algorithm TriAct, improving the curitebest upper

bound is designed, and provided that this ratt@l for our complicated algorithm.

39
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3.1 Algorithm TriAct

We propose a deterministic algorithm, called TriAch a ring network as
defined in Figure 12. We se} = s,, the initial location of the server in the ring
network. Fori > 1, upon the request at any node, there are three choices for the
server to act according to the algorithm. The sekeeps its current location at node
s;_1 Or migrates to either, or r;_;. The decision is based on the distances ammong

r;, andr;_;. There are six different cases to determine whatfon must be done.

L < network length
x < 8(si-1,7i-1)

y < 6(si—1,m)

z < 8(ri-q, 1)

ifz=x—ythens; < {Case A}
dseifz=y—xthens; «r_, {Case B}
eseifz=x+ythens; «s;_4 {Case C}
elseifyz—Z%zx+%Landy2%x+%Lthensi<—ri_1 {Case D}
elseifySpT_lxandyZ—ﬁx+2p’;_4Lthensi<—ri {Case E}
elses; « 5,4 {Case F}

server migrates from_, tos;

Figure 12. Definition of Algorithm TriAct upon ageest; to access the page at the sesyey on a ring network|

In the ring topology, there are exactly two patlesateen each pair of nodes
a,b. Letn(a, b) denote a shortest path betwegh. The length ofz(a, b) equals to
the distancej(a, b). Let L denote the length of the ring, then it is obvithat 0 <
&(a,b) < L/2. In our calculations, we set= 6(s;_1,7-1), ¥y = 8(5;_1,17), andz =
8(ri-1,11).

If m(s;_1,7;_1) andm(s;_41,1;) share any edge of the network, then either Case
A or Case B follows by the algorithm. #f(r;_,,7;) = m(s;_1,7i-1) U m(s;_1,7;) then

Case C follows. Figure 13 shows an example for e&these three cases.
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For the rest of cases, we hake= §(r;_1,1;) + 6(s;_1,7-1) + 6(si_1, 1) =
x +y + z, and the algorithm separates all possible conditiamong distances into
three Cases D, E, and F, to decide the action mesdor migration. Sincd. is a
constant value, we calculateas a function ok andy. The conditions of Cases D, E,

and F are shown in Figure 14.

3.2 Analysisof TriAct

We show that TriAct ip-competitive withp = 3.3258 in Theorem 12 below.
The exact value gf is provided in Appendix A. We use a potential fumec® to prove
the theorem. We separate the online events intoplavts to show thai|TriAct| +
AP — 3.326A|X| <0 follows in every case. The proof for Cases A-E are
straightforward. Our analysis for Case F uses ameggtion technique, because we
need to consider two consecutive requests in ts to complete the proof.
Theorem 12. TriAct is p-competitive forD = 1, wherep = 3.326 is the positive
solution of—p* + 4p3 + p? — 18p + 24 = 0.
Proof. We use the potential functioh, for X's server locations,, ..., t;, TriAct’s

server locations;, ..., si, and request locations, ..., ;.. We define
D (s, 13, t;) = g (6(Csut) +6(r, t)) + (g - 1) 8(si,m)
We separately consider the events in two parts.fifsteincludes the migration costs
incurred by X, and the second covers the servisesaocurred by X together with the
migration and service costs incurred by TriAct. Let
Ay = D(symty) — P(sp 1y timg) — p - 8(Eioq, &),

and
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Ay = 8(si-1, 1) + 6(si-1,5) + (5,13, -1)
—®(si—1,Ti—1, tim1) — p - 6 (ti—1, 0.
In order to prove thadl|TriAct| + 4® — p - 4|X] < 0 follows in both parts, it
suffices to show that; < 0 andA, < 0.

Analysisof part 1:

For the first part,
A = g' (6(spt) = 8(sitize) + 8@y t) — 8(ri, timq)) — p - 8(tima, 7).
By triangle inequality, we have
A, < g (8Cti—r, t) +8(tig, ) —p - 8(ti—y, t) = 0.
Analysisof part 2:

For the second part, we have

p p
Ay = 6(si—1, 1) +6(si-1,5) + 55(51'; ti—1) + 55(7‘1'; ti—1)

p p p
+ (E - 1) 8(sym) — 55(51'—1, ti1) — 55(7‘1'—1, ti—1)

p
- (E - 1) 6(si—1,1i-1) = p - 8(ti-1, 1)

p p

= 6(si—1, 1) +8(si_1,5;) + 55(51'; ti—1) — 55(7‘1'; ti—1)
p p p

+ (E - 1) 8(sym) — 55(51'—1, ti1) — 55(7‘1'—1, ti—1)

— (g — 1) 8(si-1,Ti-1)- (4)

TriAct has three choices ¢f, i.e.,r;, orr;_;, ors;_,. For these choices, we
separately derive upper boundsiof

Upper bound of A, for theaction s; « r;:
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For the action of migrating the server to the aurrequest location, it follows from
(4):
_ p p
Az = 5(5i—1’7"i) + 6(51'_1,7"1') + E&(Tl’, ti—l) - E(S(T'l’, ti—l)

p p p
+ (E - 1) 8(ry,my) — 55(51'—1, ti—1) — 55(7”1'—1, ti—1)

— (g — 1) 8(Si—1,1i-1)

p p
= 26(s;-1,17) — 55(51—1: ti—1) — 55(7”1'—1’ ti—1)

— (g — 1) 8(Si—1,1i-1)

< 28(si-1,m) = 58(si-a,m-0) = (5 1) 8(siamio)

= (1=p)8(si—1,1i-1) +28(si-1, 1) = (1 — p)x + 2y. (5)
Here, we used the triangle inequabfs; _,,t;_;) + §(r;_1, ti—1) = 6(s;_1,1i—1). We
note that this upper bound &f is used for Cases A and E.
Upper bound of A, for theaction s; « r;_1:

For the action of migrating the server to the prasirequest location, it follows from

(4) that:
_ p p
Ay, = 8(si—1,1) +6(si-1,1i1) + 55(7‘1'—1; ti—1) — 55(7‘1': ti—1)
p p p
+ (5 - 1) 6(ri—1,m) — 55(51'—1, ti1) — 55(7"1'—1: ti—1)
D
- (E - 1) 0(Si—1,Ti-1)

p p
= 6(si—1, 1) + (2 - 5) 0(Sj—1,1i-1) — 55(151'—1;7‘1')

p p
+ (E - 1) O0(ri—y,my) — 55(51'—1: ti—1)
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< (2 - g) 8(si-1,7i-1) + (1 - g) §(si-, 1) + (% B 1) 8(ri-1,7m)

=(2—§)x+(1—§)y+(§—1)2. (6)

Here, we used the triangle inequalt§t;_,,7;) + §(s;_1, t;—1) = 6(s;_1,1;). We note
that this upper bound @, is used for Cases B and D.
Upper bound of A, for theaction s; « s;_1:

For the action of no migration, it follows from (djat
_ P P
Ay = 8(si-1, 1) + 6(Si-1,Si-1) + 55(51'—1; ti—1) — 55(71‘:%—1)

p p p
+ (E - 1) 0(si—1, 1) — 55(51'—1: ti—1) — 55(71'—1: ti—1)

_ (g — 1) 5(Si_1; ri—l)

p p p
= 55(51'—1:7‘1') - 55(7‘1'; ti—1) — 55(71'—1, ti—1)

_ (g — 1) 5(Si_1; ri—l)

p p p
< 55(51'—1:7‘1') - 55(7‘1'—1;7‘1') - (E - 1) 0(Si-1,7i-1)
N
— _r 7,2 7
(1 2) x + > y > Z. (7)

Here, we used the triangle inequaldt;, t;_,) + §(r;_1,t;—1) = 6(r;_1,1;). We note

that this upper bound @, is used for Cases C and F.

Analysisfor CasesA, B, and C:

In Case A, sincg = x —z < x andp > 3, it follows from (5) that
A,<(A-p)x+2y<(3-p)x<0. (8)

In Case B, since = y — x andp > 3, it follows from (6) that
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A, < (2—3)x+(1—£)y+(3—1)z

2 2 2
=(2—§)x+(1—§)y+(§—1)(y—x)=(3—p)x<0- 9)

In Case C, since = x + y andp > 1, it follows from (7) that

PN PP PN PP

A, <(1-B\x+fy-L=(1-5x+5y-L

2_(1 2)x+2y 22 (1 2)x+2y 2(x+y)
=(1-p)x<O0. (10)

Therefore, Theorem 12 holds in Cases A, B, and C.

Case A CaseB CaseC

server migrates server migrates

no migration froms,_
froms;_, tor; froms;_; tor;_4 g -1

Figure 13. Examples of Cases A, B, and C. Filled circles reptedestinations of the server, i.e,;, uponr;

Analysisfor CasesD and E:
For Cases D and E, we hawe= L — x — y. The conditions of these cases are defined

using four functiong,, y,, y;, andy, of x, where

p—3 L

Y1—_p_2x+§, (11)
2 p-21

yz—;x+7-§, (12)
-1

ya =2 ——x, and (13)
p (L

y4=pT2(§—x>. (14)
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In Figure 14, the separate regions represent théittons of Cases D, E, and F.

94
L
2
Case D
Y1 Y2
v..
¥3
Case F Case E
Ya
X
0 L
2
Figure 14. Conditions of Cases D, E, and F

In Case D, sincg > y,, it follows from (6) and (11) that

A, < (2—g)x+(1—g)y+(g—1)(L—x—y)
= G-px+-py+(5-1)L (15)

< (3—p)x+(2—p)(—z:2x+%)+(B—1)L

= 0.
In Case E, sincg < ys, it follows from (5) and (13) that

A, < (1—p)x+2y (16)

< (1—p)x+2<p;1x)=0.

Therefore, Theorem 12 holds in Cases D and E.
Analysisfor CaseF:
For Case F, we also have= L — x —y and the conditions of Case F as shown in

Figure 14. It follows from (7) that



a7

;N PP
Az S(l—z)x+§y—§Z
_(1_°P P _ P N= _P
—(1 2)x+2y 2(L X—y)=py+x 2L. (17)

This is at mos0 if y < y<, where

Vs =5 ——- (18)

Therefore, Theorem 12 holdsyif< y; in Case F. However, ¥ > y., i.e., ifx andy
are in the grey region in Figure 15, then> 0. Instead of bounding,, for the case
y > ys, We bound the aggregation &f andA’, , which is defined as the value bf
for the next request, ;. Specifically,
2 =005, Tig1) + 6(si, Sig1) + P(Sigq, i1, 6) — P(si, 13, 6) — p - 6(E;, Ty 1)

It should be noted that Theorem 12 hold4.if+ A}, < 0 for all six cases of;,,, and
for all x and y in the grey region in Figure 15. \Aleo note that

Si = Si—1 (19)
in Case F for;. In the rest of the proof, we shaw + A, < 0 for all six cases of; ;
and for allx andy with A, > 0.
In Cases A, B, and C for;,, it follows from (8), (9), (10) and (19) that, <
(B3—=p)6(s;, 1) = (3—p)d(si—1,1;) = (3—p)y. Therefore, sincg < y,, it follows

from (17) and (11) that
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A, + A Spy+x—§L—(p—3)y=3y+x—§L

-3 L
S3<—p x+—)+x—£L

p—2 2 2
7—2p L
= —_ — 3 —_
2" (p=3)3
7—-2p L L
[ —3)—
=222 (p—3)37
_ pP=3p—-11
B p—2 2’
which is negative since > 313 3.303.

2

In Case D for;, 4, it follows from (15) and (19) that
! p
Ay <=(p —2)6(si,1i41) — (p —3)6(sy, 1) + (E - 1) L

=—(p = D8(sp,1i1) = (p = 3)8(si-m) + (5= 1) L

2
D
=—(p = 26Gumin) — (0= y +(5- 1)L (20)
Moreover, it follows from (12) and (19) that

2 p—2 L 2 p—2 L

o) T > — T e = 1, T .-

(Sl 7"1+1) p(s(sl rl) + p 2 p6(51 1 rl) + p 2
_ZyLozl (21)

PRI

Therefore, it follows from (17), (20), and (21) tha
, p
Ay +45 <py+x—5L—(p—2)8(s;,1i41) — (p = 3)y

2
+(§—1)L
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_pt4 pt—-2p+4 L
= ) y+x 5 5 (22)

The valueC = pTTLLy + x is maximized ap, at whichy, andy; intersect in Figure 15.

This is because for the functign= — 2~ x + -, its slope— -~ is negative and
p+4 p+4 p+4

less than the sIopeZ—:z of y, for p = 3.326. Therefore, we have

+4 p2-3p+2 L —2 2_2p+4 L
A, +a, <P _pz pr2 L »p _pi-2p+4 L
p  pP—p—4 2 p*-p-—-4 p 2
_—p*+4p>+p?—18p+24 L
- >

p(p*—p—4)

which is equal t® by the assumption @f in Theorem 12.

2
p—2 —3p+2
r=|= B A ity
Ay o \PP—p =4 202 —2p -8
é .
2
¥1
V5 o ‘ Y2
Y
et ¥3
Ya
© p PP =p
q= 0] L, 7
prr—p+2 200 =2p+4
X
'
0 L
2
Figure 15. Representation of positive regiodpin Case F
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In Case E for;, 4, it follows from (16) and (19) that
Ay <26(sy1ip1) — (p— 18(spm) = 28(sy,1i41) — (p — D6 (si-1,7)
=26(sym41) — (p— Dy, (23)
Moreover, it follows from (12) and (19) that

2 p—2 L
6(spTip1) <—68(spm) +——-5
p p 2

2 p—2 L
= ;5(51'—1,7”1') +T§

2 p—2
<-y+—"
p p

N T~

(24)
Therefore, it follows from (17), (23), and (24) tha

I p
Ay + 83 <py+x—5L+28(s,11) — (p— Dy
p (2 p—2 L)
< —=L+2(- — =
<y+x > + py+ b2

_pt4

2-2p+4 L

2 )
which is identical with (22). Hence, we can obtaj+ A}, < 0 as done for (22).
In Case F for;, 4, it follows from (17) and (19) that

, p
Ay < pd(symier) +6(s;, 1) — EL

p
= p6(s;,1i41) +6(si_1, 1) — 5L

2
_ p
= p6(s;,Tiy1) +y — EL' (25)
Forx andy in the grey region in Figure 15, it follows that pfi;iz % which is the

y-coordinate ofy at whichys andy; intersect. This implies that(s;, r;) is larger than

thex-coordinatel%L of p. We can verify this by (s;, ;) = 6(s;_,,1;) = y and
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pP—p L p-2 L
p*—p+2 2 p*—-p—4

_ p*—4p*+3p*—4p+8 L
(p=2(p+D(p*—p—4) 2

_ (p* — 4p3 — p? + 18p — 24) + (4p* —22p+32) L
(p=2)p+D(p*2—p—4) 2

B 4p? —22p + 32
(p=2)p+1)(p?—p—4)

1+v17
2

L
2 )

which is positive forp > ~ 2.56. Here, we have used the assumptidn-

4p3 — p? + 18p — 24 = 0 in Theorem 12. Therefore, it follows from (14) tha

p (L
— (5 - 5(51';7"1'))

8(si, Tiv1) Sp—
p (L
=2 (5 - 5(51'—1:7‘1'))

WEFIVEES

p (L ) (26)
Therefore, it follows from (17), (25), and (26) tha

Az +A,2 S py+x_§L +p6(5i;ri+1) +y—§L

5G-)
< 1 —pL+p-——(=-
<(p+Dy+x—pL+p =277

p—27 p—2 2

The valueC = —Z—iy + x IS maximized ay. This is because for the functign=

p—2

p_—2 . -2 . .- -1
2’ o C,its slope/[;r—2 is positive and less than the slé’ge of y;. Therefore, we

have



52

A +a, < P2 P-D) L P, _Ple=H L
p—2 p>—p+2 2 p?t—-p+2 p—2 2
-3) L
__P=3 L _,
p—2 2

Thus, the proof of Theorem 12 is completild.

3.3 Tight Analysis

In Section 3, we prove that TriAct [g-competitive withp = 3.326. In this
section, we show that the lower bound of the atgoriis alsq. This mseans that the
exact competitive ratio of the algorithm gs We introduce an adversary through
Theorem 13 and prove the existence of such a Ibwend. The adversary makes a
special sequence of requests on four nodes omaetwvork against TriAct, such that
upon any request either the condition of Case B®condition of Case E holds.
Theorem 13. For a sufficiently large integen, there exists a request sequence
T, -, Tun and four request nodes, a, b, and ¢ on a ring network, such that

COStrriact(s,a) = p - costopr(s, o) for p = 3.326 and the initial server node is

pz;p”sL ands(s,a) = 8(b,c) = p_p2_4L, such

Proof. The adversary sef&s, b) = o

2p2%2-2p—
that neithert (s, a) norm(b, c) has an edge af(s, b). Moreover, request,., is ata,
requesty, ., IS ath, requesty,. is atc, and requesty;.,, is ats, where0 < k <n
(see Figure 16).

We first calculate the total cost incurred by THA®St ., 4.: (s, 0). The request
Tak+1 IS Served with the cost 6f(s, a) and the server does not move frepbecause
Case B holds. The requesi,., is served with the cost af(s,b) and the server
migrates froms to b with the cost ob (s, b), because Case E holds. The requgst

is served with the cost éf(b, c) and the server does not move frbnbecause Case B
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holds. The requesi,. 4 is served with the cost 6b, s) and the server migrates from

b to s with a cost o5 (b, s), because Case E holds. Therefore, we have
COStTT‘iACt(SJ O-) = n(a(sl a) + 25(5) b) + 5(bl C) + 26(bl S))

= n(26(s, a) + 46(s, b)).

Figure 16. Representation of adversary model ag&m&tt

Now we calculate the total cost incurred by a dpedalgorithm ALG,
costy (s, 0) thatis at leastost,pr (s, d). ALG migrates the server fromto a before
any request occurs, with the cost&gk, a). The request,,,, is served with no cost
and the server does not migrate framThe requesty., is served with the cost of
d(a, b) and the server migrates framto ¢ with a cost o6 (a, ¢). The requesty;, 5 is
served with no cost and the server does not mifratec. The requesty., IS served
with the cost of§(c,s) and the server migrates fromto a with a cost ofé§(c, a).
Therefore, we have

costy(s,0) = 8(s,a) + n(é‘(a, b) +6(a,c) +6(c,s) + 6(c, a))
=46(s,a) + n(&(b, c)+6(s, a)) = d§(s,a) + n(25(s, a)).

Since
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n(26(s,a) +48(s,b)) _ 6(s,a) +25(s,b)

im =
n-o §(s,a) + n(26(s, a)) 5(s,a)
p—2 pP=3p+2
_pz—p—4L+2 2p2—2p—8L_
p>—p—4
then<2irriact8.9) o o1 leasp. This completes the prod

costarc(s,0)

3.4 Competitiveness
The exact value ofp is the positive solution of the equation

—p* + 4p3 + p? — 18p + 24 = 0. The strict solution is

483/ 71 28
—Vi+-—= Va toat T
3 =2
\/9?/I+42"</I—71 J9W+42W—71
g 632 2
_ 213438 1999
whered = . py

A more accurate approximation for this ratio wobép ~ 3.325722333398888.

35 Remarks

In this chapter, we proposed a deterministic atborifor the uniform page
migration problem in ring networks. The competitregio p ~ 3.326 of the algorithm
is an improvement on the previous competitivenéss4d 4 in our setting for general
ring networks. We think similar technique can b#iagd to design novel algorithms
for improving current solution on restricted netk®such as 4-node and 5-node rings.
Moreover, we conjecture the optimality of proposadorithm for general ring

networks. A tight example was found to expressagetdound ofp for the algorithm.
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If possible, one could seek to find an algorithmctaver a largerD with better

competitiveness thah



CHAPTER 4

Telecommunicational Servers Problem

The traditional problems of managing data (see@extl.5.2 and 01.6) arise
for optimizing the ‘load’ of network. As a subseque, the online algorithms are
designed in a load-efficient approach, and no simstudies are known on time-
efficient methods on networks. Recall the generablem of data management
(section 1.5.2), in which the objective function optimization Y%, (r;(s;_1) +
v(si—1,S;)) Is defined for a sequencemafrequests and a state transition functiop.of
For example, the online algorithm working on thistfrequest on the network of Figure
17, costs the ‘summation’ of ‘serving’ the requigsbugh slightly shaded edges as well

as ‘moving’ a copy of data through the stronglyddthedge. ‘Summation’ of costs

matters when the ‘load’ is the subject of optimizat

Figure 17. An example to show the importance @deinmunicational servers problem

How about if the ‘time’ matters for optimization?the network of the example,
both actions of service and move can be done samedtusly, so that we can take the
maximum of them for optimization, since we do res & reason for movement to wait

and start after service, because there is no gqvbdaveen two actions.

56



57

In modern networks such as telecommunications, Hamdwidth of
interconnections has been dramatically developadijtas not hard to imagine that in
the case of overlapping, each interconnection s bhandle both of ‘service’ and
‘move’ tasks, simultaneously. We suppose each efighe corresponding graph is
capable to carry service and move without interfeee

In the example of Figure 17, suppose the transdast from the initial state,
to the next state; equals tay(sy,s;) = 3 incurred by moving a copy of data through
the strongly shaded edge. In addition, the costeo¥ing the first request equals to
r,(sg) = 2 which is incurred by the distance of lightly shddedges. For our
telecommunicational servers problem, the total dostthe first request equals to
max{3,2} = 3, since the cost is time and, we assume, servidenaove are done
simultaneously. Note that in the data managemestil@m (load-efficient version of
telecommunicational servers problem), the totat (ios load) equals t8 + 2 = 5.

Here we define a time-efficient probletalecommunicational servers problem
with the objective ofy; max{r;(s;_1),y(s;—1,S;)}. Similarly, as a time-efficient
version of page migration, we defibglecommunicational server problemith the
objective function®[2, max{&(s;_1,1;), D - 6(s;_1,s;)} for the distance metric & in
the network with a single page of si2e In these problems, we suppose each request
is issued after finishing the service and moven(agration) of the previous request.
Taking the maximization in the objective functiossdue to the waiting time until

finishing the accomplishment of both actions.
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S()

Figure 18. An example of an online algorithm foe telecommunicational server problem

Figure 18 shows an example of online algorithnoteesa telecommunicational
server problem. This example can be recognizedtmseaefficient version of former
example shown in Figure 7 (see Section 0, Pagi2#e page migration problem. In
this example here, suppose the page has siZe-o. Therefore, the first request
incurs a cost oft, and the second request cadtsith the assumption that all edges
have unit distances.

To our point of view, the telecommunicational serygoblem is more
interesting than the page migration problem, wtiikenetwork is defined in Euclidean
space. We follow the ‘uniform’ naming for the ungage size asuniform
telecommunicational server problemhich target: !t ; max{&(s;_1,7:), 6(Si_1, Si)}-
We leave open, the design of online algorithmgtese problems in various metrics.

As a starting point, we mention some designingriggkes of efficient online
algorithms for each of these two problems on gdrgephs. About designing work

function algorithms, the preliminary steps mighttbeecursively define the problem
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and observe the behavior of work functions for s@ample input sequences using
dynamic programming. On another side, a counteedaapproach could be
considering counters on the requesting nodes, thatha new request will increment
the counter of its corresponding node and will dewnt the counter of another node.
Some experiments may intuitively suggest decidmmove the servers after reaching
a specific number of counts, which is usually action of a data-property. One other
idea may look for a phase-based algorithm by kegttia servers' location throughout
a fixed or dynamic number of requests. As for aurgs spaces like Euclidean space,
the evidences appear that deciding to move toviaedsenter point of some of previous
requesting points would be a proper choice for@me algorithm.

It would be an interesting future work, to considesigning online algorithms

for these problems on general graphs by handling fumctions (see section 1.3.7).
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CHAPTER 5

Conclusions

We first introduce several frameworks as the basésite conduct the research
works of online computation. Metrical task systaresclarified as a general framework
for defining online problems, so that we adapt specific problems of the study to
these systems. The standard technique of workiturecas well as the useful technique
of counting are introduced as methodical approathe®sign online algorithms. An
abstraction of algorithmic competition, as well tag model of adversary, and the
scheme of amortization, are all introduced as aicalytools for measuring the
efficiency of online algorithms.

Well-studied network problems are surveyed sotti@aturrent states of the art
on each problem are shown together with generds toh algorithmic design. The
bounds ofk-server problem for the maintenanceko$ervers regarding their mobile
locations in the network are stated in general okgy and a long-standing open
qguestion for this problem is mentioned. The datanagament problem for
administering replicas of the resource in a reaktiresponsible network is also
introduced. The achievements on general and sostrcted graphs are looked up for
this problem, in both views of deterministic anddamized algorithms. One variant of
this problem, the online Steiner tree problem igiewed, expressing its strong
connection with the origin in the aspect of conmpathess. The page migration
problem has to determine an individual server iocaafter satisfying the request of
network. This problem is intently surveyed to destoate its lower and upper bounds

by some algorithms in various topologies againffedint adversarial models. The
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investigation is done more carefully for the unifomodel of problem, in which each
request occupies the entire resource.

For the uniform page migration problem, we sucdeeathieve improvements
in two different networks. The network of Euclidespace with arbitrary dimension, as
well as the network of general rings, are both mered, and deterministic online
algorithms are designed. The algorithms signifiganiprove the best former
algorithms. For the Euclidean space, an efficiégrdthm is designed. It is simple to
understand. The online algorithm keeps the setdeacenter of two points, which are
initially located at the initial server location.pon each request, the farthest point
moves to the requesting node. This algorithm imesate upper bound of the problem
from 2.8 to 2.75, noting that the lower bound of problem2i§ and the analysis of
adversary against the algorithm gives a lower bafrid732 for the algorithm. As for
the general rings, a deterministic algorithm isigiesd. It is hard to explain in some
easy words. This algorithm works in six cases arahalysed in eleven cases, achieving
an improved and tightened upper boun®3R26 for the problem, and extending the
scheme of amortization for online computation.

Thek-server problem can be adopted for both load-efficand time-efficient
subjects of study. But the problem of data managémees not make sense from a
time-efficient point of view, since there is capggdor performing both actions of
service and relocation simultaneously, when theg done through separate
interconnections, or when the bandwidth is capahl@igh for carrying the action of
service and movement, at the same time. In this waydefine new online problems
of Telecommunicational servers and Telecommuninatiserver, as the variants of

data management and page migration.
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