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Abstract 

For years, alkali-silica reaction (ASR), more commonly known as "concrete cancer," 

caused severe degradation in many civil engineering structures. The development of a damage 

identification method plays a significant part in determining the health of a structure affected 

by ASR. With the aim of contributing to efficient structural health monitoring approaches, the 

present study attempts to develop an evaluation approach that employs only displacement data 

for recognizing structural damage. The method is based on the correlation between structural 

damage and variations in measured responses. Two new damage indicators—displacement 

assurance criterion (DAC) and displacement based index (DBI)—are introduced and employed 

in numerous scenarios to determine damage properties. Parametric studies performed by a 

finite-element analysis showed that DAC could properly indicate the occurrence of degradation 

in structures and DBI could be utilized as a suitable pointer for damage localization. Regarding 

actual examinations, this study constructed three full-size prestressed concrete (PC) girders 

from the high-early-strength Portland cement and reactive aggregates, and then exposed them 

to outdoor environmental conditions. Two of the specimens were affected by the ASR whereas 

the third one was maintained at an inactive state by suppressing the acceleration of the ASR 

using the fly ash. Destructive loading tests were conducted on the PC girders to evaluate the 

feasibility of DAC approach on damage detection by analyzing the displacement curves 

obtained from the experiments. From the obtained results of the numerical and experimental 

methods, this study proposes a threshold of DAC index for the sound structure. If a structure 

performs a higher value of DAC than the threshold, it can be judged as safety structure. 

Conversely, the system will give warnings about the health of that structure. For long-term 

prospects, further studies about DAC need to be implemented in practical cases in order to 

obtain the suitable DAC threshold value for each kind of structure. Besides, structural responses 

have been used as inputs in the evaluation procedures of civil structures for many years. Apart 

from the degradation of a structure itself, variations in the environmental conditions affect its 

properties. For adequate maintenance, it is important to quantify the environment-induced 

changes and discriminate them from the effects due to damage. Therefore, this study also aims 

to present preliminary considerations for estimating the long-term behavior of ASR-affected 

structures and attempts to proposed recommendations about measurement noise when using 

structure responses as input for structural damage detection. As lab-scale efforts, this study 

investigated the combined effect of the changes in the environmental conditions and the ASR-

induced deteriorations on the dynamic and static responses of the three PC girders, which were 

periodically tested for one and a half years. It was found that when the temperature and humidity 

increased, the frequencies and damping ratios decreased in proportion. However, no apparent 

variation in the mode shapes could be identified. Besides, the ambient temperature gradient 
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strongly affected the changes in the vertical movement of the girders. All values measured from 

displacement meters have positive correlations with the ambient temperature. In other words, 

the amplitude of the camber increased with respect to the growth in the ambient temperature. 

These outcomes should be considered in structural damage detection using changes in structural 

responses in practice because the environmental conditions might cause unexpected errors in 

measured responses in the measurement field. 
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Chapter | 1  

Introduction 

1.1 General Background 

Structural Health Monitoring (SHM) aims to provide, at every moment during the life of a 

structure, a diagnosis of the soundness. The performance of the structure must remain in the 

safety region specified in the design, although this can be varied by normal aging due to usage, 

by the effect of the environment, and by unforeseen situations. Routine examinations and 

degradation estimates help to provide valuable information for SHM. Furthermore, early 

detection, timely maintenance, and recovery works can enhance the lifetime of a structure and 

prevent overall failure, guaranteeing its structural safety and serviceability with minimum cost. 

Therefore, the development of a damage identification method performs a significant role in 

determining the health of a structure. For instance, seawater, deicing salts, and salty 

environments cause grave consequences, without warning, in bridges of coastal areas.  Besides, 

alkali-silica reaction (ASR) caused severe degradations in many civil engineering structures 

over the world [1]. In Japan, reactive aggregates are widely distributed. Especially, andesite is 

widespread in the Hokuriku region, which causes ASR degradation in concrete structures (see 

Fig. 1.1). Since the replacement of all structures deteriorated by ASR is almost impossible, 

quantitative and easily operated indicators should be established to evaluate the current status 

of a structure, before destruction occurs. Rytter suggested three levels in damage identification: 

the appearance of deterioration, the position of internal damage, and the amount of damage in 

terms of stiffness loss [2]. In other words, the main aim of a damage detection method is to 

identify occurrence, location, and severity of damage. In the SHM of concrete bridges, it is 

important to assess the relationship between structural performance and state of damage, to 

conduct maintenance. Therefore, the responses of a structure, which are divided into the two 

main groups of static and dynamic responses, are of critical importance. Developing efficient 

and reliable damage detection methods for daily use is a topic that has gained notable attention 

in the literature in recent years. 
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Figure 1.1 ASR Deterioration in the Hokuriku region, Japan 

1.1.1 Damage detection based on dynamic responses 

Over the years, many studies relating to the application of dynamic responses to damage 

detection have been performed [2–16], e.g., natural frequencies, mode shapes, modal curvature, 

and high-order mode shape derivative. A recent study demonstrated that natural frequencies, 

mode shapes, and damping ratios are invariant in structures [14]. Thus, the health of a structure 

is correlated to the changes in its modal parameters. Their alterations do not depend on the 

location of damage because of their global characteristics. Therefore, deterioration can be 

estimated by sensors mounted at any investigated positions of a structure. Specifically, changes 

in natural frequency have been thoroughly investigated as identifiers of stiffness reduction [3]. 

In addition, changes in uncertain frequency and mode shape data [4], in incomplete mode shape 

[5,6], in mode shape curvatures [7,8], in power spectrum density function of the response [9], 

and in the flexibility matrix [10] have been used for detecting and localizing damage. Variations 

in the element modal strain energy have been applied to improve damage quantification [11]. 

In 2016, by conducting a comparative study, Das et al. [12] reviewed the technical literature 

concerning vibration-based damage detection approaches utilized for civil engineering 

structures.  

1.1.2 Damage detection based on static responses 

Damage detection methods based on static data have attracted notable consideration, because 

static parameters depend on the stiffness matrix, and they can be obtained accurately and rapidly 
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by inexpensive tools of measurement [15–26]. To assess the stiffness matrix, Sheena et al. [17] 

introduced an analytical approach based on decreasing the deviation between the actual and the 

analytical stiffness matrix subjected to measured displacement constraints. In 1991, Sanayei 

and Onipede [18] proposed a precise method to evaluate the characteristics of structural 

elements from static experiment data, such as a set of applied static forces and another set of 

measured displacements. Based on the idea of minimizing the inconsistency between model 

and measurements by the constrained least-square minimization, Banan et al. [19] suggested an 

approach for determining member characteristics from displacements caused by an identified 

static load. Furthermore, Wang et al. [15] proposed a two-stage classification algorithm for 

recognizing structural damage based on the differences between natural frequencies and static 

displacements. Bakhtiari-Nejad et al. [22] presented a method to describe changes in a static 

displacement with certain degrees of freedom by minimizing the difference between the load 

vectors of damaged and undamaged structures. In another study worth mentioning, Lee and 

Eun [23] presented a numerical technique for damage detection by utilizing the displacement 

curvature and all static deflection data, which are expanded from the measured deflection data. 

As a result, the proposed method could efficiently detect single or multiple damages based on 

the exact displacement measurement, neglecting the variation between the test data and the 

analytical results. Five years later, Abdo [24] made a parametric investigation employing the 

displacement curvature for localizing damage. The results confirmed that alterations in the 

displacement curvature could be utilized as an effective indicator, even for a small amount of 

stiffness loss. Another study also assessed the effectiveness of using the displacement curvature 

derived from static response data for revealing the location and severity of damage in Euler–

Bernoulli beams [25]. Numerical results proved that the displacement curvature obtained from 

static responses is sensitive to stiffness reductions (reduction of the Young’s modulus). It 

reveals the characteristics of a damaged area, and thus, it can be used as a good indicator for 

damage detection. Additional research efforts attempted to detect damage properties using 

combined data from static and modal tests. Specifically, static and dynamic strain data from a 

distributed fiber optic sensor were employed to recognize the occurrence of damage to large 

structures [16]. 

1.1.3 Effects of environmental conditions on structural properties 

Long-term monitoring data of actual structures include load-induced and temperature-induced 

structure responses. For many years, most researchers have concentrated on using structural 

responses for identifying the properties of damages (occurrence, location, and severity), 

whereas there are few studies concerning the effects of environmental conditions on variations 

of structural features (dynamic and static responses). If the effect of these uncertainties on 



CHAPTER | 1 Introduction 

 

 HA MINH TUAN 1624052012   14 

 

structural vibration properties is larger than or comparable to the effect of structural damage on 

its vibration properties, the structural damage cannot be reliably identified [27]. To avoid this 

happening, the structural response should be corrected to the same environmental conditions. 

For adequate maintenance, it is necessary to quantify the environment-induced changes and 

discriminate them from the effects due to damage. Therefore, studying the environmental 

effects on structural properties is important to reliably apply the monitoring methods to civil 

engineering structures. Cornwell [28] found that the first three natural frequencies of the 

Alamosa Canyon Bridge varied about 4.7%, 6.6% and 5.0% during a 24 h period as the 

temperature of the bridge deck changed by approximately 22 ºC. Peeters and De Roeck [29] 

reported that the first four vibration frequencies varied by 14%–18% during the ten months. It 

was also found that the frequencies of all the modes analyzed, except the second mode, 

decreased with the temperature increase. The second mode frequency, however, increased when 

the temperature was above 0 ºC. They also reported that the vibration frequencies increased 

significantly when temperature decreased to 0 ºC and below, which might be due to stiffening 

from the frozen layers. Xia [27] investigated the relation between dynamic properties and the 

environmental factors temperature and humidity. It is found that temperature deteriorates the 

modulus of elasticity of concrete significantly. Consequently, the natural frequencies decrease 

with temperature increase. This results can be interpreted by the fact that as concrete absorbs 

more water in higher humidity environment and increases the mass, the natural frequencies also 

decrease with humidity increase. Besides, to date, there are a few studies reported the effect of 

environmental conditions on static responses which are considered as upward displacement 

(also referred to as curling or camber) in this study.  

1.1.4 Effects of fly ash on the soundness of ASR-affected structures 

Towards the sustainable development of structures in the Hokuriku region, another concern of 

the present study was the possibility of applying fly ash to structures deteriorated by ASR to 

increase their service lives. Indeed, alkali-silica reaction is one of the prominent explanations 

of concrete degradation. As mentioned above, many reactive aggregates are widely distributed 

to many places in Japan. Especially, in Hokuriku region along the Sea of Japan, there is a wide 

spread of andesite which accelerates the ASR-induced expansion of concrete. The reaction 

begins with the expansion of reactive aggregate by forming a swelling gel of alkali silicate 

hydrate (N(K)-C-S-H). The ASR gel increases in volume, exerting significant pressure within 

the material, which causes spalling, cracking, and loss of strength in the concrete and rebar. The 

effects of blast furnace slag on the loading capacity of prestressed concrete (PC) specimens 

using reactive aggregates have been confirmed by Kunitomi et al. in 2015 [30]. Besides, it is 

now generally accepted that an appropriate use of fly ash can prevent expansion due to ASR in 
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concrete [31]. An increase in a level of replacement of a particular fly ash further reduced the 

expansion of concrete compared with the concrete without fly ash [32]. Since the Hokuriku 

region is currently able to produce a high-quality fly ash stably [33,34], the efficient use of fly 

ash helps improve the concrete durability and reduces the environmental burden as well as 

promote the regional industry due to the benefits of self-sufficiency. For example, together with 

the large-scale renewal project of Hokuriku Expressway using fly ash concrete precast PC slabs, 

the construction of new PC girder bridges in the local region also utilized fly ash for mitigating 

deterioration caused by ASR [35]. Indeed, the countermeasures for newly built bridges against 

ASR have achieved success. However, the evaluation criteria for repair and recovery work have 

not been clarified as regards to ASR-affected structures. Therefore, to obtain these materials 

and to evaluate the effectiveness of fly ash on mitigating ASR acceleration, it is necessary to 

study the loading capacity and mechanical properties of full-size PC girders degraded by ASR. 

1.2 Objectives and scope 

Among the numerous techniques developed for detecting structural damage, the changes in 

static parameters have been confirmed to be accurate in identifying the occurrence and location 

of structural damage [21]. Accordingly, the objective of this study is to investigate the feasibility 

of utilizing displacement data exclusively for structural damage detection. A numerical model 

of a prestressed concrete (PC) girder degraded by various damage scenarios was examined to 

reveal the relationship between deterioration state and static responses. Specifically, the 

outcome deflections at each stage of loading were obtained and used for determining two new 

damage indicators—displacement assurance criterion (DAC) and displacement-based index 

(DBI). Numerical studies were further performed utilizing finite-element commercial software 

to verify the correlation of DAC with severities of deterioration and the sensitivity of DBI in 

stiffness loss localization. Moreover, the effects of unforeseen parameters affecting the 

efficiency of the proposed methods, such as the number of measurements and the location of 

observed points, were also investigated. Besides the numerical studies, attempts have been 

made to evaluate the health of full-scale specimens by conducting long-term monitoring of the 

correlations between structural responses, ASR-caused deterioration, and environmental 

conditions. 

As another effort, this study aims to investigate how the structural properties and load-bearing 

capacity of PC girders, which were affected by varying degrees of ASR-induced damages, 

change with and without fly ash. In other words, the effectiveness of employing fly ash to 

suppress ASR acceleration in structures was also discussed and analyzed through experiments 

and long-term monitoring approaches. To achieve this goal, three full-scale PC girders were 

conducted by the mixture of reactive andesite aggregates and high strength Portland cement. 
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Particularly, one of them was mixed with an additional amount of fly ash. After one and a half 

years of the exposure and monitoring of the variation in structural properties, destructive 

bending tests were carried out so as to clarify the difference in flexural capacity. In addition, 

after the bending tests, a significant number of concrete cores were taken from both girders to 

estimate the relationship between mechanical properties of concrete such as compressive 

strength, static elastic modulus, and ultrasonic wave propagation velocity. Based on the 

obtained results, this study clarified mechanical properties of PC girder with and without fly 

ash affected by ASR deterioration. 

As discussed above, changes in environmental conditions also affect structural dynamic and 

static responses in a complicated manner. Therefore, the variation of structural performance due 

to environmental change should be discriminated from those caused by structural damage. In 

this study, the changes in the vibrational and static parameters of the three PC girders were 

monitored with respect to variations in ambient temperature and humidity, as well as 

development in ASR-induced cracks. In particular, the responses of three PC girders and the 

environmental conditions have been periodically monitored for one and a half years. Its 

vibrational properties, namely frequencies, mode shapes, damping ratios, and temperature-

induced displacements at different times were measured together with the ambient temperature 

during each measurement. To obtain more information about the correlations of the structural 

responses with the environmental conditions, the obtained data were then analyzed using linear 

regression models concerning the variations in the temperature and humidity. Moreover, the 

measured data were compared with predicted values obtained using finite element analysis 

procedures and trend line (empirical-linear). Finite element models were proposed and 

employed for conducting the analysis utilizing the computer code DIANA. The different 

dynamic and static performances of the three specimens were also considered to evaluate the 

effects of fly ash on ASR-affected structures. This study presents preliminary considerations 

for estimating the long-term behavior of PC girders and attempts to proposed recommendations 

about measurement noise when using structural responses as input for structural damage 

detection. 

The feasibility of the proposed DAC approach on practical cases was also evaluated and 

discussed. The displacement curves obtained from the destructive tests conducted on the PC 

girders were employed as the input for the DAC calculation to identify structural degradation. 

During the loading test, the vertical displacement was measured at seven points under the 

girders for computing the deflection curve at each loading step. Then, the obtained curves were 

analyzed to estimate the variation in the DAC value. Besides, a nonlinear finite-element model 

of the PC girder was produced to verify the relation between the changes in DAC with respect 

to structural degradation owing to applied loads in practice. Validations of the numerical 

analyses against the results of loading test were then considered for the evaluation of the 
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proposed approach. From the obtained results of the numerical and experimental approaches, 

this study aims to propose a threshold of DAC index for healthy structure in further researches. 

1.3 Structure of the dissertation 

This dissertation consists of 7 chapters including an introduction, and the entire study is roughly 

illustrated by the structure shown in Fig. 1.2. 

Chapter 2 provide an overview of the behaviors of actual structures affected by ASR. 

Specifically, this chapter presents the results of numerous experiments including long-term 

monitoring of structural behaviors and loading test conducted on the three PC girders placed 

outside the laboratory. Especially, reactive andesite aggregates were utilized for the mixtures of 

all girders. One of the girders was specially mixed with a controlled amount of fly ash for 

mitigating concrete expansion caused by ASR. Therefore, in addition to presenting changes in 

material properties of the structures under the influence of ASR, this chapter is also a feasibility 

study of using fly ash to minimize the damage caused by ASR. 

In Chapter 3, the use of static response as the input in the evaluation procedures of prestressed 

concrete structures was discussed. DAC and DBI were introduced and employed in numerous 

scenarios to determine damage properties. This chapter shows the results of numerical studies 

performed by finite-element analyses to verify the feasibility of the two proposed indices. In 

addition, the advantage and disadvantage of the proposed approaches were also evaluated and 

mentioned. 

Chapters 4 and 5 show a perspective on the effect of temperature and humidity on the dynamic 

and static behaviors of the structure, which have been used as the inputs in many damage 

detection approaches. From the obtained results, this chapter aims to provide a recommendation 

on the direct use of measured responses for assessing the health of structures. 

In Chapter 6, attempts have been made to utilize Displacement Assurance Criterion proposed 

in Chapter 3 on practical cases. The results of the destructive loading tests were carried out to 

evaluate the feasibility of DAC approach on damage detection. From the obtained results of the 

numerical and experimental methods, this chapter introduces a threshold of DAC index for 

healthy structure. 

Chapter 7 summarizes the results obtained in this study. 
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Figure 1.2 Structure of this dissertation 
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Chapter | 2  

Effects of Fly Ash on Mechanical Properties of PC 

Girder Using Reactive Andesite Aggregates 

2.1 Introduction 

During the previous years, the degradation due to alkali-silica reaction (ASR) in concrete 

structures has become a global concern. Many structures such as bridges, dams and concrete 

barriers were affected. Stanton [1] showed the loss in engineering features due to ASR for the 

first time in the U.S. in 1940. Since then, an increasing number of regions with different 

climates where civil engineering works experience deterioration problems as a result of the 

ASR has been reported from Argentina, Switzerland, Netherlands, Korea, Japan, Thailand and 

other countries [2–6]. In Japan, mineralogical and geological studies show that many reactive 

aggregates in the soil are widely distributed throughout the country [7]. Particularly in the Noto 

region, there is a wide distribution of andesite, which is the primary cause of ASR degradation 

in bridges [8–10]. Since 1982, ASR has been observed in highway structures in this region, 

where deicing salts (mainly NaCl) are used in the winter [11]. The added alkali contents from 

deicing salt and seawater have raised concrete alkali levels above acceptable limits, excepting 

concrete in cooperation with mineral admixtures such as blast-furnace slag or fly ash. Up to 

recent years, not only the Noto region but many infrastructures in the Hokuriku region (Fukui, 

Ishikawa, Toyama, and Niigata prefectures) were also degraded by ASR [12,13]. The reaction 

starts the expansion of reactive aggregate by forming a swelling gel of alkali silicate hydrate 

(N(K)-C-S-H). The ASR gel increases in volume, exerting significant pressure within the 

material, which causes spalling, cracking, and loss of strength in the concrete and rebar. The 

relations between the characteristics of ASR-induced damage and the reduction of the elastic 

modulus have been proved by many previous studies [14]. Detailed information on the cracking 

behaviors of many concrete structures damaged by ASR was presented in studies of Ono [15] 

and Tordoff [16]. Cracking in concrete due to ASR takes various patterns. In the portions of a 

reinforced concrete (RC) structure with little or no surface reinforcement, cracking tended to 

be irregular and maplike. The authors also suggested that, while notable and extensive corrosion 

had not yet been recognized, appropriate repair techniques should be considered to protect the 

damaged structures from further deterioration. Therefore, the development of maintenance 
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management methods became an important topic in the literature in recent years. 

Regarding modeling approaches, the ASR gel production, expansive behavior of ASR, and 

its damage have been studied recently [17–19]. Saouma [19] proposed finite element method 

(FEM) models for ASR, considering the micro-chemical reactions while attempting to apply 

models to structural levels. Two years later, by utilizing a computation scheme of multi-scale 

poro-mechanics, Takahashi et al. [18] carried out sensitivity analyses with the permeation of 

produced silica gel. Since structural concrete usually experiences combined effects of ASR, 

carbonation, freeze-thaw cycles, steel corrosion, and high cycle fatigue loads [17], the concrete 

degradation is complex. Indeed, ASR and steel corrosion will consume water on which frost 

damage also relies. In 2017, Gong et al. [17] successfully modeled the interaction between 

freeze-thaw cycles and ASR form the micro-structural level, taking the ice formation and ASR 

gel intrusion in pores into account, as well as the effect of entrained air.  

For the experimental and monitoring approaches, the effects of blast furnace slag on the 

loading capacity of prestressed concrete (PC) specimens using reactive aggregates have been 

confirmed by Kunitomi et al. in 2015 [20]. Besides, it is now generally accepted that an 

appropriate use of fly ash can prevent expansion due to ASR in concrete [21]. An increase in a 

level of replacement of a particular fly ash further reduced the expansion of concrete compared 

with the concrete without fly ash [22]. Since the Hokuriku region is currently able to provide a 

high quality fly ash stably [23,24], the efficient use of fly ash helps improve the concrete 

durability and reduces the environmental burden as well as promote the regional industry due 

to the benefits of self-sufficiency. For example, together with the large-scale renewal project of 

Hokuriku Expressway using fly ash concrete precast PC slabs, the construction of new PC 

girder bridges in the local region also utilized fly ash for mitigating deterioration caused by 

ASR [25]. Indeed, the countermeasures for newly built bridges against ASR have achieved 

success. However, the evaluation criteria for repair and recovery work have not been clarified 

as regards to ASR-affected structures. Therefore, to obtain these materials, it is necessary to 

study the loading capacity and mechanical properties of full-size PC girders degraded by ASR. 

Over the years, many researchers have taken the loading tests on both ASR-degraded PC and 

RC specimens.  

Regarding RC structures, Swamy and Al-Asali [26] carried out destructive load tests on 

RC beams, which were made with reactive coarse and fine aggregates, to determine their 

structural behaviors (load versus deflection) under significant ASR expansions. Their outcomes 

showed that the initial stiffness and ultimate load-carrying capacity were not obviously 

influenced by ASR and loading conditions, whereas ASR-induced reductions in the tensile 

strength and dynamic modulus of elasticity of concrete beams could be perceived. Later, Shenfu 

and Hanson [27] made six 1500 mm long reinforced concrete beams and immersed them in a 

cyclically-heated alkali solution in one year to accelerate ASR. Particularly, three of them were 
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produced with the reactive concrete, while the nonreactive concrete was utilized for the other 

beams. Although ASR-caused cracks occurred on specimens made with the reactive aggregate 

after six months of the immersion, they performed nearly the same flexural strengths as the 

nonreactive beams did. Moreover, the influence of ASR on the flexural loading capacity of 

preloaded and cracked beams was also perceived to be insignificant. The fracture mechanism 

of reinforcing steels in the case of concrete structures damaged by ASR was studied thoroughly 

by Miyagawa et al. [28]. The authors introduced the results of the investigation on the fracture 

mechanism, nondestructive testing methods, and repair and strengthening methods for damaged 

concrete structures. Particularly, the steel bar rib shape and the bending radius were considered 

to have a significant causal influence on steel bar fractures due to ASR. Moreover, weather 

conditions (such as rainwater, sunlight, and ambient temperature) caused obvious effects on 

ASR-induced deterioration which also tends to be particularly severe at locations where the 

number of steel bars is relatively small. As long as ASR-caused expansion does not break 

reinforcing steels, the soundness of a structure is considered not to be endangered. In 2012, 

Wang and Morikawa [29] studied the deterioration situation of concrete members due to ASR 

and its influence on shear failure mechanism and shear resisting performance of 1200 mm RC 

beams in both experimental and numerical approaches. The experimental results showed that 

undesirable shear collapse modes were obtained and the bond slip was easy to occur in RC 

beam with ASR-induced cracks along the tensile reinforcing bars. Besides, ASR deterioration 

was considered as the thermal strain model, which utilized a series of temperature values and 

the linear thermal expansion coefficient of the concrete element as inputs for simulating the 

expansion caused by ASR degradation. Their analysis results showed a good agreement with 

the experimental data regarding the load-displacement response, crack pattern and rebar strain 

distribution. As another study of Hajighasemali et al. [30], the influence of ASR on overall 

serviceability, strength, ductility and deformability on RC beams under service load conditions 

was investigated by considering creep and ductility phenomena. Twelve 1100 mm long RC 

beam specimens were initially produced utilizing to nonidentical concrete mixtures containing 

reactive aggregates (R) and nonreactive aggregates (N). The specimens were later subjected to 

flexural testing after 360 days of accelerated ASR conditioning. For ductility and deformability 

analyses on the basis of comparison of R and N beams, ductile indices related to displacement, 

curvature, and energy were estimated by considering load-deflection and moment-curvature 

curves. Their conclusions proved that ASR has a significant effect on the R beams (where cracks 

occurred at lower loads) and, the N beams were stronger than their equivalent R specimens at 

final loading. 

The structural performance of the prestressed beams made of concrete affected by ASR-

affected by ASR was described by Kobayashi et al. [31] in comparison with those of 

corresponding healthy beams. Ten 1600 mm PC beams made of two types of concrete with 
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alkali-silica reactivity and sound concrete under an accelerated curing condition of 40 ºC and 

100 % RH were subjected to long-term monitoring of changes in steel strains and destructive 

tests with shear span to effective depth ratio of 2.5 and 4.0. As their findings, longitudinal ASR 

expansion could be restrained by the introduction of prestressing force, although the effect 

depends strongly upon the amount of the prestress. Also, the reduction in the ultimate strength 

of ASR beam was approximately 10 % compared with that of the sound beam, even when the 

tensile strain in vertical stirrup exceeded 1000×10-6 and many longitudinal cracks occurred. 

Takebe et at. [32] verified the effects of the presence or absence of ASR deterioration on shear 

strength of concrete members using two different PC specimens (height 300 mm × width 300 

mm × length 2000 mm). The controlled beam contains normal aggregate and the other has ASR 

reactive aggregate in its mixture. Before destructive loading tests, both specimens were exposed 

outdoors for further progress of ASR deterioration in approximately 3 years. Their findings 

showed that both specimens failed in flexural mode, with final load of ASR-affected beam being 

about 7 % lower than that of the normal one. As recent efforts, Hiroi et al. [33] carried out the 

flexural loading test on real-scale large PC beams (height 1250 mm × width 1200 mm × length 

7000 mm) which were exposed to 7.5 years of deterioration. After the tests, concrete core 

samples were collected from the beams to evaluate mechanical properties of ASR-affected 

concrete. Their outcomes show that the mechanical values decreased even in the longitudinal 

direction where there was confinement due to the prestress. Moreover, the decreases in Young’s 

modulus and tensile strength were more obvious than that of compressive strength, and the 

decrease rate was higher in the vertical cores in which confinement was absent, as compared to 

the longitudinal cores. As another attempt of the same study, Yokoyama et al. [34] performed a 

visual observation of internal cracks in the cut section. Although many ASR cracks could be 

easily observed in the surface areas of the beam, most of them occurred outside the stirrups, 

with almost no further progress into the inside. Besides, the development of flexural cracks was 

partly interrupted by the appearance of ASR-induced horizontal cracks in the cover concrete, 

that resulted in a relatively decrease in stiffness. 

In addition, for the investigation and inspection of an actual bridge in which main girders were 

placed side by side as shown in Fig. 2.1, concrete cores are usually taken from side surfaces 

which might not provide enough information about the load-carrying capacity and stiffness of 

the girder accurately. As the development of cracks in PC girders is also governed by the 

restraints of the PC strands, the mechanical properties of concrete might differ from prestressing 

direction (girder-axis direction) to transverse direction [20]. Therefore, it is necessary to study 

this anisotropy of concrete in degraded PC girders. 
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Figure 2.1 Cracks occurs along with the PC strands (bottom surfaces). 

 

After all, none of above studies have been taken on the real-scale PC specimens using reactive 

aggregates to find the difference in flexural capacity due to the fly ash content. This study aims 

to investigate how the structural properties and load bearing capacity of PC girders, which were 

affected by varying degrees of ASR-induced damages, change with and without fly ash. Three 

full-scale PC girders were conducted by the mixture of reactive aggregates and high strength 

Portland cement for the present study. Particularly, one of them was mixed with an additional 

amount of fly ash. After one and a half years of the exposure, destructive bending tests were 

performed on two of the three girders so as to clarify the difference in flexural capacity. In 

addition, after the bending tests, a large number of concrete cores were taken from both girders 

to estimate the relationship between mechanical properties of concrete such as compressive 

strength, static elastic modulus, and ultrasonic wave propagation velocity. Based on the 

obtained results from the two girders, this study clarified mechanical properties of PC girder 

with and without fly ash affected by ASR deteriorations. 

2.2 Description of the PC girders 

2.2.1 Shape and exposure conditions 

The PC girders produced in this study were the full-size JIS A5373-AS09 girder. The side and 

cross-sectional views of the girders were the same, as shown in Fig. 2.2. From this figure, the 

girders had a length of 9600mm, a cross-section with an upper-edge width of 640 mm, a lower 

edge width of 700 mm, and a height of 450 mm. It should be noted that the sheath holes for 

lateral tightening of transverse beams were not provided. Regarding PC strands, each objective 

girder contained sixteen strands (SWPR7BL1S 12.7 mm) arranged longitudinally in three 

layers. Specifically, four strands were put as the first layer in the compression area while the 

other two layers consisted six strands in each were arranged in the tension area. The girders, 

which were obtained using a pretensioning method, had the same profiles and dimensions as 

the strands and stirrups. In this study, high strength Portland cement was utilized for all girders. 

One of them was particularly mixed with an addition amount of fly ash (girder No.3), while the 



CHAPTER | 2 Effects of Fly Ash on Mechanical Properties of PC Girders 

 

 HA MINH TUAN 1624052012   27 

 

other girders without fly ash was named as girder No.1 and girder No.2. After 14 h of steam 

curing at 50 ºC, the tendons were released from the external frames, and subsequently, the PC 

girders were continuously moistened indoor for approximately one week. Following the initial 

curing, they were placed in a sunshiny area of Kakuma campus in Kanazawa city so as to be 

exposed to outdoor environment for one and a half years, as shown in Fig. 2.3. During the 

exposure period, the average ambient temperature of Kanazawa city varied from approximately 

~13.3 ºC in April to ~27 ºC in August 2015 (during summer) and then decreased gradually by 

~22 ºC from the high temperature to ~5 ºC in January 2016 (between summer and winter), 

before rising gradually again to ∼27.5 ºC in August 2016 (summer season) [35]. The average 

ambient humidity was around 70% [35]. 

 

 

 

Figure 2.2 Diagram of PC girders (unit: mm). 

 

 
Figure 2.3 Exposure condition of the PC girders at Kakuma campus 
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2.2.2 Materials 

Materials used for the PC girders are summarized in Table 2.1. River sand and crushed stones 

from the Joganji River were used as reactive aggregates, which contain mainly cristobalite and 

opal. In addition, fly ash with an average grain size of up to 7μm was taken from Nanao Ohta 

Thermal Power Station of Hokuriku Electric Power Company. 

 

Table 2.1 Material properties of the girders. 

Material Symbol Specification 

Cement C Early-strength Portland cement, density: 3.14 kg/cm3, specific surface 

area: 4510 cm2/g 

Admixture FA Classified fly ash (Nanao Ohta Thermal Power Station), density: 2.43 

g/cm3, specific surface area: 4500 cm2/g, ignition loss value: 2.0 % 

Fine aggregate S River sand (from the Joganji River), density in saturated surface-dry 

condition: 2.61 g/cm3 

Coarse aggregate G Crushed stone (from the Joganji River), density in saturated surface-dry 

condition: 2.61 g/cm3 

High-performance 

water-reducing agent 

SP Mighty 21LV (Kao Chemicals) 

AE agent AE Vinsol (Yamaso Chemicals) 

 

Table 2.2 Mixture properties. 

Girder Water-binder 

ratio 

W/B (%) 

Fine aggregate 

percentage s/a 

(%) 

Unit (Kg/m3) 

Water 

W 

Binder B Sand S Gravel 

G 

NaCl 

Cement 

C 

Fly ash 

FA 

No.1 38.7 46.3 150 388 - 822 955 18.87 

No.2 38.7 46.3 150 388 - 822 955 25.5 

No.3 34.8 44.6 150 366 65 770 955 25.5 

2.2.3 Mixtures 

Three specimens were cast using the mixtures listed in Table 2.2. In this study, high-strength 

Portland cement was used for all the girders. One of them, namely girder No.3, was mixed with 

fly ash to mitigate the expansion of the concrete due to the ASR. The replacement rate of the 

fly ash to binder was set to 15% considering the quality and workability of the classified ash 

from a previous research result [25], wherein the effectiveness of the fly ash in reducing the 
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ASR-induced damage was confirmed. Moreover, to promote the expansion of the concrete via 

the ASR, 18.87 kg/m3 NaCl in an equivalent amount of 10 kg/m3 Na2O was added to the mixture 

of girder No.1, whereas No.2 and No.3 were mixed with 25.5 kg/m3 NaCl in an equivalent 

amount of 13 kg/m3 Na2O. In the present study, the destructive loading test was only conducted 

on girders No.2 and No.3. Therefore, the results of the loading test on girders No.2 and No.3 

are presented in the following sections of this chapter. 

2.2.4 Material characteristics of concrete 

Girders No.2 and No.3 had the same design compressive strength which were 35 N/mm2 and 

50 N/mm2 at the ages of 1 day and 14 days after casting, respectively. Table 2.3 shows the 

compressive strength of the girders at the time of stress transferring, seven days and 28 days of 

age. As shown in this table, girder No.2 had higher compressive strength than girder No.3 at 

28-day age. 

Table 2.3 Compression strength of concrete (unit: N/mm2). 

 Stress transferring σ 7 σ 28 

Girder No.2 59.3 70.3 79.8 

Girder No.3 54.4 65.9 77.4 

2.2.5 Material characteristics of steels 

Material characteristics of steels are shown in Table 2.4. SD295 D10 rebars were used for 

stirrups at 200 mm intervals while sixteen high strength steel wires SWPR7BL(1S 12.7 mm) 

were employed as strands used for prestressing. After 14 hours of casting, the strands were 

released from external frames and their tensile stresses of 1271 N/mm2 were transferred to the 

concrete. 

Table 2.4 Material characteristics of steels (unit: N/mm2). 

 Yield stress Tensile strength 

SD295 D10 375 512 

SWPR7BL1S 12.7 mm 1832 2015 

2.3 Deterioration situations of PC girders before the loading test 

2.3.1 Development of ASR-caused cracks 

Figure 2.4 show the crack patterns of the three girders after one and a half years of outdoor 

exposure. The black lines indicate the crack widths in the range of 0.3–0.8 mm whereas the 

crack widths over 0.8 mm are indicated using red lines. On the side and top surfaces of girders 
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No.1 and No.2, many cracks formed along the girder axis, whereas a few cracks could be 

observed on the lower surfaces. The acceleration of ASR-induced cracks on the top and side 

surfaces as described above was considered to be due to the influence of water and insolation. 

Moreover, alligator cracks were mainly observed at the girder end, where no prestress was 

introduced because of the influence of the adhesion transmission length of tendons, which was 

considered as 65 times the strand diameter (φ = 12.7 mm). Regarding girder No.3, cracks 

partially formed near the ends and on the side surfaces. Because the number of cracks was 

considerably small, the expansion of the ASR was effectively suppressed owing to the fly ash. 

2.3.2 Upward vertical displacement 

Figure 2.5 shows changes in convex curvature (upward vertical deflection) in the middle of the 

span of girders No.2 and No.3 during the exposure period, which was measured by stretching 

a leveling string (Fig. 2.6) between both ends. As regards girder No.2, the convex displacement 

increased up to approximately 13 mm before starting the load test. Meanwhile, almost no 

variation of the convex curvature over time was observed in girder No.3 mixed with fly ash. 

This monitoring result was also confirmed by previous researches [20,36]. Based on monitoring 

development of cracks in girder No.2, this study considered that ASR was accelerated by the 

penetration of water and the insolation. Because the top surface and both side surfaces were 

directly exposed to the sun, they suffered higher influences of solar radiation and rain than the 

bottom surface. Consequently, there were differences in ASR-induced expansion ratio of 

concrete between surfaces. Changes in the expansion ratio during the follow-up period of both 

girders are discussed in the following section. In additition, regarding the detail of PC strands, 

four strands were put as the first layer in the compression area while the other two layers 

consisted six strands in each were arranged in the tension area, as indicated in Fig. 2.2. 

Therefore, the upward curvature was generated not only by the difference in expansion amount 

but also by the difference in the tensioning forces of the PC strands between the upper and the 

lower concrete parts. 
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(a) Girder No.1 

 

  

 

(b) Girder No.2 

 

 

 
(c) Girder No.3 

 

Figure 2.4 Crack patterns of the three girders (From top to down: north side surface, top surface and 

both surfaces near both ends, south side surface and bottom surface) and the adhesion transmission 

length of tendons (approximately 825.5 mm) (unit: mm). 

65φ = 825.5 mm 

65φ = 825.5 mm 65φ = 825.5 mm 

65φ = 825.5 mm 

 

65φ = 825.5 mm 65φ = 825.5 mm 
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Figure 2.5 Changes in the convex curvature. 

 
Figure 2.6 Measurement of Convex curvature 

2.3.3 Expansion rates 

The progress of ASR deterioration in the PC girders was also observed by monitoring expansion 

ratio of concrete. Specifically, the ratios in the longitudinal direction (girder-axis direction) and 

the perpendicular direction of all concrete surfaces (upper, side and bottom surfaces) were 

measured near the supports and the span center as shown in Fig. 2.7. For each girder, 78 gauge 

plugs were affixed to the measurement positions then the measurement was performed 

periodically using a digital type contact micron strain gauge (Fig. 2.8). For tracking the 

variation of concrete expansion due to ASR, twelve tests were performed from July 2015 to 

October 2016, and there were 2880 valid sets of measurement data. The ratio was calculated by 

a change in the distance between two plugs (initial length = 100 mm). Figures 2.9 and 2.10 

show the variation in measurement results of both girders in the longitudinal and perpendicular 

directions over time, respectively. Each value indicated in these figures is the average of all 

results obtained from strain gauges mounted on the target surface in each measurement. From 

these figures, the expansion ratio of girder No.2 increased in the order of the bottom surface < 

the side surfaces < the top surface. Regarding girder No.3, this value reduced greatly at all parts. 

Moreover, when comparing the measured data on the top surface of girder No.2, the expansion 

ratio in the transverse direction was measured as 0.35% or more before the loading test, whereas 

it was 0.04% or less in the longitudinal direction. Therefore, because the expansion ratio in the 

transverse direction of the girder without fly ash was higher than in the longitudinal direction, 

there was a relation between the expansion ratio of concrete and the formation of longitudinal 

cracks owing to ASR. 

Upward curvature
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Figure 2.7 Measurement locations (unit: mm). 

 

    

(a) Contact micron strain gauge     (b) Gauge chip setup 

Figure 2.8 Expansion rate measurement. 

 

Figure 2.9 Variation of expansion rate in longitudinal direction. 
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Figure 2.10 Variation of expansion rate in transverse direction. 

2.4 Loading test 

2.4.1 Testing method 

Regarding the test setup, as shown in Fig. 2.11, each specimen with a span length of 9200 mm 

was subjected to the four-point bending test in which loads were applied at two points in the 

middle of the span. The testing girder was simply supported by two round steel bars. In addition, 

measurement items were load, deflection (vertical direction), crack development (girder axis 

direction) and concrete surface strain. The arrangement of measurement points is also 

summarized in this figure. 

 

Figure 2.11 Overview of loading test setup (unit: mm). 

2.4.2 Load – displacement relationship 

Figure 2.12 shows the relationship between applied load and vertical displacement at the span 

center of girders No.2 and No.3. As references, the design values of crack initiation load 

(126kN) and the bending fracture load (291kN) are also indicated in this figure. As a result of 

an examination of structural behavior in the elastic range, there was a difference of about 10% 

in the flexural rigidity between two girders. Specifically, the flexural rigidity of girders No.2 
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and No.3 were calculated as 11.5 kN/mm and 12.8 kN/mm when the applied load reached 50 

kN, respectively. As the results of the loading tests, the final load of girders No.2 and No.3 were 

recorded as ~312 kN and ~330 kN, respectively, which causing failure in the upper extreme 

fiber of concrete as showed in Fig. 2.13(a)–(b). Therefore, the load-carrying capacity of the 

girder without fly ash (No.2) was smaller by about 5% than that of the girder with fly ash (No.3). 

Compared to the specimen mixed with fly ash, the toughness of girder No.2 was deteriorated 

by the influence of ASR. This 5% reduction in the loading capacity is consistent with results of 

previous studies conducted in actual bridges [32,37]. However, a prior research of Onozato et 

al. [36] proved that the flexural strength did not decrease because the expansion of ASR was 

restrained by prestressing force. This outcome was not confirmed in the present study. 

 

Figure 2.12 Load-displacement relationship at midspan. 

 

  

(a) Girder No.3    (b) Girder No.2 

Figure 2.13 Compressive failure mode at the span center of girders at the final loads. 

 

The load-strain relationships of concrete on the top and bottom surfaces at the span center are 

presented in Fig. 2.14. From results of the experiment, the crack initiation load of girder No.2 

was lower than of girder No.3 (170kN compared to 190kN, respectively). Although a slight 
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difference in structural behavior between two girders was observed in the elastic range, after 

the generation of initial crack, the strain of concrete on the upper edge (compression zone) of 

girder No.2 increased in higher rate in comparison to girder No.3. Furthermore, the neutral axis 

depth from the top edge in the elastic range was calculated to be 227.5 mm for girder No.2 and 

228.7 mm for girder No.3, which was close to the effective area depth of concrete estimated as 

228.2 mm. Therefore, ASR-induced cracks on the top and the side surfaces of girder No.2 did 

not affect the moment of inertia in the elastic region significantly. 

Furthermore, in a comparison to the design, it is revealed that both specimen performed higher 

values in both crack initiation load and bending fracture load. Therefore, even if many cracks 

owing to ASR appeared on the girders, the steel strands were not broken and corroded after the 

exposure period. In addition, the bonding separation between steel and concrete did not occur. 

Although the load-carrying capacity was not significantly deteriorated, it is necessary to 

establish a maintenance management for these specimens to avoid further damage. 

 

Figure 2.14 Load-strain relationship. 

2.4.3 Crack observation after the loading test 

Figure 2.15(a)–(b) shows crack patterns after the loading test of girder No.2 and No.3. 

Regarding figures of side surfaces, a selected mesh size was 100 mm for vertical direction (50 

mm mesh was used for only the top fiber) and was 200 mm for girder-axis direction. As shown 

in Fig. 2.15, red lines express cracks owing to the load test, and black lines express stripping 

parts at midspan. The maximum crack interval in pure bending areas of the specimens was 

approximately 230 mm. Another attractive result was the development of flexural cracks during 

the test. Since there were many longitudinal cracks caused by ASR on the top and side surfaces 
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of girder No.2, vertical cracks owing to applied loads did not continuously propagate upward 

(Fig. 2.16). Therefore, it was thought that longitudinal cracks interrupted the development of 

bending cracks. However, an investigation of cut cross sections, which is described in the next 

section, shown that due to the shallow depth, longitudinal cracks could not hinder the progress 

of bending cracks. 

 

 
(a) Girder No.2 

 

 
(b) Girder No.3 

Figure 2.15 Crack pattern due to loading test (from top to down: north-side, south-side and bottom 

surfaces). 

 

  

Figure 2.16 Crack pattern at the span center after loading test. 
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2.4.4 Investigation of the cross-section 

To evaluate the condition of inner surfaces after the load test, each girder was cut into three 

pieces with lengths of 3150 mm, 3300 mm and 3150 mm by a wire saw. Figure 2.17 shows a 

cut surface of girder No.2 between its support and the span center. In this figure, yellow lines 

show ASR-induced cracks, and green lines show transverse cracks observed on the upper side 

of tendons in the compression area. Red dots indicate PC strands. From observation results, the 

depth of ASR-induced cracks along the girder-axis direction varied from 5 to 20 mm on the side 

surfaces and the top surface, whereas no crack was found out in the area surrounded by stirrups. 

Moreover, no breaking of tendons was confirmed, whereas transverse cracks were significantly 

observed on the upper side of tendons in the compression area. After the bending test, for 

ascertaining the corrosion condition of PC strands, peeled concrete areas of both samples were 

taken away. However, no steel corrosion could be observed. 

 

    

Figure 2.17 A cut cross-sectional view of girder No.2. 

2.5 Diagnosis ASR-induced deteriorations using drilled cores 

2.5.1 Overview of experiment setup 

After the girder had been cut into three pieces, cylindrical core samples were collected from 

both girders at positions near support (end part) and at positions around the inner area between 

two pieces (central part) so as to investigate the mechanical properties of concrete. At each area, 

six cores along the girder-axis direction (longitudinal direction) and six cores along the 

direction perpendicular to the girder-axis direction (transverse direction) were collected for the 

compression tests. In addition, four more samples were collected at central area in both 

investigate directions for the expansion tests. Each concrete core with a diameter of 55 mm and 

a length of 110 mm was taken from the surface of concrete about 30 mm. Figure 2.18(a)–(c) 

shows the sampling position. The relation between the reactivity of aggregate and ASR 

deterioration degree was examined by the immersion method in 1N · NaOH solution [38–41]. 

Furthermore, the generation of ASR gel, which becomes yellow-green under ultraviolet (UV) 

light, was observed by the fluorescent visualization method [42]. As another observation, thin 

ASR-induce cracks Transverse cracks 



CHAPTER | 2 Effects of Fly Ash on Mechanical Properties of PC Girders 

 

 HA MINH TUAN 1624052012   39 

 

slices (thickness 20μm) of concrete were taken from the cores and helped investigate the 

reactive condition of aggregates and the generation of fine cracks on the surface and inside of 

the cores. 

 

(a) Wire saw cutting positions 

 

(b) longitudinal direction          (c) transverse direction 

Figure 2.18 Test piece sampling locations (Unit: mm). 

2.5.2 Cracks and the reactivity of aggregate 

Figure 2.19(a)–(d) indicates observation results of concrete cores of both girders obtained by 

the fluorescent method. The tested cores were the upper cores taken longitudinally in the central 

parts of the girders. As the results, regarding the specimen of girder No.2, the ASR gel under 

UV light appeared as yellow-green around andesite particles. However, no fluorescence was 

observed on samples taken from girder No.3. In addition, Figure 2.20 shows observation results 

by a polarized microscope. Regarding girder No.2, andesite particles from sand and gravel of 

the Joganji River reacted strongly, and many fine cracks (about 0.02 mm in width) occurred 

from broken pieces of aggregates to cement paste. Conversely, andesite particles reacted 

slightly while no trace of ASR was observed with respect to girder No.3 with fly ash. In both 

girders, no formation of ASR gel was found in the surface layer (about 20 mm) of both 

specimens. It was inferred that ASR was suppressed in the surface layer of concrete due to alkali 

outward flow and immobilization under alternation of drying and moistening processes [43]. 
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(a) white light (girder No.2)   (b) UV light (girder No.2) 

  
(c) white light (girder No.3)   (d) UV light (girder No.3) 

Figure 2.19 Observation results of concrete cores by gel fluorescence method. 

 

  

Figure 2.20 Observation result of core slice by polarized microscope. 

2.5.3 Expansion rate of concrete cores 

The expansion rate of core obtained by the immersion method in 1N NaOH solution is indicated 

in Fig. 2.21. After one and a half years of outdoor exposure, because there were a large number 

of unreacted andesite particles, the cores of girder No.2 expanded significantly up to 0.5% after 

being immersed in 1N NaOH solution maintained at 80 ºC. According to ASTM C1260 [38], a 

specimen with an expansion rate of 0.2% or more after two weeks of soaking should be 

evaluated as "harmful". Therefore, both specimens were judged as "harmful" in this study. From 
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Fig. 2.21, the expansion rate of girder No.2 in the transverse direction was higher than in the 

longitudinal direction. This result is considered to be influenced by the difference in generation 

degree of fine cracks due to the collecting direction and the influence of restraint of PC tendons, 

that is to say, by the difference in the permeability of NaOH solution at the time of the test. The 

effects of the confinement degree due to prestressing on mechanical properties of concrete are 

discussed in the next section. Regarding a reference threshold value of hydroxide ion (OH-) 

concentration in a pore solution for ASR initiation, Diamond [44] proposed a value of 250 

mmol/l (0.25 N), which was also confirmed and evaluated by other researchers [45–48]. 

Therefore, it can be considered that unreacted other particles also reacted and thereby 

accelerated ASR when the concrete cores were soaking in 1N NaOH solution. This conclusion 

is useful in diagnosing ASR deterioration of core utilizing the immersion method in 1N NaOH 

solution at 80 ºC. Meanwhile, regarding girder No.3, because of a slight generation of ASR, 

together with a low penetration of alkaline solutions, and an additional effect of alkaline 

adsorption of CSH with a low C/S ratio generated during pozzolan reaction, the measured 

expansion rate was remarkably lower than that of girder No.2. 

 

Figure 2.21 Expansion rate of cores. 

2.5.4 Mechanical properties of cores and ultrasonic wave propagation velocity 

Table 2.5 indicates average values of compressive strength, static elastic modulus and 

ultrasonic wave velocity of concrete cores. Both the compressive strength and the elastic 

modulus of cores taken from girder No.2 were smaller than those from girder No.3. Owing to 

the influence of fly ash content, the compressive strength and the elastic modulus of girder No.3 

were about 1.3 to 2 times greater than those of girder No.2. Compared to the compressive 

strength at 28 days (Table 2.5), the compressive strength of girder No.2 decreased significantly 

due to deteriorations caused by ASR. A previous study [49] pointed out that due to the influence 
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of restraint of PC tendons, the compressive strength of concrete depended on direction when 

taking samples, this study also found out the same conclusion. Specifically, when comparing 

the test results of the upper part and the lower part of a cross section, the compressive strength 

and the static elastic modulus of cores taken from the lower part in the girder-axis direction 

(near two lower layers of PC strands) were larger than those taken from the upper one. Moreover, 

as compared to results obtained from concrete samples of the central part, both the compressive 

strength and the elastic modulus of the end part were almost lower. The difference in both 

mechanical properties came up to approximately 30% on concrete cores collected in the 

longitudinal direction of girder No.2. In addition, because of the effect of restraining stress of 

PC strands together with the low expansion rate of concrete, the concrete samples collected 

longitudinally in the central part of girder No.2 performed higher compressive strength in 

comparison with the samples taken in the transverse direction. 

 

Table 2.5 Mechanical properties of core and ultrasonic wave propagation velocity. 

Core collecting position Compression strength 

(N/mm2) 

Modulus of elasticity 

(kN/mm2) 

Ultrasonic wave 

propagation 

velocity (m/s) 

No.2 No.3 No.2 No.3 No.2 No.3 

End part 

longitudinal 

direction 

Upper part 49.9 79.4 16.8 28.9 3870 4310 

Lower part 53.3 102.2 20.9 36.5 3990 4560 

transverse 

direction 

Upper part 62.0 94.5 19.2 34.2 3970 4530 

Lower part 69.4 103.2 18.2 38.4 3880 4790 

Central 

part 

longitudinal 

direction 

Upper part 68.0 102.0 24.2 41.1 4130 4770 

Lower part 75.7 89.5 27.8 42.9 4170 4800 

transverse 

direction 

Upper part 43.4 109.1 14.5 36.8 3820 4620 

Lower part 58.5 111.4 18.9 39.3 3900 4780 

 

The relationship between compressive strength and static elastic modulus/compressive strength 

ratio of the concrete cores is shown in Fig. 2.22. In this figure, it is cleared that if the ASR 

damage in concrete become more severe, the measurement points will get closer to the origin 

from the curve showing healthy concrete [50]. In the case of girder No.3 with fly ash, the 

obtained results were almost close to the healthy curve. Meanwhile, all points of girder No.2 

distributed away from the curve and toward the origin. It was considered that the influence of 

fine cracks owing to ASR and peeling of the aggregate interface was reflected by the decrease 

in compressive strength and static elastic modulus. Figures 2.23 and 2.24 show the relationship 

between ultrasonic wave velocity with compressive strength and static elastic modulus of 
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concrete cores, respectively. Because ultrasonic wave propagation can be easily measured on 

site, it is commonly used in structural health evaluation. As can be seen in Figs. 2.23 to 2.24, 

along with the ASR progression, the compressive strength and the static elastic modulus 

decrease linearly, and both parameters have a substantially proportional relationship to the 

ultrasonic wave velocity. 

 

Figure 2.22 Relationship between compressive strength and static elastic modulus/compressive 

strength ratio. 

 

 

Figure 2.23 Relationship between compressive strength of core and ultrasonic propagation velocity. 
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Figure 2.24 Relationship between static elastic modulus of core and ultrasonic propagation velocity. 

2.5.5 Recommendations on diagnosis of ASR degradation using concrete cores 

From the test results, it is necessary to pay attention to two points when studying the relationship 

between the compressive strength, the static elastic modulus and the ultrasonic propagation 

velocity. 

(1) The first point is that the compressive strength of core taken from the transverse 

direction of central part of ASR-affected girder reduced by about 30% as compared to 

the value measured from the longitudinal direction. Moreover, when comparing results 

obtained in the central and the end parts, except for some measurement results, the 

concrete cores of the end part have lower mechanical properties than of the central part. 

Especially, with respect to concrete cores collected in the longitudinal direction of girder 

No.2, the difference in both mechanical properties came up to approximately 30%.  

(2) The second point is that the compressive strength and the static elastic modulus of 

concrete cores might decrease due to the effects of water and stress release during the 

coring. Therefore, when calculating load-carrying capacity and reinforcement design 

for ASR-degraded PC girders, it is necessary to perform an appropriate correction 

according to the constraint degree owing to the prestress instead of using the 

measurement values of the cores directly.  

Furthermore, as can be seen in Fig. 2.25, the difference in expansion rate between the upper 

and the lower sides of a girder induced a large deformation (upward warpage), and it might lead 

to new damage. Therefore, it is desirable to check the damage caused by local destruction at the 

girder end and by dismounting of PC anchoring parts simultaneously at the time of inspection 

for PC bridges. Regarding long-term prospects, further research should be carried out on the 

subject. 
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Figure 2.25 Cracks occurred at the end of PC girder due to ASR-induced deformation. 

2.6 Conclusions 

In this study, three PC girders, which were constructed and placed outside the laboratory, had 

been exposed to weather conditions for one and a half years. Girders No.1 and No.2 was 

affected by alkali-silica reaction while girder No.3 was kept at an inactive state with ASR 

acceleration due to the addition of fly ash. Then, using the destructive loading test, this study 

investigated the difference in load carrying capacity of two PC girders (girders No.2 and No.3) 

due to the presence or absence of fly ash. Moreover, after the destructive loading test, the effects 

of the sampling position and direction of the concrete core on changes in compressive strength, 

static elastic modulus, and ultrasonic wave propagation velocity were analyzed and discussed 

by collecting concrete cores from both PC girders affected by ASR deterioration. The main 

results obtained from this study are summarized as follows. 

 After one and a half year of monitoring of cracks, an addition of fly ash played a significant 

role in mitigating the cracks caused by the expansion due to ASR. 

 An increase of convex curvature was observed in the girder without fly ash. After 

monitoring period, the convex displacement increased up to ~13 mm before starting the 

load test with respect to girder No.2. Meanwhile, almost no change in convex curvature 

over time was observed in girder No.3 mixed with fly ash. 

 An addition amount of fly ash not only increased the load bearing capacity by nearly 5% 

but also enhanced the initial bending stiffness of the objective PC girder by 10% after more 

than one year under ASR deteriorations. 

 From observation results of cut cross-section after the loading test, the depth of ASR-

induced cracks along the girder-axis direction varied from 5 to 20 mm on the side surfaces 

and the top surface. However, no crack was found out in the area surrounded by stirrups, 

and no breaking of tendons was confirmed. 
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 Regarding girder No.2, andesite particles from sand and gravel reacted strongly, and many 

fine cracks (about 0.02 mm in width) occurred from broken pieces of aggregates to cement 

paste. However, because of the slight reaction of andesite particles, no trace of ASR was 

observed on girder No.3. 

 When the concrete cores of girder No.2 were soaking in 1N NaOH solution, unreacted 

andesite particles accelerated ASR leading to high expansion rate. Meanwhile, regarding 

girder No.3, the expansion rate was significantly low as compared to that of girder No.2. 

 Proportional correlations between the compressive strength, the static elastic modulus and 

the ultrasonic propagation velocity of the core were found.  
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Chapter | 3  

Nondestructive Damage Detection in Deteriorated 

Girders Using Changes in Nodal Displacement 

3.1 Theoretical background 

3.1.1 Displacement assurance criterion (DAC) 

This section proposes a damage detection method to identify the occurrence of damage by 

evaluating correlations among measured displacement data. It can be noticed that a damaged 

girder provides different deflections compared to the original one, because of its deteriorated 

flexural rigidity [1]. Assuming the nodal deflections of a finite-element model described by a 

displacement vector 𝑢 = [𝑢1 𝑢2  ⋯ 𝑢𝑛]𝑇, the static equilibrium formula of the structure at 

the intact state is expressed by the following equation: 

                                 𝐹 = 𝐾𝑢                                (3.1) 

where K is a 𝑛 × 𝑛 stiffness matrix and F depicts an 𝑛 × 1 applied static force vector. Then, 

the displacement vector u can be obtained by 𝑢 =  𝐾−1𝐹. Therefore, any structural changes 

are associated with changes in the displacement vector u. Specifically, if the structure has been 

damaged by environmental conditions or applied loads, the structural stiffness matrices are 

modified, and the measured displacements at the deteriorated state of the structure do not 

correspond with the measured displacements at the intact state. 

In this study, a novel damage indicator, DAC, is proposed and utilized for detecting the 

existence of a stiffness loss. DAC illustrates the degree of relationship between two 

displacement curves at different states of a structure and it can be computed by Eq. (3.2) using 

the normalized displacement at each observation point: 

𝐷𝐴𝐶 =
(∑ 𝜓𝐹𝑗𝜓𝐻𝑗

𝑛+1
𝑗=1 )

2

∑ 𝜓𝐹𝑗
2𝑛+1

𝑗=1 ∑ 𝜓𝐻𝑗
2𝑛+1

𝑗=1

                            (3.2) 

where 𝜓𝐹𝑗(j=1~n+1) is the normalized displacement of the jth point caused by the external 

applied static load at a reference state. 𝜓𝐻𝑗(j=1~n+1) is the normalized displacement of the 

jth point caused by the external applied static load at a different state of the structure, and n 

indicates the number of observation points. In this study, a normalized displacement curve at 

the elastic state is considered as the reference curve. In the case where the two normalized 

displacement curves are identical, the DAC value would be equal to unity, while any 
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degradation in structural properties would generate a value less than unity. 

3.1.2 Displacement-based index (DBI) 

As it was mentioned in the literature review, various damage detection techniques can be 

utilized for identifying damages in a structure [1–25]. For instance, changes in the displacement 

curvature [1,23,24] and the strain energy method [25] are sensitive and can be employed to 

localize the damage region. To evaluate the feasibility of directly using the displacement at each 

monitored position for verifying the occurrence and location of structural damage, this study 

performs parametric analyses on a numerical model of a PC girder that undergoes different 

damage scenarios. From the stand point of the correlation between nodal deflections and 

degradation of structural stiffness, a new damage identification method using a displacement-

based index, DBI, is proposed. In particular, Eq. (3.1) illustrates the correlation of displacement 

with structural stiffness. Therefore, a change in structural stiffness at a section subjected to 

deterioration leads to a variation in deflection at that location. The relationship between the 

properties of damage and the reduction of the Young’s modulus of a structure has been proved 

by the previous research [26]. In this study, it is assumed that there is a decrease in the Young’s 

modulus, which is associated with the increase in the degree of damage at each observed section. 

For investigating the changes in the static response owing to the presence of damage, the 

displacement of some marked points of the objective girder is measured. Then, the DBI values 

are calculated to identify locations and occurrences of stiffness losses. Based on the former 

considerations, the following damage detection algorithm is proposed: 

• A girder subjected to an arbitrarily applied load is treated as it is divided into a finite number 

of elements n (n+1 nodes), as shown in Fig. 3.1.  

• The nodal displacements are calculated by commercial finite-element software for both the 

healthy girder and the deteriorated one, which contains a hypothetical damage in an arbitrary 

segment.  

• Assuming the coordinate geometry of u and x shown in Fig. 3.2, then nodal displacements of 

the intact girder and the deteriorated one can be illustrated as Eqs. (3.3) and (3.4), respectively: 

 

              [𝑥, 𝑢𝑖] = [(𝑥1, 𝑢𝑖1), (𝑥2, 𝑢𝑖2), ⋯ , (𝑥𝑛+1, 𝑢𝑖𝑛+1)]                      (3.3) 

              [𝑥, 𝑢𝑑] = [(𝑥1, 𝑢𝑑1), (𝑥2, 𝑢𝑑2), ⋯ , (𝑥𝑛+1, 𝑢𝑑𝑛+1)]                      (3.4) 

 

• In this study, the DBI values obtained from Eq. (3.6) are employed to determine the properties 

of damage: 

                        ∆𝑢𝑗 = |𝑢𝑑𝑗 − 𝑢𝑖𝑗|                                 (3.5) 
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                      𝐷𝐵𝐼𝑗 = 𝑚𝑎𝑥 [0,
∆𝑢𝑗−𝑚𝑒𝑎𝑛(∆𝑢𝑗)

𝑠𝑡𝑑(∆𝑢𝑗)
]                           (3.6) 

where 𝑢𝑑𝑗  (j=1~n+1)  and 𝑢𝑖𝑗 (j=1~n+1)  stand for nodal displacements in the deteriorated 

and the normal girders, respectively. In addition, 𝑚𝑒𝑎𝑛(∆𝑢𝑗)  and 𝑠𝑡𝑑(∆𝑢𝑗)  illustrate the 

mean and the standard deviation of ∆𝑢𝑗, in that order. The factor 𝐷𝐵𝐼𝑗 evaluates the point-

relation degree at the jth point between the two girders. Particularly, 𝐷𝐵𝐼 = 0 indicates that the 

structure is undamaged at the observation location, whereas DBI reaches the highest value at 

the damage location. 

 

Figure 3.1 Girder’s segments and measuring positions 

 

 

Figure 3.2 Displacement curve of the simply supported girder 

3.2 Displacement assurance criterion (DAC) 

To assess the performance of the proposed index, a nonlinear finite-element model of a PC 

girder is produced. Moreover, three other linear examples are also employed to evaluate the 

sensitivity of the DAC index to damage detection. 

3.2.1 Nonlinear analysis of a PC girder 

A 2D numerical model is produced in accordance with the specifications of a full-size JIS 

A5373-AS09 girder [27] by FX+ for DIANA, which is a commercially available program for 

nonlinear finite-element analysis. Figure 3.3 presents an overview of the full-scale destructive 
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test setup performed on a PC girder with a span of L = 9200 mm. The PC girder is subjected to 

two concentrated loads in the middle of the span, and the distance between the two loading 

points is 1000 mm. The objective girder contains 16 PC steel strands (12φ7 mm). Each strand 

has D10-type stirrups arranged around it. The analysis model is shown in Fig. 3.4. In particular, 

the PC strands and stirrups are modeled as the bar in plain stress type. The bonding force 

between the concrete and bars is assumed as complete. The thickness of the concrete element 

is represented by simplifying the haunches. The rotating total strain crack model for the 

concrete [28], which includes the JSCE tension softening model for tensile behavior and the 

multi-linear model for compressive behavior, was employed here. All parameters for the 

rotating strain crack model are presented in Table 3.1. The fracture energy of concrete is the 

energy consumed to form cracks per unit area, and is calculated by the following equation [29]. 

                            𝐺𝑓 = 10(𝑑𝑚𝑎𝑥)1/3𝑓𝑐𝑘
′ 1/3

                       (3.7)  

where, the values of 𝐺𝑓, 𝑑𝑚𝑎𝑥 and 𝑓𝑐𝑘
′  are related to the fracture energy (N/m), the maximum 

aggregate size (mm), and the compressive strength of concrete (N/mm2), respectively. In the 

present study, the value of 𝑑𝑚𝑎𝑥  is assumed as 20 mm. Also, owing to the absence of 

experimental data, the estimation of the tensile strength of concrete 𝑓𝑡𝑘 can be done by Eq. 

(3.8) based on the characteristic compressive strength 𝑓𝑐𝑘
′  [29]. 

                                 𝑓𝑡𝑘 = 0.23𝑓𝑐𝑘
′ 2/3

                         (3.8) 

where, the unit of strength is N/mm2. 

Moreover, the stirrups are assumed as in the linear elastic material model with a Young’s 

modulus 𝐸𝑠 = 210000 𝑁/𝑚𝑚2, and Poisson ratio 𝜈 = 0.15. Also, the PC steel strands are 

defined by the property “PCbar” made of steel with a Young’s modulus 𝐸𝑠 = 210000 𝑁/𝑚𝑚2 

and a Von Mises yield stress 𝜎𝑦 = 1580 𝑁/𝑚𝑚2.  

 

Figure 3.3 Shape and size of PC girder 
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Figure 3.4 Analysis model 

Table 3.1 Material parameters for total strain crack model 

Young’s modulus 𝐸𝑐 33000 N/mm2 

Poisson’s ratio ν 0.15  

Tensile strength 𝑓𝑡𝑘 3.53 N/mm2 

Fracture energy 𝐺𝑓 0.1063 N/mm 

Compressive strength 𝑓𝑐𝑘
′  60 N/mm2 

 

 
Figure 3.5 Relationship between load and displacement 

 

Figure 3.6 Crack pattern at maximum loading 

 

 
Figure 3.7 Normalized displacement at some load cases 
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Figure 3.8 Decrease of DAC with the increasing of applied load 

 

The load–displacement relationship is presented in Fig. 3.5. Cracks occurred when the 

displacement at the center of the span reaches approximately 11 mm with a corresponding load 

of up to 130 kN. After that, the displacement increases moderately, and the load is later 

terminated when the displacement at the span center exceeds 134 mm. Finally, the model 

collapses on the compression side and the crack pattern at maximum loading is shown in Fig. 

3.6. During the test, the displacement is computed at every finite-element node for both the 

intact (elastic state) and the damaged state. It is assumed that the cause leading to changes in 

static properties is the growth of deterioration. In this study, the simple index named as DAC is 

considered to track the variation in the measured displacement owing to the presence of damage. 

The displacement at each finite-element node is extracted from analysis results and normalized 

with the largest one, at each loading step. Then, the normalized displacement curve of some of 

the nominated load cases can be estimated and represented in Fig. 3.7. In this figure, a decrease 

in the magnitude of the normalized displacement curve can be observed. In other words, the 

normalized displacement curve shows clearly a narrow tendency, in agreement with the increase 

in applied load. For determining DAC indices, the normalized displacement curve of the 

numerical model when it undergoes an applied load of 5 kN is regarded as the reference curve. 

If the two curves are identical, the DAC value would be equivalent to the unity, and any 

degradation in structural performance would produce a DAC value less than the unity. DAC 

values can be obtained by Eq. (3.2) using the normalized displacement for each segment. The 

variation in DAC under various load cases is depicted in Fig. 3.8. As shown in Fig. 3.8, DAC 

values are equal to the unity if the structure itself behaves linearly elastic. After the elastic limit 

is reached, DAC value performs decreased amplitude associated with the increased load and 

the development of cracks. Since the normalized displacement curves estimated when the 

model behaves in a wholly elastic manner are identical, one of these curves can be considered 

as the reference curve for tracking the degradations in structural performance. Despite its 
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relatively small range of variation, the DAC value is lower when the applied load increases and 

cracks occur in the structure. Consequently, it is clear that there is a correlation between changes 

in DAC and the occurrence of damage. In terms of this destructive test, the variation with 

temperature is negligible. 

3.2.2 Sensitivity of DAC in damage detection 

The relation between the variations in DAC with structural degradation has been proven in the 

previous section. In this part, three simulated damage scenarios are analyzed to clarify the 

sensitivity of the factor DAC in detecting the existence of deterioration. Table 3.2 explains the 

characteristics of the three scenarios. Specifically, the scenarios of damage (Scenarios D1–D3) 

denote a single damage with different sizes and severities. Moreover, in this study, the increase 

in damage at each observed section is presumed to be associated with a decrease in the Young’s 

modulus. Therefore, three numerical models are produced by FX+ for DIANA for the structural 

linear static analysis, as shown in Fig. 3.9(a)–(c). In these figures, the blue areas illustrate the 

damage. In terms of this assessment, the same loads are employed for all cases. 

 

Table 3.2 Damage characteristics of the objective model 

Scenarios of damage Area of damage 

location 

Percentage reduction in the 

Young’s modulus 

Number of damage 

locations 

 𝑐𝑚2 %  

Scenarios 1 (D1) 575 10,20,30,40,50,60,70 1 (0,125L-0.25L) 

Scenarios 2 (D2) 2300 10,20,30,40,50,60,70 1 (0,125L-0.25L) 

Scenarios 3 (D3) 4600 10,20,30,40,50,60,70 1 (0,125L-0.25L) 

 
(a) Scenarios 1 (D1) 

 

(b) Scenarios 2 (D2) 

 

(c) Scenarios 3 (D3) 

Figure 3.9 Three scenarios of damage. 
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Figure 3.10 Sensitive of DAC on the damage detection 

 

To identify the changes in structural responses caused by the presence of damage, the 

deflections of some points marked under the target girder are obtained to estimate the DAC 

factor. The effect of stiffness loss on DAC values in the three damage scenarios is presented in 

Fig. 3.10. According to Fig. 3.10, the increase in percentage reduction of the Young’s modulus 

generates DAC values lower than the unity in all cases. Moreover, DAC values in Scenarios 

D1 and D2 are higher than in Scenario D3, and the deviations increase significantly when the 

modification of the Young’s modulus reaches 70%. These results demonstrate the theoretical 

standpoint that there is a relation between damage severity and changes in nodal displacement, 

represented in this study as the factor DAC. Furthermore, it also shows that DAC has the 

capability to identify the occurrence of damage even in the small damage case of D1. 

3.2.3 Effect of number of measurements upon DAC coefficient 

A critical parameter in utilizing the variation in DAC for damage detection is the number of 

measurement points. As mentioned in the former section, DAC illustrates the relationship 

between two displacement curves at different states of structure. Consequently, it is assumed 

that the more points are measured, the more accurately the curve and DAC coefficient can be 

determined. Due to the economic situation and limitations of facilities, the number of 

measurement points is not always abundance for actual experiments. Therefore, the effect of 

limited measurement points on DAC should be investigated thoroughly. In this study, eight 

different measuring systems are used for the same modeling girder. The nodal displacements 

are taken at evenly distributed points under the girder. The first case (coarse) consists of three 
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observation points over the length of the girder (the distance between each point is equal to 

0.25L), as shown in Fig. 3.11(a). The other seven cases including 5, 7, 9, 15, 19, 29, and 31 

measurements (the last is the fine case) are shown in Fig. 3.11(b)–(h), respectively. For seven-

point, 15-point, and 31-point measuring cases, the distances between two observed points were 

selected as L/8, L/16, and L/32, respectively. In this study, the approach, which measures the 

nodal displacement at 31 points under the girder, is supposed to give the best fit to the deflection 

curve of the girder as compared to the other considered number of measurements. Therefore, 

the DAC value of the 31-point system is taken as the target DAC factor. Figure 3.12 shows the 

effect of the number of observation points upon the DAC value. According to Fig. 3.12, all the 

deviations vary under 0.0009%, which is a relatively low rate. This result implies that the 

number of measurements does not perform a significant role in the variation in DAC when the 

number of points is more than seven. Moreover, it is also important to mention that the DAC 

coefficients obtained from the measurement system using seven points are nearly identical to 

those obtained using 9, 15, 19, 29, and 31 points, because the estimated deviations are equal to 

or less than 0.0001%. Accordingly, when considering the efficiency and economy of the 

utilization of the DAC coefficient for identifying the occurrence of structural damage, the 

seven-point measurement system can provide relatively reasonable results. 

 

(a) 3-point measurement system 

 

(b) 5-point measurement system 

 

(c) 7-point measurement system 

Support

2300

200

Displacement meter

200

2300 2300

9200

Support

2300

200

2300

2009200

2300

Displacement meterSupport Support

1150115011501150

Displacement meterSupport Support

11501150 1150

9200

1150 1150

200

1150 1150

200

1150



CHAPTER | 3 Nondestructive Damage Detection Using Changes in Nodal Displacement 

 

 HA MINH TUAN 1624052012   60 

 

 

(d) 9-point measurement system 

 

(e) 15-point measurement system 

 

(f) 19-point measurement system 

 

(g) 29-point measurement system 

 

(h) 31-point measurement system 

Figure 3.11 Eight measuring cases (Unit: mm) 
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Figure 3.12 Effect of the number of measurements upon DAC coefficient 

3.3 Displacement-based index (DBI) 

For clarifying the feasibility of structural damage localization using the DBI approach, obtained 

from static responses, two numerical models are considered in this study. In particular, a simply 

supported PC girder (statically determinate structure) and a two-span continuous girder 

(statically indeterminate structure) are utilized as examples. Various parameters, which might 

influence the performance of the proposed method, are also analyzed and discussed. The 

damage considered in this study is assumed to only affect the stiffness, which is modeled by a 

decline in the Young’s modulus at the location of damage. 

3.3.1 Example 1: a simply supported PC girder (statically determinate structure) 

(1) Overview of the example 

As a statically determinate structure, the structure chosen for the first study is the same as the 

model analyzed in Sect. 3.2.1. Figure 3.4 shows a 2D model of the objective PC girder with a 

span of L = 9200 mm which is supported at two points. The material parameters also remain 

the same as in the previous model. As shown in Table 3.3 and Fig. 3.13, ten different damage 

scenarios are considered for evaluating the DBI factor. The first three scenarios (Scenarios 1–

3) are taken into account for identifying single and double damages near the supports. The 

fourth and fifth scenarios are employed to study the competence of DBI in recognizing damage 

with different locations using the same loading case. 
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Table 3.3 Damage characteristics of the simply supported model 

Scenario of 

damage 

Damage location 

x 

Percentage 

reduction in the 

Young’s 

modulus 

Area of 

damage 

location 

Load case Number of 

measures 

 mm % cm2   

Scenario 1 100 10 200 Case-1 9 

Scenario 2 100 10 200 Case-1 92 

Scenario 3 100, 9100 10, 10 200, 200 Case-1 92 

Scenario 4 4600 10 400 Case-2 9 

Scenario 5 1150 10 400 Case-2 9 

Scenario 6 1150 10 400 Case-3 9 

Scenario 7 1150 10 400 Case-4 9 

Scenario 8 2300 10 400 Case-5 9 

Scenario 9 2300 10 400 Case-1 9 

Scenario 10 2300 25 400 Case-1 9 

 

To analyze the influences of different types and intensities of load, five loading cases are 

considered in this example. Therefore, the fifth, sixth, and seventh scenarios are studied for 

applying the DBI on single damage detection using different load cases. Specifically, the first 

case of loading (Case 1) is a concentrated load, P = 10 kN at mid-span. The second instance of 

loading (Case 2) consists of two concentrated loads in the middle of the span and the distance 

between the two loading points is 1000 mm. For considering the effect of loading position, the 

third case of loading (Case 3) is similar to Case 1, but the load is located at the 3/4L position. 

The fourth case of loading (Case 4) is a uniformly distributed load with an intensity of q = 10 

N/mm over the girder length. In addition, the influence of the load value on damage localization 

is also considered with the eighth and ninth scenarios. Accordingly, the fifth loading case (Case 

5) is comparable to the first instance, but the intensity of force is decreased by two times.  

Moreover, this paper attempts to study on the correlation of DBI with the severity of damage. 

For this reason, the damage of the ninth and tenth scenarios is assumed to occur at the same 

location, whereas their severities are different. In addition, the increase in degradation at each 

observation section is presumed to be related to the decrease in the Young’s modulus. 

Specifically, the damaged element of the ninth scenario undergoes a reduction of 10% in the 

Young’s modulus, while it is reduced by 25% in the tenth scenario. 

One of the critical parameters when using changes in displacement for estimating the location 

of damage is the number of measurement points. Therefore, it is essential to evaluate the effect 
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of sufficient measurement points upon the sensitiveness of the DBI approach. In this study, a 

mesh size of 25 mm is assigned to all cases, and two different measurement systems are utilized 

for the model. The first instance (coarse) consists of nine observed points over the length of the 

girder (the distance between each point is equal to L/8 = 1150 mm), and the fine case includes 

92 measures (the distance between each point is equivalent to 100 mm). 

For calculating the index DBI given in Eq. (3.6), the displacements of measurement points are 

obtained by the linear static analysis of FX+ for DIANA for both the intact model and the 

deteriorated one, which contains hypothetical damage in arbitrary segments. Then, the DBI 

value at each observed point is estimated using Eqs. (3.5) and (3.6) for each damage scenario. 

Finally, the DBI values are plotted to illustrate the damage locations. 

 

 

(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 

 

(d) Scenario 4 

 

(e) Scenario 5 
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(f) Scenario 6 

 

(g) Scenario 7 

 

(h) Scenario 8 

 

(i) Scenario 9 

 

(j) Scenario 10 

Figure 3.13 Ten different damage scenarios for the simply supported girder (unit: mm). 
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damage is accurately identified in Scenario 2, whereas DBI performs a relative localization in 

Scenario 1. Another outcome, which is shown in Fig. 3.14(c) for Scenario 3 of damage, presents 

two peaks at the damage locations near both ends. Therefore, because all the simulated damage 

with different properties can be accurately located, for single and multiple damages, DBI can 

be proposed as a useful damage localization method. Nevertheless, it is important to note that 

limitations on measurement data play a significant role in the accuracy of the proposed method, 

as a sufficient number of points provides more accurate results than with a rough measurement 

case. For preventing uncertainties in the results, it is recommended that the number of measures 

should be as fine as possible. Moreover, the distance between the observation points and 

damage locations is another vital factor for a precise estimation. 

 Case of loading 

The values of DBI for the damage Scenarios 4–7 subjected to different loading cases are plotted 

in Fig. 3.14(d)–(g), respectively. By forming peaks at some observation locations, the DBI 

values correctly point out the simulated stiffness losses in all damage scenarios. All the damages 

in the Scenarios 4–5, which have different positions with the same severity, can be predicted by 

utilizing the Case 2 of loading alone. Furthermore, Scenarios 6–8 are considered for evaluating 

the flexibility of the approach for single damage detection using different loading cases. 

Specifically, a stiffness loss at x = 1150 mm is assumed in the girder, and the DBI values are 

obtained by alternately applying three different loading cases, which are a concentrated load at 

x = 6900 mm, two concentrated loads in the middle of the span, and a uniformly distributed 

load all over the girder length. The results show that the DBI charts are identical in all three 

cases, and the damage can be accurately located. Therefore, DBI shows a good performance in 

damage localization under all five loading cases employed in this study. 

 Intensity of loading 

For assessing the influence of the load value on the amplitude of DBI, the results of Scenarios 

8 and 9 concerning the same damage characteristics are examined with loading Cases 1 and 5, 

respectively. The corresponding DBI charts are shown in Fig. 3.14(h) and 3.14(i). According 

to these figures, the DBI values from Case 1 of loading are equal to those obtained by the 

loading Case 5 at all observation points, although the static responses for all measures in 

Scenario 8 are half of those obtained from Scenario 9. The explanation of this similarity is that 

there is a twofold increase in the values of both the numerator and the denominator of the DBI 

equation, leading to the same results for the fraction. Therefore, it is proposed that there is no 

correlation between the DBI values and the intensity of load when using DBI as a damage 

localization approach. 
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 Severity of damage 

In this section, the relation between the severity of damage with the amplitude of DBI is studied 

to assess the capability for quantifying the deterioration. Figure 3.14(i) and 3.14(j) shows DBI 

charts for the damage Scenarios 9 and 10, respectively, which represent a girder subjected to 

the same damage location but with different severities. It is found that the DBI values in 

Scenario 9 are similar to those obtained in Scenario 10. Therefore, as all damages in Scenarios 

9 and 10 are accurately located, this result implies that DBI can pinpoint and localize damage, 

but it does not comprise information on the magnitude of damage. 

 Measurement noise 

Unavoidable errors cannot be excluded in the fieldwork. Regarding the proposed method, it is 

necessary to analyze the effect of uncertainties. In this study, noise is incorporated into the 

precise measurements as an error term by adding a series of pseudorandom numbers to the 

theoretically calculated displacement. The pseudorandom numbers are obtained by the Excel 

RAND function to get a random number between –1 and 1. Then, the nodal displacements of 

the damaged model are randomly interfered with a uniformly distributed number by the 

following equation: 

                     𝑢𝑑𝑗
𝑛 = 𝑢𝑑𝑗 × {1 + [2 × 𝑅𝐴𝑁𝐷() − 1] × 𝑘}                (3.9) 

where 𝑢𝑑𝑗  stands for the nodal displacements of the damaged structure, 𝑢𝑑𝑗
𝑛   represents the 

noisy nodal displacements and RAND() is a function in Microsoft Excel [30] for getting a 

random number between 0 and 1. In addition, k stands for the percentage of simulated noise. 

In the present study, the assumption is made that the nodal displacements of the damaged girder 

in Scenario 5 (S5) are polluted by a measurement noise with an error of 1, 0.2, and 0.1%. Tables 

3.4, 3.5, 3.6 present DBI values for Scenario 5 under loading Case 2 with an artificial 

measurement noise of 1, 0.2, and 0.1%, respectively. The results show that the DBI approach 

accurately points out the locations of stiffness loss when the pseudorandom noise is less than 

0.1% with respect to the simply supported model. Therefore, it is possible to use the proposed 

method to detect and localize structural deterioration under the condition that the measurement 

displacement is obtained with high accuracy. 
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     (a) Scenario 1                           (b) Scenario 2  

  

     (c) Scenario 3                           (d) Scenario 4 

  

     (e) Scenario 5                           (f) Scenario 6  

  

     (g) Scenario 7                           (h) Scenario 8  
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     (i) Scenario 9                           (j) Scenario 10  

Figure 3.14 Damage localization for ten different damage scenarios of the simply supported girder. 

 

Table 3.4 DBI values for scenario 5 with 1% measurement noise 

Case 

DBI at positon x Result 

x1=0 x2=L/8 x3=2L/8 x4=3L/8 x5=4L/8 x6=5L/8 x7=6L/8 x8=7L/8 x9=L with 

noise 

noise-

free 

S5_x2 0 0 0 0.350 0.815 0.978 0.726 0 0 x6 x2 

S5_x3 0 0.090 1.839 0.890 0 0 0 0 0 x3 x3 

S5_x4 0 0 0.467 1.743 0.799 0 0 0 0 x4 x4 

S5_x5 0 0 0 0.670 1.742 0.670 0 0 0 x5 x5 

S5_x6 0 0 0 0 0.872 1.725 0.379 0 0 x6 x6 

S5_x7 0 0 0 0 0.025 0.890 1.839 0.090 0 x7 x7 

S5_x8 0 0.118 0.821 0.516 0 0 0 1.504 0 x3; x8 x8 

S5 represents the damage scenario 5 and xj (j=1~9) stands the assumed damage location of the noise-free case. 

Table 3.5 DBI values for scenario 5 with 0.2% measurement noise 

Case 

DBI at positon x Result 

x1=0 x2=L/8 x3=2L/8 x4=3L/8 x5=4L/8 x6=5L/8 x7=6L/8 x8=7L/8 x9=L with 

noise 

noise-

free 

S5_x2 0 0.850 0.995 0.775 0.370 0 0 0 0 x3 x2 

S5_x3 0 0 1.519 1.037 0.441 0 0 0 0 x3 x3 

S5_x4 0 0 0.405 1.601 0.896 0.145 0 0 0 x4 x4 

S5_x5 0 0 0 0.719 1.613 0.719 0 0 0 x5 x5 

S5_x6 0 0 0 0.184 0.948 1.581 0.334 0 0 x6 x6 

S5_x7 0 0 0 0 0.441 1.037 1.519 0 0 x7 x7 

S5_x8 0 0 0 0 0.191 0.676 1.081 1.116 0 x8 x8 

S5 represents the damage scenario 5 and xj (j=1~9) stands the assumed damage location of the noise-free case. 
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Table 3.6 DBI values for scenario 5 with 0.1% measurement noise 

Case 

DBI at positon x Result 

x1=0 x2=L/8 x3=2L/8 x4=3L/8 x5=4L/8 x6=5L/8 x7=6L/8 x8=7L/8 x9=L with 

noise 

noise-

free 

S5_x2 0 1.701 0.986 0.368 0 0 0 0 0 x2 x2 

S5_x3 0 0 1.605 1.006 0.347 0 0 0 0 x3 x3 

S5_x4 0 0 0.424 1.645 0.871 0.082 0 0 0 x4 x4 

S5_x5 0 0 0 0.706 1.650 0.706 0 0 0 x5 x5 

S5_x6 0 0 0 0.125 0.929 1.625 0.348 0 0 x6 x6 

S5_x7 0 0 0 0 0.347 1.006 1.605 0 0 x7 x7 

S5_x8 0 0 0 0 0 0.500 1.074 1.475 0 x8 x8 

S5 represents the damage scenario 5 and xj (j=1~9) stands the assumed damage location of the noise-free case. 

3.3.2 Example 2: a two-span continuous girder (statically indeterminate structure) 

(1) Overview of the example 

As a statically indeterminate structure, the next structure considered for this analysis is a two-

span continuous PC girder. The girder is supposed to have the same cross section and material 

features as the objective girder utilized in the previous examples, but it is supported by a hinged 

and two roller supports, as depicted in Fig. 3.15. In addition, the selected span length between 

supports is 4600 mm. To investigate the applicability of DBI in the indeterminate case, five 

different damage scenarios, which are indicated in Table 3.7 and Fig. 3.16(a)–(e), are studied. 

The first two scenarios of damage (Scenarios 1 and 2) are considered to evaluate the ability of 

DBI for recognizing single damage with different locations. Moreover, regarding multiple 

damage identification, the model utilized for three other scenarios of deterioration (Scenarios 

3–5) is subjected to three loading cases, and consists of two damage instances in both portions. 

In particular, the first case of loading (Case 1) outlines a concentrated load (P = 10 kN) located 

in the pin-roller supported portion, whereas the second instance accounts for two concentrated 

loads (P = 10 kN) located in both parts of the continuous girder. Furthermore, a uniformly 

distributed load is taken into consideration as Case 3. As mentioned above, the correlations of 

DBI with the severity of damage and intensity of applied load, which were discussed in the 

previous parts, are not considered in this section. In addition, the damage in this analysis is 

assumed to be associated with the reduction of the Young’s modulus at some areas of the target 

girder. Linear static analyses are performed to examine the effectiveness of the proposed 

method in damage detection. Then, the pre- and post-damage structural responses are obtained 

numerically using the software FX+ For DIANA. In this section, a mesh size of 25 mm is 
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assigned to all cases of analysis, and the results of 92 measuring points (the distance between 

each measurement is equivalent to 100 mm) are utilized. The DBI values are estimated by Eq. 

(3.6) for each scenario and are plotted to localize damage. 

 

 
Figure 3.15 Geometry of the two-span continuous girder 

 

Table 3.7 Damage characteristics of the two-span continuous model 

Scenario of 

damage 

Damage location x Percentage 

reduction in the 

Young’s modulus 

Area of damage 

location 

Load case Number of 

measures 

 mm % cm2   

Scenario 1 100 10 200 Case-1 92 

Scenario 2 6900 10 200 Case-1 92 

Scenario 3 1200,8000 10,10 200,200 Case-1 92 

Scenario 4 1200,8000 10,10 200,200 Case-2 92 

Scenario 5 1200,8000 10,10 200,200 Case-3 92 

 

 

(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 
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(d) Scenario 4 

 

(e) Scenario 5 

Figure 3.16 Five different damage scenarios for the two-span continuous girder (unit: mm). 

(2) Results and discussion 

 Applicability of proposed method 

As mentioned earlier, the first two scenarios of damage represent single damage with different 

locations, whereas Scenarios 3–5 are studied to show the capability of the proposed algorithm 

to pinpoint multiple damage using different cases of loading. The DBI values for the differences 

in nodal displacement between the intact and the deteriorated girder under five scenarios of 

damage are sketched in Fig. 3.17(a)–(e). As can be seen in these figures, the DBI values develop 

considerable peaks at some positions of damage. In particular, Scenarios 1 and 2 show similar 

damage localized on the pin-roller supported and the roller–roller supported parts, respectively. 

The results described in Fig. 3.17(a) and 3.17(b) show that the damage can be localized even 

if the applied load is on a different portion. In regard to multiple damage identification, Fig. 

3.17(c)–(e) presents the assessment results for dual damage scenarios (x = 1200 mm and x = 

8000 mm) of the target girder subjected to loading Cases 1, 2, and 3, respectively. As can be 

seen in these figures, the DBI values at the deteriorated positions form significant peaks, while 

the values of the other elements remain unchanged as zero. The results show that the locations 

of damage, which are illustrated by the two peaks, are accurately identified in the three loading 

circumstances of this example. Because all damages are successfully recognized as significant 

peaks in these figures, it can be stated that the DBI approach can accurately locate different 

damage characteristics. Therefore, the applicability of the proposed method for damage 

detection is confirmed in the statically indeterminate case. 
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(a) Scenario 1                          (b) Scenario 2  

  

(c) Scenario 3                          (d) Scenario 4  

 

(e) Scenario 5  

Figure 3.17 Damage localization for five different damage scenarios of the two-span continuous 

girder. 

 Measurement noise 

The effects of measurement noise on the DBI method using variations in nodal displacements 

are also investigated for the two-span continuous case. Figure 3.18(a)–(d) plots the DBI values 

for the changes in nodal displacement interfered with a measurement noise of 0.2 and 0.1% for 

Scenario 2 (S2) and Scenario 5 (S5). As an outcome obtained from these figures, the DBI 

approach provides accurate answers only when the measurement noise is less than 0.1%. 
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(a) Scenario 2 with 0.1% Noise             (b) Scenario 2 with 0.2% Noise  

  

(c) Scenario 5 with 0.1% Noise             (d) Scenario 5 with 0.2% Noise  

Figure 3.18 Damage localization of scenario 2 and scenario 5 for two-span continuous girder with 

measurement noise. 
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3.4 Conclusions 

In this study, new damage indicators, called displacement assurance criterion (DAC) and 

displacement-based index (DBI), based on changes in the displacement of observation points, 

have been proposed and found as sensitive methods for damage detection in structures.  

 The outcome of numerical studies reveals that, although its variation is relatively small, 

the DAC value decreases when the applied load increases and cracks occur in the 

structure. Therefore, there is a correlation between changes in DAC and damage state, 

and the decrease in DAC can indicate the occurrence of damage in structures.  

 From the theoretical standpoint, the number of measurements does not play a major role 

in the change in DAC when there are more than seven observation points. It is also 

important to notice that the calculated DAC coefficient in the seven-measurement case 

is nearly identical to those obtained using more points, with estimated deviations under 

0.0001%. Consequently, when considering the effectiveness and the economy of using 

the DAC coefficient to identify the occurrence of structural damage, the seven-point 

measuring system can provide relatively reasonable judgments. 

 Another damage indicator, DBI is proposed as a suitable factor to identify damage 

locations, as the results of the numerical study reveal that all damages, with different 

characteristics and for two different static structures, can be accurately located. As 

another outcome worth mentioning, DBI shows a good performance for damage 

localization in all load cases utilized in this study.  

 However, there is no correlation between the DBI values and the intensity of applied 

loads when using DBI as a damage localization approach.  

 It is also important to note that limitations on measured static data play a significant role 

in the accuracy of DBI, and a sufficient number of points provides more accurate results 

than a rough measurement case. Moreover, the most critical factors for determining 

damage location are the selection of observed points at or near the damage locations, 

and the accuracy in measurements. For preventing uncertainty in the results, it is 

suggested that the number of measures should be as fine as possible. 

 The DBI method is effective for damage detection only when the measurement noise is 

less than 0.1%. Therefore, the nodal displacement should be measured with high 

accuracy when using DBI for identifying structural deterioration. 

The results in the present study are obtained purely from the numerical analyses, this work is a 

start point for a simple damage identification based on only displacement curve evaluation, and 

further research is needed on the subject. Regarding long-term prospects, further research 

should be carried out to apply DAC and DBI in actual situations, and future projects can target 

improvements in relation to dynamic strain and displacement influence lines. 



CHAPTER | 3 Nondestructive Damage Detection Using Changes in Nodal Displacement 

 

 HA MINH TUAN 1624052012   75 

 

3.5 References 

[1] E. T. Lee and H. C. Eun, “Damage detection of damaged beam by constrained 

displacement curvature,” J. Mech. Sci. Technol., vol. 22, no. 6, pp. 1111–1120, 2008. 

[2] A. Rytter, “Vibrational Based Inspection of Civil Engineering Structures,” 1993. 

[3] S. Hassiotis and G. D. Jeong, “Identification of Stiffness Reductions Using Natural 

Frequencies,” J. Eng. Mech., vol. 121, no. 10, pp. 1106–1113, 1995. 

[4] Y. Xia, H. Hao, J. M. W. Brownjohn, and P. Q. Xia, “Damage identification of structures 

with uncertain frequency and mode shape data,” Earthq. Eng. Struct. Dyn., vol. 31, no. 

5, pp. 1053–1066, 2002. 

[5] Z. Y. Shi, S. S. Law, and L. M. Zhang, “Damage Localization by Directly Using 

Incomplete Mode Shapes,” J. Eng. Mech., vol. 126, no. 6, pp. 656–660, 2000. 

[6] C. Y. Kao, X. Z. Chen, J. C. Jan, and S. L. Hung, “Locating damage to structures using 

incomplete measurements,” J. Civ. Struct. Heal. Monit., vol. 6, no. 5, pp. 817–838, 2016. 

[7] A. K. Pandey, M. Biswas, and M. M. Samman, “Damage detection from changes in 

curvature mode shapes,” J. Sound Vib., vol. 145, no. 2, pp. 321–332, 1991. 

[8] H. Zhong and M. Yang, “Damage detection for plate-like structures using generalized 

curvature mode shape method,” J. Civ. Struct. Heal. Monit., vol. 6, no. 1, pp. 141–152, 

2016. 

[9] T. Oshima, Y. Miyamori, S. Mikami, T. Yamazaki, S. Beskhyroun, and M. F. Kopacz, 

“Small damage detection of real steel bridge by using local excitation method,” J. Civ. 

Struct. Heal. Monit., vol. 3, no. 4, pp. 307–315, 2013. 

[10] A. K. Pandey and M. Biswas, “Damage Detection in Structures Using Changes in 

Flexibility,” J. Sound Vib., vol. 169, no. 1, pp. 3–17, 1994. 

[11] L. M. Z. Z. Y. Shi, S. S. Law, “Improved Damage Quantification from Elemental Modal 

Strain Energy Change,” J. Eng. Mech., vol. 128, no. 5, pp. 521–529, 2002. 

[12] S. Das, P. Saha, and S. K. Patro, “Vibration-based damage detection techniques used for 

health monitoring of structures: a review,” J. Civ. Struct. Heal. Monit., vol. 6, no. 3, pp. 

477–507, 2016. 

[13] S. M. Seyedpoor, “Structural Damage Detection Using a Multi-Stage Particle Swarm 

Optimization,” Adv. Struct. Eng., vol. 14, no. 3, pp. 533–549, 2011. 

[14] O. Huth, G. Feltrin, J. Maeck, N. Kilic, and M. Motavalli, “Damage Identification Using 

Modal Data: Experiences on a Prestressed Concrete Bridge,” J. Struct. Eng., vol. 131, 

no. 12, pp. 1898–1910, 2005. 

[15] X. Wang, N. Hu, H. Fukunaga, and Z. H. Yao, “Structural damage identification using 

static test data and changes in frequencies,” Eng. Struct., vol. 23, no. 6, pp. 610–621, 

2001. 



CHAPTER | 3 Nondestructive Damage Detection Using Changes in Nodal Displacement 

 

 HA MINH TUAN 1624052012   76 

 

[16] J.-W. Lee, K.-H. Choi, and Y.-C. Huh, “Damage detection method for large structures 

using static and dynamic strain data from distributed fiber optic sensor,” Int. J. Steel 

Struct., vol. 10, no. 1, pp. 91–97, Mar. 2010. 

[17] Z. Sheena, A. Unger, and A. Zalmanovich, “Theoretical stiffness matrix correction by 

static test results,” Isr J Technol, vol. 20, no. 6, pp. 245–253, 1982. 

[18] M. Sanayei and O. Onipede, “Damage assessment of structures using static test data,” 

AIAA J., vol. 29, no. 7, pp. 1174–1179, 1991. 

[19] M. R. Banan and K. D. Hjelmstad, “Parameter Estimation of Structures from Static 

Response. I. Computational Aspects,” J. Struct. Eng., vol. 120, no. 11, pp. 3243–3258, 

1994. 

[20] I. Y. Choi, J. S. Lee, E. Choi, and H. N. Cho, “Development of elastic damage load 

theorem for damage detection in a statically determinate beam,” Computers and 

Structures, vol. 82, no. 29–30. pp. 2483–2492, 2004. 

[21] X. Z. Chen, H. P. Zhu, and C. Y. Chen, “Structural damage identification using test static 

data based on grey system theory,” J. Zhejiang Univ. Sci., vol. 6A, pp. 790–796, 2005. 

[22] F. Bakhtiari-Nejad, A. Rahai, and A. Esfandiari, “A structural damage detection method 

using static noisy data,” Eng. Struct., vol. 27, no. 12 SPEC. ISS., pp. 1784–1793, 2005. 

[23] M. A.-B. Abdo, “Parametric study of using only static response in structural damage 

detection,” Eng. Struct., vol. 34, pp. 124–131, 2012. 

[24] O. Yazdanpanah and S. Seyedpoor, “A crack localization method for beams via an 

efficient static data based indicator,” Comput. Methods Civ. Eng., vol. 4, no. 1, pp. 43–

63, 2013. 

[25] S. M. Seyedpoor and O. Yazdanpanah, “An efficient indicator for structural damage 

localization using the change of strain energy based on static noisy data,” Appl. Math. 

Model., vol. 38, no. 9–10, pp. 2661–2672, 2014. 

[26] A. E. K. Jones and L. A. Clark, “The effects of ASR on the properties of concrete and 

the implications for assessment,” Eng. Struct., vol. 20, no. 9, pp. 785–791, 1998. 

[27] Japanese Standards Association, JIS A 5373:2016 Precast prestressed concrete products. 

Tokyo, Japan, 2016. 

[28] Tnodiana.com, “User’s manual of FX+ for DIANA version 9.6.” [Online]. Available: 

https://support.tnodiana.com/manuals/d96/Diana.html. [Accessed: 01-Jul-2016]. 

[29] Japan Society of Civil Engineers Concrete Committee, Standard specifications for 

concrete structures: design code. Concrete committee, 2012. 

[30] Support.office.com, “RAND function for Microsoft Excel.” . 

 

 

 



CHAPTER | 4 Long-term Vibration Monitoring 

 

 HA MINH TUAN 1624052012   77 

 

Chapter | 4  

Long-term Vibration Monitoring of the Effects of 

Temperature and Humidity on PC Girders with and 

without Fly Ash considering ASR Deterioration 

4.1 Introduction 

In the structural health monitoring of concrete bridges, it is important to assess the relationship 

between the structural performance and the state of damage to conduct maintenance. Hence, 

the responses of a structure, which are divided into static and dynamic responses, are vital. 

Over the years, many studies have been performed on the application of dynamic responses and 

damage detection [1–7] in terms of the natural frequencies, mode shapes, modal curvature, and 

high-order mode shape derivative. A recent study demonstrated that natural frequencies, mode 

shapes, and damping ratios are invariant in structures [1]. Thus, the health of a structure is 

correlated to the changes in its modal parameters. The variations in these parameters do not 

depend on the location of the damage because of their global characteristics. Hence, the 

deterioration can be estimated using sensors mounted at any position on a structure. In particular, 

the changes in the natural frequency have been thoroughly investigated as identifiers of stiffness 

reduction [2]. In addition, the changes in the uncertain frequency, mode shape data [3], 

incomplete mode shape [4], mode shape curvatures [5], and flexibility matrix [6] were used to 

localize the damage. The variation in the elemental modal strain energy was applied to improve 

damage quantification [7]. Hence, most of the studies focused on using structural responses to 

identify the properties of damage (occurrence, location, and severity), whereas only a few 

studies discussed the effects of environmental conditions on the variations in the structural 

characteristics (dynamic and static responses). If the effects of these uncertainties on the 

structural properties are greater than or comparable to the effects of structural damage, the 

structural damage cannot be reliably identified [8]. Therefore, studying the environmental 

effects on the structural properties is important to effectively apply the monitoring methods to 

civil engineering structures.  

During the past few decades, the correlations between the vibrational characteristics and 

temperature changes have attracted considerable interest in technical literature and have been 
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investigated using different approaches such as numerical analysis via finite element (FE) 

methods [9,10], laboratory tests [8,11], and monitoring approaches in civil structures [1,12,13]. 

 

Theoretical derivation method 

Macdonald and Daniell [9] performed modal analyses under two different temperature 

conditions using an FE model of a cable-stayed bridge with a main span of 456 m. A uniform 

change of 5 ºC in the entire structure was considered under the first condition, whereas a 

temperature gradient of +10 ºC was assumed between the top of the deck and the rest of the 

structure under the second condition. With regard to the FE model, beam elements and four 

shell elements were used to model the longitudinal girders and reinforced concrete (RC) slab 

of the deck, respectively. The results showed that the natural frequencies of approximately one-

third of the modes shifted by up to ± 0.2% under both the cases, whereas no clear variation was 

observed in the others. Xu and Wu [10] investigated the effects of uniform and non-uniform 

temperature fluctuations on the frequency and changes in the mode shape curvature of a cable-

stayed concrete box girder bridge using three-dimensional FE analysis. Their results proved 

that the variation behaviors in the frequency and mode-shape curvature under the effect of a 

non-uniform change in the temperature were the same as that under the effect of a uniform 

change in the temperature. Moreover, the maximum variation ratio of the frequency was ~2% 

when the uniform temperature gradient increased by ~60 ºC. The effect of the temperature on 

the frequencies was significant in the vertical bending mode. 

 

Laboratory test approach 

With regard to the laboratory test approach, previous studies provided rational conclusions 

about the variations in the vibrational responses under different environmental conditions. Xia 

et al. [8] performed periodic vibration tests on a reinforced concrete slab for approximately two 

years. It was perceived that the frequencies of the first four modes had a strong negative 

correlation with the temperature, whereas the increases in the damping ratios with the increase 

in the temperature were insignificant, and no clear correlation of the mode shapes could be 

observed with respect to the temperature difference. In particular, the natural frequencies of the 

three bending modes decreased by 0.13–0.23% when the temperature increased by 1 ºC. 

However, the sensitivities of the torsional mode and bending rigidity to the temperature were 

different. Kim et al. [11] observed similar outcomes. They reported that the bending modes 

were more sensitive than the torsional modes. With regard to the lower modes, the effect of the 

temperature on the change in the natural frequency is relatively greater. Moreover, two levels 

of damage were inflicted on a girder near the center of the structure: the bottom flange was cut 

halfway in from the outside, and the bottom flange was cut completely in from either side. 

Consequently, the changes in the vibration properties due to the damage were largely similar to 
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those due to the temperature fluctuations. 

 

Trend analysis approach 

So far, only a few studies have monitored the changes in the structural responses of full-scale 

bridges considering environmental effects [1,12,13]. Cornwell et al. [12] reported that the first 

three natural frequencies of the Alamosa Canyon Bridge varied by approximately 4.7, 6.6, and 

5.0% during a 24 h period as the temperature of the bridge deck changed by approximately 22 

ºC. Later, with the support of the European SIMCES-project, Peeters and De Roeck [13] 

monitored the Z24 Bridge in Switzerland for one year. In particular, black-box models were 

developed from the healthy-bridge data to describe the variations in the eigenfrequencies due 

to the changing environmental conditions. The monitored data were then analyzed with the 

reference data, and the damage was recognized when an eigenfrequency varied beyond certain 

confidence intervals from the proposed model. In addition, the results of the monitored data 

show that the first four vibration frequencies varied by 14–18% during the ten months of 

analysis. The frequencies of all the modes analyzed, except the second mode, decreased with 

the increase in the temperature. In another study worth mentioning, Huth et al. [1] identified 

the damage using modal data for the Romeo Bridge in Switzerland. The results suggested that 

a criterion for the damage detection based on the mode shape area might perform better than 

that based on the variations in the natural frequencies. Furthermore, the obtained monitoring 

data showed that the effects of the environmental parameters were considerable, particularly 

that of the change in the temperature, on the natural frequencies. 

Among the different laboratory approaches employed for evaluating the changes in the 

vibration properties with respect to the environmental conditions, simultaneous effects of 

structural degradation over the monitoring period on the observation data has not been explicitly 

reported. Ha et al. [14] showed that the natural frequency of the first bending mode decreased 

gradually until the destruction of the objective girder. Before the yielding load, the decreasing 

rate was estimated to be within ~6%. However, this rate clearly increased to approximately 31% 

when the natural frequencies measured before the test and at the final loading state were 

compared. Thus, there was a decrease in the natural frequency of the first bending mode in 

accordance with the increase in the structural degradation, i.e., cracks due to loading. With the 

aim of contributing to efficient structural health monitoring approaches, this study investigates 

the effects of environmental conditions on the vibrational properties of prestressed concrete 

(PC) girders, which were affected by varying degrees of deteriorations induced by an alkali–

silica reaction (ASR), as introduced in Chapter 2. Because the environmental conditions induce 

complicated uncertainties in the structural responses, this study only examines the variations in 

the frequencies, mode shapes, and damping with respect to the changes in the temperature and 

humidity. Three full-size PC girders, which were periodically vibration tested for one and a half 



CHAPTER | 4 Long-term Vibration Monitoring 

 

 HA MINH TUAN 1624052012   80 

 

years to obtain their dynamic properties, were exposed to outdoor weather conditions outside a 

laboratory. Two of the PC girders were affected by the ASR whereas the third girder was kept 

at an inactive state by suppressing the acceleration of the ASR using the fly ash. First, the 

vibration characteristics of the girders, such as the vibration frequencies, mode shapes, and 

damping ratios, were extracted from the measurement data along with the ambient temperature 

and humidity during each test. The frequencies and damping ratios were then analyzed using 

linear regression models with respect to the variations in the temperature and humidity. The 

temperature and humidity increased in proportion with the decreases in the frequency and 

damping ratio, whereas no clear correlation of the mode shapes with the changes in the 

temperature and humidity could be observed. In addition, different dynamic behaviors were 

well observed in the three PC girders over the monitoring period. In particular, along with fewer 

ASR-induced cracks, the girder with fly ash exhibited higher vibration frequencies and lower 

damping ratios compared to the girders without the fly ash. Thus, the fly ash significantly 

affected the vibration properties of the PC girders subjected to the ASR-induced deteriorations. 

Because the Young’s modulus of concrete is temperature dependent, the changes in the natural 

frequencies of the PC girders due to the ambient temperature can be simulated using a finite 

element (FE) model [15]. Another objective of this study includes performing validation tests 

of the numerical analyses against the results of the measurement by assuming the Young’s 

modulus of concrete as a function of the temperature. The results showed that the validation 

model provided reasonable illustrations for the changes in the natural frequency of the vibration 

modes due to the changes in the ambient temperature. 

4.2 Experimental procedure 

To obtain free damped vibrations of the three PC girders, 14 accelerometers were placed on the 

girder with a constant interval of 1.15 m, as shown in Fig. 4.1. During each test, the impact 

excitations were applied alternately via a person jumping vertically from a chair (see Fig. 4.2) 

at four locations depicted as “x” in Fig. 4.1. At every impact location, the measurement was 

conducted two times, with 10000 data points collected at a sampling period of 5e−3 s each time. 

The vibration parameters of the PC girders were extracted from the measured data using the 

eigensystem realization algorithm (ERA) [16]. An FE model was then employed to conduct a 

structural eigenvalue analysis and estimate the natural frequency of the PC girder to compare 

the results with the measurements. Moreover, the ambient temperature and humidity were 

recorded simultaneously during the test using a thermometer. To track the variation in the 

vibrational parameters due to the environmental effects and ASR, eight tests were performed 

from May 2015 to September 2016 with 192 valid sets of vibration data. 
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Figure 4.1 Sensor layout on the PC girder. 

 

Figure 4.2 Impact test and sensor layout on the PC girder. 

4.3 Environmental effect of PC girders on vibrational parameters 

In this study, the first three modal properties were extracted from the measured data using the 

ERA [16]. Figures 4.3(a)–(c) show their typical shapes for modes 1, 2 and 3, respectively. In 

particular, modes 1 and 2 are the first and second bending modes, respectively, whereas mode 

3 is the first mode of the torsional vibration. To evaluate the effects of the ambient temperature 

and humidity on the changes in the dynamic responses, linear regression analyses were 

performed on all modal properties of the girders. The results and discussions are presented in 

the following sections. 
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(c) The 1st mode of torsional vibration (mode 3), f=22.360 Hz 

Figure 4.3 Measured frequencies of girder No.3 in May 2015. 

4.3.1 Changes in natural frequencies 

(1) Evaluation of ambient-temperature effects 

Figures 4.4(a)–(c), Figures 4.5(a)–(c), and Figures 4.6(a)–(c) show the negative correlations 

between the three first modal frequencies of the girders and the ambient temperature (specified 

in degree Celsius throughout this study), which were measured during the monitoring period. 

These figures show that the amplitude of the vibrational frequency decreased with respect to 

the increased ambient temperature. 

To obtain more information about the linear relationships of the natural frequencies with respect 

to the temperature, a linear regression model was proposed. The corresponding empirical 

equation of the natural frequency (f) as a function of the temperature (T) is as follows.  

f = 𝛼0 + 𝛽𝑡𝑇 + 𝜀𝑓 ,                             (4.1) 

where f is the natural frequency, 𝛼0 and 𝛽𝑡 are the regression coefficients named the intercept 

and the gradient, respectively, and 𝜀𝑓  is the regression error. The measured ambient 

temperature was used as an explanatory variable. In this study, R was employed for statistical 

computing [17]. With regard to the results of the statistical analyses, Tables 4.1–4.3 list the 

estimated regression coefficients for girders No.1, No.2, and No.3, respectively. 
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(c) Girder No.3 

Figure 4.4 Relation of frequencies of mode 1 to temperature. 

 

(a) Girder No.1   (b) Girder No.2 

 
(c) Girder No.3 

Figure 4.5 Relation of frequencies of mode 2 to temperature. 
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(c) Girder No.3 

Figure 4.6 Relation of frequencies of mode 3 to temperature. 

 

Table 4.1 Coefficients of linear regression model (frequency ~ temperature) of girder No.1. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 9.3641 -0.0132 0.0493 0.5269 -0.1411 0.4111 

2 36.9501 -0.0802 0.1775 0.4803 -0.2171 0.7218 

3 31.4923 -0.1659 1.0982 3.4872 -0.5269 0.3975 

 

Table 4.2 Coefficients of linear regression model (frequency ~ temperature) of girder No.2. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 9.9069 -0.0147 0.0581 0.5864 -0.1489 0.3821 

2 35.5043 -0.0540 0.6280 1.7687 -0.1520 0.1444 

3 32.7528 -0.2204 2.2470 6.8604 -0.6729 0.2280 

 

Table 4.3 Coefficients of linear regression model (frequency ~ temperature) of girder No.3. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 10.2691 -0.0177 0.0286 0.2785 -0.1725 0.7932 

2 37.2520 -0.0850 0.1425 0.3825 -0.2281 0.8567 

3 33.1032 -0.3239 0.8411 2.5408 -0.9785 0.7911 

 

From the above tables, the coefficients of determination R2 for the three modes of girder No.3 

were estimated at approximately 0.8. Moreover, in comparison to the other two girders, this 

coefficient was obtained at much lower values. Therefore, approximately 80% of the vibration-

frequency variances of girder No.3 could be accounted for with respect to the ambient 
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temperature. In particular, a change of ~85.67% in the frequency of the second bending mode 

could be due to the change in temperature. However, changes of ~41.11, 72.18, and 39.75% in 

modes 1, 2, and 3, respectively, of girder No.1 were predictable, whereas the variance in the 

vibration frequency of girder No.2 was the least explainable among the three. The correlation 

levels were relatively moderate for girders No.1 and No.2 but fairly strong for girder No.3. 

Figures 4.4, 4.5, and 4.6 show the fitted regression lines and corresponding equations. The 

standard deviations of the error (Std. Error 𝜎𝜀𝑓
) were obtained as 0.0493, 0.1775, and 1.0982 

for modes 1, 2, and 3 of girder No.1, respectively, as observed in Table 4.1. Dividing 𝜎𝜀𝑓
 by 

the intercept (𝛼0) yields 0.5269, 0.4803, and 3.4872%, which indicate the uncertainties due to 

other factors such as measurement noise, analysis error or effects of ambient humidity [8], and 

ASR-induced deterioration. Because the error ratio of the torsional mode was higher than that 

of the bending modes, it is found that the bending modes could be estimated more accurately 

than the torsional mode. Similar outcomes were also observed with respect to the vibration 

modes of the other two girders. To quantify the effect of the measured temperature on the 

frequency change, the gradients (𝛽𝑡) were normalized to the intercepts (𝛼0). The results show 

that, for all girders, the torsional frequencies decreased by 0.52–0.97% as the temperature 

increased by 1 ºC, whereas the measured frequencies of the bending modes decreased by 

approximately 0.1–0.2%. 

(2) Evaluation of ambient-humidity effects 

In this study, the effect of humidity variation on the change in the vibration frequency of the PC 

girders was analyzed. Figures 4.7(a)–(c), Figures 4.8(a)–(c), and Figures 4.9(a)–(c) show the 

correlations of all the identified data of the first three modal frequencies with respect to the 

ambient humidity (specified in percent throughout this study). These figures demonstrate that 

all the three frequencies decreased with the increase in the humidity. Moreover, the relationship 

between the measured frequencies and the humidity was relatively linear. 

The linear regression analyses were performed to investigate the goodness of fit of the linear 

relationship using R [17]. A linear regression model was proposed. The corresponding empirical 

equation of the natural frequency (f) as a function of the humidity (H) is assumed as follows.  

f = 𝛼0 + 𝛽ℎ𝐻 + 𝜀𝑓 ,                          (4.2) 

where f is the natural frequency, 𝛼0 and 𝛽ℎ are the regression coefficients named the intercept 

and the gradient, respectively, and 𝜀𝑓 is the regression error. With regard to the results of the 

statistical analyses, Tables 4.4–4.6 list the estimated regression coefficients for girder No.1, 

No.2, and No.3, respectively. 
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(a) Girder No.1    (b) Girder No.2 

 

(c) Girder No.3 

Figure 4.7 Relation of frequencies of mode 1 to humidity. 

 
(a) Girder No.1    (b) Girder No.2 

 

(c) Girder No.3 

Figure 4.8 Relation of frequencies of mode 2 to humidity. 
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(a) Girder No.1    (b) Girder No.2 

 

(c) Girder No.3 

Figure 4.9 Relation of frequencies of mode 3 to humidity. 

 

Table 4.4 Coefficients of linear regression model (frequency ~ humidity) of girder No.1. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 9.4902 -0.0084 0.0251 0.2643 -0.0885 0.8732 

2 37.1382 -0.0393 0.1450 0.3904 -0.1058 0.8614 

3 28.6544 -0.0227 1.2469 4.3514 -0.0792 0.0624 

 

Table 4.5 Coefficients of linear regression model (frequency ~ humidity) of girder No.2. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 10.0751 -0.0095 0.0504 0.5005 -0.0940 0.6908 

2 36.7092 -0.0462 0.6605 1.7993 -0.1260 0.4145 

3 31.5830 -0.0665 3.0309 9.5965 -0.2107 0.0867 
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Table 4.6 Coefficients of linear regression model (frequency ~ humidity) of girder No.3. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 10.1603 -0.0053 0.0735 0.7236 -0.0524 0.2613 

2 37.3333 -0.0364 0.3276 0.8774 -0.0974 0.5898 

3 32.8495 -0.1263 2.0293 6.1777 -0.3845 0.3931 

 

The coefficients of determination R2 for the three frequencies of girder No.3 were 0.2613, 

0.5898, and 0.3931, respectively, and the corresponding correlation coefficients R were 0.5112, 

0.768, and 0.627, respectively, implying that there was a moderate correlation between the two 

variables. For girders No.1 and No.2, the R2 factors for the two bending modes were estimated 

respectively as 0.8732 and 0.8614 and 0.6908 and 0.4145, respectively, which yielded high 

values of the correlation coefficient R, i.e., 0.9345 and 0.9281 for girder No.1 and 0.8314 and 

0.644 for girder No.2. Thus, there was a good correlation between the frequencies of the 

bending modes with respect to the ambient humidity with regard to the two girders. In contrast, 

with regard to the torsional modes, the linear relationships between the two variables were weak 

because of the low coefficients of determination R2. The result of the regression analysis shows 

that the ambient humidity affected the frequencies of the bending modes of the girders No.1 

and No.2 more significantly than that of girder No.3. As a previous study of Xia et al. [8], it 

was considered that the concrete could absorbed more water and thereby its mass would be 

increased in high humidity environment. The negative relation between the natural frequency 

and the humidity was also evaluated and confirmed in that study. In the present study, because 

of the ASR-induced cracks, it was believed that water could be absorbed and dispersed easily 

in the girders No.1 and No.2. Thus, these two girders were more sensitive to the ambient 

humidity than girder No.3 containing the fly ash. For a detailed comparison between the three 

girders, the gradients (𝛽𝑡 ) were normalized to the intercepts (𝛼0 ). It was found that the 

frequencies of the two bending modes of girder No.3 varied by ~0.052% and ~0.097% when 

the humidity changed by 1%. With regard to the frequencies of girders No.1 and No.2, the rates 

were calculated at higher values, which were 0.088–0.106% and 0.094–0.126%, respectively. 

For the torsional mode, the results differ significantly with the changes in the bending modes. 

Figures 4.7, 4.8, and 4.9 show the fitted regression lines and corresponding equations. 

(3) Combined effect of ambient temperature and humidity 

As another form of the linear regression analysis, multiple linear regression was employed to 

explain the combined effect of the ambient temperature and humidity (independent variables) 

on the natural frequency (dependent variable). Assuming the humidity as the second variable, 
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the empirical equation of the frequency (f) as a function of the temperature (T) and humidity 

(H) is given as follows. 

f = 𝛼0 + 𝛽𝑡𝑇 + 𝛽ℎ𝐻 + 𝜀𝑓,                         (4.3) 

where f is the natural frequency, 𝛼0 , 𝛽𝑡 , and 𝛽ℎ  are the intercept and the gradients of the 

temperature and humidity, respectively, and 𝜀𝑓 is the regression error. Tables 4.7–4.9 list the 

outcomes for girders No.1, No.2, and No.3, respectively. The results of the R2 statistics were 

estimated at 0.8815, 0.8725, and 0.8618 for the three vibration modes of girder No.3, and the 

corresponding correlation coefficients R were obtained respectively as 0.9389, 0.9341, and 

0.9283, which are significantly higher than the previous results wherein the humidity and 

temperature were considered separately. The strong correlations between the three variables 

demonstrate that the ambient humidity and temperature significantly affected the changes in the 

frequencies of the vibration modes of girder No.3. In addition, the regression analyses for 

girders No.1 and No.2 yielded similar results because the coefficients of determination were 

high. The results of the uncertainty evaluation show that the percentage ratios between 𝜎𝜀𝑓
 and 

𝛼0 were largely lower than the previous errors. However, the uncertainties in the torsional mode 

of the three girders were obtained respectively as ~2.98, ~6.47, and ~2.95%, which were clearly 

higher than that of the two bending modes. The fluctuations in estimating the torsional 

properties are high because the torsional mode is not only affected by the environmental 

conditions and errors in the measurements and analyses but also governed by the shear rigidity 

of the structure, which differs from the bending rigidity in terms of the sensitivity to the 

temperature and humidity [8]. 

The selected regression models were only suitable for a temperature range of 11.45–33 ºC and 

a humidity range of 28–73% as presented in this study. Moser and Moaveni [18] showed that 

for a two-span continuous steel frame bridge, the relationships between the natural frequencies 

of six identified modes and the measured temperature were nonlinear when the temperature 

ranged from −14 ºC to 39 ºC. 

 

Table 4.7 Coefficients of linear regression model (frequency ~ temperature + humidity) of girder No.1. 

Mode 
Intercept 

𝛼0 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

Correlation 

coefficient R 

1 9.4809 0.0235 0.2483 0.8923 0.9446 

2 37.2076 0.1291 0.3470 0.8954 0.9463 

3 31.6610 0.9425 2.9768 0.6576 0.8109 
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Table 4.8 Coefficients of linear regression model (frequency ~ temperature + humidity) of girder No.2. 

Mode 
Intercept 

𝛼0 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

Correlation 

coefficient R 

1 10.1880 0.0514 0.5046 0.7691 0.8770 

2 38.7192 0.4317 1.1150 0.8454 0.9195 

3 25.9808 1.6800 6.4663 0.7848 0.8859 

 

Table 4.9 Coefficients of linear regression model (frequency ~ temperature + humidity) of girder No.3. 

Mode 
Intercept 

𝛼0 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

Correlation 

coefficient R 

1 10.1673 0.0297 0.2923 0.8815 0.9389 

2 37.3092 0.1855 0.4973 0.8725 0.9341 

3 33.8330 0.9980 2.9499 0.8618 0.9283 

(4) Evaluation of the effects of ASR-induced deterioration 

Another important result is the difference in the frequencies of the three girders over the 

monitoring period. For each measurement, the vibration test was replicated eight times in total, 

and the average values were calculated. Figures 4.10(a)–(c) show the time histories of the 

average natural frequencies of the three modes over one and a half years. However, the 

frequencies of the torsional mode were similar. The differences in the measured frequencies of 

the three girders clearly manifested over time with regard to the two bending modes. Moreover, 

the bending frequency of girder No.3 was the highest as compared to the results obtained for 

girders No.1 and No.2 at each measuring time. In terms of the first bending mode, the 

frequencies of girder No.1 exhibited much lower values than those of the two other girders. In 

September 2016, as compared to the result obtained for girder No.3, the frequencies of girders 

No.1 and No.2 were lower by ~9.6 and ~4.5%, respectively. With regard to the second bending 

mode, the frequencies of the three girders were approximately the same at the initial 

measurements because the differences in the identified data were obtained as approximately 

0.06% in May 2015. Since November 2015, the difference became pronounced, and until the 

end of the monitoring period, the frequencies of girder No.3 was ~4.54% greater than that of 

girder No.2. Because the cross sections of the three girders were the same with fairly similar 

mixtures, and were tested alternately in a short time during each measurement, the difference 

in the natural frequency of the bending modes was probably not due to the changes in 

temperature and humidity. One of the possible reasons for the difference is that girders No.1 

and No.2 were affected by the ASR deteriorations, thereby forming many cracks that 
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propagated longitudinally on the top and both side surfaces of the girders and leading to the 

decrease in the Young’s modulus of concrete. Sugiura et al. [19] studied the girders No.2 and 

No.3 and showed that the expansion rate of concrete in the transverse direction, which was the 

primary cause of the longitudinal ASR-induced cracks, increased significantly since early 

October 2015 in girder No.2. In addition, fracture mechanics states that the occurrence of a 

crack in a structure causes a local flexibility influencing its dynamic responses [20]. 

Dimarogonas [20] proposed that for a small crack depth, the local flexibility (∆c) is a function 

of (𝑎/ℎ)2 where a is the crack depth and h is the height of the beam. Assuming that the intact 

beam has a flexibility (c), the total flexibility (C) after the formation of a crack and the 

corresponding structural stiffness (K) can be obtained as follows. 

C = c + ∆c,      (4.4) 

K =
1

C
=

1

𝑐+∆𝐶
=

1

𝑐+𝜆(
𝑎

ℎ
)

2,      (4.5) 

where 𝜆 = 1.86 (
6𝜋ℎ

𝐸𝐼
)  is a constant. Likewise, the radian frequency (𝜔𝑛 ) of the crack-free 

beam will vary with respect to 𝛥𝜔𝑛, and the total radian frequency will be 𝜔𝑛
′ = 𝜔𝑛 + 𝛥𝜔𝑛. 

In addition, because the natural frequency (𝑓𝑛 ) can be obtained by dividing 𝜔𝑛  by 2π, the 

change (𝛥𝑓𝑛) due to the formation of the crack should be equal to 𝛥𝜔𝑛/2𝜋. For a single degree 

of freedom oscillator, the natural frequency depends on the system properties such as mass (m) 

and stiffness (K). Given that there is a small crack in the structure, the radian frequency (𝜔𝑛
′ ) 

can be defined using the following relationship. 

(𝜔𝑛
′ )2 = (ω𝑛 + Δω𝑛)2 = ω𝑛

2 + 2ω𝑛Δω𝑛 + Δω𝑛
2 =

𝐾

𝑚
=

1

𝑚(𝑐+𝜆(
𝑎

ℎ
)

2
)

=
1

𝑚𝑐(1+
𝜆

𝑐
(

𝑎

ℎ
)

2
)
.  (4.6) 

Assuming that 
𝜆

𝑐
(

𝑎

ℎ
)

2

=
∆𝑐

𝑐
 is much less than 1 and neglecting the higher order terms 𝛥𝜔𝑛

2
, 

the following equation can be obtained. 

ω𝑛
2 + 2ω𝑛Δω𝑛 =

1

𝑚𝑐
−

𝜆

𝑐
(

𝑎

ℎ
)

2

.     (4.7) 

Therefore, the changes in the radian frequency (𝛥𝜔𝑛 ) and natural frequency (𝛥𝑓𝑛 ) can be 

obtained using Eqs. (4.8) and (4.9), respectively.  

Δω𝑛 = −
𝜆

2ω𝑛𝑐
(

𝑎

ℎ
)

2

,     (4.8) 

Δf𝑛 = −
𝜆

4𝜋ω𝑛𝑐
(

𝑎

ℎ
)

2

.     (4.9) 

Accordingly, the relationship between the occurrence of cracks and the decrease in the natural 

frequency is proved. Moreover, because the expansion of the ASR was effectively suppressed 

by the fly ash, the frequency variation of girder No.3 was largely due to the environmental 
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effects. Within one and a half years of investigation, as the ambient temperature and humidity 

varied by approximately 21.55 ºC and 45%, respectively, the bending modal frequencies of 

girder No.3 varied in the range of ~3–5%, which is considerable compared to those due to the 

structural damage. Hence, the effects of the environmental conditions should be considered 

carefully when using the variation in the vibrational frequency to evaluate the health of 

structures. 

 

 
(a) The 1st bending mode      (b) The 2nd bending mode 

 

(c) The 1st torsional mode 

Figure 4.10 Difference in natural frequencies of three girders. 

4.3.2 Variation in damping ratio 

The damping ratio was extracted from the measured data to examine the changes due to the 

ambient temperature and humidity. Figures 4.11(a)–(c) and Figures 4.12(a)–(c) show the 

identified damping ratios of the three vibration modes of girder No.3 with respect to the ambient 

temperature and humidity, respectively. Except for Figure 4.12(a), which shows a weak 

positive relationship with the humidity, the rest of the figures demonstrate that the damping 

ratios relatively decrease with the increases in the environmental parameters. 

Using R [17], the regression models were then developed to evaluate the linear correlations 

between the variables. A governing equation of the linear regression model of the damping ratio 

(d) as a function of the temperature (T) was proposed as follows. 

d = 𝛼0 + 𝛽𝑡𝑇 + 𝜀𝑓 ,     (4.10) 
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where d is the damping ratio, 𝛼0 and 𝛽𝑡 are the intercept and the gradient, respectively, and 

𝜀𝑓 is the regression error. Table 4.10 lists the results of the statistical analysis for girder No. 3. 

The gradients were obtained respectively as −0.0001, −0.0002, and −0.0007 for the three modes, 

indicating that the damping ratios increased slightly with the decrease in the temperature as 

described in Figs. 4.13(a)–(c). In these figures, the average values were calculated for each 

measurement and plotted to find the pattern of the damping variation over time. However, the 

coefficients of determination R2 were estimated at low values, which were 0.03, 0.2159, and 

0.1843 for modes 1, 2, and 3, respectively. Additionally, the standard deviation of the errors 

occupied large proportions of the intercept, which were above ~6.4%. Attempts were made to 

evaluate the relationship between the damping ratios and ambient humidity. Another linear 

regression equation was similarly developed for the investigation. Table 4.11 lists the 

coefficients of the linear regression model of the damping ratio with respect to the humidity. 

Because the R2 statistics were low and the identified noises were rather high at approximately 

12% for modes 1 and 3 and ~8% for mode 2, the results were similar to those obtained with 

respect to the ambient temperature. In addition, a multiple linear regression model was 

considered to analyze the variation in the damping ratio under the combined effect of the 

ambient temperature and humidity. As an outcome of the model for girder No.3, the R2 statistics 

were estimated at 0.1843, 0.2499, and 0.2539 for the three vibration modes, and the 

corresponding correlation coefficient R were obtained respectively as 0.4293, 0.4999, and 

0.5039, which were quite higher than the ones obtained for the single linear models. Based on 

the above statistical parameters, the effects of the measured humidity and temperature on the 

change in the damping ratio were evaluated as weak correlations in this study. Similar outcomes 

were found with respect to the damping ratios of the other two girders. Thus, the changes in the 

damping ratio were not only affected by the ambient temperature and humidity but also 

governed by other factors. However, it is difficult to determine the damping ratio with sufficient 

accuracy to estimate the correlations with the temperature, as reported in previous studies 

[8,18,20]. 
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(c) mode 3 

Figure 4.11 Relation of damping ratios of girder No.3 to temperature. 

 

 
(a) mode 1    (b) mode 2 

 

(c) mode 3 

Figure 4.12 Relation of damping ratios of girder No.3 to humidity. 

 

Table 4.10 Coefficients of linear regression model (damping ratio ~ temperature) of girder No.3. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 0.0145 -0.0001 0.0012 8.1397 -0.4504 0.0300 

2 0.0214 -0.0002 0.0014 6.4610 -0.7625 0.2159 

3 0.1010 -0.0007 0.0079 7.8235 -0.7360 0.1843 
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(a) mode 1   (b) mode 2 

 

(c) mode 3 

Figure 4.13 Variations in average damping ratios of girder No.3 over one and a half years. 

 

Table 4.11 Coefficients of linear regression model (damping ratio ~ humidity) of girder No.3. 

Mode 
Intercept 

𝛼0 

Gradient 

𝛽𝑡 

Std. Error 

𝜎𝜀𝑓
 

𝜎𝜀𝑓
/𝛼0 

(%) 

𝛽𝑡/𝛼0 

(%) 

Coefficient of 

determination 𝑅2 

1 0.0120 0.00002 0.0015 12.5748 0.1482 0.0094 

2 0.0224 -0.00008 0.0018 8.2411 -0.3624 0.2024 

3 0.0878 -0.00011 0.0111 12.6373 -0.1255 0.0163 

 

In addition, the cracks in a structure not only affect the structural stiffness [8,21,22] but also 

lead to variations in the structural damping ratio because of the appearance of plastic zones 

along the edges of the cracks [20]. Curadelli et al. [23] showed the difference in the 

instantaneous damping coefficient between the healthy and damaged condition of a reinforced 

concrete beam. They clearly demonstrated that the variation in the damping was considerable 

and the instantaneous damping coefficients of the undamaged state were lower than of the 

measured ones at the final loading step with respect to all the vibration amplitudes. In the 

present study, the difference in the damping ratios of the three girders over the monitoring 

period was analyzed accordingly. Figures 4.14(a)–(c) show the time histories of the average 

damping coefficients over the follow-up period. Apart from the first torsional mode (mode 3), 
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wherein the difference in the amplitude was insignificant, the damping ratios of the other modes 

changed considerably, representing the difference between the girders. With regard to the 

damping of the first bending mode (mode 1), all the identified values of girder No.1 were clearly 

higher than that of girders No.2 and No.3, which were similar in terms of the amplitude. With 

regard to the second bending mode (mode 2), the damping ratios of the three girders were 

largely equal at the three initial measurements. The differences became apparent since 

November 2015. From the data of September 2016, the average damping ratios of the girders 

No.2 and No.1 were approximately 2 and 1.5 times, respectively, greater than the identified 

value of girder No.3. As the correlations with the changes in the ambient environmental 

parameters were low, the difference in the damping coefficients in the two bending modes of 

the three girders was probably due to the increase in the longitudinal crack propagation due to 

the ASR-induced expansion, which led to the increase in the number of plastic zones in girders 

No.1 and No.2. 

 
(a) mode 1    (b) mode 2 

 

(c) mode 3 

Figure 4.14 Difference in damping ratios of three girders. 
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In this study, the variations in the mode shape due to the environmental effects were examined 

using the modal assurance criterion (MAC) [24], which is a simple index used to characterize 

the effects of the damage on the mode shapes. The MAC reflects the degree of relationship 

between the two modal curves, which were extracted from the acceleration data obtained at 
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different states of a structure. The MAC can be computed as follows. 

𝑀𝐴𝐶 =
(∑ 𝜓𝐼𝑗𝜓𝐷𝑗

𝑛
𝑗=1 )

2

∑ 𝜓𝐼𝑗
2𝑛

𝑗=1 ∑ 𝜓𝐷𝑗
2𝑛

𝑗=1

,    (4.11) 

where 𝜓𝐼𝑗 and 𝜓𝐷𝑗  (j=1~n+1) are the identified mode shape values at the jth point of the intact 

and damaged modal vectors, respectively, and n indicates the number of observation points of 

a vibration mode. In the case wherein there are no differences due to the structural change in 

the two sets of the mode shapes, the MAC value would be equal to unity. However, the MAC 

value might decrease in amplitude to zero if any variation exists in the structural properties, 

thereby reducing the correlation degree between the two mode shapes. To determine the MAC, 

the analytical mode shapes, as shown in Figs 4.15(a) and 4.15(b), were used as reference lines. 

Figures 4.16(a), 4.16(b), 4.17(a) and 4.17(b) show the identified MAC values of the two 

bending modes with respect to the temperature and humidity. Figures 4.16(a) and 4.16(b) show 

that the scatters seen in all the MAC values are significant with no notable pattern reflecting 

the variation in the amplitude with respect to the ambient temperature. The obtained values are 

higher than 0.97 and 0.9 for the two bending modes, which are approximately close to unity. 

Similarly, Figures 4.17(a) and 4.17(b) show no clear trend in the MAC changes due to the 

measured humidity. Because all the coefficients of determination obtained from the multiple 

linear regression analysis were estimated to be lower than 0.2, the correlation levels with the 

temperature and humidity were weak in terms of the MAC values of the two bending modes. 

Although it is widely accepted that the MAC is a useful indicator of the changes in the structural 

performance, it is not sensitive to the uniform changes throughout the structure [8]. In fact, the 

ambient temperature and humidity affect the entire girder uniformly [8], and consequently, the 

effects of the environmental conditions on the MAC values were observed at low levels. The 

results obtained in this study help confirm this observation. Figures 4.18(a) and 4.18(b) show 

the time histories of the identified MAC values of the first and second bending modes, 

respectively, to compare between the three girders over the monitoring period. With regard to 

mode 1, the MAC values of girders No.1 and No.2 are relatively lower than those of girder 

No.3. However, no significant separation in the amplitude was observed. A similar observation 

regarding mode 2 was found for all the girders. Hence, no clear difference was found in the 

magnitude of the MAC values considered in this study. Because the torsional mode could not 

be estimated precisely for all the girders as mentioned in the previous section, its MAC values 

are not reported in this section. 
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(a) The 1st bending mode (mode 1)    (b) The 2nd bending mode (mode 2) 

Figure 4.15 Two analytical mode shapes. 

 

 

(a) The 1st bending mode (mode 1)    (b) The 2nd bending mode (mode 2) 

Figure 4.16 Identified MAC values of two bending modes versus measured ambient temperature. 

 

 

(a) The 1st bending mode (mode 1)    (b) The 2nd bending mode (mode 2) 

Figure 4.17 Identified MAC values of two bending modes versus measured humidity. 
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(a) The 1st bending mode (mode 1)    (b) The 2nd bending mode (mode 2) 

Figure 4.18 Time histories of MAC values for three girders. 

4.4 Numerical modeling 

4.4.1 Eigenvalue structural analysis 

To evaluate the accuracy of the measurement, a three-dimensional (3D) model was produced 

using FX+ for DIANA, which is a commercially available program for FE analysis. The 

properties and boundary conditions of the numerical model were the same as those of the actual 

PC girder. Figure 4.19 shows the diagram of a 3D model used for the eigenvalue structural 

analysis in DIANA [25]. The objective model was a PC girder supported by two points with a 

span length of 9200 mm. As a PC girder, it contained 16 PC steel strands (SWPR7BL1S 12.7 

mm). The strands had D10-type stirrups arranged around them. The PC strands and stirrups 

were modeled as bars in the beam elements. The bonding forces between the concrete and 

strands were assumed complete. Table 4.12 lists the parameters of the concrete for the analysis. 

Moreover, the stirrups were assumed as linear elastic materials with a Young’s modulus 𝐸𝑠 =

210000 N/mm2 and Poisson’s ratio ν = 0.3. Moreover, the PC steel material was considered 

made of steel with Young’s modulus 𝐸𝑠 = 210000 N/mm2 and Von Mises yield stress 𝜎𝑦 =

1580 N/mm2 . The mass density for the steel materials was selected as 7.7e−9 T/mm3. 

Regarding the prestressing force for reinforcement, a value of 1225.3 N/mm2 was assigned to 

the first layer of PC strands in the compression area (4 strands) while the other two layers in 

the tension area (6 strands) were subjected to a presstress of 1166.7 N/mm2. Figures 4.20(a) 

and 4.20(b) show the modal shapes of the two bending modes of girder No.3 and the 

corresponding frequencies, which are quite similar to the measured modes shown in Figs. 4.3(a) 

and 4.3(b), respectively. 
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Figure 4.19 A 3D model of the PC girder. 

 

Table 4.12 Material parameters of concrete for eigenvalue analysis. 

Young’s modulus 𝐸𝑐 38700 N/mm2 

Poisson’s ratio ν 0.16  

Mass density ρ 2.45e–9 T/mm3 

 

 

(a) Analytical 1st bending mode, f=9.576 Hz  (b) Analytical 2nd bending mode f=37.054 Hz 

Figure 4.20 Analysis results of natural frequencies of girder No.3 in May 2015. 

4.4.2 Validation 

Over the years, many researchers have proved that the temperature change affects not only the 

thermal properties but all the mechanical properties of the concrete such as the compressive 

strength, tensile strength, Young’s modulus, and stress–strain relationship [26–28]. In particular, 

the variation in the compressive strength of the concrete at elevated temperatures (from 100 ºC 

to 1000 ºC) was considerable, whereas the variation was less in the range of 0–100 ºC because 

the relative compressive strength was close to unity [26]. The change in the tensile strength of 

concrete is much lower than that of the compressive strength. Conversely, the Young’s modulus 

decreases significantly with the increase in the temperature [26]. Along with the increase in the 
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atomic thermal variations, the volume expansion will occur in concrete when the temperature 

increases, thereby changing the Young’s modulus [28]. In addition, the effect of temperature on 

the properties of the steel materials was mentioned in the literature [29,30]. Because the 

temperature-induced change in the material properties is complex, which is not of concern in 

this study, the primary focus in this section is on the effect of the temperature on the Young’s 

modulus of concrete, which leads to a variation in the natural frequency. Xia et al. [8] showed 

that the effects of the friction at the supports and the geometric change due to the temperature 

variation in the vibrational frequency were much lower than that of the temperature-induced 

variation in the Young’s modulus. Hence, the numerical analyses were extensively validated 

against the measured changes in the natural frequencies of the PC girders due to the ambient 

temperature were conducted using FE commercial software. In this test, the 3D model of FX+ 

for DIANA described previously was used for the simulation. In this approach, a linear equation 

was employed wherein the Young’s modulus of concrete is considered a function of the 

temperature. At each measurement, the Young’s modulus with respect to the temperature was 

calculated and inputted to the DIANA model to obtain the modal parameters. The effect of 

temperature at the time of testing on the Young’s modulus of concrete, at an age of 28 d without 

the exchange of moisture, can be obtained using Eq. (4.12) [31] as follows. 

𝐸𝑐𝑖(𝑇) = 𝐸𝑐𝑖 (1.06 −
0.003𝑇

𝑇0
),    (4.12) 

where T is the temperature of the material (ºC), 𝐸𝑐𝑖 is the Young’s modulus of concrete at 20 

ºC, 𝐸𝑐𝑖(𝑇)  is the Young’s modulus of concrete at temperature T ºC, and 𝑇0  = 1 ºC. The 

previous results show that girder No.3 exhibited much lower levels of damage due to the ASR 

compared to the other two girders. The presence of a few cracks only slightly affected the 

vibrational responses because the correlation levels with the ambient temperature were clearly 

high for the three modal frequencies considered in this study. Therefore, the measured 

frequencies of girder No.3 were employed as a comparison with the simulation results. The 

Young’s modulus of concrete at 20 ºC was assumed as 38700 N/mm2, which was obtained 

from the compression tests conducted on concrete cores collected from the middle section of 

girder No.3 along the direction perpendicular to the girder axis. Table 4.13 lists the analytical 

results of the two bending modal frequencies of girder No.3. From this table, it is found that the 

numerical model yielded relatively similar values compared to the measurement. Therefore, the 

FE model can be calibrated to more closely match the experimental frequencies and provide 

more accurate predictions of the frequency in the future. There is a slight difference between 

the measurements and the analysis results because the Young’s moduli used in the numerical 

analysis might not reflect the real moduli of the entire girder, particularly because the girder is 

PC. The results of the coring test [32] showed that the mechanical properties of the concrete 

cores varied based on their collecting positions and directions. In particular, because of the 
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effect of the restraining stress of the PC strands along with the low expansion rate of concrete, 

the concrete samples collected longitudinally from the central part exhibited lower compressive 

strengths compared to the samples collected from the transverse direction. When comparing the 

results obtained for the central and the end parts, the mechanical properties of the concrete cores 

of the end part are poorer than those of the central part. In addition, the ambient temperature, 

which was used as an input in the governing linear equation, did not significantly change the 

temperature of the girder instantaneously because of its large thermal mass. Therefore, the 

inputted temperature profile might not accurately reflect the temperature of the girder. Because 

the main objective of the simulations was to confirm the relationship between the frequency 

variation and the temperature-induced change in terms of the Young’s modulus, the frequencies 

were normalized by the highest frequency in the monitoring period. Figures 4.21(a) and 

4.21(b) show the variations in the relative vibrational frequencies of the two bending modes of 

girder No.3 with respect to time. The figures show that the trend in the frequency variation in 

both the experimental and analytical results with respect to the temperature is similar. Negative 

relationships between the frequencies and the ambient temperature were obtained in the results: 

the temperature increased with the decreases in the frequencies. In addition, both the relative 

frequencies followed an expected trend. In other words, they increased and reached the 

maximum values in March 2016 when the measured ambient temperature was the lowest over 

the monitoring period, and subsequently, decreased until September 2016. In particular, the 

temperature varied by ~21.55 ºC from approximately ~33 ºC in May 2015 to ~11.45 ºC in March 

2016 (between summer and winter). This decrease led to a variation in the Young’s modulus of 

concrete, thereby increasing the analytical frequency of mode 1 by ~3.1%. This rate was 

obtained at ~4.5% with respect to the measurement. The measured temperature then increased 

gradually by ~19 ºC from a low temperature to ~30.45 ºC in September 2016 (between winter 

and summer). Consequently, the experimental and analytical frequencies decreased by ~2.8 and 

~2.7%, respectively. To make a consistent comparison with the other girders, this study assumed 

that the analytical frequencies of girders No.1 and No.2 varied linearly with the variation in the 

ambient temperature. Based on this assumption, the variation ratios of the analytical frequencies 

with respect to time of the girders No.1 and No.2 were estimated and plotted in Figs. 4.22(a), 

4.22(b), 4.23(a) and 4.23(b), respectively. As shown in these figures, the variations in the 

numerical frequencies are not in agreement with the changes in the measured one. In particular, 

the second bending mode of girder No.2, which is shown in Fig. 4.23(b), exhibited a higher 

discrepancy compared to the other results. This noise is likely because of the ASR-induced 

deteriorations because many longitudinal cracks were observed on the top, bottom, and both 

side surfaces of the girders No.1 and No.2 whereas girder No.3 suffered only a few. In addition, 

it is difficult to estimate the higher order modes with precise accuracy. The results of the 

torsional modes were not shown because they were not identified with sufficient precision to 



CHAPTER | 4 Long-term Vibration Monitoring 

 

 HA MINH TUAN 1624052012   103 

 

detect the environmental effects. These obstacles were reported in other studies as well 

[8,15,18]. The results of the extensive validations show that the correlation between the 

variations in the natural frequencies and the temperature-induced changes in the Young’s 

modulus could be proved reasonably using the FE model developed in this study. 

 

Table 4.13 Numerical analysis and measured results of two bending modal frequencies. 

Time Average 

temperature 

Young’s 

modulus 

Bending 1st mode Bending 2nd mode 

Experiment Analysis Experiment Analysis 

Month 0C N/mm2 Hz Hz Hz Hz 

25-May-15 33.00 37191 9.593 9.576 34.506 37.054 

09-Jul-15 23.40 38305 9.822 9.713 35.453 37.583 

18-Aug-15 27.40 37841 9.874 9.656 35.261 37.363 

03-Nov-15 17.25 39019 9.981 9.799 35.787 37.918 

16-Mar-16 11.45 39693 10.041 9.880 36.266 38.231 

23-May-16 22.38 38424 9.855 9.727 35.112 37.639 

21-Jul-16 26.75 37916 9.826 9.665 34.957 37.399 

02-Sep-16 30.45 37487 9.759 9.613 34.385 37.195 

 

   

(a) The 1st bending mode (mode 1)    (b) The 2nd bending mode (mode 2) 

Figure 4.21 Variations in two bending modal frequencies of girder No.3 over one and a half year. 
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(a) The 1st bending mode (mode 1)    (b) The 2nd bending mode (mode 2) 

Figure 4.22 Variations in two bending modal frequencies of girder No.1 over one and a half year. 

 

  

(a) The 1st bending mode (mode 1)    (b) The 2nd bending mode (mode 2) 

Figure 4.23 Variations in two bending modal frequencies of girder No.2 over one and a half year. 

4.5 Conclusions 

In this study, the combined effect of the changes in the environmental conditions and the ASR-

induced deteriorations on the three PC girders with non-identical mixtures was monitored for 

one and a half years. The main conclusions drawn from this study are as follows. 

 The environmental conditions strongly affected the changes in the frequencies of the 

vibration modes of the girders because the correlation coefficients between the variables 

were strong, as computed using the linear models. With regard to the relationship with 

the ambient temperature, the amplitude of the vibrational frequency decreased with 

respect to the increase in the ambient temperature. The correlation levels were 

comparatively moderate for girders No.1 and No.2 but fairly strong for girder No.3. 

With regard to the effect of humidity, relatively negative relationships between the 

measured frequencies and humidity were obtained. The ambient humidity affected the 

frequencies of the bending modes of girders No.1 and No.2 more significantly than 

those of girder No.3. This observation can be attributed to the influence of the ASR-
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induced cracks because water could be absorbed and dispersed easily in girders No.1 

and No.2. The results of the error analysis show that the bending modes could be 

estimated more accurately than the torsional mode because the error ratio of the 

torsional mode was higher than that of the bending modes. 

 The effects of the measured humidity and temperature on the changes in the damping 

ratio were negligible, though some outcomes illustrate that the damping ratios decreased 

relatively with the increase in the environmental parameters. Moreover, because the 

identified measurement noises were rather high, it was concluded that the damping 

ratios were not determined with sufficient accuracy to distinguish the environmental 

impacts.  

 A significant number of scatters can be seen in all the estimated MAC values with no 

notable pattern reflecting the variation in the amplitude with respect to the ambient 

temperature and humidity. The results proved that the ambient temperature and humidity 

affected the entire girder uniformly, and consequently, the effects of the environmental 

conditions on the MAC values were not meaningful.  

 The outcomes of the comparison between the three girders show that the differences in 

the measured frequencies of the three girders manifested clearly over time in terms of 

the two bending modes, whereas no significant deviation was observed for the 

frequencies of the torsional mode. In particular, the bending frequencies of girder No.3 

were higher than those of girders No.1 and No.2 at each measuring time. With regard to 

the damping ratio, similar observations were made. Although no significant difference 

in the amplitude of the torsional mode was obtained, the damping ratios of the other 

modes changed considerably. Within one and a half years of investigation, the damping 

ratio of girder No.3 was found to be lower than that of the other girders. The analysis of 

the MAC values shows that there is no clear discrepancy in the magnitude of the MAC 

values considered in this study. 

 During the monitoring period, the bending modal frequencies of girder No.3 fluctuated 

in the range of ~3–5%, which is considerable compared to those due to structural 

damage. Hence, the effects of the environmental conditions should be examined 

thoroughly when using the variation in the vibrational frequency to assess the health of 

structures.  

 Because the dynamic behaviors of the three girders were clearly observed to be different, 

the fly ash significantly affected the performances of the PC girders under the ASR 

damage. 
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Chapter | 5  

Long-Term Monitoring of the Variation in 

Temperature-Induced Camber of PC Girders with 

and without Fly Ash Considering ASR Deterioration 

5.1 Introduction 

5.1.1 Significance of the study 

A bridge is a construction that is exposed during its lifetime to fluctuating weather conditions. 

Bridge temperature is, therefore, changing regularly. Materials, and thus also a superstructure, 

will expand when heated, and contracts when cooled. This thermal movement is together with 

deformation caused by shrinkage, the primary factor for the overall displacement of a 

superstructure. In conventional bridges, movement of the superstructure is accommodated with 

expansion joints. The bridge deck can then expand and contract freely. In integral bridges, the 

lack of expansion joints causes the movement to act on the bridge ends, freely displacing the 

abutments. The piles and approach fill are subjected to lateral loading and unloading, as the 

abutments are pushed and pulled away due to expansion and contraction. There will be 

repeating cycles of expansion and contraction throughout the bridge lifetime. Some trouble has 

been attributed to temperature variations within the structures [1,2]. In the main bridges, sudden 

displacement of ±50 mm has been recorded that has to be attributed to restoring forces of 

bearings being suddenly released [3]. This movement usually is within the normal limits of 

allowable displacement, but the sudden reaction might trigger unforeseen problems, such as 

restraints in the expansion joint. The frequency of such a phenomenon is not yet sufficiently 

documented, but in a 6-month record of a major steel bridge, three such occasions have been 

detected. Moreover, if the girders have too much camber or deflection, the driving surface will 

be rough and unpleasant for motorists using the bridge. Also, a downward deflection creates an 

aesthetically displeasing bridge for the public. Therefore, thermal actions on civil engineering 

structures due to climatic and operational temperature changes need to be considered in the 

design where there is a probability of the ultimate or serviceability limit state being exceeded 

due to thermal movement or stresses. 
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Camber [4] due to temperature gradients, also referred to as curling [5], is a well-documented 

behavior in many concrete elements. Curling has been studied in concrete pavements [6–8], 

prestressed concrete bridge girders [4,9,10], concrete slab track [11–13] and concrete crosstie 

[5]. A results of Wolf et al. [5] on concrete crossties showed that the variation in the shape of a 

curled crosstie could lead to significant changes (capable of causing negative center cracking) 

in the bending moments encountered by concrete crossties in service. Specifically, center 

negative bending moments were observed change to by up to 50% under variations in the 

temperature gradient of less than 30 ºF (16.7 ºC). The outcomes of numerical approach revealed 

that curl in concrete crossties could be related to the temperature gradient and the analytical or 

empirical methods allowed curl to be approximated utilizing only temperature data. Regarding 

concrete bridge girders, a comprehensive report by Imbsen et al. [9] gathered the results of 

many research projects on thermal gradients on concrete bridge superstructures. The report 

analyzed the design practices used in different states and countries to account for temperature 

gradients. Moreover, they indicated two ways in which temperature variation can produce 

stresses in concrete: temperature-caused distortions can induce internal bending moments when 

restrained, and nonlinear temperature gradients are prevented from generating nonlinear 

distortion as plane sections remain plane [9]. A study on standard prestressed, precast concrete 

I-beam shapes measured the temperature gradient and the deflection at midspan due to these 

gradients [4]. This temperature-caused deflection can lead to challenges in construction and 

induce stress in the superstructure. Also, the midspan vertical deflections and transverse 

temperature distributions were monitored for a segmental prestressed box girder bridge at the 

Pennsylvania Transportation Research Facility by Hoffman et al. [14] for 18 diurnal (daily) 

cycles during the period starting on October 25, 1978, and ending on October 16, 1979. The 

test bridge consisted of two curved, superelevated, prestressed box girders, each composed of 

17 segments. From their results, the maximum upward deflection, 0.72 in. (18.29 mm), occurred 

on July 7, 1979, and the maximum downward deflection, 0.11 in. (2.79 mm), occurred on 

January 4, 1979. The thermal conditions on July 7, 1979, included a maximum air temperature 

of 86 ºF (30.0 ºC), a minimum temperature 64°F (17.8 ºC), a 24-hour wind movement of 60 

miles (97 km) with no prevailing direction, a clear to hazy sky condition, and a cumulative solar 

radiation of 660.2 Langleys. On January 4, 1979, the weather was completely the opposite, with 

a temperature range of+12 to –2 ºF (-11.1 to 25.1 ºC), a 24-hour wind movement of 208 miles 

(1098 km) from the west, the presence of snow flurries, and a cumulative solar radiation of 

122.9 Langleys. 

In 2001, Usmani et al. [15] attempted to lay down some of the most important and fundamental 

principles that govern the behavior of composite frame structures in a fire in a straightforward 

and comprehensible manner. Basic principles introduced in the paper provide a method of 

estimating forces and displacements in real structures with appropriate idealizations. Such 
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estimates can be of considerable advantage in evaluating the results from more rigorous 

numerical analyses, or they can be employed for design calculations. In 2005, Barr et al. [4] 

summarized observations, during both fabrication and service, of temperature variations and 

their effects (e.g., changes in stresses, strains, and cambers) for a typical precast, prestressed 

concrete girder bridge. For their study, a new three-span bridge, which had span lengths of 24.4, 

41.7, and 24.4 m, was instrumented during fabrication and monitored for three years while the 

bridge was in service [16]. The cast-in-place roadway deck was 190 mm thick, had a width of 

11.6 m, and was supported by five lines of Washington State W74MG girders. Besides, a 20-ft 

long, statically determinate girder, designated the “test girder,” was cast at the same time as the 

bridge girders and with the same cross section and materials. The measured values were 

obtained from the automated stretched-wire systems [17]. As the results, the camber changed 

during the day by 15 to 20 mm (0.6 to 0.8 in.). These variations in deflection were significant 

because they were almost equal to two-thirds of the deflection induced by casting the deck. Six 

years later, Debbarma and Saha [18] presented the effects caused in real structures due to 

development of strain on account of creep, shrinkage and atmospheric temperature by using the 

field data’s collected from two PSC box girder bridges. Their results showed that the vertical 

deflection of pre-stressed concrete girders due to a loss in pre-stress was a natural phenomenon. 

In addition to this, it was observed that due to creep, shrinkage and daily atmospheric 

temperature variation in structural concrete there was a long-term deflection in pre-stressed 

concrete girders. These causes decreased in the service life of the bridge and, it required 

strengthening method such as external pre-stressing to secure its original load bearing capacity 

for the long term usage. In 2012, Lee and Kalkan [19] carried out a one-year experimental and 

analytical study on a prestressed concrete BT-1600 girder segment to examine both the vertical 

and lateral thermal gradients with changes in environmental condition. By using two-

dimensional (2D) finite element heat transfer analysis, sensitivity analyses were performed to 

propose analytical equations that predict the vertical and lateral temperature differentials from 

daily climatic information provided by weather stations. The predicted temperature differentials 

agreed well with the measured values. Then, thermal deformations caused by the vertical and 

lateral thermal gradients were estimated using an analytical approach acquired from one-

dimensional beam theory. In 2015, E.H. El-Tayeb et al. [20] studied the behavior of reinforced 

concrete beams and frames under thermal loads, with the presence of dead and live loads, to 

examine the effect of temperature variation. The beams and frames were modeled correctly by 

accounting for material nonlinearity, particularly cracking. Different temperature gradients, 

uniform, linear and nonlinear, were considered. The obtained results of the studied cases 

revealed that material modeling of reinforced concrete beams and frames played a vital role in 

how these structures react to temperature variation. Moreover, cracking contributed to the 

release of a significant portion of temperature restraint, which was almost omitted in some cases. 
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5.1.2 Factors affect the temperature profile of civil engineering structures 

The parameters to be considered in the definition of bridge design temperatures can be classified 

into the following groups [21]: 

 Climatic: solar radiation, air temperature, wind speed, nebulosity, etc. 

 Geographical: altitude, latitude, etc. 

 Time: hour of the day, day of the year, etc. 

 Geometric: geometry of the cross section, bridge orientation, asphalt thickness, etc. 

 Materials: thermal conductivity, density, specific heat, color, etc. 

The first three categories are related to the environmental features of the location in which the 

bridge is located. The final two parameters are correlated to bridge components. Bridge 

characteristics relate in how the structure will respond to variations in weather conditions. A 

bridge with a slender open design will adapt more quickly to changes in temperature compared 

to a non-slender bridge with less exposed surfaces [22]. Regarding climatic parameters, the 

diurnal temperature usually relates to the shift in temperature from the daytime high to the 

night-time low. The daily temperature is measured by meteorological institutions around the 

world in a standardized way, which guarantees that the determined temperature is not altered 

by solar radiation, wind speed, precipitation. Diurnal temperature is also regarded as shade air 

temperature. Besides, annual seasonal air temperature variations may be as significant as 50 ºC 

(depends on local climate) [23]. Since temperature is the most notable of these factors [5,22], 

this study attempts to analyze the effects of ambient temperature on the change in upward 

displacement of prestressed concrete (PC) girders. 

5.1.3 Daily and seasonal temperature change 

The ambient temperature not only differs from season to season but also throughout any given 

day (diurnal cycle) [14]. As the sun rises and goes down in an endless cycle, so does the daily 

temperature fluctuate, and with it a continuous phase of contraction and expansion of the 

superstructure. This sequence of temperature variation happens every day and thereby be 

considered as the daily temperature variation. The seasonal temperature variation corresponds 

to the maximum mean temperature change expected to occur during the year. Therefore, the 

most considerable expansion of the superstructure will occur on summer days, while the most 

significant contraction will occur on winter nights [25]. These extreme temperature fluctuations 

induce the largest temperature related displacements. 

For example, an extensive field study on two integral bridges – the Maple River bridge 

(composite) and the Boone River bridge (concrete) – in Iowa was performed by Girton et al. 

[26] in 1991. Both bridges were monitored for two years, from January 1987 to January 1989. 
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As the outcome, the mean temperature changed throughout the year in an annual cycle. This 

seasonal temperature change consisted of a period of high amplitude and low frequency, while 

the daily temperature vibrated around the mean temperature with a small amplitude and high 

frequency. In addition, there was a linear connection between temperature and thermal 

displacement and the temperature-induced displacement also resulted in a cyclic tendency. 

Hallmark [27] refers to a study of Russel and Gerken [28], in which they note that the annual 

temperature variations mainly affect the thermal displacement of the superstructure, while the 

daily fluctuations primarily affect the vertical temperature gradient. Therefore, in many cases 

can daily changes be ignored, as daily temperature displacements are small when compared to 

movements caused by seasonal temperature change. 

5.1.4 Temperature distribution models 

The aim of the following analysis is to review temperature related stresses according to the 

Euro code. Daily and seasonal variations in shade air temperature, solar radiation, re-radiation 

will lead to changes in the temperature distribution within individual components of a structure. 

Furthermore, volume differences and/or stresses due to temperature variations might be affected 

by shading of adjacent buildings, the performance of different materials with non-identical 

thermal expansion coefficients and heat transfer, use of various shapes of the cross-section with 

various uniform temperature [29]. The temperature distribution within an individual structural 

element can be split into primary components: a uniform temperature component; linear 

temperature difference components; a nonlinear temperature difference component (also 

referred to as Eigen-temperature component [22]). This results in a system of self-equilibrated 

stresses which produce no net load effect on the element [29]. 

The uniform temperature component is primarily responsible for the expansion and contraction 

of a bridge. This component governs longitudinal movement. A change in the average 

temperature will result in a change of length, as the material expands or shrink, as showed Fig. 

5.1. 

 

Figure 5.1 Longitudinal displacement due to uniform temperature deviation from the reference- and 

the construction-temperature “T0” 

The linear temperature components are responsible for curvature or rotation at the abutments 

(see Fig 5.2). Moreover, bending stresses will develop in the superstructure if the acting 

curvature, caused due to a linear temperature distribution, is hindered. The Eigen-temperature 

component shows no deformation, except for possible warping at the ends. 
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Figure 5.2 Curvature of a beam due to a linear temperature component. 

 

The thermal-induced displacement does not generate stresses by itself unless movement is 

restrained. When movement is controlled, stresses are produced within a structure opposite to 

the direction of displacement. The expansion and shortening will induce compression- and 

tensile-stresses, respectively. These thermal-induced stresses can cause deterioration to the 

structure when it is not adequately planned to withstand these stresses. 

5.1.5 Thermal-induced stresses 

(1) Average temperature 

As mentioned above, a change in the average temperature of a bridge will induce a global 

increase or decrease in volume of an element. In the case of a bridge girder, which can be 

represented as an element in which length governs width and thickness, the most significant 

deformation and problems associated with this deformation will be longitudinal. To define 

thermal induced strains, a reference point is needed [22]. The reference temperature for a girder 

was the temperature when it was installed or made. If the girder was produced continuous with 

a construction temperature of T0, then every value above or under this reference temperature 

will cause expansion or contraction respectively. In other words, an element subjected to a 

temperature change of Δ𝑇 will vary in length by an increment ΔL if the movement is unhindered. 

The proportion of this increase depends on the thermal coefficient 𝛼 and the thermal length of 

the element L. Equation (5.1) shows that the variation in length is directly proportional to the 

change in uniform temperature.  

∆L = α × ∆T × L,      (5.1) 

Since the structure cannot move freely in many practical cases, stresses will thereby occur 

within the girder. These stresses are dependent on the stiffness of the concrete Ec, the linear 

expansion coefficient 𝛼, and the temperature difference ΔT. Assuming that movement is 

completely constrained, these axial stresses can be determined by the following formula: 

𝜎∆𝑇 = α × ∆T × 𝐸𝑐,      (5.2) 

Equations (5.1) and (5.2) show that while thermal displacement increase with increased length, 

thermal stresses remain the same. Thermal stresses are not dependent on dimensions of the 

girder or total construction length [22]. Consequently, if there is no change in the dimensions 

of the girder and the movement is completely restrained, the reactionary force needed to prevent 

displacement remains the same even if total thermal length triples. 
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𝐹∆𝑇 = α × ∆T × 𝐸𝑐 × A,     (5.3) 

where, α=1.0×10
-5

(1/℃) is the linear expansion coefficient for concrete, 𝐸𝑐 (N/mm2) stands for 

Young modulus for concrete, and ΔT = T-T0 (ºC) is the temperature difference. 

(2) Linear temperature 

An element will be subjected to a temperature-induced camber if there is a linear temperature 

profile over its height. Because heat penetration in a concrete element is limited in a relatively 

short period, stress at the outer fibers is mostly dependent on the profile height, which decreases 

as profile height increase. Therefore, the percentage of total area affected by a rapid variation 

in temperature will decrease as profile height (h) increase. For h ≥ 1.0 m and fck ≥ 50 N/mm2, 

the linear moment caused by a rapid change of temperature only amounts to 5% of the cracking 

moment of a rectangular element [22]. Therefore, linear temperature according to the Euro code 

model can be considered negligible for large profiles, whereas it should still not just be ignored, 

especially for relatively small profile heights. Figure 5.3(a)–(c) shows a girder element is 

subjected to temperature gradient ∆T over its height. 

∆T = 𝑇𝑡 − 𝑇𝑏,       (5.4) 

where Tt and Tb are temperature at the top and bottom of the girder. 

 

 

(a) The girder under temperature gradient 

 

(b) Deflection of girder owing to temperature gradient 

 

(c) Strain diagram 

Figure 5.3 A girder under linear temperature distribution. 

The deflection of the girder due to temperature variation is shown in Fig. 5.3(b). It is assumed 

that temperature varies linearly through the height h, and α is the coefficient of thermal 

expansion of the material. Consider a small element of length dx. The strain at top and bottom 

of the small elements are 

A B

A B B'
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𝜀𝑡 =
𝑇𝑡𝛼𝑑𝑥

𝑑𝑥
= 𝑇𝑡𝛼       (5.5) 

𝜀𝑏 =
𝑇𝑏𝛼𝑑𝑥

𝑑𝑥
= 𝑇𝑏𝛼       (5.6) 

The curvature of the beam is given by 

1

𝜌
=

𝜀𝑚

ℎ
=

𝛼(𝑇𝑡−𝑇𝑏)

ℎ
       (5.7) 

𝑑2𝑣

𝑑𝑥2 =
𝛼(𝑇𝑡−𝑇𝑏)

ℎ
       (5.8) 

Equation (5.8) can be used for finding out the bending deflection in beams due to temperature 

variation. If the beam is restrained from rotation, the moment induced in the beam will be given 

by 

𝑀𝑇 =
𝐸𝐼𝛼(𝑇𝑡−𝑇𝑏)

ℎ
        (5.9) 

Equation (5.9) is obtained by equating the right hand side of Eq. (5.8) to 
𝑀𝑇

𝐸𝐼
 from the simple 

bending theory. 

5.1.6 Objectives of this study 

This study investigates the effects of environmental conditions on the static responses of 

prestressed concrete (PC) girders, which were affected by varying degrees of deteriorations 

induced by an alkali–silica reaction (ASR). Because the environmental conditions might cause 

complicated structural responses, the objective of this portion of the study was to monitor the 

long-term camber behavior at midspan of full-scale PC girder affected by ASR considering 

fluctuations due to change in ambient temperature gradient. This study focused on two concrete 

JIS A5373-AS09 girders, which were girders No. 1 and No. 3 in the previous chapters. In 

particular, girder No. 1 was affected by the ASR while girder No.3 was kept at an inactive state 

by suppressing the acceleration of the ASR using the fly ash. Girder cambers, and air 

temperatures were periodically monitored in one and a half years. The obtained data were then 

analyzed using linear regression models concerning the variations in measured ambient 

temperature. Moreover, the measured cambers were compared to predicted values obtained 

using finite element analysis procedures and trend line (empirical-linear). The finite element 

method was employed for conducting the analysis utilizing the computer code DIANA. This 

study presents preliminary considerations for estimating the long-term displacement behavior 

of PC girders and attempts to proposed recommendations about measurement noise when using 

static responses as input for structural damage detection. 
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5.2 Experimental procedure 

Laboratory experimentation was performed to quantify actual camber magnitudes. Three 

simply supported PC girders were placed outside the laboratory, exposed to outdoor weather 

conditions, one of which had a selected amount of fly ash in its mixture to mitigate the ASR. 

The length and height of each girder were 9600 and 450 mm, respectively. The upper and lower 

edge widths of the cross-section of each girder were 640 and 700 mm, respectively. The present 

study reports the camber behaviors of girders No.1 and No.3. Figure 5.4 shows a graphic of 

the laboratory set-up used to investigate this upward movement. To obtain the static responses, 

especially temperature-induced displacements, seven displacement meters were mounted at 

different points under the girder with a constant interval of 1.15 m, as shown in Fig. 5.5. 

Moreover, the ambient temperature was recorded simultaneously during the test using a 

thermometer. To track the variation in camber owing to diurnal temperature, the signal was 

collected once automatically from the sensor every 30 minutes, 24 hours an observation day. In 

addition, to track the variation concerning seasonal changes, seven measurements were 

performed from October 2015 to September 2016 in Kakuma campus with 14762 valid sets of 

data. 

 
Figure 5.4 Measured point layout under the PC girder (Unit: mm) 

 

 

Figure 5.5 Experiment layout. 

5.3 Observed behavior 

This section provides observation results of camber variations of girders No. 3 and No. 1 

throughout the monitoring period. Ambient temperature was collected in addition to the vertical 

displacement of the girders. A direct relationship between the movement at midspan and the 

1150 1150 1150 1150 1150 1150 1150

9600

Displacement meterSupport

1150

Support
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ambient temperature is evident in the data (Fig. 5.6(a)–(g)); as the ambient temperature 

increases, so does camber. In these figures, the initial signal obtained from the sensor at each 

period of monitoring was utilized as the reference line for the camber estimation. The measured 

temperature followed an expected cycle, increasing and reaching its maximum positive value 

in the mid-afternoon, then dropping down to a relatively constant maximum negative value in 

the early morning hours. The camber of both girders also followed the similar trend. The daily 

repetition of the same deflection pattern in the girders might lead to the formation of mini cracks 

and further deterioration [18]. However, the temperature change saw some noise within certain 

short period at high positive and negative value. This noise is likely caused by intermittent cloud 

cover or wind throughout the day. Moreover, this noise did not significantly affect the camber 

of the girder instantaneously because of the large thermal mass of the girder. 

The downward deflection pattern of girders No.1 and No.3 as obtained at different 

measurements of a day is shown in Figs. 5.7(a) and 5.7(b), respectively. In these figures, the 

illustrated data were collected every 30 minutes when the ambient temperature decreased by 

8.1 ºC from 32.4 ºC at 2:30 pm on September 1st 2016 to 24.3 ºC at 5:40 am on September 2nd 

2016. From the plotted figures, it can be observed that, on account of temperature decrease, 

there was a development of downward movement in both girders. This result can be attributed 

to the fact that the top of the girder releases heat and cools faster in the evening, causing a linear 

temperature gradient and tensile stresses on the bottom side. 

Besides, seasonal changes in camber were well confirmed in Figs. 5.6(a)–(g), and 5.8(a)–(d). 

From the measured data, the displacement at midspan fluctuated in the broader range on 

summer days (July and August) as compared to the results obtained in the low-temperature 

months such as March and April. Specifically, the variation range was estimated to be under 

~2.5 mm for both girders in October 2015 and March 2016. This value was obtained as around 

5 mm in July and August 2016. Therefore, there was a positive correlation between camber and 

ambient temperature, in which the displacement of the girder increased with the rise in ambient 

temperature and decreased as the temperature drops down. 

 

  

          (a) 21st ~ 27th October 2015         (b) 18th ~ 31st March 2016 
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 (c) 3rd ~ 15th April 2016   (d) 27th May ~ 21st July 2016 

 

         (e) 22nd July ~ 10th August 2016    (f) 12th ~ 25th August 2016 

 

(g) 28th August ~ 28th September 2016 

Figure 5.6 Changes in nodal displacement at span center during monitoring period 
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(a) Girder No.1    (b) Girder No.3 

Figure 5.7 Changes in nodal displacement at span center when the ambient temperature decrease 

 

(a) Girder No.1 (March 2016) (b) Girder No.3(March 2016) 

 

(c) Girder No.1 (September 2016) (d) Girder No.3(September 2016) 

Figure 5.8 Seasonal changes in nodal displacement at the observation points 
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(a) October 2015    (b) March 2016 

  

(c) April 2016    (d) June 2016 

 

(e) July 2016    (f) August 2016 

 

(g) September 2016 

Figure 5.9 Linear relation between the camper at midspan and the increase in ambient temperature 
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Table 5.1 Coefficients of linear regression model of girder No.1 

Time Intercept 𝛼0 Gradient 𝛽𝑡 
Coefficient of 

determination R2 

Correlation 

coefficient R 

Oct-15 -0.080 0.247 0.829 0.910 

Mar-16 -0.132 0.219 0.812 0.901 

Apr-16 -0.009 0.252 0.847 0.920 

Jun-16 -0.147 0.295 0.935 0.967 

Jul-16 0.106 0.295 0.830 0.911 

Aug-16 -0.006 0.415 0.901 0.949 

Sep-16 -0.106 0.277 0.876 0.936 

 

Table 5.2 Coefficients of linear regression model of girder No.3 

Time Intercept 𝛼0 Gradient 𝛽𝑡 
Coefficient of 

determination R2 

Correlation 

coefficient R 

Oct-15 -0.039 0.233 0.814 0.902 

Mar-16 -0.153 0.248 0.819 0.905 

Apr-16 -0.019 0.298 0.832 0.912 

Jun-16 -0.265 0.370 0.933 0.966 

Jul-16 0.081 0.378 0.853 0.924 

Aug-16 -0.050 0.506 0.911 0.955 

Sep-16 -0.146 0.335 0.875 0.935 

 

Figure 5.9(a)–(g) shows positive correlations between the measured camber at midspan of the 

girders and the ambient temperature (specified in degree Celsius throughout this study), which 

was estimated during the monitoring period. These figures show that the amplitude of the 

upward movement increased with respect to the increased ambient temperature. For more 

information about the linear relationships of the camber concerning the temperature, a linear 

regression model was proposed. In this examination, camber variation from the lowest 

temperature time to the highest one of each regular day under the change in ambient temperature 

was studied. The corresponding empirical equation of the camber (y) as a function of the 

increase in temperature (∆T) is as follows. 

y = 𝛼0 + 𝛽𝑡∆𝑇 + 𝜀𝑓 ,     (5.10) 

where y is the camber, 𝛼0 and 𝛽𝑡 are the regression coefficients named the intercept and the 

gradient, respectively, and 𝜀𝑓  is the regression error. The measured ambient temperature 

increase was used as an explanatory variable. In this study, R was employed for statistical 
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computing [30]. With regard to the results of the statistical analyses, Tables 5.1 and 5.2 list the 

estimated regression coefficients for girders No.1 and No.3, respectively. 

From the above tables, the coefficients of determination R2 for the cambers of girder No.3 and 

girder No.1 were estimated at high values, which was higher than 0.8. Therefore, more than 80 

percent of the camber variances of the girders could be accounted for concerning the increase 

in ambient temperature. In particular, a change of ~93 % in the measured upward movement of 

the girders in June 2016 could be due to the change in temperature. Consequently, the 

corresponding correlation coefficient R was obtained over 0.9, which was significantly high 

values. Thus, there was a good relationship between the variation in camber at midspan and the 

temperature increase. These results demonstrate that the ambient temperature significantly 

affected the changes in the camber of the girders. Moreover, the fitted data regression line of 

girder No.1 had a slightly higher gradient than that one of the girder No.3 in October 2015, 

which was 0.247 compared to 0.233, respectively. However, since March 2016, the slopes of 

regression lines of girder No.3 had performed higher values than those of girder No.1. This 

observation results can be attributed to the increase in ASR-induced deterioration in girder No.1. 

As mentioned in the previous chapter, the three PC girders had been constructed in April 2015 

and the initial measurement, which was carried out after the construction only six months, led 

to a conclusion that girder No.1 was more sensitive to temperature than girder No.3 by 

comparing the gradient of both girders in October 2015. As the ASR causes mini cracks on the 

upper surface of girder No.1 and leads to a reduction in the modulus of elasticity as well as the 

difference in expansion behavior of the top and bottom of the girder, the convex curvature 

occurs and keeps increasing in girder No.1 during the followed period. Therefore, girder No.1 

was already likely in an upward curl shape during the measurements. In contrast to girder No.1, 

girder No.3 had a slight sign of cracks and a small convex upward shape. Based on the 

observation results, it can propose that the difference in upward curl shape between girders 

No.1 and No.3 might affect the variation in monitored camber, and led to the higher values in 

temperature-induced displacement in girder No.3 as compared to the results of the girder No.1 

since March 2016. Besides, it was found that during a year of monitoring, the measured camber 

of girder No.1 increased by ~0.21 mm – ~0.41 mm when ambient temperature increased by one 

degree, this variation of girder No.3 was observed as ~0.23 mm – ~0.5 mm. Moreover, the 

regression model also provided a conclusion that approximately ~81% – ~93% of measured 

displacement could be accounted for by temperature, which indicated the ambient temperature 

increase was not the only factor that influenced the upward movement. Thus, it is believed that 

this static response was also affected by other factors such as the humidity, ASR-induced 

degradation, noise from equipment and the calculation process. This conclusion should be 

considered in structural damage detection using only changes in displacement data in practice 

because the environmental conditions might cause unexpected errors in measured responses in 
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the measurement field. 

5.4 Displacement variation ratio 

The difference in upward curl shape between girders No.1 and No.3 made the comparison of 

the cambers of two girders become more complicated. In other words, it was difficult to figure 

out the effect of ASR deterioration on the change in camber of the girder by evaluating the 

measured data of girder No. 3, which had fly ash in the mixture to mitigate the ASR acceleration, 

and girder No. 1 affected by ASR. Therefore, to make a consistent comparison in temperature-

induced camber between the girders, this study assumed that the camber varied linearly with 

the variation in the ambient temperature. Based on this assumption, the displacement variation 

ratios of the girders No.1 and No.3 were estimated and plotted in Fig. 5.10(a)–(f). The cambers 

were normalized by the first camber caused by the first temperature increase in the monitoring 

period. As shown in these figures, before May 2016, the variations in the cambers were similar 

in both girders since no significant difference between two girders were obtained. From May 

2016, the differences in the estimated variation ratios manifested over time. In particular, girder 

No.1 exhibited a higher discrepancy and more obvious scatter with no notable trend compared 

to the results of girder No.3, as shown in Fig. 5.10(d)–(f). This noise is likely because of the 

ASR-induced deteriorations because many longitudinal cracks were observed on the top, 

bottom, and both side surfaces of the girders No.1 whereas girder No.3 suffered only a few 

throughout one year of monitoring. Therefore, from the observation results, it has been shown 

that, from May 2016, the vertical displacement at midspan of girder No.1 caused by the ambient 

temperature variation did not vary with the linear rate during the measurements when compared 

to that of girder No.3. Because the cross-sections of the two girders were the same with similar 

mixtures, and were placed at the same place and tested concurrently during each measurement, 

the difference in the displacement variation ratio was probably not due to the changes in 

temperature. This difference can be attributed to the increased development of cracks caused 

by ASR that makes the behavior of girder No.1 more complex. 

  

(a) 21st ~ 27th October 2015   (b) 18th ~ 31st March 2016 
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(c) 3rd ~ 15th April 2016   (d) 27th May ~ 21st July 2016 

 

(e) 22nd July ~ 10th August 2016  (f) 28th August ~ 28th September 2016 

Figure 5.10 Changes in displacement variation ratio at span center during monitoring period. 

5.5 Numerical modeling 

Once camber behavior was observed experimentally, it was expected that numerical upward 

displacement would vary directly with temperature and would be similar in magnitude to the 

experimental results. A finite element (FE) model previously developed in Chapter 4 was used 

to perform preliminary FE simulations of temperature-induced changes in camber of the PC 

girders. The primary purpose of the simulations was to confirm that camber occurs in PC girders 

and to estimate the magnitude of this camber. Therefore, this study performed a structural linear 

static analysis including thermal effects on this model using the FE software DIANA. The 

critical parameters governing the numerical model were the coefficients of thermal expansion 

of the concrete and steel were assumed as 1e–5 and 1.2e–5 1/ºC, respectively. The model was 

constrained at both ends by a pinned support and a roller support, as shown in Fig. 5.11(a). The 

FE simulations involved a combination of three loads, which were the self-weight load, 

pretensioning forces, and a temperature gradient. This gradient varied in magnitude and was 

assumed to be linear based on studies of Armaghani et al. [6] and Wolf et al. [5]. The 

temperature gradient was obtained from the measured ambient temperature and input to the 

numerical model as the difference in the temperature at the top of the girder and the temperature 
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at the bottom of the girder. The camber caused by an increase in ambient temperature was 

numerically defined by taking the difference in camber caused by two reference temperature 

gradients. Firstly, a reference gradient of temperature (∆𝑇 ) was inputted to the model by 

assigning elemental temperature throughout the height of the cross-section (450 mm) from T1 

at the top elemental layer to T2 at the bottom layer of the girder (see Fig. 5.11(b)). Then, the 

temperature-induced displacement (u) was calculated by linear numerical analysis. When there 

is an increase in temperature, a new reference gradient of temperature (∆𝑇′) was inputted to the 

girder in the same way to the previous one. The corresponding movement (𝑢′ ) was also 

estimated numerically. The target increase in camber was derived from two estimated 

displacement curves by making the difference ∆𝑢 = 𝑢 − 𝑢′ between them. 

 

                 (a) FE model                (b) Assumption of the temperature gradient 

Figure 5.11 FE model set up 

 
Figure 5.12 Temperature-induced camber when T1>T2 

  

(a) 21st ~ 24th October 2015  (b) 24th ~ 27th March 2016 
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(c) 4th ~ 7th April 2016   (d) 28th ~ 30th May 2016  

 

 

(e) 19th ~ 23th June 2016   (f) 3rd ~ 9th July 2016  

 

    (g) 15th ~ 17th August 2016   (h) 8th ~ 18th September 2016 

Figure 5.13 Comparison of measured and computed camber. 

  

Figure 5.12 shows an illustration of an upward analytical camber when the temperature at the 

top is higher than the temperature at the bottom of the girder. Also, Fig. 5.13(a)–(h) provides a 

graphical comparison between the measured camber, analytical camber, and camber computed 

with the trend line (empirical-linear). The numerical model produced comparatively similar 

-5

-4

-3

-2

-1

0

1

2

3

4

5
4
/4

 4
:4

8

4
/4

 9
:3

6

4
/4

 1
4
:2

4

4
/4

 1
9
:1

2

4
/5

 0
:0

0

4
/5

 4
:4

8

4
/5

 9
:3

6

4
/5

 1
4
:2

4

4
/5

 1
9
:1

2

4
/6

 0
:0

0

4
/6

 4
:4

8

4
/6

 9
:3

6

4
/6

 1
4
:2

4

4
/6

 1
9
:1

2

4
/7

 0
:0

0

C
am

b
er

 (
m

m
)

Time (day)

Girder No. 3

Girder No. 1

Analysis

Empirical-Linear
-5

-4

-3

-2

-1

0

1

2

3

4

5

5
/2

7
 1

9
:1

2

5
/2

8
 0

:0
0

5
/2

8
 4

:4
8

5
/2

8
 9

:3
6

5
/2

8
 1

4
:2

4

5
/2

8
 1

9
:1

2

5
/2

9
 0

:0
0

5
/2

9
 4

:4
8

5
/2

9
 9

:3
6

5
/2

9
 1

4
:2

4

5
/2

9
 1

9
:1

2

5
/3

0
 0

:0
0

C
am

b
er

 (
m

m
)

Time (day)

Girder No. 3

Girder No. 1

Analysis

Empirical-Linear

-5

-4

-3

-2

-1

0

1

2

3

4

5

6
/1

8
 1

4
:2

4

6
/1

8
 1

9
:1

2

6
/1

9
 0

:0
0

6
/1

9
 4

:4
8

6
/1

9
 9

:3
6

6
/1

9
 1

4
:2

4

6
/1

9
 1

9
:1

2

6
/2

0
 0

:0
0

6
/2

0
 4

:4
8

6
/2

0
 9

:3
6

6
/2

0
 1

4
:2

4

6
/2

0
 1

9
:1

2

6
/2

1
 0

:0
0

6
/2

1
 4

:4
8

6
/2

1
 9

:3
6

6
/2

1
 1

4
:2

4

6
/2

1
 1

9
:1

2

6
/2

2
 0

:0
0

6
/2

2
 4

:4
8

6
/2

2
 9

:3
6

6
/2

2
 1

4
:2

4

6
/2

2
 1

9
:1

2

6
/2

3
 0

:0
0

6
/2

3
 4

:4
8

C
am

b
er

 (
m

m
)

Time (day)

Girder No. 3
Girder No. 1
Analysis
Empirical-Linear

-5

-4

-3

-2

-1

0

1

2

3

4

5

7
/3

 4
:4

8
7
/3

 9
:3

6
7
/3

 1
4
:2

4
7
/3

 1
9
:1

2
7
/4

 0
:0

0
7
/4

 4
:4

8
7
/4

 9
:3

6
7
/4

 1
4
:2

4
7
/4

 1
9
:1

2
7
/5

 0
:0

0
7
/5

 4
:4

8
7
/5

 9
:3

6
7
/5

 1
4
:2

4
7
/5

 1
9
:1

2
7
/6

 0
:0

0
7
/6

 4
:4

8
7
/6

 9
:3

6
7
/6

 1
4
:2

4
7
/6

 1
9
:1

2
7
/7

 0
:0

0
7
/7

 4
:4

8
7
/7

 9
:3

6
7
/7

 1
4
:2

4
7
/7

 1
9
:1

2
7
/8

 0
:0

0
7
/8

 4
:4

8
7
/8

 9
:3

6
7
/8

 1
4
:2

4
7
/8

 1
9
:1

2
7
/9

 0
:0

0
7
/9

 4
:4

8

C
am

b
er

 (
m

m
)

Time (day)

Girder No. 3

Girder No. 1

Analysis

Empirical-Linear

-5

-4

-3

-2

-1

0

1

2

3

4

5

8
/1

5
 9

:3
6

8
/1

5
 1

4
:2

4

8
/1

5
 1

9
:1

2

8
/1

6
 0

:0
0

8
/1

6
 4

:4
8

8
/1

6
 9

:3
6

8
/1

6
 1

4
:2

4

8
/1

6
 1

9
:1

2

8
/1

7
 0

:0
0

8
/1

7
 4

:4
8

8
/1

7
 9

:3
6

8
/1

7
 1

4
:2

4

C
am

b
er

 (
m

m
)

Time (day)

Girder No. 3

Girder No. 1

Analysis

Empirical-Linear
-5

-4

-3

-2

-1

0

1

2

3

4

5

9
/8

 1
2
:0

0

9
/9

 0
:0

0

9
/9

 1
2
:0

0

9
/1

0
 0

:0
0

9
/1

0
 1

2
:0

0

9
/1

1
 0

:0
0

9
/1

1
 1

2
:0

0

9
/1

2
 0

:0
0

9
/1

2
 1

2
:0

0

9
/1

3
 0

:0
0

9
/1

3
 1

2
:0

0

9
/1

4
 0

:0
0

9
/1

4
 1

2
:0

0

9
/1

5
 0

:0
0

9
/1

5
 1

2
:0

0

9
/1

6
 0

:0
0

9
/1

6
 1

2
:0

0

9
/1

7
 0

:0
0

9
/1

7
 1

2
:0

0

9
/1

8
 0

:0
0

9
/1

8
 1

2
:0

0

9
/1

9
 0

:0
0

C
am

b
er

 (
m

m
)

Time (day)

Girder No. 3
Girder No. 1
Analysis
Empirical-Linear



CHAPTER | 5 Long-Term Monitoring of the Variation in Camber 

 

 HA MINH TUAN 1624052012   128 

 

values compared to the measurement. Therefore, the FE model can be calibrated to more closely 

match the experimental camber and provide more accurate predictions of the camber in the 

future. Positive relationships between the camber and the ambient temperature were obtained 

in the results: the temperature increased with the increases in the cambers. Also, both the 

numerical values and the values obtained from the empirical equation of the camber (y) as a 

function of the increase in temperature (∆T) followed an expected trend. Regarding Fig. 5.13(d) 

showing the results obtained in May 2016, the cambers increased and reached their maximum 

positive value in the mid-afternoon, then dropping down to a relatively constant maximum 

negative value in the early morning hours. In particular, the temperature varied by ~7.2 ºC from 

approximately ~18.1 ºC at 0 a.m. to ~25.3 ºC at 12 p.m. in 28th May 2016. This increase led to 

variations in the analytical camber and the empirical-linear camber by ~2.3 and ~2.33 mm, 

respectively. This rate was obtained at ~2.03 and ~2.43 mm with respect to the measurement of 

girders No.1 and No.3, respectively. The measured temperature then decreased gradually by 

~9.1 ºC from a high temperature to ~16.2 ºC at 5 a.m. on 29th May 2016. Consequently, the 

experimental cambers of girders No.1 and No.3 decreased to ~0.6, ~0.66 mm, respectively. The 

analytical value and the value obtained from empirical equation were estimated at ~0.6 and 

~0.65 mm, respectively. These FE simulations showed that the camber at midspan of the PC 

girders was directed related to the temperature gradient and was not small. Based on these 

results and the graphical comparison, it is seen that both analytical camber and empirical-linear 

camber can be used to estimate camber using temperature data. Moreover, the correlation 

between the variations in the camber and the ambient temperature could be proved rationally 

using the FE model developed in this study. 

There was a slight discrepancy between the measurements and the numerical results because 

Young’s moduli applied in the analysis might not match the exact moduli of the whole girder, 

particularly because the girder is PC. As presented in Chapter 2, mechanical characteristics of 

the concrete cores altered based on their collecting positions and directions. In particular, due 

to the restraining stress of the PC strands along with the low expansion rate of concrete, the 

concrete samples obtained longitudinally from the central part presented weaker compressive 

strengths compared to the specimens gathered from the transverse direction. When analyzing 

the outcomes achieved for the central and the end parts, the mechanical features of the concrete 

cores of the end portion were smaller than those of the central part. Besides, the ambient 

temperature, which was used as the input in the governing linear equation and the FE model, 

did not significantly changes the temperature of the girder instantaneously because of its large 

thermal mass. A study of T.E. van der Meer [22] showed that an element that is subjected to a 

different temperature would not immediately adjust its temperature. It will take time for the 

heat of a body to approach that of its surrounding, due to the thermal inertia of the same body. 

In other words, the transfer of energy throughout the element is not immediate. If the 
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temperature is measured inside a material, a damping effect of the temperature changes should 

be observed. Therefore, the entered temperature profile might not precisely follow the heat of 

the girder. 

The selected regression model and the analysis model were only suitable for a temperature 

range and the monitoring period as presented in this study. Because during winter under the 

effect of frost attack, the behavior of the girder might become more complex and unpredictable. 

Moreover, if the follow-up time is extended further, the change in the position of supports and 

the effect of ASR might affect the measurement results undoubtedly. 

5.6 Conclusions 

In this study, the effect of the changes in the ambient temperature and the ASR-induced 

deteriorations on the camber variation of two PC girders with non-identical mixtures was 

monitored for almost one year. The main conclusions drawn from this study are as follows. 

 The ambient temperature not only varied from season to season but also throughout any 

given day. Daily and seasonal variations in ambient temperature led to changes in the 

camber of the girders. All values measured from displacement meters had positive 

correlations with temperature. In other words, the amplitude of the camber increased 

with respect to the increase in the ambient temperature.  

 As another result of the linear regression model, the ambient temperature gradient 

strongly affected the changes in the cambers of the girders because the correlation 

coefficients between the variables were strong, as computed using the linear model. The 

measured camber of girder No.1 increased by ~0.21 mm – ~0.41 mm when ambient 

temperature increased by one degree, this variation of girder No.3 was observed as 

~0.23 mm – ~0.5 mm. Approximately ~81% – ~93% of measured displacement could 

be accounted for by measured temperature. This conclusion should be considered in 

structural damage detection using only changes in displacement data in practice because 

the environmental conditions might cause unexpected errors in measured responses in 

the measurement field. 

 The camber could be related to temperature gradient using analytical or empirical 

methods. These approaches allowed camber to be approximated using only ambient 

temperature data. In this study, cambers in PC girders were accurately modeled and 

predicted in finite element simulations. 

 Because the static behaviors of the two girders were observed to be quite different, the 

fly ash significantly affected the performances of the PC girders under the ASR damage. 
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Chapter | 6  

Application of Damage Detection Method Using 

Displacement Data for Deteriorated Girder 

6.1 Introduction 

Civil engineering structures inevitably experience material degeneration, environmental 

corrosion, traffic loads, and even natural hazards such as earthquakes and typhoons. Damage 

detection is an essential tool for structural health monitoring and health assessment. For many 

years, many kinds of damage detection techniques have been thoroughly improved as presented 

in the literature review section of Chapter 3. These approaches employed the variations in 

vibrational components and static responses of a structure before and after damage. 

In this chapter, efforts have been performed to utilize Displacement Assurance Criterion (DAC) 

proposed in Chapter 3 on practical cases. DAC demonstrates the level of relationship between 

two displacement curves at different states of a structure and is employed for detecting the 

existence of a stiffness loss. Therefore, destructive tests were performed on the PC girders to 

evaluate the feasibility of DAC approach on damage detection by analyzing the displacement 

curves obtained from the experiments. During the destructive test presented in Chapter 2, the 

vertical displacement was measured at seven pointed on the lower extreme fiber for calculating 

the deflection curve at each loading step. Then, the obtained curves were analyzed to estimate 

the variation in the DAC value. Besides, nonlinear finite-element models of the PC girders were 

produced to verify the relation between the variations in DAC with respect to structural 

degradation owing to applied loads in practice. From the obtained results of the numerical and 

experimental approaches, this study aims to propose a threshold of DAC index for the sound 

structure. If a structure performs a higher value of DAC than the threshold, it can be judged as 

safety structure. Conversely, the system will give warnings about the health of that structure. 

6.2 Loading test 

6.2.1 Outline of loading test set-up 

After one and a half years of the outdoor exposure, loading test was carried out on girders No.2 

and No.3 by using the equipment shown in Fig. 6.1. For the loading method, a simply supported 
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specimen was subjected to the four-point bending test. A 1500 kN hydraulic jack and one load 

cell were placed at midspan for applying and measuring the loading. Additionally, the loading 

positions were located at 4.1 m from both supports and the interval between two loading points 

was 1 m. Wire displacement meters (Fig. 6.2(a)) and the high-sensitive displacement meters 

(Fig. 6.2(b)) were also placed at seven positions under the girder to measure the flexural 

deformation of the investigated girder depending on the applied load. Then, for obtaining the 

bending crack opening load, 26 Pi-shaped displacement gauges were arranged on the bottom of 

lower flange and in the range of 1.5 m around the middle of the span, as shown in Fig. 6.2(c). 

Additionally, 12 strain gauges were pasted on the top and bottom surfaces of the girder at the 

center of the span. 

 

 

Figure 6.1 Overview of loading test setup (unit: mm). 

 

   

            (a)Wire displacement meters         (b) High-sensitive displacement meters 

 

(c) Pi-shaped displacement gauge 

Figure 6.2 Measuring devices 
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6.2.2 Loading Test Results of Girders No. 2 and No. 3 

The deflections of both girders under each loading step are presented in Fig. 6.3. In this figure, 

at the same loading step, all the measured displacement data of girder No. 2 exhibited larger 

values compared to the ones of girder No. 3. Moreover, the relationship between the applied 

load and the displacement at the center of the span are shown in Fig. 2.12 (see Chapter 2). 

According to the result of girder No. 2, the profile of displacement distribution was linear when 

the applied load was approximately less than 170 kN but nonlinear when the applied load was 

more than 180 kN. This result, therefore, shows that the girder No. 2 started yielding from 

around 170 kN. On the other hand, girder No. 3 provided higher structural performances at all 

loading states, as compared to girder No. 2 without fly ash. At the end of the loading process, 

the maximum applied load of girder No. 2 and girder No. 3 were recorded at approximately 313 

kN and 330 kN, respectively. In other words, the addition of fly ash increased the load-bearing 

capacity of the objective girder by 5% at the final state. 

 

 
(a) Girder No.2    (b) Girder No.3 

Figure 6.3 The measured deflection curves 

6.2.3 Variation in Displacement Assurance Criterion (DAC) under applied load 

In this chapter, the displacement assurance criterion (DAC) proposed in Chapter 3 is used to 

analyze the effect of damage on static displacement curve. The DAC expresses the correlation 

degree of two displacement curves at different states of a structure and is simply calculated by 

Eq. (3.2) in Chapter 3. The displacement of each measured position was extracted from the 

measurement and normalized with the largest one, at each loading step. Then, the normalized 

displacement curve of some of the nominated load cases can be estimated and represented in 

Fig. 6.4. In this figure, a decrease in the magnitude of the normalized displacement curve can 

be observed. In other words, the normalized displacement curve shows a narrow tendency, in 

agreement with the increase in applied load. For determining DAC indices, the normalized 
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displacement curve of the girder when it undergoes an applied load of 70 kN was regarded as 

the reference curve. As results of the calculation, the variation of DAC values in each load case 

are shown in Fig. 6.5. According to Fig. 6.5, along with the increase of applied load, DAC 

exhibits a decrease in amplitude, which is observed in both girders. It should be noted that the 

DAC values show relatively small changes in amplitude and close to unity when the applied 

load is lower than the crack opening loads, which were measured at 170 kN and 190 kN on 

girder No. 2 and No. 3, respectively. After the occurrence of cracks, the DAC values decline 

until the end. Moreover, the calculated DAC values of girder No. 3 are higher than those of 

girder No. 2. This result indicates that girder No. 3 had a better correlation degree of 

displacement curves among loading states by comparing with girder No. 2. Therefore, it was 

cleared that there is a correlation between the variation of DAC and damage states. Through 

these results, DAC can be proposed as an index to figure out the occurrence of damages and 

more studies should be conducted to apply this indicator in practice. 

 

  
(a) Girder No.2    (b) Girder No.3 

Figure 6.4 The normalized deflection curves 

 

 
Figure 6.5 Variation in DAC index of both PC girders 
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6.3 Numerical analysis 

6.3.1 Overview of the numerical models 

Regarding numerical simulation, a commercial finite element code having precise capabilities 

of nonlinear analysis was operated to reproduce the plastic behavior of the PC girders and to 

verify results of DAC variation. In the numerical procedure, first and foremost the models were 

validated by comparing the results with those obtained in real-scale experiments. The emphasis 

here is on the methodology; i.e., how to apply the FE analysis to reproduce the behavior of 

girder No.2 which have many ASR-induced cracks. Because the destructive test itself contains 

a structural nonlinear characteristic and significant deformation, modeling the behavior of the 

specimen until the final state requires the consideration of both high order geometrical and 

nonlinear mechanical parameters, and particularly on selected nonlinear models. The developed 

model considered the nonlinear mechanical properties of concrete and steel. To facilitate 

simulation, some simplifying assumptions for mechanical properties of materials, and supports 

were adopted. 

From observation results on the cut cross-sections, the depth of ASR-induced cracks along the 

girder-axis direction varied from 5 to 20 mm on the side surfaces and the top surface, whereas 

no crack was found out in the area surrounded by stirrups. Moreover, no breaking of tendons 

was confirmed. After the bending test, for ascertaining the corrosion condition of PC strands, 

peeled concrete areas of both samples were taken away. However, no steel corrosion could be 

observed. Therefore, the property values should be different between the surface and the inside 

regions with respect to the numerical model of girder No.2. This modeling approach for the 

ASR-affected beam structure was proposed by Hiroi et al. [1] for the reproduction of the loading 

test on a real-scale large prestressed concrete beam specimens exposed to 7.5 years of ASR 

deterioration. Their results showed that the proposed method was capable of reproducing the 

loading test results in initial stiffness, maximum load, and strains of the ASR specimen. Thus, 

this study assumed the thickness of the surface layer affected by ASR-induced cracks as 20 mm 

in the 3D model. Because the previous results show that girder No.3 exhibited much lower 

levels of damage due to the ASR compared to the other two girders, the material properties of 

the surface and inside regions were assumed to be the same in the numerical model. In contrast, 

the material properties were different between the surface and inside regions of the model for 

girder No.2.  

As shown in Fig. 6.6, a 3D numerical model is produced following the specifications of the 

actual specimen by FX+ For DIANA, which is a commercially available program for nonlinear 

finite element analysis. Regarding element types employed for the investigation, the concrete 

was modeled as solid elements, while the bar in beam elements reproduced the stirrups and the 

PC strands. The bonding force between the concrete and steel materials was assumed as 
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complete. Self-weight and prestress were assigned as the initial load step. The energy-controlled 

convergence norm and the regular Newton-Raphson were selected for iterative method. The 

analysis was carried out by applying incremental load factor with specified sizes. 

 

  

Figure 6.6 3D analysis model 

6.3.2 Material properties of concrete 

The rotating total strain crack model for the concrete [2], which includes the JSCE tension 

softening model for tensile behavior and the multi-linear model for compressive behavior, was 

employed here. Parameters of concrete for the rotating strain crack model with rotating crack 

orientation are presented in Table 6.1. Specifically, Young’s modulus and compressive strength 

of concrete of girder No.3 and inner region of girder No.2 were obtained from compression 

tests on concrete cores collected from the actual samples. The stress-strain curves of concrete 

of girder No.3, which were used for the multi-linear model, were illustrated in Fig. 6.7. The 

fracture energy of concrete is the energy consumed to form cracks per unit area, and is 

calculated by Eq. (3.7) [3]. Also, owing to the absence of experimental data, the estimation of 

the tensile strength of concrete ftk can be done by Eq. (3.8) based on the characteristic 

compressive strength 𝑓𝑐𝑘
′  [3]. 

 

Table 6.1 Concrete properties for the total strain crack model 

Girder Part 

Young's 

modulus 

(N/mm2) 

Poisson's 

ratio 

Compressive 

Strength 

(N/mm2) 

Tensile 

Strength 

(N/mm2) 

Maximum size 

of coarse 

aggregate (mm) 

Fracture 

energy 

(N/mm) 

No.2 
Surface layer 23920 0.16 70.018 3.907 20 0.1119 

Inside region 29900 0.16 87.678 4.539 20 0.1206 

No.3 
Surface layer 36450 0.16 106.228 5.159 20 0.1286 

Inside region 36450 0.16 106.228 5.159 20 0.1286 
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Figure 6.7 Stress-strain relationship of concrete of girder No.3 

6.3.3 Steel materials 

The stirrups were assumed as in the linear elastic material model with a Young’s modulus 

Es=191000 N/mm2, and Poisson ratio ν = 0.3. Regarding the PC strands, Von Mises plasticity 

was employed to simulate the nonlinear behaviors. Specifically, the strands were defined by a 

property with a Young’s modulus Es=191000 N/mm2 , and Poisson ratio ν = 0.3 . The yield 

stress was defined as 1797 N/mm2 based on results of the tensile test. Regarding the prestressing 

force for the PC strands, a value of 1225.3 N/mm2 was assigned to the first layer of PC strands 

in the compression area (4 strands) while the other two layers in the tension area (6 strands) 

were subjected to a presstress of 1166.7 N/mm2. In addition, the prestress was applied to the 

numerical model as the initial stress at the execute start step. 

6.3.4 Load-displacement relationship and crack pattern 

Figure 6.8 shows the experimental and numerical results of the load-displacement relationship 

extracted at midspan of the models. From this figure, the displacement increases in agreement 

with the growth in loading up to approximately 170 kN with respect to the numerical result of 

girder No.2. After the strands had yielded and the slope of the curve had changed, the 

displacement increased moderately, and the load was later terminated when the movement at 

the observed point reached approximately 98.32 mm with the corresponding applied load of 

315 kN. Regarding experimental results, these values were measured at 100.6 mm and 312.72 

kN for the maximum displacement and loading, respectively. The 3D model developed for 

girder No.3 also provided good agreement with the experimental results as shown in Fig. 6.8(b). 

The numerical crack pattern at maximum loading is shown in Fig. 6.9. From the obtained results, 

it can be asserted that the FE model provides reasonable conclusions on the ultimate strength 

behavior of the specimen and is useful for further parametric analyses. Iterative execution 
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allows us to explore the structural role of each component at the proposed connection and how 

these parts cooperate with one another during the test. For the next steps, a series of numerical 

simulations will be carried out to examine the relation between damage severity and changes 

in nodal displacement, and to verify the feasibility of DAC. 

 

 

(a) Girder No.2    (b) Girder No.3 

Figure 6.8 Displacement-load relationship at midspan of the numerical models 

 

Figure 6.9 Crack pattern after the destructive load 

6.3.5 Variations of numerical values of DAC with the increased loading 

The relation between the variations in DAC with the structural degradation of the actual PC 

girders has been proven experimentally in Subsection 6.2.3. This section aims to verify the 

experimental results of the DAC calculation and to clarify the sensitivity of the factor DAC in 

detecting the existence of deterioration. To identify the changes in structural responses caused 

by the presence of damage, the deflections of seven points marked under the target girder were 

obtained.  

The displacement at each finite-element node is normalized with the largest one, at each loading 

step. Then, the normalized displacement curve of some of the nominated load cases can be 
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estimated and represented in Fig. 6.10. In this figure, a decrease in the magnitude of the 

normalized displacement curve can be observed. In other words, the normalized displacement 

curve presents a narrow tendency, in agreement with the increase in applied load. This result 

was also confirmed by evaluating the experimental data shown in Subsection 6.2.3. For 

determining DAC indices, the normalized displacement curve of the numerical model when it 

undergoes an applied load of 5 kN was regarded as the reference curve. The effect of increased 

applied load on DAC values relating to FE models of girders No.2 and No.3 are presented in 

Fig. 6.11. The decreases in the analytical results of DAC of girders No.2 and No.3 in Fig. 6.11 

agree well with the results of loading test. Furthermore, after the elastic stage, DAC values of 

girder No.3 are higher than those of girder No. 2, and the deviations increase significantly with 

the increased loading. These results demonstrate the standpoint that there is a relation between 

damage severity and changes in nodal displacement, represented in this study as the factor DAC. 

In addition, the employed approach for numerical calculation could reproduce the loading tests 

on the PC girder affected by ASR and provide reasonable results. 

 
(a) Girder No.2    (b) Girder No.3 

Figure 6.10 The normalized analytical deflection curves 

 

Figure 6.11 Variation in DAC with respect to the increased loading 
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6.4 Threshold for DAC variation 

The results of the DAC calculation from the numerical simulation results and the experimental 

results of the destructive loading test showed the whole change in the DAC value from the time 

of soundness to the time when the critical load damaged the girders. In the elastic phase, the 

DAC value was almost equal to unity, then decreased as the cracks appeared. Moreover, after a 

gradual decrease to approximately 0.9985, the value of the DAC dropped sharply until the 

structure was damaged (see Fig. 6.11). As mentioned earlier, this study aims to propose a limit 

value for the reduction of the DAC. From the obtained results on both experimental and 

analytical examinations, the DAC value of 0.9985 is considered and proposed as the initial 

value for the limit for the reduction of the DAC in this study. If a structure performs a lower 

value of DAC than 0.9985, the system will give warnings about the health of that structure. In 

the future, further studies about DAC need to be implemented in practice in order to produce 

the most accurate threshold value for DAC index. From now on, by using the DAC value 

obtained from the loading test as the threshold value (such as 0.9985), there is a possibility that 

the proposed method that can express change of displacement shape due to change of rigidity 

as one numerical value and find abnormal value. 

6.5 Conclusions 

This study proposed the displacement assurance criterion (DAC) method that can represent the 

change in rigidity of a structure by one numerical value. In this chapter, attempts have been 

made to utilize Displacement Assurance Criterion (DAC) proposed in Chapter 3 on practical 

cases. Therefore, destructive tests on the PC girders were carried out to evaluate the feasibility 

of DAC approach on damage detection by analyzing the displacement curves obtained from the 

experiments. The main conclusions drawn from this chapter are as follows. 

 Regarding the results of loading tests, girder No. 3 had a better correlation degree of 

displacement curves among loading states by comparing with girder No. 2. Therefore, 

it was cleared that there was a correlation between the variation of DAC and damage 

states. Besides, it can be asserted that the numerical models provided reasonable results 

on the ultimate strength behavior of the specimen and reproduced the variation in DAC 

owing to the applied loads, and was useful for further parametric analyses. Therefore, 

DAC can be proposed as an index to figure out the occurrence of damage and more 

studies should be conducted to apply this indicator in practice. 

 Furthermore, it is possible to utilize displacement curves as the input for DAC 

calculation to identify the occurrence of damage. From now on, by employing the DAC 

value obtained by the loading test as the threshold value (such as 0.9985), there is a 
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possibility that the proposed method that can express change of displacement shape due 

to change of rigidity as one numerical value and find abnormal value. 

 In the future, further studies about DAC need to be implemented in practice in order to 

produce the most accurate threshold value for DAC index. 
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Chapter | 7  

Conclusions 

Among difference approaches developed for structural damage detection, changes in the 

measures static parameters have shown promise for identifying the occurrence and location of 

structural damage. With the aim of contributing to efficient structural health monitoring 

approaches, this study focused on experimental and numerical examples of using only 

displacement data for structural damage detection. The approach was exclusively based on the 

correlation between two displacement curves which can be obtained rapidly on site by 

inexpensive tools of measurement. Specifically, two new damage indicators—displacement 

assurance criterion (DAC) and displacement based index (DBI)—were introduced and 

employed in numerous scenarios to determine damage properties. The outcome of numerical 

studies revealed that the DAC value decreased with the increasing structural damage and DBI 

could point out the locations of simulated damage. Therefore, DAC can be utilized as an 

indicator of the presence of structural degradation and DBI can be employed for damage 

localization. For the kind of structures analyzed, their performance has shown that they are 

potentially useful. From the theoretical standpoint, the number of measurements does not play 

a major role in the change in DAC when there are more than seven observation points. 

Consequently, when considering the effectiveness and the economy of using the DAC 

coefficient to identify the occurrence of structural damage, the seven-point measuring system 

can provide relatively reasonable judgments. Besides, there is no correlation between the DBI 

values and the intensity of applied loads when using DBI as a damage localization approach. 

The limitation of the proposed approaches is that the input data needs to be determined with 

high accuracy. A sufficient number of points provides more accurate results than a rough 

measurement case. Moreover, regarding DBI, the most critical factors for determining damage 

location are the selection of observed points at or near the damage locations, and the accuracy 

of measurements. For preventing uncertainty in the results, this study suggests that the number 

of measures should be as fine as possible. At the moment, the DBI method is useful for damage 

detection only when the measurement noise is less than 0.1%. Therefore, the nodal 

displacement should be measured with high accuracy when using DBI for identifying structural 

deterioration. 

Regarding actual examinations, this study constructed three full-size prestressed concrete (PC) 
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girders from the high-early-strength Portland cement and reactive aggregates, and then exposed 

them to outdoor environmental conditions. Two of the specimens were affected by the ASR 

whereas the third one was maintained at an inactive state by suppressing the acceleration of the 

ASR using the fly ash. Destructive loading tests on the PC girders were carried out to evaluate 

the feasibility of DAC approach on damage detection by analyzing the displacement curves 

obtained from the experiments. Specifically, during the destructive test of the PC girders 

presented in Chapter 2, the vertical displacement was measured at seven pointed on the lower 

extreme fiber for computing the deflection curve at each loading step. Then, the obtained curves 

were analyzed to estimate the variation in the DAC value. Regarding the results of loading tests, 

the girder with fly ash (girder No.3) had a better correlation degree of displacement curves 

among loading states by comparing with the girder without fly ash (girder No. 2). Therefore, it 

was cleared that there was a correlation between the variation of DAC and damage states. 

Besides, a nonlinear finite-element model of the PC girder was produced to verify the relation 

between the variations in DAC with respect to structural degradation owing to applied loads in 

practice. Validations of the numerical analyses against the results of loading test showed that 

the developed model offered reasonable simulations on the ultimate strength behavior of the 

bridge regarding load-carrying capacity, deflection response, and failure modes. Thus, 

numerical model can be appropriated not only as supplements to or substitutes for the full-scale 

test but also in parametric study and design. Besides, it can be asserted that the numerical 

models provided reasonable results on the variation in DAC owing to the applied loads, and 

was useful for further parametric analyses. Therefore, DAC can be proposed as an index to 

figure out the occurrence of damage and more studies should be conducted to apply this 

indicator in practice. From the obtained results of the numerical and experimental methods, this 

study proposes a threshold of DAC index for the sound structure. If a structure performs a 

higher value of DAC than the threshold, it can be judged as safety structure. Conversely, the 

system will give warnings about the health of that structure. From now on, by using the DAC 

value obtained by the loading test as the threshold value (such as 0.9985), there is a possibility 

that the proposed method can express change of displacement shape due to change of rigidity 

as one numerical value and find abnormal value. For long-term prospects, further studies about 

DAC need to be implemented in practical cases in order to obtain the suitable DAC threshold 

value for each kind of structure. 

Besides, structural responses have been used as inputs in the evaluation procedures of civil 

structures for many years. Changes in environmental conditions also affect structural dynamic 

and static responses in a complicated manner. Indeed, apart from the degradation of a structure 

itself, changes in the environmental conditions alter its characteristics. For adequate 

maintenance, it is significant to quantify the environment-induced changes and discriminate 

them from the effects due to damage. Therefore, this study also aims to present preliminary 
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considerations for estimating the long-term behavior of ASR-affected structures and attempts 

to proposed recommendations about measurement noise when using structure responses as 

input for structural damage detection.  

With regards to lab-scale efforts, this study investigated the combined effect of the changes in 

the environmental conditions and the ASR-induced deteriorations on the dynamic and static 

responses of the three PC girders, which were periodically tested for one and a half years. From 

the obtained results, the environmental conditions strongly affected the changes in the 

frequencies of the vibration modes of the girders because the correlation coefficients between 

the variables were high, as computed using the linear models. With regard to the relationship 

with the ambient temperature, the amplitude of the vibrational frequency decreased with respect 

to the increase in the ambient temperature. The correlation levels were comparatively moderate 

for the girders without fly ash (girders No.1 and No.2) but reasonably high for the girder with 

fly ash (girder No.3). With regard to the effect of humidity, relatively negative relationships 

between the measured frequencies and humidity were obtained. The ambient humidity affected 

the frequencies of the bending modes of girders No.1 and No.2 more significantly than those 

of girder No.3. The results of the error analysis show that the bending modes could be estimated 

more accurately than the torsional mode because the error ratio of the torsional mode was higher 

than that of the bending modes. The effects of the measured humidity and temperature on the 

changes in the damping ratio were negligible, though some outcomes illustrate that the damping 

ratios decreased relatively with the increase in the environmental parameters. The results also 

proved that the ambient temperature and humidity affected the entire girder uniformly, and 

consequently, the effects of the environmental conditions on the MAC values were not 

meaningful. A finite element model was proposed for numerical verification, the results of 

which were in good agreement with the measured changes in the natural frequencies. During 

the monitoring period, the bending modal frequencies of girder No.3 fluctuated in the range of 

~3–5%, which is considerable compared to those due to structural damage. Hence, the effects 

of the environmental conditions should be examined thoroughly when using the variation in the 

vibrational frequency to assess the health of structures. Regarding the effects of environmental 

conditions on the static responses of the PC girders, daily and seasonal variations in ambient 

temperature led to changes in the camber of the girders. All values measured from displacement 

meters have positive correlations with temperature. In other words, the amplitude of the camber 

increased with respect to the increase in the ambient temperature. The measured camber of 

girder No.1 increase by ~0.21 mm – ~0.41 mm when ambient temperature increases by one 

degree, this variation of girder No.3 was observed as ~0.23 mm – ~0.5 mm. Approximately 

~81% – ~93% of measured displacement could be accounted for by measured temperature. As 

another result, the camber can be related to temperature gradient using analytical or empirical 

methods. This conclusion allows camber to be approximated using only temperature data. In 
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this study, cambers in PC girders were accurately modeled and predicted in finite element 

simulations. The obtained results in both dynamic and static responses should be considered in 

structural damage detection using changes in structural responses in practice because the 

environmental conditions might cause unexpected errors in measured responses in the 

measurement field. 

Towards the sustainable development of structures in the Hokuriku region, another concern of 

the present study was the possibility of applying fly ash to the PC girders deteriorated by ASR 

to increase their service lives. After one and a half year of monitoring of cracks, an addition of 

fly ash played a significant role in mitigating the cracks caused by the expansion due to ASR. 

From observation results of cut cross-section after the loading test, the depth of ASR-induced 

cracks along the girder-axis direction varied from 5 to 20 mm on the side surfaces and the top 

surface. However, no crack was found out in the area surrounded by stirrups, and no breaking 

of tendons was confirmed. An increase of convex curvature (up to ~13 mm) was observed in 

the girder without fly ash. Meanwhile, almost no change in convex curvature over time was 

found in the specimen mixed with fly ash. As an attractive outcome, an addition amount of fly 

ash did not only increase the load bearing capacity by nearly 5% but also enhance the initial 

bending stiffness of the objective PC girder by 10% after more than one year under ASR 

deteriorations. Therefore, from results of the long-term exposure and the tests, the flexural 

strength and the rigidity of the specimen with fly ash were not degraded while ASR was also 

suppressed efficiently. In addition, the outcomes of the comparison between the three girders 

show that the differences in the measured frequencies of the three girders manifested clearly 

over time regarding the two bending modes, whereas no significant deviation was observed for 

the frequencies of the torsional mode. In particular, the bending frequencies of the girder with 

fly ash were higher than those of the girders without fly ash at each measuring time. With regard 

to the damping ratio, similar observations were made. Although no significant difference in the 

amplitude of the torsional mode was obtained, the damping ratios of the other modes changed 

considerably. Within one and a half years of investigation, the damping ratio of girder No.3 was 

found to be lower than that of the other girders. Besides, the static behaviors of the girders were 

observed to be quite different in this study. Because the dynamic and static behaviors of the 

three girders were observed to be different, the fly ash significantly affected the performances 

of the PC girders under the ASR damage. As another investigation, cylindrical concrete cores 

were taken at various positions of the girders to analyze the relationship between mechanical 

properties of concrete such as compressive strength, static elastic modulus, and ultrasonic wave 

propagation speed. Proportional correlations between the compressive strength, the static 

elastic modulus and the ultrasonic propagation velocity of the core were found. Moreover, the 

mechanical properties of concrete cores varied according to their collecting positions and 

directions. Therefore, when assessing the load-carrying capacity and mechanical properties of 
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PC girder under ASR deterioration, it is necessary to make appropriate corrections according 

to the confinement degree due to prestressing instead of using measured values of the concrete 

core as they are. 

As a final remark, structural health monitoring has a strong similarity exists between it and 

medical activity. Structures instrumented with sensors and equipped with a central processor 

were compared to the nervous system of living beings. After detection of the damage by the 

sensors embedded in the structure, the central processor can build a diagnosis and a prognosis 

and decide of the actions to undertake. Today, the development of damage detection methods 

in civil engineering structures is one of the most pressing issues. However, structural 

characteristics are unavoidably affected by environmental factors, particularly temperature load, 

during long-term structural monitoring. The emphasis here is that “A miss is as good as a mile.” 

If the evaluation system gives a false diagnosis about structural health, it will cause 

unpredictable consequences. Therefore, to provide an effective and accurate determination of 

the structure, it is crucial to quantify the environment-induced noises and discriminate them 

from the effects due to damage. This study is a start point for two simple damage identification 

based on only displacement curve evaluation, and further research is needed on the subject. 

Regarding long-term prospects, further research should be carried out to enhance the accuracy 

of DAC and DBI in actual situations, and future projects can target improvements in relation to 

dynamic strain and displacement influence lines.
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