

Dissertation

DESIGN OF EFFICIENT ONLINE ALGORITHMS
FOR SERVER PROBLEMS ON NETWORKS

Graduate School of
Natural Science and Technology
Kanazawa University

Division of Electrical Engineering and Computer Science

1524042006

Name: Amanj Khorramian

Chief advisor: Akira Matsubayashi

January 5, 2018

ii

DESIGN OF EFFICIENT ONLINE ALGORITHMS
FOR SERVER PROBLEMS ON NETWORKS

A dissertation submitted

to Kanazawa Univ. in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Amanj Khorramian

2018, March

iii

ABSTRACT

Shared resources reside on server nodes in a network. Requests arrive separately

in succession to access the resources. Several problems are unavoidable in managing

the server locations in order to reduce the load of network. There is no way to apply

optimal algorithms, because the future data are unknown. The design of online

algorithms to efficiently solve these problems is the topic of our study.

We introduce the bases of online problems as well as the systematic approaches to

finding solution. After that, we have a survey about the server problems and design

techniques with their algorithmic qualities in terms of competitiveness in basic

networks. Two specific networks of Euclidean space and rings are focused,

independently. The server problem of migrating a unit data upon access requests is

enquired in both networks towards designing deterministic algorithms. For the case of

Euclidean space, an efficient 2.75-competitive online algorithm is designed and

equipped by a lower bound of 2.732. It improves the former 2.8-competitive and 24-

year-old algorithm. As for general ring networks, a 3.326-competitive algorithm is

achieved with a tight analysis. Then, we propose time-efficient definitions of server

problems which arise in modern networks.

TABLE OF CONTENTS

DEDICATION.. VI

ACKNOWLEDGEMENTS .. VII

 INTRODUCTION .. 1

1.1 Structure ... 4

1.2 Philosophy .. 5

1.3 Online Problems ... 6

1.3.1 Metric Space ... 7

1.3.2 Metrical Task System ... 7

1.3.3 Online Algorithms .. 8

1.3.4 Competitiveness ... 10

1.3.5 Adversary ... 11

1.3.6 Amortized Analysis .. 13

1.3.7 Work Functions .. 14

1.4 Networks .. 15

1.5 Server Problems ... 16

1.5.1 �-Server Problem ... 17

1.5.2 Data Management Problem .. 18

1.6 Page Migration Problem ... 22

1.6.1 Notations .. 23

1.6.2 Definition ... 24

1.6.3 Uniform Model ... 24

1.6.4 Review and Contribution ... 25

 EUCLIDEAN SPACE .. 30

v

2.1 Algorithm PQ ... 31

2.2 Analysis of PQ ... 32

2.3 Bound of Analysis .. 36

2.4 Remarks .. 38

 RING NETWORKS ... 39

3.1 Algorithm TriAct .. 40

3.2 Analysis of TriAct .. 41

3.3 Tight Analysis .. 52

3.4 Competitiveness ... 54

3.5 Remarks .. 54

 TELECOMMUNICATIONAL SERVERS PROBLEM 56

 CONCLUSIONS ... 60

REFERENCES ... 62

DEDICATION

To my dear parents ...

ACKNOWLEDGEMENTS

In the name of God, the Most Gracious, the Most Merciful, who may have had

mercy upon me to find ideas in mind for the accomplishment of my doctoral research

projects soon.

First of all, I must thank my dear teachers of elementary school, middle school,

and high school in the lovely city of Saghez, as well as my dear professors of BSc and

MSc programs in Iran. They generously taught me much lessons of life and science

through valuable lectures and useful classes. It was not possible to obtain necessary

skills for conducting my research without such serious and fundamental learnings. I

would like to thank also my former colleagues at the department of Computer

Engineering and Information Technology of University of Kurdistan. They kindly

agreed with my proposal to study Online Algorithms. I am thankful also to the other

colleagues as well as the decision makers of the University of Kurdistan for accepting

my application to study abroad and helping me to receive a financial support from my

home country.

I especially thank the assigned supervisor for my doctoral research, Prof. Akira

Matsubayashi, for his guidance during my PhD projects. I thank him, also because after

my achievements in two intensive research projects on Online Algorithms in the first

half of the 3-year doctoral program, he agreed that I visit Japan Advanced Institute of

Science and Technology (JAIST) for the second half. I would like to thank also the

anonymous decision makers who approved that I visit JAIST, which is a well-equipped,

nonracist-organized, scientifically-ethical, and highly-qualified university to study and

viii

research in Informatics, through real lectures, fair rules, stable regulations, honest

admission policy, and carefully-affiliated full-professors.

I am thankful to Prof. Ryuhei Uehara who accepted that I visit his informative

lab at JAIST. I discovered various topics of Information Science from his laboratory.

During my visit, I was happy to finish some research projects and perform novel

experiments in different themes.

Amanj Khorramian

Jan 5, 2018

1

Introduction

Daily-life is greatly influenced by electronic devices (e.g. smartphones, laptops,

personal computers, workstations, supercomputers, etc.). The desired functionality of

these appliances depends on their processing units. By developing the applications, the

needs for faster processors are increased. In recent decade, there is no big improvement

to the clock speed of processors, due to the limitations of electrons. One resolution is

to interconnect multiple processors in a network which shares resources for gaining

more performance. The running of such and other kinds of networks requires to deal

with several challenging problems.

In informatics, the study of networks has been drawing more attention,

continually. The structure of connected components appears in various areas and

different platforms. For example, social networks, biological networks, computer

networks, telecommunication networks, semantic networks, distributed systems, and

graph theory, all are about investigating the connection or interaction among separate

elements. The power of computation and computing resources is essential for coping

with so many challenges which are arising to obtain solutions in the investigation.

Depending on the properties and models of the network, some problems are

taken into consideration and need to be resolved, towards utilizing the network in a

desirable way. “How to find a set of specific elements in the network?”, “What is the

fastest way to reach a node?”, “Which representation is the best for storing the network,

altogether or partially?”, “Are there any parts of network subject to reconfiguration?”,

“Which elements are the optimum choice to carry a set of resources shared in the

2

network?”, “How to serve the requests emerging from the nodes?”, “We need to know

about some unknown properties of network; then, what strategy is proper enough for

processing the entire network?”, and many other questions are real problems to study

the networks in the contemporary world. These problems need computation for

attaining resolution. Efficient solutions for big networks are demanding since they are

coming into view of human life.

In practical point of view, agile electrons are helpful and widely available via

processing units to accelerate the computation. Personal computers have great ability,

and can be equipped well by programming tools and learning approaches, in a

reasonable cost for tackling the problems with a scale which can fit the resources. It is

obvious that PCs are restricted to handle the problems for a size that is small enough,

even with a parallel processing attitude. More power of computing for larger problems

can be found through suitable but hardly-available approaches like high-performance

computing, cloud computing, grid computing, distributed processing, etc. To design a

method for the problem, it is needed to take both the limitations of platform and the

model of network into account. Usually, the art of planning a method to fully utilize the

resources need specific expertise and deep thinking. Recent efforts on quantum and

biological computation seem likely to reach a stage that could provide even more power

for a significant amount of larger problems. A broad range of network problems has

been studied practically.

In theoretical point of view, the network problem is formally defined, first of

all. After that, depending on the attributes of problem, an efficient technique is

employed to design an algorithm which guarantees a level of optimality through a

comprehensive analysis. There exist some basic techniques (e.g. randomization,

3

dynamic programming, backtracking, approximation, divide and conquer, etc.1) which

have been widely applied to the design of algorithms in real problems, including

network problems. It is quite usual to represent the network as a graph, in which there

is a bijection between the vertices of graph and the separate components of network,

such that each connection between two components is represented as an edge between

corresponding vertices of the graph. In this way, the problem in the network can be

regarded as a graph problem. Graph problems, in various aspects, are dramatically

studied under the area of graph theory2, so that the achieved methods might be

considered as the principal or subsidiary solution for designing of algorithms in real

network problems.

Theoretically, depending on the aspect of view, the problems are subject to be

divided into two or more categories. For each category, some specific frameworks are

known to be utilized for dealing with the problem. For example, suppose considering

the availability of input data to the network for making decision about the design. If the

whole data of the problem are given in advance, then the scope of design would be

offline algorithms. Otherwise, i.e. the input data are given one by one, then the problem

needs to be coped with through online algorithms. As another example, an algorithm is

deterministic or randomized, depending on the behavior of algorithm to be either

functional or based on random distribution, respectively. One more example; if the

amount of computation to solve a problem increases linearly regarding the size of

network, then the algorithm is categorized as linear. Other categories like constant-time,

1 To study more about these techniques, there are textbooks like [8] and [49].

2 Some fundamental algorithms in graph theory are discussed in [50] and [51].

4

polynomial-time, exponential-time, etc., exist to show the complexity of algorithm.

Since the exponential-time algorithms are less practical by the enlargement of network

(e.g. take tens of years to obtain optimal solution), there are helpful approaches like

approximation algorithms, which give solution with a guarantee of maximum gap from

the optimal solution, and applicable in a reasonable time. The similar thing happens

also for online algorithms, which are the theme of our study. A deterministic online

algorithm guarantees a maximum gap with the optimal solution. Moreover, we focus

on the server problems of networks, for which sequential requests to access shared

resources appear one by one, and must be served per se.

1.1 Structure

This thesis is a collection of published and unpublished results and articles

during a doctoral program of philosophy, and is organized as follows:

CHAPTER 1 firstly introduces the foundation and motivation of the program

from two viewpoints, surrounded by some information and prospection about related

topics, narrowed into a more specific target of subject, at which the main study has been

accomplished. After this structure, there is a philosophical discussion about the quiddity

of this study, followed by specialized sections. Section 1.3 specifies the area of

problems in which our problem can be defined. The subsections discuss about the

theoretical framework and techniques available to cope with the problems, as well as

analytical methods and tools to measure proposed computations. Section 1.4 has further

explanation about networks and section 1.5 narrows the range of problems to a more

specific case of this study. Section 0 precisely defines some concentrated problem

through proposing mathematical notations, and reviews the relevant study of problem

in literature, followed by a sketch of our novel contributions in this study.

5

CHAPTER 2 focuses on a specific research work about a special kind of

network in this topic. After a preamble, an unprecedented online algorithm with its

detailed analysis and conclusion is demonstrated. This is a successful achievement of

our work for the problem, and has been already published. [1]

CHAPTER 3 investigates another particular network as a separate project, and

suggests a new online algorithm with a tight analysis for the network. The algorithm

and analysis are illustrated and followed by remarks. In the proposed analysis, there is

a slight extension to a standard analytical method. Although this work has been

submitted for publication from long time ago, there is still no response from decision

makers despite several contacts with editorial office. An earlier version of work is

preprinted for reference. [2]

CHAPTER 4 is proposing an initial idea to develop some network problems

with the goal of efficiently reduce the time (rather than the load), inspired by the original

cases of study, which seem essential and interesting for modern applications.

Finally, CHAPTER 5 concludes the dissertation by an essay on its main themes with

some remarks and summaries.

1.2 Philosophy

In theoretical aspect of problem solving, online algorithms are considered as a

framework for interactive computation that is a paradigm with modeling interactive

agents, which can do computation concurrently [3]. Interaction is suggested as an

extended model of Turing machines for understanding the principles of computing.

This shift in the modes of thinking accords with some bases, including the assumption

that interaction provides an empirical foundation for computer problem solving [4], as

well as a theory saying that computing is the origin of informatics [5]. A formal

6

definition of interactive computational problems can be found in [6]. Anyway, after

accepting this paradigm as a generalized computing approach towards finding

mathematical truth, this potential question comes into mind whether the current

framework for studying online problems (see section 1.3.2) also gets a capacity for a

kind of generalization?

1.3 Online Problems

The ‘main problem’ of online problems is that there is ‘partial knowledge’ about

the whole data. Finding a solution depends on processing the input data of problem.

The problem is that the entire data are not available at once, but the input data are

coming one by one. The computation must provide a solution upon each input, and the

solution is subject to get change by the next input arrival. In this way, each input can

be interpreted as a request of task that may change the state of solution. The final goal

is to reduce the total cost3 needed to process the inputs and change the states, as far as

possible. As mentioned at the preface of CHAPTER 1, each problem needs to be

formally defined. In the case of online problems, metrical task systems [7] have been

widely utilized as a formal framework for defining online problems. This model is

established based on metric space as discussed in the following section. Note that each

section may borrow the notations of its preceding sections. For the notations which are

not mentioned, the readers are referred to [8].

3 This cost depends on the definition of the problem and its specific platform.

7

1.3.1 Metric Space

For a set � and a function �: � × � → ℝ, the pair � = ��, �� is a metric space if � satisfies the conditions of identity of indiscernibles (i.e. �(��, ��) = 0 ↔ �� = ��),
symmetry (i.e. �(��, ��) = �(�� , ��)), and triangle inequality (i.e. ����, ��� ≤ ����, ��� +�(�� , ��)), which imply non-negativity (i.e. ����, ��� ≥ 0), where ��, �� , �� ∈ �. [9]

In online problems, we regard � as the set of all computable states of solution,

and � as the cost of computation to change from a state to another state. In the literature, � is intuitively denoted as a function of cost or distance between two states [7], [10].

Besides, |�| denotes the finite number of states.

1.3.2 Metrical Task System

Task is an abstraction of the request, and a pair
 = (�,�) is a metrical task

system (MTS) if � = (�, �) is a metric space (see section 1.3.1), and � is the set of

tasks. Each task is denoted by �� = (������, ������, … , ��(�|�|)), where ≥ 1 and ������ ≥ 0 is the cost of processing task �� at state ��. Based on this system, a huge

number of online problems are defined and studied well. In addition, �� ∈ � is set as a

starting state of the problem for dealing with. A metrical task system ((�, �),�) is called

uniform [7] if ����, ��� is identical for every �� , �� ∈ � where �� ≠ ��.

Figure 1. Both states �� and �� of an MTS are shown as a simple network with two nodes and one resource

8

The network branch of online problems is often suitable to be represented using

graphs. For example, suppose a network with only two nodes and one shared resource

(showed as filled square in Figure 1). Figure 1 represents the set of all possible states

(i.e. �� and ��) of the corresponding metrical task system for this network. This example

is very simple, because its network has only two configurations which can be

reconfigured to each other.

We think that, for studying the details of more complicated examples, MTS can

be adopted as a practical application under a recently proposed, and actively studied

framework called reconfiguration graphs [11]–[13], where each node of a

corresponding graph maps to one state of the MTS. A question here arises, whether or

not, some way exits to classify online problems from a hardness point of view, since

reconfiguration directly works on the framework of online problem definition.

Machine learning appears everywhere and so are its utilizations. As for online

problems, there exist research efforts recently proposed, to adopt some learning

methods for coping with similar problems to MTS using randomized approaches [14],

[15]. But it is worth paying attention that such works lose the important property of

MTS that considers changing the states.

1.3.3 Online Algorithms

Having the initial state of solution at �� ∈ �, an online algorithm � sets �� =��, and processes a request sequence � = ��, ��, … , �	 one by one, while determining a

state sequence ��,��, … ,�	, where �� ∈ � denotes the state at which �� is processed.

In other words, according to the framework [7], upon each request ��, the algorithm first

changes the state of solution from ��
� to ��, and after that, processes request ��. Thus

9

and so, �� may be interpreted as the response of � to request ��. The objective of an

online algorithm is to lessen the total cost for changing the states and processing �

requests ����, ��, … , �	� = ∑ (����
�,��� + ��(��))	��� as far as possible. In this way,

we denote ����, ��, … , �	��� as the total cost if �	 = ��. Note that if �� = ��
�, then

we have ����
�,��� = 0 and no change occurs to the state upon request ��.
In our example of Figure 1, the resource at state �� is on node � and far from

node �, therefore it makes sense if we let �� = (5,1) for every request �� on node � to

access the resource, and similarly for �� = (1,5) on node �. Additionally, let the cost of

changing the state ����, ��� = ����, ��� = 10. Let �� = �� for any algorithm and the

sequence � of requests sequentially arrive on �,	�,	�,	�,	�, and �. If we assume an

online algorithm � keeps the initial state unchanged (i.e. the resource is always

maintained on �). Then, the total cost equals to ���� = 26, incurred only by request

processing. Let another example � change the state once, e.g. upon the third request,

then ���� = 20 caused by the costs of request processing and state changing. Although � took the heavy cost of changing a state ����, ���, it finally yielded a better gain than � for the example sequence � = �, �, �, �, �, �.

“Does � work better than �?

For this sequence of example, yes!

“How about other sequences?

This is the actual question that challenges the design of online algorithms,

because in online problems, the algorithm does not possess the whole sequence of

requests in advance. The requests come one by one. For instance, if the sequence was � = �, �, �, �, �, �, then � worked much better than � of course.

10

“Which one wins in this competition; � or �?

The quality of an online algorithm is measured relative to the other algorithms

by taking all possibilities into account. The algorithms � and � are deterministic since

they uniquely decide the state upon each request. On the other hand, randomized

algorithms distribute probability on the states for random choices, upon each request.

In this fashion, a framework is invented [16] to analyse the efficiency of an

online algorithm in a breathtaking comparison with an optimal algorithm which already

possesses the request sequence. Next section describes the goal of this invention that is

broadly used as a method of investigating online algorithms and quantifying their

qualities.

1.3.4 Competitiveness

Competitive analysis provides a method to measure the quality of online

algorithms. This measurement yields a value � for an online algorithm � that gives

solution for a problem �. In a nutshell, this value shows a maximum ratio, calculated

by dividing the cost incurred by � over the cost of any other offline algorithm, for any

sequence of requests � = ��, ��, … , �	. The maximum ratio can be obtained using a

comparison between the online algorithm � and an optimal algorithm �.

For example, suppose the set of all possible request sequences {�1, … ,�10} are

determined by an algorithm �′ and evaluated as shown in Figure 2 beside the squares

above each �. The costs for an optimal algorithm �′ are shown near circles. �4 obtains

the maximum ratio of 16/6. This example is proposed to provide a kind of intuition,

though it loses some minor condition of actual definition that is discussed as follows.

11

Formally [7], an online algorithm � is �-competitive, if there exists a constant �, such that ���� ≤ ����� + �, for any finite sequence �. If � = 0 then � is strictly �-competitive. If � is a randomized algorithm, then �(�) denotes the expected value of

cost, rather than denoting the determinable cost in the case of deterministic algorithm.

Against a deterministic algorithm �, the optimal algorithm � cannot be online because � must know the entire sequence � of requests in advance. � is competitive if it hits a

constant competitive ratio �.

In this area, the worst-case of efficiency is being measured in a comparison, and

it is noteworthy that the computational complexity of algorithms (i.e. the amount of

computation by algorithm) is not the case of studying online problems.

1.3.5 Adversary

Adversary models allow to analyse online algorithms in more detail. The

analysis can be viewed as an unfair game, between the designed online algorithm and

a malicious adversary against it. The adversary knows the algorithm well and produces

a sequence of requests as difficult as possible, towards maximizing its competitive ratio.

Figure 2. Representing a competition between an online algorithm �′ and an optimal algorithm �′. The total cost
of responding and processing each request sequence �� is shown above it, near a square for �′ and near a circle
for �′.

12

Depending on the nature of an online algorithm �, three different models of adversary

exist as follows:

Adaptive offline adversary knows everything about �, and is commonly utilized

when � is deterministic. This adversary generates a sequence of requests �, based on

the complete information about the algorithm’s response for any request. Hence, at each

step, it chooses the next request according to the responses of the algorithm so far. The

algorithm � of the adversary behaves optimally for the produced request sequence �

and pays the optimal cost �(�). The other two models of adversary are defined for the

randomized case of online algorithms.

Adaptive online adversary cannot determine the behavior of �, since � is a

randomized algorithm. This adversary produces each request according to �’s

definition and against its random (not deterministic) responses so far. Hence, the

behavior of adversary is non-deterministic and acts in an online fashion. This manner

incurs an expected cost �(�) for its generated sequence of requests �.

Oblivious adversary does not know anything about the random behavior of �

and its responses, but still knows well the definition of �. In this model, the adversary

produces the entire sequence of requests � in advance, only based on the definition of

algorithm. This adversary shares a common behavior with the adaptive offline

adversary that pays optimal cost �(�) too. Oblivious adversary is even weaker than the

adaptive online adversary, because it does not take the behavior of � into account.

Regarding the adversary models, an online algorithm � is �-competitive, if for

an additive constant � we have ���� ≤ ����� + �. At this point, we mention some

useful relations among these models.

13

Theorem 1. [17]: If � is a �-competitive randomized algorithm against any adaptive

offline adversary, then there exists also a �-competitive deterministic algorithm.

Theorem 2. [17]: If � is a �-competitive randomized algorithm against any adaptive

online adversary, and �′ is a �′-competitive randomized algorithm against any

oblivious adversary, then � is a (��)-competitive randomized algorithm against any

adaptive offline adversary.

1.3.6 Amortized Analysis

Initially, a kind of amortization used to bound the computational complexity by

aggregating a sequence of operations [18]. Later, this method was generalized as an

approach to analyse algorithms [19] by amortizing the efficiency over a part of

computation, in the form of a constant or function. The functional idea has been adapted

as an analytical method of online computation [7].

In the case of online algorithms, the goal is to bound the competitiveness of an

algorithm upon each request. After receiving a request ��, the algorithm � processes the

request by some actions and responses to the request by some other actions. Similarly,

the adversary � also processes and responses to the request by some actions. These

actions are specified by the definitions of � and �. Let 〈��,�, ��,�, … , ��,�〉 be any order

of all the mentioned actions performed upon the request ��, and �� be the set of all

computable configurations of an algorithm �.

Moreover, let � = 〈��,�, … , ��,�, ��,�, … , ��,�, … , �	,�, … , �	,�〉 be an ordered

set of all actions for a sequence of � requests, and � is partitioned into subsets �� for

1 ≤ ! ≤ , such that the actions in �� happen before the actions in �� for " < #. In the

analysis of an online algorithm � for showing its �-competitiveness, it would be enough

14

to define a function Φ:�� × �� → ℝ and show that |�|� + Φ� ≤ �|�|� + Φ�
� for

every ��, where |�|� denotes the total cost incurred by � to perform ��, and Φ� ≥ $

denotes the value of Φ right after finishing the accomplishment of �� by both

algorithms, for a constant $. Set Φ� as the value of Φ just before performing any

actions.

In this analysis, ΔΦ = Φ� − Φ�
� prepares an upper-bound � for the algorithm,

so that the art of choosing proper subsets to minimize the amortized value as well as

mapping the configuration of algorithms in an appropriate way are the basic ideas of

this investigation. We denote by Δ|�| = |�|� − |�|�
� the change of value in the cost of � by two consequent partitions of actions. Each partition is called an event.

To analyse the algorithm of our second project in CHAPTER 3, we utilize this

method, and also unearth the initial technique of aggregation [18], which leads to

combine two consecutive subsets for following the analysis by somehow disturbing the

common approach that is discussed above.

1.3.7 Work Functions

Work function algorithms provide a natural procedure for confronting

adversaries. An adversary � knows the online algorithm and acts against it (see

section 1.3.5), thus a work function algorithm % attempts to know the adversary as

soon as possible and reacts against it. This defense is done through designing %, such

that upon request ��, %� minimizes %���, ��, … , ��
���� + ���� ,%�� + ��(%�) for all �� ∈� and %������ = �(��, ��). Here, %���, ��, … , ��
���� = ����, ��, … , ��
���� is a work

function which can be optimally calculated through dynamic programming. In the

15

underlying abstraction, for any deterministic online problem, the work functions always

provide an online algorithm which shows the power of this technique.

Theorem 3. [20]: The work function algorithm is (2|�| − 1)-competitive for any

metrical task system (��, ��,�).

Later in CHAPTER 4, we will propose new online problems of telecommunicational

servers and telecommunicational server, as time-efficient variants of some traditional

problems in modern networking. For these problems, it would be very reasonable to

think of designing online algorithms based on work functions.

1.4 Networks

The scope of networks has been broadened to study various topics. For example,

a computer network allows its nodes to share resources (e.g. printers).

Telecommunication networks and multiprocessor systems also share resources (e.g.

packets, and data, respectively). The resources are located on the nodes of a network

which are connected to other nodes for communicating and sharing. Server is a node of

the network that is holding a resource. For example, in computer networks, the data are

stored on powerful computers called servers [21]. Depending on the restrictions and

construction of infrastructure, as well as the target and the scale of usage, each network

is established with a specific topology. Some notable and basic topologies include

complete graphs, paths, stars, rings, trees, and meshes [22]. Some examples of small

networks with basic topologies are shown in Figure 4.

The concentration of our study considers the topology of networks in the metric

space (see section 1.3.1). This space covers the basic topologies such as general and

16

restricted graphs (Figure 4), and the inherent continuous systems such as Euclidean and

taxicab geometries (Figure 3).

1.5 Server Problems

Perhaps, list accessing problem is one of the most extensively studied online

problems. Minimizing the total cost for accessing a requested item in an ordered list

and self-reordering of the list is the objective of this problem. Reordering strategies

basically include moving the accessed item to the front of the list, transposing the item

with its preceding one, and sorting according to the frequency of accesses.4 The page

replacing problem (a.k.a. paging problem) is a variant of the list accessing problem,

which arises in the management of a virtual memory by an operating system. Assume

the fast memory is limited to hold � pages of the virtual memory. Faster response to

access the pages is desirable for online requests as usual but fetching a page from the

virtual memory into the fast memory is costly. If an online algorithm drops the least

recently used or the oldest fetched page from fast memory for fetching a newly

4 2-competitiveness of first strategy is known [16], and is privately noted to be the best possible
competitiveness for deterministic algorithms [52].

Figure 4. Examples of some basic network topologies

17

requested page, then it achieves �-competitiveness, and no other deterministic online

algorithm can achieve a better ratio [16]. The algorithm of evicting the least recently

used page is recognized as a form of marking, a general strategy that works in phases5

[23]–[25].

The study of server problems is roughly about managing resources in networks.

�-server problem and data management problem are two of extensively studied online

problems that come out in the management of data in networks.

1.5.1 �-Server Problem

�-server problem [26] is a general form of page replacing problem, in which the

cost of fetching different pages may differ. More clearly, in a metric space ��, ��, there

are � copies of data on each node of ���� ⊂ �, and upon each request at
� ∈ �, if
� ∉
���� then a copy of data on ∈ ���� moves to
� with the cost of ��,
��, where �� is

the initial set of servers. The objective is to minimize the total cost of movements.

Figure 5 displays an example of �-server problem. Note that we would have �� � �� in

this example.

Figure 5. Example of an online algorithm to demonstrate �-server problem where � � 5, for the first triple of
requests ��, ��, and ��. Each circle represents a node in the network, and the copies of data on nodes are denoted
by filled squares. Each grey area covers a set �� of servers.

5 It is interestingly worth mentioning there are a significant number of efficient online algorithms which
work in a phase-based style for famous online problems. Hastily speaking, in each phase, a part of request
sequence is being investigated with a length that is a function of some property of data (e.g. data size).

18

There is no �-competitive deterministic [26], or randomized algorithm against

adaptive online adversaries [10], where � � �. It is an important open question if the

work function algorithm is �-competitive, though its �2� � 1�-competitiveness is

known [27]. The lower bound of problem is shown [28] to be Ω�log���/log��log����
against oblivious adversaries, and is conjectured to be Θ�log���� [10]. If |�| � � � �,

then there is a ����log�����-competitive algorithm against oblivious adversary [29].

1.5.2 Data Management Problem

Suppose there is a unique data in the network and the sequence of requests arrive

either to ‘obtain’ or to ‘update’ the data. This data may be in the form of a file or

database and may be replicated among servers for handling ‘read’ or ‘write’ tasks arrive

at the nodes
�,
�, … ,
� in an online manner. The corresponding metric space of a task

system ��, �� is specified in such a way that �� ∈ � is the set of nodes which hold the

copies of data, right after serving the request at
� and before receiving a next request.

������, ��� is the minimum cost to move copies of data from ���� to �� such that moving

each copy of data from � ∈ ���� to ∈ �� costs the data size ! multiplied by ���, �,
the distance between � and . The cost of processing
� at state ���� is denoted by

�������. If
� is a ‘read’ request, then
������� equals to the distance of the closest " ∈

Figure 3. Examples of Euclidean distance in 3D space (left) and Manhattan distance in 2D space (right), between
two nodes � and �

19

���� to
� in the network. If the network is represented by a graph # � �$, %� and
� is

a ‘write’ request, then
������� is the weight of a minimum weight tree that spans ���� ∪
'
�(. Here we open an interesting question: “how to define
������� for the metric spaces

other than graphs”? One answer might be “the maximum distance from ���� to
�” for

the case of Euclidean space. Anyway, the problem is known as data management

problem (a.k.a. file allocation problem), targeted to minimize ∑ �
������� �	
�
�

������, ����.
If the metric space is a graph and ! � 1, as well as if there is no ‘write’ request

and ‘read’ requests always cause replication, then the problem is called online Steiner

tree problem. The study of this restricted case of the problem has close connection with

the original problem in such a way that any �-competitive online Steiner tree algorithm

against adaptive online adversary can derive an online *2 � √3-�-competitive data

management algorithm against adaptive online adversary [30], and the results of data

management problem apply to online Steiner tree problem for every graph.

Theorem 4. [30]: For every graph, if there exists a �-competitive algorithm on data

management problem, then there exists a strictly �-competitive algorithm for online

Steiner tree problem.

Figure 6. Representation of a sample algorithm for data management problem in a graph. The ‘read’ request on �� is served through a minimal path (slightly shaded) from ��. After that, the algorithm moves a copy of data
through a minimal path (strongly shaded) to another node. A ‘write’ request on �� then sets both copies of data
through a minimum Steiner tree (slightly shaded).

20

Data management problem has been received a substantial amount of interests.

For arbitrary graphs, there exists a phase-based algorithm that considers only one part

of the request sequence at each phase. Each part contains exactly & ‘write’ requests if

there are enough, and the algorithm copes only with ‘read’ requests at each phase [31].

Some existing results in the literature of data management problem include the

followings.

Theorem 5. [31]: There exists an '(min{log(|�|),log(max{(()�,)�)})}-competitive

algorithm on general graphs, for all)� ,)� ∈ �.

Theorem 6. [30], [32]: There exists a graph *(�,�) such that the competitive ratio of

any randomized algorithm against oblivious adversary is in Ω(log�|�|�).

Theorem 7. [33]: There exist an optimal 3-competitive deterministic algorithm, as well

as a (2 + 1/&)-competitive randomized algorithm against oblivious adversary, for

trees.

Theorem 8. [34]: There is no deterministic algorithm and no randomized algorithm

against adaptive online adversary, with �-competitiveness on uniform ring networks,

where � < 4.25 and � < 3.833, respectively.

Other available results include the lower bound of 3 for both deterministic [35]

and randomized algorithms against adaptive online adversary [30], as well as 2 + 1/&

for randomized algorithms against oblivious adversaries [33], in a network with only

two points. As for ring networks, randomized algorithms against adaptive online

adversary [30] and against oblivious adversary [33] combined, [36] exist, each with the

competitiveness of 2(2 + √3) and 2(2 + 1/&) respectively. In the study of outerplanar

graphs, randomized algorithms with the competitiveness of 8(2 + 1/&) and (3 +

21

2√2)(2 + √3) are designed, against oblivious adversary [33] combined, [37], and

against adaptive online adversary [38], respectively.

As for the uniform ring networks, there is no randomized �-competitive

algorithm against adaptive online adversary for � < 3.833 [34], and in addition, if there

is no ‘write’ requests in the network, then a lower bound of 2.311 [39] and an upper

bound of 3 [40] for deterministic algorithms are proposed.

Another well-studied server problem, called page migration problem, is a

restricted variant of the data management problem, in which |��| = 1. In other words,

data management problem is the same as page migration problem, if there is no ‘write’

request. Since here is no ‘write’, there is no matter about defining the problem in

Euclidean and Manhattan spaces which are different from the metric space of finite

graphs. Our new algorithms are concentrated on page migration (also known as data

migration, and file migration) problem, so that we will contemplate it with more details

in the rest of these sections.

22

1.6 Page Migration Problem

In the page migration problem, there is only one single data (i.e. page or server),

located on one of the nodes of a network. Online requests arrive on nodes to access the

page. Before the first request, the page is located on an initial server. Upon each request,

the request must be served with a cost equal to the distance between the requested point

and the server location. After this service, the online algorithm decides if the server

shall move (i.e. page shall migrate) to a new location of network or not. The cost of the

page migration equals to the page size, multiplied by the distance between former and

new locations of the page. The problem is to design an online algorithm that efficiently

migrates the page, so that the total cost of services and migrations is as small as possible.

Figure 7 shows an example of a scenario for this problem for a couple of requests
�

and
�, as well as the responses of a sample online algorithm shown as �� and ��.

This problem is a formulation for the efficient management of memory shared

among a network of processors, such as multiprocessor units, multicore processors, and

Figure 7. Representing an example of an online algorithm computing �� and ��, upon �� and ��, for the page
migration problem. The slightly shaded edges show the paths of servicing requests, and the strongly shaded edges
show the paths of migrating the page.

23

graphical processing units. The problem can also be viewed as a formulation for the

efficient handling of shared objects in the network of a distributed system, such as

computer and telecommunication networks.

1.6.1 Notations

To provide a formal definition for the problem, here we first summarize the

notations, which will be used in the rest of article, and are subject to get slight changes

according to each context.

Table 1. Notations � set of nodes in the network

(�, () metric space of network with distance function (�� ∈ � initial page location (i.e. initial server before the first request) �� ∈ � location of th request to access the page on ��
�, where ≥ 1 �� ∈ � location of server after serving request ��, where ≥ 1 � = ��, ��, … , �� sequence of the first , requests � = ��, ��, … , �� designed algorithm (i.e. response of algorithm on first , requests) (��, �� distance between two nodes �, � ∈ � & page size (i.e. data size) |�| number of nodes in network; |�| ≥ 2

Δ|�| amount of change in cost of algorithm � before and after an event �-�.����,�� cost of � to respond � for the initial server location �� � algorithm of an adversary; (See section 1.3.5) � competitiveness of � against �; (See section 1.3.4)

Here, we have mapped the metrical task system (section 1.3.2) to the page

migration problem, such that ��, ��, and (denote the th state, th task, and the function � in the corresponding metrical task system respectively, noting that changing the state

is done after processing the request.

24

1.6.2 Definition

For a given initial page location �� ∈ �, a sequence of requests � = ��, … , �� ∈�, and a page size & ≥ 1, the page migration problem is to compute the servers, i.e. the

sequence of page locations ��, … , ��, such that the objective of cost function ∑ �(���
�, ��� + & ∙ (���
�, �������� is minimized.

If the requests come one by one, then offline algorithms do not adapt, so that an

online algorithm � is required to reduce the cost of producing online responses as far

as possible. � does not have any information about the future requests. An adversary �

generates the requests against the algorithm, for keeping the algorithm far from the

minimum cost as possible. This competition is evaluated as a ratio of �'s cost over �'s

cost and quantifies the quality of algorithm in some sense. Smaller is better for this

competitiveness. Oblivious, adaptive online, and adaptive offline adversaries have

different powers against an online algorithm, depending on its design as an either

deterministic or randomized algorithm.

1.6.3 Uniform Model

A restricted form of the page migration problem, with & = 1, is regarded as

uniform page migration problem and received interests in the area. For this problem,

the objective is to minimize ∑ �(���
�, ��� + (���
�, �������� .

The results of the current thesis are achieved (and discussed in the next two

chapters) for this uniform model of page migration, in which the page has a unit size.

In other words, the uniform page migration problem is identical to the page migration

problem if the cost incurred by servicing a request on � from the server �, equals to the

cost incurred by the migration of server from � to � for every �, � ∈ �. The problem

25

arises when the requests are always issued to access the entire page for a ‘read’ or

‘write’ task.

Refer again to the example shown in Figure 7 on Page 22. Suppose the weight

of all edges are equal to one, as an example. Then, the total cost incurred by the first

two requests equals to 8, i.e. the number of shaded edges.

1.6.4 Review and Contribution

The starting work to efficiently cope with the page migration problem was

initially reported more than 28 years ago by proposing 3-competitive algorithms which

work based on counters, in uniform graphs and trees, as well as showing a lower bound

of 3 for any metric space [35], and conjecturing the optimality of the lower bound.6

Note that counter-based algorithms play a significant role in designing efficient

online algorithms for server problems. This kind of algorithms usually work by

considering counters on the nodes of network, such that the total amount of counts is

bounded by a function of the page size from above. Each counter-based algorithm

follows a specific strategy of decrementing and incrementing the counters for the

management of resources while maintaining its competitiveness. In a private

communication, a simplified version of the 3-competitive counter-based algorithm for

trees fixes the bound for the total number of counters, and modifies the original

algorithm [41].

6 The conjecture was disproved by showing a higher lower bound of 85/27 [45], which later improved
to 3.1639 for uniform model [47], as well as 3 + Ω(1/�) with respect to � [46], and disproved even in
an asymptotic sense with a lower bound of 3 + 7.4 × 10�� [53].

26

For general graphs, a 4.086-competitive algorithm is known [42] that works in

consecutive phases. Essentially, in this algorithm, for parameters � and $, the sequence

of requests is separated into subsequences �� = ���, ���, … , ��� of a fixed length " = � ×&. The algorithm is shown to be max(3 + 2/�, 1.5� + $/2 + 1)-competitive, if at the

end of each phase, the page migrates from its current location ��
� to a location / (called

local minimum) that minimizes ∑ (�/, �����×���� + $ × & × ((��
�, /). The best

competitiveness is achieved by the setting of � ≈ 1.841 and $ ≈ 0.648, which yields

a 4.086-competitive ratio. This algorithm was known as the most efficient online

algorithm from 17 years ago. But just recently, this ratio has been improved to 4, by a

new algorithm that considers to dynamically change the length of the subsequence in

each phase [43], rather than the approach of fixing a length throughout the algorithm.

Moreover, in the study of randomized algorithms against adaptive online adversaries, a

3-competitive algorithm for general metric spaces was proposed [44] that matches the

lower bound on two points [30].

About continuous metric spaces, a randomized (2 + 1/2&)-competitive

algorithm against oblivious adversary is proposed using work functions, and showed to

be optimal, for a segment between two points. This algorithm is utilized as a module

for designing a new algorithm for the network of continuous tree (a concatenation of

two-point segments), while preserving its competitiveness. The new randomized

algorithm migrates its server to a distribution �� = ∑ �
�� �������� upon request ��,� = ��.

The rest of ��,� are determined using an initial subtree � = [��,�, ��
�,�] that is developed

as ��� gets the nearest point in � to ��
�,� and � grows to � ∪ [��,� , ��
�,�]; while !
increases from 2 to 2&. This algorithm works even on finite products of tree such as

27

continuous hypercubes and meshes. The algorithm is derandomized by migrating to ��0 = ∑ /��(/)� , the barycenter of �� while keeping the same competitive ratio of 2 +
1/2&, as the best ratio on continuous trees. The competitiveness is admitted even in

ℝ� but still under 1� norm. [45]

Theorem 9. [45]: If there exists a �-competitive algorithm with finite distribution

against oblivious adversary on ℝ�, then a deterministic �-competitive algorithm also

exists.

For general metric spaces, a randomized �(&)-competitive algorithm is

available [44] against oblivious adversary, where ��1� = 2.8 and �(&) gets smaller to

approach 2.618 as & enlarges. This algorithm is derandomized in ℝ� under 1� norm

for any , and , by Theorem 9. For this reason, a deterministic 2.8-competitive

algorithm exists on ℝ� in Euclidean space for & = 1 from 24 years ago, and our first

online algorithm in this thesis is to propose a more efficient and deterministic 2.75-

competitive algorithm. The algorithm is quite simple. It is discussed with details

in CHAPTER 2 alongside its analysis. Roughly speaking, the algorithm maintains the

server at the center of two assumptive points, and each new request grabs the farthest

point. We bound the ratio for the algorithm with 2.732 from below.

Note that for the interval [0, 1], we have 2 + 1/2& as a lower bound for any

randomized or deterministic algorithm [45]. This lower bound is also admitted on ℝ�

under any norm, because for the interval 2 = [0, 1] on a dimension " in ℝ�, any online

algorithm � locating its server in ℝ� ∖ 2 for requests only in 2 has a cost of at least that

of a certain algorithm locating its server only in 2, i.e., projection on the "th coordinate

of A’s server location if the projection is in 2, and the closer endpoint of 2 otherwise. It

28

was a longstanding question how the gap of ��&� and 2 + 1/2& can be tighter under 1� norm with ≥ 2. The question is partially answered in CHAPTER 2.

For the graphs restricted with only three points (a.k.a. three-node ring networks,

three-node cycles), optimal 3-competitive deterministic algorithms with & ∈ {1,2}
[45], [46], and asymptotically optimal (3 + 1/&)-competitive deterministic algorithms

with & ≥ 3 [46] are proposed. Specifically for ring networks with more nodes (i.e. |�| > 3), there is no general study and the current 4-competitive upper bound [43] is

still the best known for & > 1. In the uniform model, this upper bound is reduced to

2 + √2 ≈ 3.4142 which works on general graphs including the rings, together with

showing a lower bound of 3.1213 for a ring with five nodes [47]. In our second study

of uniform model (CHAPTER 3), we propose a quite complicated deterministic

algorithm with the competitiveness of 3.326 on ring networks, provided by a tight

analysis.

We find it appropriate to mention about two observations on the page migration

problem. Unlike the case of continues spaces under 1� norm, we showed on Euclidean

metric that the optimum cost is not always obtained by migrating the page only to the

requesting points, due to the counterexample of Fermat point. As for the path network

(a tree with only two leaves), the states of the art of work functions and counter-based

algorithms do not behave the same. These observations played a useful and important

role in conducting the research project of CHAPTER 2 in a proper way.7

7 These observations are done as disprovements of two wrong statements, given to us to be proved. The
basic motivation of considering these statements was to design work function algorithms under the norms
larger than 1.

29

Mobile server problem is a variant of page migration problem that restricts the

movement distance of the page in Euclidean space. The problem is introduced and

provided by a deterministic and near-optimal algorithm that migrates the server towards

the center of some requesting points [48].

30

Euclidean Space

The paradigm of cloud computing authorizes the requests to access the

resources which are present and found everywhere. The classical problem of uniform

page migration is revisited, covering such recently hot topics, where a server is able to

take the natural Euclidean distances for the purpose of reducing the overhead of

management.

In this chapter, the uniform page migration problem in a network of Euclidean

system is considered. Any point in a space with one, two, or even more dimensions, is

likely to be a source for the request or the location of server. The distance function � is

defined by norm .� (i.e. Euclidean metric), which yields the length of a straight-line

segment between two points as their distance. Initially, the page is located at a point ��

of the space. Each request at a point
� is served by the cost of ordinary distance between

���� and
�, and after that, the page may migrate by the cost of distance between ����

and ��, the new server location.

Figure 8. An example to show the behavior of an online algorithm for the problem of uniform page migration in
a two-dimensional network of Euclidean space after a sample request �� at �	, ��. The server ���� is located at �, �� upon the request, so that firstly serves the request with the service cost of ������, ��� ���	 � �� � �� � ���, and then migrates to a new server location �� at ��, ��� with the migration cost of

������, ��� � ��′ � �� � ��′ � ���.

31

Figure 8 shows an example of online algorithm for this problem that incurs a

cost of ������,
�� � ������, ��� for a request
�. The total cost for a sequence / �

�, … ,
� of 0 requests ∑ *������,
�� � ������, ���-�

�
� is the aim of this problem for

minimization, and we design an efficient deterministic online algorithm PQ [1], which

improves the former online algorithm for this problem.

Note that 25 years ago, the former algorithm was originally proposed as a

randomized algorithm [44], but later (24 years ago) derandomized to a deterministic

algorithm [45], and there is no improvement known before our study. The algorithm

PQ maintains two auxiliary points in the network to control its configuration in such a

way that it moves the farthest point to the requesting point of network, and always

migrates the page to the center of the two points.

Intuitively, the algorithm determines the location of the page using two

locations from previous requests. In the following sections of this chapter, the algorithm

PQ is formally defined, and analysed to bound its competitiveness.

2.1 Algorithm PQ

This algorithm maintains the server at the center of two points 1 and 2, both of

which are initially located at the initial server location. Upon each request at location

, if ��1,
� 3 ��2,
�, then 1 moves to
; otherwise, 2 moves to
. The algorithm

Figure 9. Showing the responses of PQ to the first three examples of requests in two dimensions

32

migrates its server to � = ���
� after or 3 moves. Figure 9 shows the behavior of PQ

for a sequence example of first three requests ��, ��, and �� in two-dimensional space.

2.2 Analysis of PQ

We prove the competitiveness of 2.75, claimed in Theorem 10, using a potential

function 4. As mentioned in Section 1.3.6, defining suitable events and showing that

∆|�5| + ∆4	 ≤ 	2.75Δ|�| for any defined partition of actions is sufficient. For the

proof of the theorem, we need to show an inequality different from a triangle inequality.

We separately provide a technical part for that inequality as Lemma 1. The lemma is

about points computed by the algorithm.

Lemma 1. For any 6 > 2 and , 3, �, � ∈ ℝ� such that ≠ 3, ((, �) ≥ ((3, �) > 0,

and � is the center of and 3, 7 = (��, �� − 8�� − �
�9 ∙ (� , �� − 8�� − 19 ∙�(�3, �� − (� , 3��	is maximized if ((, �) = ((3, �), or ((, 3) = ((, �) + ((3, �),

or ((, �) = ((, 3) + ((3, �).

Proof. We may assume without loss of generality that = (−1,0), � = (0,0), 3 =
(1,0), and � = (ℓ	 cos : , ℓ	 sin :) with 0 ≤ : ≤ ;/2. Moreover, we fix ((�, �) = ℓ and

regard 7 as a function of :. The aim is to prove that 7 is maximized at : = 0 or : =;/2.

It follows that: ((, �) = <(ℓ	cos	: + 1)� + ℓ�sin�: = =ℓ� + 2ℓ	cos	: + 1 ((3, �) = <(ℓ	cos	: − 1)� + ℓ�sin�: = =ℓ� − 2ℓ	cos	: + 1 >((, �)>: = −ℓ	sin	:√ℓ� + 2ℓ	cos	: + 1 = − ℓ	sin	:(� , ��

33

and >((3, �)>: = ℓ	sin	:√ℓ� − 2ℓ	cos	: + 1 = ℓ	sin	:((3, �)

Therefore, we have >7>: = ℓ	sin	: ?6 − 1
2 ∙ 1(� , �� − 862 − 19 ∙ 1(�3, ��@

= �6 − 1� ∙ ℓ ∙ sin:
2(�3, �� A(�3, ��(� , �� − 6 − 26 − 1B

�(�,�)
�(�,�) = <ℓ�
�ℓ	cos	 ��

ℓ���ℓ	cos	 �� monotonically increases from
|ℓ
�|
ℓ�� to 1 as : changes from 0 to ;/2. If

|ℓ
�|
ℓ�� ≥ �
�

�
�, then
!"
! ≥ 0 for any :. Therefore, 7 is maximized at : = ;/2.

Otherwise, since 0 < �
�
�
� < 1, there exists 0 < . < ;/2 such that <ℓ�
�ℓ	cos	#��

ℓ���ℓ	cos	#�� = �
�
�
�.

Since
!"
! ≥ 0 for : ≥ . and

!"
! ≤ 0 for : < ., 7 is maximized at : = 0 or : = ;/2. ⬛

Theorem 10. PQ is 6-competitive for 6 = ��
$.

Proof. We use the following potential function for X’s server location ., PQ’s server �,
and point locations and 3: 4 = 6

2 ∙ �(� , .� + (�3, .�� − 6 − 2
2 ∙ (� , 3�

We separate the online events into two parts. The first is to consider only the migration

costs incurred by X’s server, and the second is to consider the service costs incurred by

X together with the migration and service costs incurred by PQ. It is sufficient to show

that the inequality C|�5| + C4 ≤ 6 ∙ C|X| follows in both parts, upon each request �.

Part 1. The migration of X’s server from . to .′ induces a change of ((., .′) to

the total cost of the optimal algorithm X but no change to the cost incurred by PQ. The

34

total change of 4 is then
�
� ∙ �(� , .� − (� , .� + (�3, .� − (�3, .��. Therefore, it is

sufficient to show the following inequality: 6
2 (� , .′� − 6

2 (� , .� + 6
2 (�3, .′� − 6

2 (�3, .� ≤ 6
2 (�., .′� + 6

2 (�., .′�
This follows by the symmetry of the distance function ((��, �� = ((�, �)) and the

triangle inequalities (� , .� ≤ (�., .� + (� , .� and (�3, .� ≤ (�., .� + (�3, .�.
Part 2. We may assume, without loss of generality, that (� , �� ≥ ((3, �). By

this assumption, PQ moves to �. Since PQ maintains its server at the center of and 3, the migration cost incurred by PQ is then
�
�((, �). For this part, we have the

following equalities: C|�5| = (��, �� + 1
2 (� , �� C4 = 6

2 ∙ �(��, .� − (� , .�� + 862 − 19 ∙ �(� , 3� − (�3, ��� C|�| = (�., ��
Therefore, we shall show the following inequality: (��, �� + 1

2 (� , �� + 6
2 ∙ �(��, .� − (� , .�� + 862 − 19 ∙ �(� , 3� − (�3, ���

− 6(�., �� ≤ 0

Since (��, .� + ((, .) ≥ ((, �), it is sufficient to show: (��, �� − D62 − 1
2E ∙ (� , �� − 862 − 19 ∙ �(�3, �� − (� , 3�� ≤ 0. (1)

This follows for the cases = 3 and 3 = �, because � = = 3 and (��, �� =
�
� 	((, �), respectively. We assume ≠ 3 and 3 ≠ �. It is sufficient to show that the

maximum value of the left-hand side of Equation (1) is less than or equal to zero. If we

regard , 3, �, and � as vectors in ℝ�, then at most three vectors of them, say , 3, and

35

�, are independent. Therefore, the points , 3, �, and � are on a plane in ℝ�. Applying

Lemma 1 on this plane, the left-hand side of Equation (1) is maximized in one of three

situations. Situation 1: ((, �) = ((3, �), Situation 2: ((, 3) = ((, �) + ((�, 3), or

Situation 3: ((, �) = ((, 3) + ((3, �). We proceed to show inequality (1) for each of

these three situations.

Situation 1: Substitution of ((, 3) by 2 ∙ ((�, 3) in Equation (1) reveals the

following inequality. (��, �� + �6 − 2� ∙ (��, 3� ≤ D6 − 3
2E ∙ (�3, ��

By applying 6 = ��
$ and dividing both sides by

%
$, it is sufficient to show

4
5 	(��, �� + 3

5 	(��, 3� ≤ (�3, �� (2)

Since �(�3, ���� = �(��, ���� + �(��, 3���, Equation (2) can be written as:

4
5 	(��, �� + 3

5 	<�(�3, ���� − �(��, ���� ≤ (�3, ��.

By taking the derivative with respect to (��, �� on the plane containing 3, �, and �, the

left-hand side of Equation (2) is maximized at (��, �� = $
% 	(�3, �� and (��, 3� =

�
% (�3, ��. Therefore, Equation (2) follows.

Situation 2: The inequality in Equation (1) can be rewritten as: (��, �� − 862 − 19 �(� , �� + (�3, �� − (� , 3�� ≤ 1
2 (� , �� (3)

In this situation, we recall that , �, �, and 3 are all located on the same line segment.

Since ((, 3) ≥ ((, �), and � is located at the center of and 3, it follows that

�
� ((, �) = ((, �) = ((�, 3) = ((�, �) + ((�, 3) ≥ ((�, �). Since (� , �� + (�3, �� −(� , 3� = 0, the inequality in Equation (3) follows.

36

Situation 3: Since 6 = ��
$, we rewrite Equation (1) as: (��, �� − 7

8 (� , �� − 3
8 (�3, �� + 3

8 ((, 3) ≤ 0

The points , �, �, and 3 are also located on the same line segment in this situation. By ((, �) = ((, 3) + ((3, �), we have (��, �� − �
�(� , 3� − %

$ (�3, �� ≤ 0. By ((, 3) =

2	((�, 3) we have (��, �� − (��, 3� − %
$ (�3, �� ≤ 0. In addition, by ((�, �) =((�, 3) + ((3, �) we have (�3, �� − %

$(�3, �� ≤ 0.

Therefore, the proof completes. ⬛

2.3 Bound of Analysis

In this section, we show that the exact competitiveness of the algorithm is

greater than 2.732. We introduce an adversary through Theorem 11 and prove the

existence of such a lower bound. The adversary makes a special sequence of requests

on ℝ� against the proposed algorithm. The requests are given at vertices of a triangle

that tends to be equilateral. After the second request, the server repeatedly migrates

between the center points of two sides of the triangle.

Theorem 11. For a sufficiently large integer ,, there exist a request sequence	� =��, … , �����, three request locations �, �, and � on a plane, and the initial server location �, such that �-�.&'��,�� ≥ 6	 ∙ �-�.(&)��,�� for 6 = 1 + √3 ≈ 2.732.

Proof. We describe our approach before more technical discussion in the subsequent

paragraphs. In Figure 10, we illustrate the behavior of PQ against requests by our

adversary. We assume that (��, �� is slightly larger than (��, �� = (��, ��. Points F

and) are the centers of � and �, and � and �, respectively. For requests �, �, �, �, �, �, �, …, PQ migrates its server along the dashed line, because does not

37

move from 4. A request occurs at 5 when the server is at �, and a request occurs at �
when the server is at . Note that 4, 5, and � tend to be the vertices of an equilateral

triangle as ���, 5� approaches ���, 4� � ��5, 4�.
For
� � 4,
�� � 5, and
���� � �, where 1 � � � 0 and 4, 5, and � are the

vertices of an equilateral triangle with a unit side length, the cost of the optimal

algorithm �6�7����, /� is at most 0 � 1 by keeping the server at the initial location �.
The adversary infinitesimally perturbs the distances by slightly increasing the

distance between � and 5. Upon the first request at 4, PQ serves the request by the cost

of ���, 4� and migrates the server to �, which is the center of � and 4, by the cost of

���, ��. This is because point 1 at � moves to 4. The 2�th request at 5 is served with

the cost of ���, 5�, causing point 2 at � to move to 5, and the server migrates to ,

which is at the center of 4 and 5, with the cost of ���, �. The �2� � 1�st request at �
is served with the cost of �� , ��. The point 2 at 5 moves to �; hence, the server migrates

to � with the cost of ���, �.
We compute the total cost of PQ by using the distances of the unperturbed

triangle, since the actual distances (and hence the actual costs of PQ and OPT) may

differ by an infinitesimally small amount from these computations. Therefore, we have

Figure 10. The request sequence , �, �, �, �, �, �, … to access the page at the server; � � 1.

38

�-�.&'��,�� = (��, �� + (��,F� + , ∙ �(�F, �� + (�F,)� + (�), �� + (�), F��
≈ 1.5 + �√3 + 1�,

Since

lim�→∞

1.5 + �√3 + 1�,, + 1 = √3 + 1

then
*+�#��,�,-.
*+�#���,�,-. is at least 2.732. This completes the proof. ⬛

2.4 Remarks

In this chapter, we proposed a deterministic algorithm for the uniform page

migration problem in Euclidean space. In this problem, the server is able to migrate in

any direction and choose any destination of the space. The	2.75-competitiveness of the

algorithm is an improvement on the former 2.8 ratio. An adversary was found to express

a lower bound of 2.732 for the algorithm. If possible, one could seek to find an

algorithm to cover the page migration problem of general page size with better

competitiveness than 2.618. Another area of improvement is to narrow the upper and

lower bounds of the algorithm, though we conjecture that this gap can be closed towards

the lower bound. Moreover, the generalization of the algorithm under norms other than

the Euclidean and Manhattan ones remains an open problem in this research area.

39

Ring Networks

This chapter explores the problem of uniform page migration in ring networks.

A ring network is a connected graph, in which each node is connected with exactly two

other nodes. In this problem, one of the nodes in a given network holds the page. This

node is called the server and the page is a non-duplicable data in the network. Requests

are issued on nodes to access the page one after another. Every time a new request is

issued, the server must serve the request and may migrate to another node before the

next request arrives. A service costs the distance between the server and the requesting

node, and the migration costs the distance of the migration. Figure 11 shows an example

to deal with the requests on a ring network, in which shaded parts represent the service

and migration costs.

Figure 11. An example of online algorithm to serve a request �� and migrate to �� in a ring network

The problem is to minimize the total costs of services and migrations. A

deterministic 3.326-competitive algorithm TriAct, improving the current best upper

bound is designed, and provided that this ratio is tight for our complicated algorithm.

40

3.1 Algorithm TriAct

We propose a deterministic algorithm, called TriAct, on a ring network as

defined in Figure 12. We set �� = ��, the initial location of the server in the ring

network. For ≥ 1, upon the request �� at any node, there are three choices for the

server to act according to the algorithm. The server keeps its current location at node ��
� or migrates to either �� or ��
�. The decision is based on the distances among ��
�, ��, and ��
�. There are six different cases to determine which action must be done.

 � ← network length
� ← ���	�
, �	�
�
	 ← ���	�
, �	�

 ← ���	�
, �	�

 if	
 = � − 		then	�	 ← �	 {Case A}

 else if	
 = 	 − �	then	�	 ← �	�
 {Case B}

 else if	
 = � + 		then	�	 ← �	�
 {Case C}

 else if		 ≥ − ���
��� +

 �	and		 ≥
� � + ��

� �	then	�	 ← �	�
 {Case D}

 else if		 ≤ ��

 �	and		 ≥ − �

�� � + �
��� �	then	�	 ← �	 {Case E}

 else	�	 ← �	�
 {Case F}

 server migrates from	�	�
	to	�	

Figure 12. Definition of Algorithm TriAct upon a request �� to access the page at the server ���� on a ring network

In the ring topology, there are exactly two paths between each pair of nodes �, �. Let ;(�, �) denote a shortest path between �, �. The length of ;(�, �) equals to

the distance ((�, �). Let 1 denote the length of the ring, then it is obvious that 0 ≤((�, �) ≤ 1/2. In our calculations, we set / = (���
�, ��
��, G = ((��
�, ��), and H =((��
�, ��).

If ;(��
�, ��
�) and ;(��
�, ��) share any edge of the network, then either Case

A or Case B follows by the algorithm. If ;���
�, ��� = ;���
�, ��
�� ∪ ;(��
�, ��) then

Case C follows. Figure 13 shows an example for each of these three cases.

41

For the rest of cases, we have 1 = (���
�, ��� + (���
�, ��
�� + (���
�, ��� =/ + G + H, and the algorithm separates all possible conditions among distances into

three Cases D, E, and F, to decide the action of server for migration. Since 1 is a

constant value, we calculate H as a function of / and G. The conditions of Cases D, E,

and F are shown in Figure 14.

3.2 Analysis of TriAct

We show that TriAct is 6-competitive with 6 ≈ 3.3258 in Theorem 12 below.

The exact value of 6 is provided in Appendix A. We use a potential function 4 to prove

the theorem. We separate the online events into two parts to show that ∆|TriAct| +
∆4 − 	3.326∆|X| ≤ 0 follows in every case. The proof for Cases A-E are

straightforward. Our analysis for Case F uses an aggregation technique, because we

need to consider two consecutive requests in that case to complete the proof.

Theorem 12. TriAct is 6-competitive for & = 1, where 6 ≈ 3.326 is the positive

solution of −6$ + 46� + 6� − 186 + 24 = 0.
Proof. We use the potential function 4, for X's server locations .�, … , .�, TriAct’s

server locations ��, … , ��, and request locations ��, … , ��. We define 4���, ��, .�� = 6
2 ∙ �(���, .�� + (���, .��� + 862 − 19 (���, ���

We separately consider the events in two parts. The first includes the migration costs

incurred by X, and the second covers the service costs incurred by X together with the

migration and service costs incurred by TriAct. Let

Δ� = 4���, ��, .�� − 4���, ��, .�
�� − 6 ∙ (�.�
�, .��,
and

42

Δ� = (���
�, ��� + (���
�, ��� + 4���, ��, .�
��
−4���
�, ��
�, .�
�� − 6 ∙ (�.�
�, ���.

In order to prove that C|TriAct| + C4 − 6 ∙ C|X| ≤ 0 follows in both parts, it

suffices to show that Δ� ≤ 0 and Δ� ≤ 0.

Analysis of part 1:

For the first part,

Δ� = �
� ∙ �(���, .�� − (���, .�
�� + (���, .�� − (���, .�
��� − 6 ∙ (�.�
�, .��.

By triangle inequality, we have

Δ� ≤ 6
2 ∙ �(�.�
�, .�� + (�.�
�, .��� − 6 ∙ (�.�
�, .�� = 0.

Analysis of part 2:

For the second part, we have

Δ� = (���
�, ��� + (���
�, ��� + 6
2 (���, .�
�� + 6

2 (���, .�
��
+ 862 − 19 (���, ��� − 6

2 (���
�, .�
�� − 6
2 (���
�, .�
��

− 862 − 19 (���
�, ��
�� − 6 ∙ (�.�
�, ���

= (���
�, ��� + (���
�, ��� + 6
2 (���, .�
�� − 6

2 (���, .�
��
+ 862 − 19 (���, ��� − 6

2 (���
�, .�
�� − 6
2 (���
�, .�
��

− 862 − 19 (���
�, ��
��. (4)

TriAct has three choices of ��, i.e., ��, or ��
�, or ��
�. For these choices, we

separately derive upper bounds of Δ�.
Upper bound of I/ for the action J0 ← K0:

43

For the action of migrating the server to the current request location, it follows from

(4):

Δ� = (���
�, ��� + (���
�, ��� + 6
2 (���, .�
�� − 6

2 (���, .�
��

+ 862 − 19 (���, ��� − 6
2 (���
�, .�
�� − 6

2 (���
�, .�
��
− 862 − 19 (���
�, ��
��

= 2(���
�, ��� − 6
2 (���
�, .�
�� − 6

2 (���
�, .�
��

− 862 − 19 (���
�, ��
��

≤ 2(���
�, ��� − 6
2 (���
�, ��
�� − 862 − 19 (���
�, ��
��

= �1 − 6�(���
�, ��
�� + 2(���
�, ��� = �1 − 6�/ + 2G. (5)

Here, we used the triangle inequality (���
�, .�
�� + 	(���
�, .�
�� ≥ (���
�, ��
��. We

note that this upper bound of Δ� is used for Cases A and E.

Upper bound of I/ for the action J0 ← K0
1:

For the action of migrating the server to the previous request location, it follows from

(4) that:

Δ� = (���
�, ��� + (���
�, ��
�� + 6
2 (���
�, .�
�� − 6

2 (���, .�
��

+ 862 − 19 (���
�, ��� − 6
2 (���
�, .�
�� − 6

2 (���
�, .�
��
− 862 − 19 (���
�, ��
��

= (���
�, ��� + 82 − 6
29 (���
�, ��
�� − 6

2 (�.�
�, ���

+ 862 − 19 (���
�, ��� − 6
2 (���
�, .�
��

44

≤ 82 − 6
29 (���
�, ��
�� + 81 − 6

29 (���
�, ��� + 862 − 19 (���
�, ���

= 82 − 6
29 / + 81 − 6

29 G + 862 − 19 H. (6)

Here, we used the triangle inequality (�.�
�, ��� + (���
�, .�
�� ≥ (���
�, ���. We note

that this upper bound of Δ� is used for Cases B and D.

Upper bound of I/ for the action J0 ← J0
1:

For the action of no migration, it follows from (4) that

Δ� = (���
�, ��� + (���
�, ��
�� + 6
2 (���
�, .�
�� − 6

2 (���, .�
��
+ 862 − 19 (���
�, ��� − 6

2 (���
�, .�
�� − 6
2 (���
�, .�
��

− 862 − 19 (���
�, ��
��

= 6
2 (���
�, ��� − 6

2 (���, .�
�� − 6
2 (���
�, .�
��

− 862 − 19 (���
�, ��
��

≤ 6
2 (���
�, ��� − 6

2 (���
�, ��� − 862 − 19 (���
�, ��
��

= 81 − 6
29 / + 6

2 G − 6
2 H. (7)

Here, we used the triangle inequality (���, .�
�� + (���
�, .�
�� ≥ (���
�, ���. We note

that this upper bound of Δ� is used for Cases C and F.

Analysis for Cases A, B, and C:

In Case A, since G = / − H	 ≤ 	/ and 6 > 3, it follows from (5) that

Δ� ≤ �1 − 6�/ + 2G ≤ �3 − 6�/ < 0. (8)

In Case B, since H = G − / and 6 > 3, it follows from (6) that

45

Δ� ≤ 82 − 6
29 / + 81 − 6

29 G + 862 − 19 H

= 82 − 6
29 / + 81 − 6

29 G + 862 − 19 �G − /� = �3 − 6�/ < 0. (9)

In Case C, since H = / + G and 6 > 1, it follows from (7) that

Δ� ≤ 81 − 6
29 / + 6

2 G − 6
2 H = 81 − 6

29 / + 6
2 G − 6

2 �/ + G�

= �1 − 6�/ < 0. (10)

Therefore, Theorem 12 holds in Cases A, B, and C.

Case A Case B Case C

server migrates
from ���	 to ��

server migrates
from ���	 to ���	

no migration from ���	

Figure 13. Examples of Cases A, B, and C. Filled circles represent destinations of the server, i.e., ��, upon ��

Analysis for Cases D and E:

For Cases D and E, we have H = 1 − / − G. The conditions of these cases are defined

using four functions G�, G�, G�, and G$ of /, where

y� = −6 − 36 − 2 / + 1
2 , (11)

y� = 26 / + 6 − 26 ∙ 12 , (12)

y� = 6 − 1
2 /, and (13)

y$ = 66 − 2 D12 − /E . (14)

46

In Figure 14, the separate regions represent the conditions of Cases D, E, and F.

Figure 14. Conditions of Cases D, E, and F

In Case D, since : 3 :�, it follows from (6) and (11) that

 Δ� � <2 � =2> � <1 � =2>: � <=2 � 1> �. � � :�

 � �3 � =� � �2 � =�: � <=2 � 1> . (15)

 � �3 � =� � �2 � =� ?�= � 3= � 2 � .2@ � <=2 � 1> .

= 0.

In Case E, since : � :�, it follows from (5) and (13) that

Δ� � �1 � =� � 2: (16)

 � �1 � =� � 2 ?= � 12 @ � 0.

Therefore, Theorem 12 holds in Cases D and E.

Analysis for Case F:

For Case F, we also have B � . � � : and the conditions of Case F as shown in

Figure 14. It follows from (7) that

47

Δ� ≤ 81 − 6
29 / + 6

2 G − 6
2 H

= 81 − 6
29 / + 6

2 G − 6
2 �1 − / − G� = 6G + / − 6

2 1. (17)

This is at most 0 if G ≤ G%, where G% = 1
2 − /6 . (18)

Therefore, Theorem 12 holds if G ≤ G% in Case F. However, if G > G%, i.e., if / and G

are in the grey region in Figure 15, then Δ� > 0. Instead of bounding Δ�, for the case G > G%, we bound the aggregation of Δ� and Δ� , which is defined as the value of Δ�
for the next request ����. Specifically,

Δ� = (���, ����� + (���, ����� + 4�����, ����, .�� − 4���, ��, .�� − 6 ∙ (�.�, �����.
It should be noted that Theorem 12 holds if Δ� + Δ� < 0 for all six cases of ����, and

for all x and y in the grey region in Figure 15. We also note that �� = ��
� (19)

in Case F for ��. In the rest of the proof, we show Δ� + Δ� ≤ 0 for all six cases of ����
and for all / and G with Δ� > 0.

In Cases A, B, and C for ����, it follows from (8), (9), (10) and (19) that Δ� ≤�3 − 6�(���, ��� = �3 − 6�(���
�, ��� = �3 − 6�G. Therefore, since G ≤ G�, it follows

from (17) and (11) that

48

Δ� + Δ� ≤ 6G + / − 6
2 1 − �6 − 3�G = 3G + / − 6

2 1

≤ 3 D− 6 − 36 − 2 / + 1
2E + / − 6

2 1

= 7 − 266 − 2 / − �6 − 3� 12

≤ 7 − 266 − 2 ∙ 12 − �6 − 3� 12

= − 6� − 36 − 16 − 2 ∙ 12 ,

which is negative since 6 > ��√��
� ≈ 3.303.

In Case D for ����, it follows from (15) and (19) that

Δ� ≤ −�6 − 2�(���, ����� − �6 − 3�(���, ��� + 862 − 19 1

= −�6 − 2�(���, ����� − �6 − 3�(���
�, ��� + 862 − 19 1

= −�6 − 2�(���, ����� − �6 − 3�G + 862 − 19 1. (20)

Moreover, it follows from (12) and (19) that

 (���, ����� ≥ 26 (���, ��� + 6 − 26 ∙ 12 = 26 (���
�, ��� + 6 − 26 ∙ 12

= 26 G + 6 − 26 ∙ 12 . (21)

Therefore, it follows from (17), (20), and (21) that

Δ� + Δ� ≤6G + / − 6
2 1 − �6 − 2�(���, ����� − �6 − 3�G

+ 862 − 19 1

≤ 3G + / − 1 − �6 − 2� D26 G + 6 − 26 ∙ 12E

49

=6 + 46 G + / − 6� − 26 + 46 ∙ 12 .

(22)

The value � = ��$
� G + / is maximized at , at which G� and G� intersect in Figure 15.

This is because for the function G = − �
��$ / + �

��$�, its slope − �
��$ is negative and

less than the slope − �
�
�
� of G� for 6 ≈ 3.326. Therefore, we have

Δ� + Δ� ≤6 + 46 ∙ 6� − 36 + 26� − 6 − 4 ∙ 12 + 6 − 26� − 6 − 4 1 − 6� − 26 + 46 ∙ 12

= −6$ + 46� + 6� − 186 + 246�6� − 6 − 4� ∙ 12 ,

which is equal to 0 by the assumption of 6 in Theorem 12.

Figure 15. Representation of positive region of Δ� in Case F

50

In Case E for ����, it follows from (16) and (19) that

Δ� ≤ 2(���, ����� − �6 − 1�(���, ��� = 2(���, ����� − �6 − 1�(���
�, ���

= 2(���, ����� − (6 − 1)G. (23)

Moreover, it follows from (12) and (19) that

 (���, ����� ≤ 26 (���, ��� + 6 − 26 ∙ 12

= 26 (���
�, ��� + 6 − 26 ∙ 12

≤ 26 G + 6 − 26 ∙ 12 . (24)

Therefore, it follows from (17), (23), and (24) that

Δ� + Δ� ≤ 6G + / − 6
2 1 + 2(���, ����� − �6 − 1�G

≤ G + / − 6
2 1 + 2 D26 G + 6 − 26 ∙ 12E

= 6 + 46 G + / − 6� − 26 + 46 ∙ 12 ,

which is identical with (22). Hence, we can obtain Δ� + Δ� ≤ 0 as done for (22).

In Case F for ����, it follows from (17) and (19) that

Δ� ≤ 6(���, ����� + (���, ��� − 6
2 1

= 6(���, ����� + (���
�, ��� − 6
2 1

= 6(���, ����� + G − 6
2 1. (25)

For / and G in the grey region in Figure 15, it follows that G ≥ ��
�
��
��� ∙ 3�, which is the G-coordinate of 3 at which G% and G� intersect. This implies that (���, ��� is larger than

the /-coordinate
�
�

��
�
$ 1 of . We can verify this by (���, ��� = (���
�, ��� = G and

51

6� − 66� − 6 + 2 ∙ 12 − 6 − 26� − 6 − 4 1

= 6$ − 46� + 36� − 46 + 8�6 − 2��6 + 1��6� − 6 − 4� ∙ 12

= (6$ − 46� − 6� + 186 − 24) + (46� − 226 + 32)�6 − 2��6 + 1��6� − 6 − 4� ∙ 12

= 46� − 226 + 32�6 − 2��6 + 1��6� − 6 − 4� ∙ 12 ,

which is positive for 6 > ��√�4
� ≈ 2.56. Here, we have used the assumption 6$ −

46� − 6� + 186 − 24 = 0 in Theorem 12. Therefore, it follows from (14) that

 (���, ����� ≤ 66 − 2L12 − (���, ���M

= 66 − 2L12 − (���
�, ���M

= 66 − 2 D12 − GE .
(26)

Therefore, it follows from (17), (25), and (26) that

Δ� + Δ� ≤ 6G + / − 6
2 1 + 6(���, ����� + G − 6

2 1

≤ �6 + 1�G + / − 61 + 6 ∙ 66 − 2 D12 − GE

= − 6 + 26 − 2 G + / − 6�6 − 4�6 − 2 ∙ 12 .

The value � = − ���
�
�G + / is maximized at 3. This is because for the function G =

�
�
��� / − �
�

����, its slope
�
�
��� is positive and less than the slope

�
�
� of G�. Therefore, we

have

52

Δ� + Δ� ≤ −6 + 26 − 2 ∙ 6�6 − 1�6� − 6 + 2 ∙ 12 + 66� − 6 + 2 1 − 6(6 − 4)6 − 2 ∙ 12

= −6�6 − 3�6 − 2 ∙ 12 < 0.

Thus, the proof of Theorem 12 is completed. ⬛

3.3 Tight Analysis

In Section 3, we prove that TriAct is 6-competitive with 6 ≈ 3.326. In this

section, we show that the lower bound of the algorithm is also 6. This mseans that the

exact competitive ratio of the algorithm is 6. We introduce an adversary through

Theorem 13 and prove the existence of such a lower bound. The adversary makes a

special sequence of requests on four nodes on a ring network against TriAct, such that

upon any request either the condition of Case B or the condition of Case E holds.

Theorem 13. For a sufficiently large integer ,, there exists a request sequence	� =��, … , �$� and four request nodes �, �, �, and � on a ring network, such that �-�.)���*#��, �� ≥ 6	 ∙ �-�.(&)��,�� for 6 ≈ 3.326 and the initial server node is �.
Proof. The adversary sets (��, �� = ��
����

���
��
5 1 and (��, �� = (��, �� = �
�
��
�
$ 1, such

that neither ;(�, �) nor ;(�, �) has an edge of ;(�, �). Moreover, request �$��� is at �,

request �$��� is at �, request �$��� is at �, and request �$��$ is at �, where 0 ≤ " < ,

(see Figure 16).

We first calculate the total cost incurred by TriAct, �-�.)���*#��,��. The request �$��� is served with the cost of (��, �� and the server does not move from �, because

Case B holds. The request �$��� is served with the cost of (��, �� and the server

migrates from � to � with the cost of ((�, �), because Case E holds. The request �$���
is served with the cost of (��, �� and the server does not move from �, because Case B

53

holds. The request
���� is served with the cost of ��5, �� and the server migrates from

5 to � with a cost of ��5, ��, because Case E holds. Therefore, we have

�6�7��������, /� � 0*���, 4� � 2���, 5� � ��5, �� � 2��5, ��-
� 0*2���, 4� � 4���, 5�-.

Figure 16. Representation of adversary model against TriAct

Now we calculate the total cost incurred by a specific algorithm ALG,

�6�7�����, /� that is at least �6�7����, /�. ALG migrates the server from � to 4 before

any request occurs, with the cost of ���, 4�. The request
���� is served with no cost

and the server does not migrate from 4. The request
���� is served with the cost of

��4, 5� and the server migrates from 4 to � with a cost of ��4, ��. The request
���� is

served with no cost and the server does not migrate from �. The request
���� is served

with the cost of ���, �� and the server migrates from � to 4 with a cost of ���, 4�.
Therefore, we have

�6�7���, /� � ���, 4� � 0*��4, 5� � ��4, �� � ���, �� � ���, 4�-
� ���, 4� � 0*��5, �� � ���, 4�- � ���, 4� � 0*2���, 4�-.

Since

54

lim�→6
,�2(��, �� + 4(��, ���(��, �� + ,�2(��, ��� = (��, �� + 2(��, ��(��, ��

=
6 − 26� − 6 − 4 1 + 2 ∙ 6� − 36 + 2

26� − 26 − 8 16 − 26� − 6 − 4 1 = 6

then
*+�#������,�,-.
*+�#���,�,-. is at least 6. This completes the proof. ⬛

3.4 Competitiveness

The exact value of 6 is the positive solution of the equation

−6$ + 46� + 6� − 186 + 24 = 0. The strict solution is

6 = 1 −
<9√N�

� + 42√N� − 71
6√N� +

O−√N� + 48√N�<9√N�
� + 42√N� − 71

+ 71
9√N� + 28

3

2

where	N = �√��$�5
� − �777

�4 .

A more accurate approximation for this ratio would be 6 ≈ 3.325722333398888.

3.5 Remarks

In this chapter, we proposed a deterministic algorithm for the uniform page

migration problem in ring networks. The competitive ratio 6 ≈ 3.326 of the algorithm

is an improvement on the previous competitiveness of 3.414 in our setting for general

ring networks. We think similar technique can be utilized to design novel algorithms

for improving current solution on restricted networks such as 4-node and 5-node rings.

Moreover, we conjecture the optimality of proposed algorithm for general ring

networks. A tight example was found to express a lower bound of 6 for the algorithm.

55

If possible, one could seek to find an algorithm to cover a larger & with better

competitiveness than 4.

56

Telecommunicational Servers Problem

The traditional problems of managing data (see sections 1.5.2 and 01.6) arise

for optimizing the ‘load’ of network. As a subsequence, the online algorithms are

designed in a load-efficient approach, and no similar studies are known on time-

efficient methods on networks. Recall the general problem of data management

(section 1.5.2), in which the objective function of optimization ∑ �
������� �	
�
�

������, ���� is defined for a sequence of D requests and a state transition function of �.

For example, the online algorithm working on the first request on the network of Figure

17, costs the ‘summation’ of ‘serving’ the request through slightly shaded edges as well

as ‘moving’ a copy of data through the strongly shaded edge. ‘Summation’ of costs

matters when the ‘load’ is the subject of optimization.

Figure 17. An example to show the importance of telecommunicational servers problem

How about if the ‘time’ matters for optimization? In the network of the example,

both actions of service and move can be done simultaneously, so that we can take the

maximum of them for optimization, since we do not see a reason for movement to wait

and start after service, because there is no overlap between two actions.

57

In modern networks such as telecommunications, the bandwidth of

interconnections has been dramatically developed, and it is not hard to imagine that in

the case of overlapping, each interconnection is able to handle both of ‘service’ and

‘move’ tasks, simultaneously. We suppose each edge of the corresponding graph is

capable to carry service and move without interference.

In the example of Figure 17, suppose the transition cost from the initial state ��
to the next state �� equals to ����, ��� = 3 incurred by moving a copy of data through

the strongly shaded edge. In addition, the cost of serving the first request equals to ������ = 2 which is incurred by the distance of lightly shaded edges. For our

telecommunicational servers problem, the total cost for the first request equals to

maxP3,2Q = 3, since the cost is time and, we assume, service and move are done

simultaneously. Note that in the data management problem (load-efficient version of

telecommunicational servers problem), the total cost (i.e. load) equals to 3 + 2 = 5.

Here we define a time-efficient problem, telecommunicational servers problem,

with the objective of ∑ max{�����
��, �(��
�, ��)}	��� . Similarly, as a time-efficient

version of page migration, we define telecommunicational server problem, with the

objective function ∑ max{(���
�, ���,& ∙ (���
�, ���}	��� for the distance metric of (in

the network with a single page of size &. In these problems, we suppose each request

is issued after finishing the service and move (or migration) of the previous request.

Taking the maximization in the objective functions is due to the waiting time until

finishing the accomplishment of both actions.

58

Figure 18. An example of an online algorithm for the telecommunicational server problem

Figure 18 shows an example of online algorithm to solve a telecommunicational

server problem. This example can be recognized as a time-efficient version of former

example shown in Figure 7 (see Section 0, Page 22) for the page migration problem. In

this example here, suppose the page has size of ! � 2. Therefore, the first request

incurs a cost of 4, and the second request costs 3, with the assumption that all edges

have unit distances.

To our point of view, the telecommunicational server problem is more

interesting than the page migration problem, while the network is defined in Euclidean

space. We follow the ‘uniform’ naming for the unit page size as uniform

telecommunicational server problem which targets ∑ max'������,
��, ������, ���(
�
� .

We leave open, the design of online algorithms for these problems in various metrics.

As a starting point, we mention some designing techniques of efficient online

algorithms for each of these two problems on general graphs. About designing work

function algorithms, the preliminary steps might be to recursively define the problem

59

and observe the behavior of work functions for some sample input sequences using

dynamic programming. On another side, a counter-based approach could be

considering counters on the requesting nodes, such that a new request will increment

the counter of its corresponding node and will decrement the counter of another node.

Some experiments may intuitively suggest deciding to move the servers after reaching

a specific number of counts, which is usually a function of a data-property. One other

idea may look for a phase-based algorithm by keeping the servers' location throughout

a fixed or dynamic number of requests. As for continues spaces like Euclidean space,

the evidences appear that deciding to move towards the center point of some of previous

requesting points would be a proper choice for an online algorithm.

It would be an interesting future work, to consider designing online algorithms

for these problems on general graphs by handling work functions (see section 1.3.7).

60

Conclusions

We first introduce several frameworks as the basements to conduct the research

works of online computation. Metrical task systems are clarified as a general framework

for defining online problems, so that we adapt the specific problems of the study to

these systems. The standard technique of work functions as well as the useful technique

of counting are introduced as methodical approaches to design online algorithms. An

abstraction of algorithmic competition, as well as the model of adversary, and the

scheme of amortization, are all introduced as analytical tools for measuring the

efficiency of online algorithms.

Well-studied network problems are surveyed so that the current states of the art

on each problem are shown together with general hints of algorithmic design. The

bounds of �-server problem for the maintenance of � servers regarding their mobile

locations in the network are stated in general networks, and a long-standing open

question for this problem is mentioned. The data management problem for

administering replicas of the resource in a real-time responsible network is also

introduced. The achievements on general and some restricted graphs are looked up for

this problem, in both views of deterministic and randomized algorithms. One variant of

this problem, the online Steiner tree problem is reviewed, expressing its strong

connection with the origin in the aspect of competitiveness. The page migration

problem has to determine an individual server location after satisfying the request of

network. This problem is intently surveyed to demonstrate its lower and upper bounds

by some algorithms in various topologies against different adversarial models. The

61

investigation is done more carefully for the uniform model of problem, in which each

request occupies the entire resource.

For the uniform page migration problem, we succeed to achieve improvements

in two different networks. The network of Euclidean space with arbitrary dimension, as

well as the network of general rings, are both considered, and deterministic online

algorithms are designed. The algorithms significantly improve the best former

algorithms. For the Euclidean space, an efficient algorithm is designed. It is simple to

understand. The online algorithm keeps the server at the center of two points, which are

initially located at the initial server location. Upon each request, the farthest point

moves to the requesting node. This algorithm improves the upper bound of the problem

from 2.8 to 2.75, noting that the lower bound of problem is 2.5 and the analysis of

adversary against the algorithm gives a lower bound of 2.732 for the algorithm. As for

the general rings, a deterministic algorithm is designed. It is hard to explain in some

easy words. This algorithm works in six cases and in analysed in eleven cases, achieving

an improved and tightened upper bound of 3.326 for the problem, and extending the

scheme of amortization for online computation.

The "-server problem can be adopted for both load-efficient and time-efficient

subjects of study. But the problem of data management does not make sense from a

time-efficient point of view, since there is capacity for performing both actions of

service and relocation simultaneously, when they are done through separate

interconnections, or when the bandwidth is capable enough for carrying the action of

service and movement, at the same time. In this way, we define new online problems

of Telecommunicational servers and Telecommunicational server, as the variants of

data management and page migration.

62

REFERENCES

[1] A. Khorramian and A. Matsubayashi, “Uniform Page Migration Problem in
Euclidean Space,” Algorithms, vol. 9, no. 3, p. 57, 2016.

[2] A. Khorramian and A. Matsubayashi, “Online Page Migration on Ring Networks
in Uniform Model,” Dec. 2016.

[3] D. Goldin, P. Wegner, and S. A. Smolka, Interactive computation: The new
paradigm. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[4] D. Goldin and P. Wegner, “Principles of Interactive Computation,” in Interactive
Computation, Springer Berlin Heidelberg, 2006, pp. 25–37.

[5] R. Milner, “Turing, Computing and Communication,” in Interactive
Computation, Springer Berlin Heidelberg, 2006, pp. 1–8.

[6] G. Japaridze, “Computability Logic: A Formal Theory of Interaction,” in
Interactive Computation, Springer Berlin Heidelberg, 2006, pp. 183–223.

[7] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, vol.
2, no. 1471–4914 LA–eng PT–Journal Article PT–Review PT–Review, Tutorial.
cambridge university press, 1998.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT Press, 2009.

[9] M. M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rend. del Circ. Mat.
di Palermo, vol. 22, no. 1, pp. 1–72, Dec. 1906.

[10] S. Albers, “Online Algorithms,” in Interactive Computation, Springer Berlin
Heidelberg, 2006, pp. 143–164.

[11] N. Nishimura, “Introduction to Reconfiguration,” 2017.
[12] B. E. Illy, “The complexity of change,” in Surveys in combinatorics, vol. 409,

no. June, 2002, pp. 1–21.
[13] T. Ito et al., “On the complexity of reconfiguration problems,” Theor. Comput.

Sci., vol. 412, no. 12–14, pp. 1054–1065, Mar. 2011.
[14] J. Abernethy, P. L. Bartlett, N. Buchbinder, and I. Stanton, “A Regularization

Approach to Metrical Task Systems,” Springer, Berlin, Heidelberg, 2010, pp.
270–284.

[15] N. Buchbinder, S. Chen, and J. S. Naor, “Competitive analysis via
regularization,” in Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, 2014, pp. 436–444.

[16] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging
rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, Feb. 1985.

[17] S. Ben-David et al., “On the power of randomization in on-line algorithms,”
Algorithmica, vol. 11, no. 1, pp. 2–14, Jan. 1994.

[18] A. V Aho and J. E. Hopcroft, The design and analysis of computer algorithms.
Pearson Education India, 1974.

[19] R. E. Tarjan, “Amortized Computational Complexity,” SIAM J. Algebr. Discret.
Methods, vol. 6, no. 2, pp. 306–318, Apr. 1985.

[20] A. Borodin, N. Linial, and M. E. Saks, “An optimal on-line algorithm for
metrical task system,” J. ACM, vol. 39, no. 4, pp. 745–763, Oct. 1992.

63

[21] A. S. Tanenbaum and D. (David) Wetherall, Computer networks. Pearson
Prentice Hall, 2011.

[22] B. Bicsi, Network Design Basics for Cabling Professionals. McGraw-Hill, 2002.
[23] E. Torng, “A unified analysis of paging and caching,” Algorithmica, vol. 20, no.

2, pp. 175–200, 1998.
[24] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young,

“Competitive paging algorithms,” J. Algorithms, vol. 12, no. 4, pp. 685–699,
1991.

[25] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, “Competitive paging with
locality of reference,” J. Comput. Syst. Sci., vol. 50, no. 2, pp. 244–258, 1995.

[26] M. Manasse, L. McGeoch, and D. Sleator, “Competitive algorithms for on-line
problems,” in Proceedings of the twentieth annual ACM symposium on Theory
of computing, 1988, pp. 322–333.

[27] E. Koutsoupias and C. H. Papadimitriou, “On the k-server conjecture,” J. ACM,
vol. 42, no. 5, pp. 971–983, 1995.

[28] Y. Bartal, B. Bollobás, and M. Mendel, “A Ramsey-type theorem for metric
spaces and its applications for metrical task systems and related problems,” in
Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium
on, 2001, pp. 396–405.

[29] Y. Bartal, A. Blum, C. Burch, and A. Tomkins, “A polylog (n)-competitive
algorithm for metrical task systems,” in Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, 1997, pp. 711–719.

[30] Y. Bartal, A. Fiat, and Y. Rabani, “Competitive algorithms for distributed data
management,” J. Comput. Syst. Sci., pp. 341–358, 1995.

[31] B. Awerbuch, Y. Bartal, and A. Fiat, “Competitive distributed file allocation,”
Inf. Comput., vol. 185, no. 1, pp. 1–40, 2003.

[32] M. Imase and B. M. Waxman, “Dynamic Steiner tree problem,” SIAM J. Discret.
Math., vol. 4, no. 3, pp. 369–384, 1991.

[33] C. Lund, N. Reingold, J. Westbrook, and D. Yan, “Competitive On-Line
Algorithms for Distributed Data Management,” SIAM J. Comput., vol. 28, no. 3,
pp. 1086–1111, 1999.

[34] Y. Kawamura and A. Matsubayashi, “Randomized Online File Allocation on
Uniform Cactus Graphs,” IEICE Trans. Inf. Syst., vol. 92, no. 12, pp. 2416–2421,
2009.

[35] D. L. Black and D. D. Sleator, “Competitive Algorithms for Replication and
Migration Problems,” Pittsburgh, PA, USA, 1989.

[36] R. M. Karp, “A 2k-competitive algorithm for the circle,” Manuscript, August,
vol. 5, 1989.

[37] A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair, “Cuts, trees and ℓ1-
embeddings of graphs,” Combinatorica, vol. 24, no. 2, pp. 233–269, 2004.

[38] A. Matsubayashi, “Non-greedy Online Steiner Trees on Outerplanar Graphs,”
Springer, Cham, 2017, pp. 129–141.

[39] W. Glazek, “Lower and Upper Bounds for the Problem of Page Replication in
Ring Networks,” in Mathematical Foundations of Computer Science, 1999, pp.
273–283.

[40] W. Glazek, “Online algorithms for page replication in rings,” Theor. Comput.
Sci., vol. 268, no. 1, pp. 107–117, 2001.

64

[41] A. Matsubayashi, “A 3-Competitive Page Migration Algorithm on Trees,” 2015.
[42] Y. Bartal, M. Charikar, and P. Indyk, “On page migration and other relaxed task

systems,” Theor. Comput. Sci., vol. 268, no. 1, pp. 43–66, 2001.
[43] M. Bienkowski, J. Byrka, and M. Mucha, “Dynamic beats fixed: On phase-based

algorithms for file migration,” in The 44th International Colloquium on
Automata, Languages, and Programming, 2017, no. 13, pp. 1–13.

[44] J. Westbrook, “Randomized algorithms for multiprocessor page migration,” On-
line Algorithms, vol. 7, no. 5, pp. 135–150, 1992.

[45] M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook, “Page migration
algorithms using work functions,” Proc. 4thInternational Symp. Algorithms
Comput., vol. 762, pp. 406–415, 1993.

[46] A. Matsubayashi, “Asymptotically Optimal Online Page Migration on Three
Points,” Algorithmica, vol. 71, no. 4, pp. 1035–1064, 2015.

[47] A. Matsubayashi, “UNIFORM PAGE MIGRATION ON GENERAL
NETWORKS,” Int. J. Pure Appl. Math., vol. 42, no. 2, pp. 161–168, 2008.

[48] B. Feldkord and F. Meyer auf der Heide, “The Mobile Server Problem,” in
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures - SPAA ’17, 2017, pp. 313–319.

[49] J. Kleinberg and E. Tardos, Algorithm Design. Pearson Education, 2011.
[50] J. A. (John A. Bondy and U. S. R. Murty, Graph theory with applications.

American Elsevier Pub. Co, 1976.
[51] D. B. West, Introduction to graph theory. Prentice Hall, 2001.
[52] N. Reingold, J. Westbrook, and D. D. Sleator, “Randomized competitive

algorithms for the list update problem,” Algorithmica, vol. 11, no. 1, pp. 15–32,
1994.

[53] A. Matsubayashi, “A 3+Omega(1) Lower Bound for Page Migration,” 2015
Third Int. Symp. Comput. Netw., no. 1, pp. 314–320, 2015.

